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INTRODUCTION
1 2The discrete ordinates (S^) method, first developed ’ for stellar atmospheres, has

been used extensively on various other radiation transport problems. In reactor analysis

the method is generally used to generate parameters for design models based on more

approximate but less expensive methods (such as diffusion theory) so that the

spatial—spectrum coupling is represented accurately on a microscopic reaction rate level. It

has a decisive advantage over Monte Carlo methods in computing the pin and assembly

power profiles. In shielding problems^ where the penetration of the radiation can be deep,

the method is used widely in design calculations. In oil-well logging problems which also

involve deep penetration and have a stringent accuracy requirement on the detector

responses, the method complements the Monte Carlo techniques. ’ Recently, the discrete

ordinates method with appropriate cross sections has been used in coupled photon-electron 
7

transport problems.

In this paper we briefly review the basic method, illustrate its applications, discuss 

its merits and pitfalls, and enumerate the recent advances in the attendant numerical 

techniques which have enhanced the capabilities of the method.

METHOD

In neutral particle transport of interest in reactor, shielding and well—logging 

configurations, the time-independent Boltzmann transport equation for the angular flux,
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where the phase—space variables, r, Cl, E, Cl\ E1, and the material properties a, crg, ua^ and 

X have their usual meanings. In the most commonly used discrete ordinates codes, Eq. (1) 

is discretized over the phase space variables and solved iteratively to obtain the angular 

flux and other related quantities.

Phase Space Discretization: Energy is treated by the multigroup and the space variables by 

the finite difference approximations. The angular variable is represented by a discrete set 

of directions, ftm, the integration over angle replaced by weighted summations, and Eq.(l) 

is solved for each direction. Recently developed discretization schemes will be discussed

later.

Source Iteration: Three levels of iteration can arise for each energy group. These are the 

inner iteration for within-group scattering, the iteration for those upscattering from lower 

energy groups and the outer iteration on the multiplication factor due to fission. Since the

convergence at each level which result in significant reduction in the computing time.
8 9In conventional finite difference schemes ’ the discrete ordinates transport

equation in a spatial cell of width Ax, Ay, and Az is replaced by the difference equation

(2)
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where the subscripts R, L, F, N, T, and B represent the right, left, far, near, top, and 

bottom surfaces of the cell, and 'F and 5 are the cell—averaged flux and total source, 

respectively. Auxiliary relations representing the cell—averaged flux as a weighted-average 

of the cell-surface flux are then used to solve for all the unknowns. The weighting 

parameters determine the flux shape in the cell. They are set to unity in the 

step—difference scheme and are ^ in the linear diamond scheme. The latter can yield 

(unphysical) negative flux for cell widths larger than a mean—free—path and thus requires 

negative flux fixup schemes. The weighting parameters can also be determined 

dynamically by requiring the flux to be positive.^ Given the inflow surface flux from the 

boundary conditions or from the outflow of the adjacent cells, one marches through the 

spatial mesh in the direction of particle motion. This iterative process continues until 

certain specified convergence criteria are satisfied.

The coarse—mesh rebalance (CRB)1^ and the diffusion synthetic acceleration 

(DSA)H schemes are the primary acceleration methods in discrete ordinates codes. In 

CRB the solution over a coarse mesh (or region) is used to obtain adjustment factors to 

enforce particle balance after each iteration. In DSA the diffusion equation is solved to 

provide an extrapolation to the next iteration. Direct and iterative0 S2 discrete 

ordinates solutions has also been used as the initial guess. The major discrete ordinates 

codes and their salient features will be discussed in the presentation.

EXAMPLE

Figure 1 displays the eigenvalues and power profiles of the benchmark BWR rod 

bundle problem1^ calculated by two discrete ordinates codes, TWODANT14 and DORT15, 

and the diffusion theory option. The following conclusions can be drawn from these results: 

1) The discrete ordinates codes agree well for the same methods, as they should. 2) the 

eigenvalue by the fine—mesh diffusion calculation is ~ 6% lower than the corresponding
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transport result from TWODANT. 3). Diffusion theory underestimates the power density 

by ~ 8% near the control rod. The differences between discrete ordinates and diffusion 

theory results were much less without the control rod. This example demonstrates the 

importance of accounting for transport effects in reactor problems.

RECENT DEVELOPMENTS
7

The discrete ordinates method for neutral particle transport was recently extended

to solve coupled photon-electron transport problems with appropriately defined cross

sections to model the forward—peaked electron scattering and the continuous slowing down

process. This method offers the adjoint capability and typically reduces the computing

time by factors of 10 to 30 over the Monte Carlo method for the same accuracy.

Improved spatial difference schemes, collectively known as the nodal methods, have 
1

recently been developed/ Nodal methods augment the finite difference equations with 

auxiliary relations derived by preserving the spatial moments, and provide more accurate 

solution than the conventional finite difference methods. In a model well—logging 

configuration the nodal method needed less than a tenth of the CPU time of the linear 

diamond scheme with both methods yielding a 2% accuracy in detector response. In a 

three-dimensional concrete building shielding problem the nodal method reduced the 

maximum error in the leakage by nearly 10—fold over the weighted difference scheme. 

Several hours of Cray CPU time were saved in both problems to attain the same accuracy.

Other improvements to the discrete ordinates method are incorporation of spatial
18 19 20finite element methods , extension of nodal methods to curved geometries ’ and

21time-dependent transport problems , and development of alternative acceleration 
22schemes applicable to higher-order spatial differencing schemes.

The major disadvantage of discrete ordinates method is the occurrence of the ray
2Q

effect in two and three dimensions. This arises from the discrete representation of the 

angular variable and can result in spurious oscillations in the flux. The ray effect is severe
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in problems with strongly absorbing media or isolated sources. The procedures ° to

mitigate this are not fully satisfactory for they are either inadequate or too expensive.

Recently, methods have been devised D’ to treat the angular variable by an approach

similar to the multigroup approximation. These provided average particle-directions

based on the flux and have been shown to reduce the ray effect.

The discrete ordinates method offers attractive features for vector and parallel

processing. The spatial—mesh sweep can be vectorized^ and parallel iterations strategies 

28have been developed with significant reduction in the CPU time.

CONCLUSIONS

The discrete ordinates method is a powerful technique to solve the Boltzmann 

transport equation. However, the user must be cognizant of certain limitations to apply 

the method effectively. It has been employed in a wide range of radiation transport 

problems with considerable success. Further applications are being explored by many 

researchers. Improvements in the associated numerical schemes have enhanced the 

capabilities of discrete ordinates methods to make them competitive with Monte Carlo 

methods for three-dimensional problems.
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Figure Captions

Figure 1. Eigenvalues and Power Profiles of the BWR Rod Bundle Problem with
_c

Cruciform Control Rod (pointwise flux convergence criterion = 2x10 ).
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