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Introduction

A balance-of-plant model has been added to the SASSYS-1 liquid metal
reactor systems analysis code [1]. Until this addition, the only waterside
component which SASSYS-1 could explicitly model was the water side of a steam
generator, with the remainder of the water side represented by boundary
conditions on the steam generator.

The balance-of-plant model is based on the model used for the sodium side
of the plant [1]. It will handle subcooled liquid water, superheated steam,
and saturated two-phase fluid. With the exception of heated flow paths in
heaters, the model assumes adiabatic conditions along flow paths; this
assumption simplifies the solution procedure while introducing very little
error for a wide range of reactor plant problems. Only adiabatic flow is
discussed in this report; see [3] for a discussion of flow through heaters.

The balance-of-plant model is explicitly coupled to the steam generator
waterside model discussed in [2].

Discretization of the Balance of Plant

SASSYS-1 represents the balance of plant as a network of one-dimensional
flow paths, or segments, which are joined at flow junctions called compres-
sible volumes. Therefore, one-dimensional forms of the mass, momentum, and
energy equations can be used to describe the system. The network is a
discretization of the balance of plant using a non-uniform spatial mesh. The
momentum equation is solved along each flow path, and the mass and energy
equations are solved at each flow junction. Flow is assumed uniform
throughout each flow path.

The balance of plant is a collection of several types of components.
Components which primarily affect mass flow rate and pressure drop in a flow
segment are best described through the momentum equation and are modelled as
sections of flow segments; these sections are called flow elements. The
cross-sectional area is constant throughout a given flow element. Element
types include pipes, valves, check valves, and pumps. Flow segments then
become strings of one or more flow elements.

Components which join two or more flow segments are best described
through the mass and energy equations and are modelled as compressible



volumes; these include inlet and outlet plena, piping junctions, and open

heaters. Closed heaters must be described through a combination of flow

elements and a cc^ressib le volume [ 3 ] .

Analytical Equations

The general analytical equations are

mass: ~r = - (v • Pu] ; (1)
9 1 — —

momentum: —- (pu) = - [v • puu] - vP - [v • T] + pg ; (2)

energy: ~ (PE) = - (7 • PEu) - (v • q) - [v • Pu] - (v • [x • u]] . (3)
dL — ~ ~ — — — _ — —

These can be simplified by making the following assumptions:

1) One-dimensional flow,

2) Neglect the work done by viscous forces on a compressible volume
(this is the v • [T • u] term in Eq. 3),

3) Neglect kinetic energy and gravitation energy,

4) The viscous term in the momentum equation can be expressed as p '.

In addition, if the internal energy is expressed in terms of the enthalpy, the
mass, momentum, and energy equations take the simpler forms

3p 3pU

mass: ^ = " I T ; (4>

2 ,1
. 3pU 3pU 3P ,_ pU U , ,

momentum: — = - — — - — - F —f-± + pgcose ; (5)
oL dZ dZ C.

3ph 3phu 3q BP
energy: — — = —i + — . (6)

at 3z 32 3t K '



The system is closed by using an equation of state of the form

3\> _ ,3\K _3_P ,_3JK 3h ,?.

3t " ^ ' h It + lahJP It '

Discretized Equations

The analytical forms of the mass, momentum, and energy equations and the

equation of state now need to be discretized over the compressible volumes and

flow elements of the balance-of-plant nodalization. The result of the

discretization will be a set of fully implicit equations which can be solved

simultaneously for the changes in pressure, flow, and enthalpy in a timestep.

All other quantities (e.g., densities, heat sources) will be computed

explicitly.

The first step is to use the momentum equation to express the change over

a timestep in the mass flow rate in each segment as a function of the changes

in the segment endpoint pressures. Next, the mass and energy equations and

the equation of state can be combined to express the change in pressure within

a compressible volume as a function of the changes in the flows of all

segments which are attached to the volume. If these two sets of equations are

combined by eliminating the change in flow, the resulting matrix equation can

be solved for the change in pressure in each compressible volume. The changes

in flow, enthalpy, and all explicit variables can then be determined.

Discretization of the Momentum Equation

The momentum equation is discretized segment by segment. In order to

represent momentum transport correctly through a segment made up of more than

one flow element, the momentum equation must be integrated along the length of

the segment, giving

L 2

J S ^ = P _ P . y ̂_ r_L _ J_) _
k k k k k

where the summation is over all elements in a segment. The term F is a



coefficient which accounts for pressure losses due to friction, bends, area

changes, and orifices or baffles. The form of Eq. 8 is valid for all element

types except pumps; the convective and viscous terms have a different form for

pumps, and Eq. 8 is modified accordingly when a flow segment contains a pump.

If the momentum equation in the form of Eq. 8 is now differenced over a

timestep At = t 1 ^ - tn and then linearized and rearranged, the result is an

expression for the change in segment flow, AW, as a function of AP^n and

AP o u t, the changes in pressure at the segment inlet and outlet, respectively:

Q - a3) . (9)

where

2

Aa (k) = -At I {^ (— - —) - F(k) ̂ L + " gAz
k k\ \ \ 2p / k k

k k k k k

•2 - - I ("l
2-^ !Mj(k)) , (12)

v A.
k ^

Further Details on Element Component Models

The discretized momentum equation, Eq. 9, models one-dimensional flow

along a flow path. This flow path model serves as the basis for the models

for pipes, valves, and check valves. What distinguishes these three component

models is the way in which the coefficient F is varied with time. The only

contributor to F which may vary with time is the size of a flow orifice, and

so any change in F is due to changes in the orifice coefficient portion of F.

The model of a pipe assumes that the orifice coefficient calculated in



the steady state is valid throughout the transient. Therefore, ;he pipe model

keeps the orifice coefficient constant at all times. The valve models, on the

other hand, simulate the opening and closing of the valve by varying the

orifice coefficient. The pressure drop across a valve is related to the flow

through the valve by the equation

AP = -ff— . (14)
PC * (y)

The functional relationship between the valve characteristic <*> and the stem

position y depends on the valve design and is input by the user through

tables. The valve is opened or closed by varying the stem position; the user

has the option of adjusting y directly or through the harmonic equation

H + B df + ky = Fi ( t ) •
dt

so that y is controlled by the driver function F^(t), which is user-input.

The orifice coefficient ^ can then be expressed in terms of the valve

calibration constant and characteristic as

G? - I {\-J . (16)

Thus, the valve aperture changes by recomputing the orifice coefficient each

timestep, and the value of the coefficient is controlled by the stem position.

The check valve model works much the same as the standard valve model.

However, there are a few differences. A check valve is normally either

completely open or completely closed, whereas a standard valve can operate

partially closed. A check valve changes between open or closed when a user-

specified flow or pressure drop criterion within the valve is met. The valve

then changes state by adjusting the orifice coefficient to a user-input value

within a span of time that is also user-input. The criteria for opening and

closing the valve, as well as the length of time the valve takes to open or



close, must be set so as to avoid creating numerical instabilities in the

calculation.

Because both valve models simulate valve closure by setting the orifice

coefficient to a very large value, the flow through a valve is never actually

zero. However, if the orifice coefficient is set sufficiently large, the

resulting flow through the valve will be negligible.

Modelling pumps must be approached in a different way from that used in

modelling pipes, valves, and check valves, since the convective and viscous

terms are no longer simple functions of the mass flow rate. The losses

represented by these terms are instead described by a set of homologous pump

curves. Two types of pump curves are available in the balance-of-plant model,

one using polynomial fits and one using more complex functional forms. Both

options are identical to the corresponding options used in SASSYS-1 for sodium

pumps.

Discretization of the Mass and Energy Equations and the Equation of State

The derivation that follows assumes perfect mixing within a compressible

volume. Volumes in which liquid and vapor are separated are discussed in [31.

The mass and energy equations and the equation of state are solved at

each compressible volume. Because the fluid within each volume is assumed to

be perfectly mixed, the enthalpy and pressure are uniform within a volume

(neglecting the pressure variations due to gravitational head). Therefore,

the energy equation, Eq. 6, can be discretized in space by writing a separate

energy equation for each volume i,

d[p h ) 3P
V J-^- = -V v(puh) + Q + V —- . (17)
a. at i \ i a at K '

Equation 17 can be rewritten in terms of flows and masses by using the simple

relationship between mass and density, pV = m, and expressing the enthalpy

convection term as the rate at which enthalpy is convected into the volume.

If the resulting equation is then discretized over time and the advanced time

terms are linearized and second-order terms are dropped, the energy equation

becomes



am ah . , 3P
a , n n s. v ,n+l n+1 .. . n i

where the sum is over all segments which are attached to volume i. This form

of the energy equation is a linear function of the volume mass, enthalpy, and

pressure and of the enthalpies and flows from the segments attached to the

volume. The heat source Q is assumed to be treated explicitly, and the

enthalpy convection term is evaluated at the advanced time.

The mass time derivative can be eliminated from the energy equation by

using the mass conservation equation, Eq. 4, written in the form

3m

- i * I w sgn(j,0 . (19)

Substituting into Eq. 18 gives

3h . . 3P
n a n r n+1 , . v n+i n+1 . n ., s,

i IT = ~ \ \ Wj sgn(j'^ + I hj wj s9 n(J l) + Q + v
J J

There is one difficulty with the form of the energy equation shown in Eq.

20 — the enthalpies at the interfaces between the compressible volume and the

attached flow segments are treated implicitly.. For the range of problems for

which this model has been developed, treating these enthalpies explicitly

introduces only small errors at worst. Treating them implicitly results in a

solution procedure which is unnecessarily complicated and cumbersome. There-

fore, it is assumed that these enthalpies can be treated explicitly. Applying

this assumption to Eq. 20 and also finite differencing the time derivatives

and linearizing the advanced time flows produces an energy equation of the

form
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J

AP
+ Qn + V — - . (21)

i. a At

Equation 21 expresses the change in volume enthalpy as a function of the

change in volume pressure and the changes in flow in the attached segments.

If the change in enthalpy can be eliminated, the result will be the desired

equation relating the change in volume pressure to the changes in the segment

flows.

The change in volume enthalpy can be eliminated from Eq. 21 by using the

equation of state, Eq. 7 above, rewritten in finite differenced form as

2
v 3v n AP 3v n Ah
T ] (wj + Awj} sgn(j'° [W\ JT + [ ^ P IT (22)

Equation 22 is another expression for the change in volume enthalpy as a

function of the change in volume pressure and the changes in the segment flows

and so can be substituted into the energy equation, Eq. 21, to eliminate the

change in volume enthalpy. By substituting density for mass and then

rearranging, an equation for the change in pressure as a function of the

changes in the segment flows is produced:

ah n
= -At {Q" + I w" [h" - h" + v" (~)pl sgn(j,0

ah n
+ I i». {h" - h" + v" (^)p] sgn(j.a)}/

av n ah n

V
£



Solution Procedure

The segment flows can be eliminated from Eq. 23 by substituting the

momentum equation of Eq. 9 to give

ah n
f n r n f , n , n n , i > i / - \

- A t { Q t + I w . [ h . - hi + ^ ( — ) p ] s g n ( j , 0
J

ah n
I sgn( j . i ) [h" - h" + vn ( r -^ jp ] • [a . ( j ) +
J

At [AP. n ( j ) - A P o u t ( j ) ] ) ] / [ a 0 ( j ) -

n jti n

If Eq. 24 is written for all L compressible volumes in a system, the result is

a set of equations, each of the form

L
I c(I,J)AP. = d(I) (25)

These equations can be solved simultaneously for the pressure changes in all
compressible volumes. Once the pressure changes are known, the change in mass
flow rate in each segment can be computed from Eq. 9, and the changes in
volume enthalpy can be calculated from Eq. 22. The explicit quantities, such
as density and heat source, can then be updated.

Boundary Conditions

Often, it is desirable to perform calculations on only a portion of a
power plant and to use boundary conditions to simulate the effect of the
remainder of the plant. The balance-of-plant model has two types of boundary
conditions available for this purpose: a flow boundary condition and a volume



boundary condition. The flow boundary condition specifies flow and enthalpy
as a function of time in a special flow segment attached to a compressible
volume of the user's choice. The values of flow and enthalpy are either given
by the user or are controlled by the plant control system. Multiple flow
boundary conditions can be applied to the system. The volume boundary condi-
tion is modelled as a compressible volume in which pressure, enthalpy, and
quality as a function of time are either user-input or controlled by the plant
control system. The volume can be attached to one or more flow segments.
Multiple volume boundary conditions can be designated in a network.

Coupling Between the Balance-of-Plant Model and the Steam Generator Model

It is important to note that the balance-of-plant model does not include
the water side of the steam generator. Instead, the steam generator is
modelled separately and is explicitly coupled to the balance-of-plant model.
By so doing, the steam generator can be represented without use of the
momentum equation [2], thereby significantly reducing the number of implicitly
coupled momentum cells in the balance of plant. This is particularly
important in a systems analysis code, where a fully-implicit solution scheme
can easily result in unacceptably long running times. The omission of a
momentum equation in the steam generator requires the assumptions that (1) the
pressure drop across the steam generator can be neglected and that (2) the
coupling between the steam generator outlet and the remainder of the balance
of plant is not very strong; these assumptions are valid in a wide range of
operational and accident situations in nuclear power plants. The coupling
between the balance of plant and the steam generator is accomplished by having
the steam generator provide a pressure at the subcooled/two-phase interface
within the steam generator and a flow from the steam generator outlet into the
outlet plenum, while the balance-of-plant model provides the subcooled region
flow and the average steam generator pressure. This particular coupling
requires some time averaging to stabilize the rate of change of the steam
generator pressure, as well as limits on the rate of change of the subcooled
zone flow; neither constraint affects the accuracy of the overall calculation.



Sample Problem

The plant configuration selected as a test case is diagrammed in Fig. 1.
This is the high-pressure side of a balance-of-plant design for a liquid metal
reactor plant. The problem encompasses that section of the plant which runs
from the deaerator to the high-pressure turbine. The system contains sub-
cooled liquid between the deaerator and the inlet to the once-through steam
generator. The steam generator output is superheated steam which passes
through a separator and finally, into the turbine. The deaerator and the
turbine are both modelled as volume boundary conditions. The two heaters are
represented by a simple heater model; testing of the advanced heater models is
documented in [3].

When the test case is discretized, the result is the nodalization diagram
of Fig. 2. The problem has now become a network of compressible volumes
joined by flow segments, with the flow segments divided into one or more
elements. The problem is sufficiently complex to provide a useful test of the
coding, yet it is not so large as to be impractical to run many times, a
necessity for a test case.

Several types of transients have been run with the sample problem of Fig.
2, among them a case in which one of the three feedwater pumps is tripped.
The pump coasts down in 0.5 s. from full flow to the point at which the
downstream check valve is tripped, and the check valve closes in 0.025 s., so
flow is effectively zero in the branch containing the disabled pump in less
than 1 s. This represents a moderately severe transient on the water side.
The numerical algorithm handles this case with no difficulty, predicting a
rapid decline in feedwater flow to about 78% of the original flow, as shown in
Fig. 3, with a corresponding decline in steam generator pressure. The steam
generator slowly boils dry, as shown in Fig. 4, with the sodium outlet
temperature rising accordingly.

Other test cases which have been run include a base case null transient,
a reactor trip transient, and a steam valve closure transient, in which a
valve was added before the turbine on the steam side. All of these cases
showed robust behavior by the algorithm similar to that displayed in the one-
of-three pump trip problem.



Al l test cases were run on a Cray-XMP mainframe computer. In each

problem, the cpu time for running SASSYS-1, including the steam generator and

balance-of-plant models, was about 70% real time.

Conclusions

A viable balance-of-plant capability has been added to the SASSYS-1 code.
The model has performed accurately in a variety of test cases while showing
acceptably fast running times. Some additional test cases are planned for
further model validation.



Nomenclature
aQ,a^,a2,a3 momentum equation coefficients.

A flow area (m ) .

B valve damping coefficient (kg-m/s).

C valve calibration constant (m ).

E total energy (j/kg).

F pressure loss coefficient.

Fi valve driving function (kg-m/s ).

g gravitational constant (m/s ).

G2 orifice coefficient.

h specific enthalpy (j/kg).

k valve spring constant (kg/s ).

L element length (m).

m mass (kg).

n index on the discretized time variable.

P pressure (pa).

q heat flux (j/m3).

Q heat source (j).

sgn(j.a) 1 if the steady state flow in segment j is entering volume i,
-1 if the steady state flow in segment j is leaving volume a.

t time (s).

u fluid velocity (m/s).

V volume (m ).

w mass flow rate (kg/s).

z spatial variable (m).

y specific volume (nr/kg).

0 valve characteristic.

p density (kg/m ).

e angle from vertical of a flow path

T viscous stress tensor (pa).
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