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THERMOCOUPLE PLACEMENT AND HOT SPOTS
IN RADIOACTIVE WASTE TANKS

James J. Barker

ABSTRACT

Analytical solutions available in Carslaw and Jaeger's Conduction of Heat
in Solids for continuous point sources and for continuous finite sources are
used to demonstrate that placement of thermocouples on a fine enough grid to
detect a hot spot is impracticable for existing waste tanks but fortunately
temperatures

not necessary. Graphs covering ranges of diffusivities, times,

and heat generation rates are included.
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THERMOCOUPLE PLACEMENT AND HOT SPOTS
IN RADIOACTIVE WASTE TANKS

THERMOCOUPLE SPACING

The initial intention was to determine thermocouple spacing necessary to
detect a hot spot in waste stored in tanks, should one develop, in time to
counter any possible unsafe situation.

The avenue of investigation that proved fruitful was examining continuous
point sources in an infinite medium, a classical tack that yields closed-form
solutions. The evaluation of such solutions does not require computers but
can benefit greatly from them.

CONTINUOUS POINT SOURCE

These results are based on calculations using an equation on page 261 of
Reference 2. That equation for temperature, v, can be written

v = (Q/[4*77?*e*c*D*r] )*erfc[r/sqrt(4Dt) ] (1)
where

heat rate of point source, Btu/hY

3.1415927

density of the medium, lbs/ft3

specific heat, Btu/lb,°F

diffusivity, ft2/h

radius, ft

time, hours from the start of the heat source.

~ = OO ® T O
I m o mnmnn

Figure 1 shows v/Q versus diffusivity at various times at a distance of
0.1 ft from the heat source. It is seen that v/Q decreases as diffusivity
increases and that it approaches a steady-state limit asymptotically as time
increases. The diffusivities cover the range for soils given by Carslaw and
Jaeger, which is also applicable for the radioactive wastes in the
ferrocyanide tanks (Reference 2).

To examine the effect of distance, it is convenient to form the ratio of
the temperature at radius r to that at a radius of 0.1 ft, which is given by
the following equation:

v(r=r)/v(r=0.1) = (0.l/r)*{erfc[r/sqrt(4Dt))
/erfc[0.1/sqrt(4Dt)]}. (2)
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Figures 2 through 7 show v(r=r)/v(r=0.1) versus time (the logarithms
of those variables are plotted to fit the information into a convenient space)
at various diffusivities for radii from 1 to 6 ft from the heat source. It is
seen that the temperature ratio increases with time but starts at a small
fraction. It is also seen that at small times, the effect of diffusivity is
palpable, but at long times diffusivity exerts only a small influence.

These figures may be used to assess the spacing necessary for
thermocouples to detect hot spots. For example, if the average volumetric
heat production rate in the waste were q and a particular location happened to
accumulate a concentration of radioactivity that produced a volumetric heat
rate of ng, where n > 1, then a small volume, dV, around a point in that
region (which we can say encompasses all of the accumulation) can be said to
be represented by a "hot spot" heat rate Q = (n-l)qdV Btu/h at that point.
Entering into Figure 1 the time and diffusivity of interest enables one to
read the ratio v/Q from the ordinate. Then, by multiplying that ratio by Q
one can arrive at the temperature rise, v, over and above the background
temperature (at the volumetric heat rate q) in that region, at a distance of
0.1 ft from the source. The effect of distance, at the time and diffusivity
of interest, is then assessed by tracing the temperature ratio,
v(r=r)/v(r=0.1), which decreases very rapidly as r increases, seen in
Figures 2 through 7.

Such estimates indicate that the concentration factor, n, would have to
be unreasonably large before the hot spot temperature would reach a value
sufficient to initiate a chemical reaction in the wastes. The estimates also
show that the spacing of thermocouples would have to be impracticably close
together to detect such a temperature rise in a reasonable time.

FINITE HEAT SOURCE

The trouble with point sources is that they tend to produce temperatures
that increase without limit as the distance from the point source decreases
toward zero.

Finite sources do not have that limitation.

Consequently, the results have been calculated for a finite volume of
radioactive waste, in the form of a right cylinder buried in the tank wastes,
in which the heat generation rate can exceed that of the average rate in the
surrounding wastes.

Carslaw and Jaeger (Reference 2), on page 266, Eq. 1, show that for
radius 0 < r < a and height -b < z < b, the maximum temperature rise, v, in a
cylinder with its center at the origin (in an infinite medium initially at
zero temperature) is given by Eq 3:

t
(3)
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where

density

specific heat

heat generation rate per unit time per unit volume
diffusivity

time

the integration variable (with units of time).

CHO>O0T

The multiplier of du in the integrand starts out at unity when u = zero
but diminishes to zero as u increases; therefore, the result of the
integration approaches an asymptote as t increases.

Table 1 shows how the maximum temperature rise above the background
varies with the size of the right cylindrical volume between volumes of
1/8 gal and 8 gal, for a concentration of activity twice that of the average
(based on a volumetric heat generation rate of 2.264 Btu/h ft3, which
corresponds to 20,000 Btu/h being generated in a 2-ft layer of waste in a tank
75 ft in diameter.

Table 1.

Right cylinder Diffusivity Maximum temperature
radius (ft)  volume (gal) (ftz/h) rise (°F)
0.1385 0.125 0.005 0.2009

0.010 0.1003
0.015 0.06729
0.020 0.05069
0.025 0.01669
0.2771 1.000 0.005 0.7854
0.010 0.3968
0.015 0.2646
0.020 0.2009
0.025 0.1613
0.5542 8.000 0.005 3.1187
0.010 1.5678
0.015 1.0483
0.020 0.7854
0.025 0.6300

At a diffusivity of 0.017674 ft2/h, which corresponds to a thermal
conductivity of 0.5 Btu/h,ft2, (°F/ft), and density times specific heat of
28.29 Btu/°F,ft3, the maximum temperature rise, at twice the average heat
generation rate, would be 0.23627 °F in a 1-gal volume. Therefore, at ten
times the average heat generation rate, the maximum temperature rise would be
9(0.23627) = 2.126 °F. Even for an 8-gal overheated zone, it is clear that,
using a lower diffusivity of 0.015 ft2/h, at ten times the concentration, the
maximum temperature rise would not exceed 9(1.0483) = 9.4347 °F.
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It is unlikely that concentrations much higher than one times the average
are extant in the ferrocyanide tanks because of the nature of the materials,
the way they were laid down in the tanks (Reference 1), and extensive
experience over many years of operations. Therefore, hot spots from unusual
accumulations of radioactivity are not a reasonable basis for analysis of
safety conditions in ferrocyanide tanks.

The integral in Eq 1 is simplified, and the result is more universally
applicable if the integration variable is changed to x = 4Du/a? because the

integrand then is dimensionless and the equation becomes

4Dt

[1-e-—] erf (—) dx (4)

X Alx

and the integral has a constant value that is understood to be 2.63. The
appendix gives a FORTRAN program for evaluating that integral.

Table 2 shows how the value of the integral changes as the tolerance is
tightened.

Table 2.

Tolerance  Value of integral Percent change 4Dt/a?
IE-4 2.60274 5.8E3
IE-5 2.6214 0.717 4.23E4
|E-6 2.62726 0.2235 1.949E5
IE-7 2.62997 0.1032 9.033E5

This means that the temperature is given by

= 2.63 (N-) (-
v (4D) (pc) (5)

and the results in Table 1 can be reproduced from that relationship.

Notice that the temperature is directly proportional to the square of
the radius of the right cylinder and to the volumetric heat generation rate
but is inversely proportional to the diffusivity and to the volumetric
specific heat of the infinite diffusion medium.

Suppose there is a large volume, V, of waste that is generating a total
heat rate Q, so that the average volumetric heat rate is q' Btu/h,ft3 = Q/\V.
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Further suppose that within V there is a smaller volume, v, of waste that has
a volumetric heat generation rate n times the average rate, or nq'. Then a
heat balance on the system would yield

ng'v + q(V-v) = Q (©)

where q is the volumetric heat generation rate outside the small volume v.
Dividing through by V, it is seen that q is given by
qg={QV - nq"(vV) ¥Y{ 1 - vV}
= q’[I-n(v/V)]/[I-v/V] 7)

Table 3 shows how the ratio q/q' varies with v/V for various values of
the heat concentration factor, n.

Table 3.

Ratio: volumetric heat rate outside concentrated region
divided by average volumetric heat rate

q/q’
\ n = 2 3 4 5 10 20 40
\

viV \

0.01 0.9899 0.9798 0.9697 0.9596 0.9091 0.8081 0.60606
0.02 09796 0.9592 0.9388 0.9184 0.8163 0.6122  0.2041
0.04 0.9583 0.9167 0.875 0.8333 0.6250 0.2083

0.08 0.9130 0.8261 0.7391 0.6522 0.2174

0.16 0.8095 0.6190 0.4286 0.2381

0.32 0.5294  0.0588
Obviously, when n = 1, g/q' = 1 for all values of v/V. The first row in Table

3 shows that, when v/V is 0.01, the background temperature is not strongly
affected even when n = 10. Comparing the first row with the column at n = 2,
it is seen that there is not much change in g/q' out to n = 10 or down to
v/V = 0.08 (which corresponds to V/v = 12.5).

Consider a waste layer 5 ft thick generating a total of 10,000 Btu/h in a
75-ft diameter tank that would correspond to an average volumetric heat
generation rate of 0.4527 Btu/h,ft3 = q'. If the temperature could be allowed
to rise to 350 °F without concern (because that would be 430 - 350 = 80 °F
below the spontaneous reaction temperature under the most favorable
conditions) then the temperature in a small volume of waste, with a heat
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generation rate of nql, could be allowed to rise from about 135 °F to 350 °F,
or 215 °F at the maximum point in the small right-cylindrical volume assumed
within the total volume of heat-generating waste.
Substituting values into Eq 5 results in the following (with D = 0.015

ft2/h, e*c = 28.29 Btu/ft3, °F):

nq = 28.29(215)4(0.015)/(2.63*a2) = 138.76/a2 (8)
and, using a? = 231.21(v/V)0-666667,

n = 1.3257/(v/V)0'666667 (9)

Table 4 shows how n varies with v/V.

Table 4. Allowable Concentration Factor, n, Versus Fractional
Volume at n Times the Average Volumetric Heat Rate and
the Corresponding Volume, v, and Radius, a,
of the Overheated Volume.

Fractional Volume, v, Right cylindrical
volume n ft radius (ft)
0.01 28.56 220.9 3.276
0.02 17.99 441.8 4127
0.04 11.33 883.6 5.200
0.08 7.14 1767.2 6.552
0.16 4.50 3534.4 8.255
0.32 2.83 7068.7 10.400

Although the geometry of the basis of Eq 4 does not exactly fit the
situation in the waste tanks, particularly as the radius of the right
cylinder, a, gets larger, the results in Table 4 are useful as indicators of
important conclusions.

Carrying the investigation a step further shows how time becomes a
consideration. Time is buried in the parameter 4Dt/a2, which is listed in
Table 2, and which is called x. Taking D = 0.015 ft2/h, it is seen that t, in
hours, is given by 16.667a2x, with a in feet. Therefore, we construct the
table below as an extension of Table 2.
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Table 5.

Value of integral Value of x t/al t, hours
(Eq 3) (=4Dt/a2) (D=0.015ft2/h) (a=3.276ft)
2.6027 5.8E3 0.0967E6 1.037E6
2.6214 4.23E4 0.705E6 7.566E6
2.62726 1.949E5 3.248E6 34.858E6
2.62997 9.033E5 15.055E6 161.573E6

Because 30 years, the half-life of 137Cs, corresponds to 0,.263E6 h, it is
clear that the decay of the radioactivity has to be takem into account in

the integrand of Eq 5 by introducing the factor exp (-/ia2x/4D), where

A = the decay constant for 137Cs = 2.6357E-6 h'l. With a = 3.276 ft and

D = 0.015 ft2/h, the constant 2.63, with an error of IE-7, becomes 2.547, with
an error of IE-7. Such a small correction has an unimportant effect on any
conclusions here. Figure 8 shows how the value of the integral is affected by
the decay of the heat source with time, using dimensionless variables.
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Heat Diffusion: Continuous Point Source Temperature Rise
per Heat Rate versus Diffusivity at Various Times

Based on the equation
viQ = erfc(a/sqrt(4Dt)])/[4*pi*d*c*D*a]

pi s 3.1416, d*c a 28.29 Btu/(t} degrees F

a=0.1 foot
Note: Time changes by a factor
of 2 on sucessive curves
0.008 0.010 0.012 0.014 0.016 0.018 0.020

Diffusivity, Square Feet/Hour
Figure 1

Temperature Ratios for a Continuous Point Source in an Infinite
Conductor versus Time at Various Diffusivities for a Given Radius

-1.0
-1.1
-1.2 Radius, Feet a 1
-1.3
Based on the Equation
V(0 0./ erfc[r/2 sqrt (Il)t)
1.4 vIvi0-1) 2 (0.1, 2 10.472 sart (Dt
v a Temperature, Degrees F  Da Diffusivity, ftVhr
A1.5- D Increases In the Sequence
0.008, 0.009, 0.010, 0.012,...0.018, 0.020
1.6

7716 178 2.0 22 2A 2.6 2.8 370 3'2 314 36 38 4M0 412 4°4 416 418

log 10 [Time in Hours]
Figure 2
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Temperature Ratios for a Continuous Point Source in an infinite
Conductor versus Time at Various Diffusivities for a Given Radius

-1.3i
1-1-5
g
CL
i-1.7-
- 1.9 Radius, Feet = 2
= 21-
[ Based on the Equation
5 2.3 (0.1 01/ erfc[r/2 sqrt (Dt)]
vION(0.1) = (017 e(0.1/2 sqrt (DY]
= 2.5 v = Temperature, Degrees F D = Diffusivity, ftVhr
- D Increases In the Sequence
o
g =" 0.008, 0.009, 0.010, 0.012,...0.018, 0.020

296 |1s 20 22 24 26 2'8 3.0 312 3.4 3.6 38 4°0 4.2 4lA 4I6

log 10 (Time in Hours]
Figure 3

Temperature Ratios for a Continuous Point Source in an Infinite
Conductor versus Time at Various Diffusivities for a Given Radius

b -1.5n
n
o -2.0
i. -2.5
>
Radius, Feet =3
-3.0-
+-3.5 Based on the Equation
erfc[r/2 sqrt (Dt
v(r)/v(0.1) = (0.1/r) [ art (DY)
erfc[0.1/2 sqrt (Dt)]
g 4.0 v s Temperature, Degrees F D = Diffusivity, fti/hr
DC
° .45 D Increases in the Sequence
1 0.008, 0.009, 0.010, 0.012,...0.018, 0.020
-5.0-r

16 1.8 2.0 22 24 26 28 3.0 3.2 34 36 3.8 40 42 44 46 438
log 10 (Time in Hours]
Figure 4
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Temperature Ratios for a Continuous Point Source in an infinite
Conductor versus Time at Various Diffusivities for a Given Radius

-1.541

2.0.

-3.5 Radius, Feet = 4

-4.5 Based on the Equation
erfc[r/2 sqrt (Dt)]

erfc[0.1/2 sqrt (Dt)]
-5.5 v = Temperature, Degrees F D = Diffusivity, fti/hr

5.0 v(r)/iv(0.1) = (0.1/r)

6.0 D Increases In the Sequence

6.5-1 0.008, 0.009, 0.010, 0.012,...0.018, 0.020

-7.0
16 18 2.0 22 24 2.6 28 3.0 3.2 34 3.6 3.8 40 42 44 46 48

log 10 [Time in Hours]
Figure 5

Temperature Ratios for a Continuous Point Source in an Infinite
Conductor versus Time at Various Diffusivities for a Given Radius

Radius, Feet =5

Based on the Equation
erfc[r/2 sqrt (Dt)]

erfc[0.1/2 sqrt (Dt)]
v = Temperature, Degrees F D = Diffusivity, ft2/hr

v(r)v(0.1) = (0.1/r)

-7.5-
D Increases in the Sequence
-8.5-

16 1.8 2.0 22 24 26 28 3.0 3.2 34 3.6 3.8 40 42 44 46 4.8

log 10 [Time in Hours]
Figure 6
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Temperature Ratios for a Continuous Point Source in an Infinite
Conductor versus Time at Various Diffusivities for a Given Radius
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Figure 7

Radioactive Heat Source Integral
versus log 10(Z), Z = (a2 MD"T)

2.8
2.6
94 (4D/a%) (rho®c/A9)v = Heat Generating
Radioactive Rt Cyl
2.2 in Nonradioactive-
JHexp(-gx)] [1-exp(-1x)] erf(1/Vx)d) Infinite Medium of

2 ' Same Diffusivity ~

1.8 Initially at Zero
9 i(7.907E-5) (e’MDt) a (7.907E-5)Z Temperature

1.6 ¢ 1 haiMifa, years i i
14 a i rt cyl radius and half-height, ft

- 0 idiffusivity, ft’/hr
12 X 1 integration variable, dimensionless

t 1 time, hours i i
1 1 rho 1density of medium, Ibs/ft!
1 Initial heat generation rate of
0.8 radioactive source per unit volume
8tu/hr, ft’ | | i
0.6 i specific heat of medium, Btu/lb, degrees F
0.4 i maximum temperature at center of
heated rﬂlght cylinder, degrees F |

0.2 Sourca: Carslaw and Jaeger, 2nd Edition, p. 266

0

—= — "1 .. 5 7

log 10(Z), Z = a /4Dx, hours/year
Figure 8
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APPENDIX A

This is r3cylhts.for, a FORTRAN program to calculate the
function (a*c/A)*v = (a*a/(4*D))integral from 0 to (4D/a*a)t
of

[1.-exp(-l./x)]erf(l./sqrt(x))dx

where a is the radius of a right cylinder of height 2a with
center at the origin, o is density, ¢ specific heat, A

the volumetric heat generation rate and v is the temperature
at the origin as a function of time t. The function goes to
a steady value as t gets large,

OPEN (7,FILE = 'r3cylhts.dat’)
write(6,101)
write(7,101)

format(lx,’ X S '>//)
S = 1./10.**20.
x = 1./10.7*20.
dx = 0.0001
continue
if(x-dx)2,3,3
xl = x
1 1
{/pl = 1.
x2 = x| + dx
y2 = 1. - exp(-l./x2)
z2 = l./sqrt(x2)
call erfox(z2,w2)
yp2 = y2*w2
ypb = 0.5%(ypl + yp2)
dS = ypb*dx
S =95 +4dS
X = X2

write(6,100) x, §
write(7,100) x, §
FORMAT (Ix,2el4.6)
go to 1
X
1. - exp(-l./xI)
I./sqrt(xl)
if(z1-3.)4,4,5

call erfox(zl,wl)
go to 6

call erfcox(zl,vl)
wl = 1. - vl
ypl = ylI*wl
x2 = xlI + dx
y2 = 1. - exp(-l./x2)
z2 = l./sqrt(x2)
if(z2 - 3.)7,7,8

<
m im

12
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call erfox(z2,w2)
go to 9

8 call erfcox(z2,v2)
w2 = |.-v2

9 yp2 = y2*w2
ypb = 0.5*(ypl + yp2)
dS = ypb*dx
§=9S8+4dS
dT = dS/S
X = X2

c

10
99

write(6,100) x, S
write(7,100) x, S

if(x
dx

.ge. .00009 .and. x .le. 0.001) then
= 0.0001

ELSEif(x .ge. .0009 .and. x .le. 0.01) then

dx
else
dx
else
dx
else
dx
else
dx
else
dx
el se
dx =
end

= 0.001

if(x .ge. .009 .and. x .le. 0.1) then
= 0.01

if(x .ge. .09 .and. x .le. 1.) then
= 0.1

if (x .ge. 1. .and. x .le. 100.) then
= 1

if (x .ge. 100. .and. x .le. 1000.) then
= 10

if (x .ge. 1000. .and. x .le. 10000.) then
= 100.

200.
if

if(dl - I.LE-7) 10,10,1
write(6,99)
write(7,99)

format(/)

write(6,100) x,
write(7,100) x,

O W

write(6,99)
write(7,99)

end

13
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THIS IS ERFOX.FOR , A SUBROUTINE TO CALCULATE ERF OF X
SUBROUTINE ERFOX(X,W)

DIMENSION S(34), T(34), R(34), A(34), C(34)
PI=3.1415927
B = SQRT(PI)
IF( Y.LE.0.5) J = 6
IF( Y.LE. 1. _AND. (Y .GT. 0.5)) J=11
IF( Y.LE.2. AND(Y .GT.  1.)) J=21
IF( Y.LE.3. AND. ( Y .GT. 2.)) J=31
A(1)=0.
T{) = (-1.)*( Y™2 )/3.
s(l) = T()
1 D0 10 1=1,J
A(I+1)=A(1)+1
C(1)=A(I+1)
R(I) = (-1.)*(Y**2)*(2.*C(1)+1.)/((C(1)+1.)*(2.*C(1)+3.))
T(1+1) = T)*R(
10 S(|+1§ - sid + T(1+1)
Z=S(J-1)
W= (2./B)*Y*(1.+Z)
RETURN
END

THIS IS ERFCOX.FOR , A SUBROUTINE TO CALCULATE ERFC OF X

SUBROUTINE ERFCOX(X,W)
DIMENSION S(10), T(10), R(10), A(10), C(10)
P1=3.1415927
B = SQRT(PI)
Y=2.5X*X
A(1)=0.
T = -1./Y
sﬁ& T()
1 D0 10 1=1,9
A(+1)=A(1)+1.
C(l)=A(I+1)
R(I) = (-1.)*(2.*C()+L.)Y
T(+1) = T()*R(
10 S(I+1) = S(I) + T(I+1)
7=5(10)
W=(1.+Z)*(EXP(-X*X))/(B*X)
RETURN
END

14



WHC-SA-1133-FP

DISTRIBUTION

Number of copies

ONSITE
4 Westinghouse Hanford Company
J. J. Barker H5-03
Information Release
Administration (3) H4-17

Distr-1





