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Executive Summary

This report describes the work performed at the Pacific Northwest National Laboratory (PNNL) for
the U.S. Department of Energy’s Office of Nonproliferation and National Security, Office of Research and
Development (NN-20). The work supports the NN-20 Broad Area Search and Analysis, a program ini-
tiated by NN-20 to improve the detection and classification of undeclared weapons facilities.

Ongoing PNNL research activities are described in three main components: image collection, informa-
tion processing, and change analysis. The Multispectral Airborne Imaging System, which was developed
to collect georeferenced imagery in the visible through infrared regions of the spectrum, and flown on a
light aircraft platform, will supply current land use conditions. The image information extraction software
(dynamic clustering and end-member extraction) uses imagery, like the muitispectral data collected by the
PNNL multispectral system, to efficiently generate landcover information. The advanced changé detection
uses a priori (benchmark) information, current landcover conditions, and user-supplied rules to rank

" suspect areas by probable risk of undeclared facilities or proliferation activities. These components, both
separately and combined, provide important tools for improving the detection of undeclared facilities.
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1.0 Introduction

The research described in this report was performed at the Pacific Northwest National Laboratory
(PNNL) through direction and funding by the U.S. Department of Energy’s Office of Nonproliferation and
National Security, Office of Research and Development (NN-20). This office has the responsibility of
guiding the development of technologies for detecting and identifying facilities involved in the development,
assembly, and/or testing of nuclear, chemical, or biological weapons of mass destruction. The DOE
created the program called Broad Area Search and Analysis (BASA) to address the difficulties associated
with the detection of such weapons facilities. One of the important technology areas BASA has focused on
is the use of remote imaging for identification and monitoring of proliferation facilities; this report
describes some key technologies that, independently and as a whole, contribute to the ability to detect and
assess undeclared facilities.

The technologies described in this report fall into three main areas. First, a multispectral airborne
imaging system is described; this system generates images in the visible, near-infrared and infrared (IR)
spectral regions. The system utilizes a tunable filter for the visible wavelengths and global positioning
satellite (GPS) for image georeferencing. This system’s output is high-spatial and spectral-resolution
imagery that can provide current landcover information.

The second component described is image information extraction software for efficiently generating
landcover information. This software includes improved classification (dynamic clustering) and end
member extraction that can enhance image spectroscopy approaches such as linear unmixing. In this
section, a landcover classification of a nuclear facility is presented to demonstrate the challenges using
current imaging.

The third component of this report is a description of PNNL’s advanced change detection algorithm
that uses a priori (benchmark) information, current landcover conditions, and user-supplied rules to rank
areas by probable risk for the identification of undeclared facilities or proliferation activities.

The report is organized as three main sections, each outlining these three technologies. This document
is intended for a broad audience with an interest in technologies to assist nonproliferation detection efforts.
The report is designed in its entirety as documentation for FY97 research activities at PNNL in the area of
nonproliferation monitoring, or to be read as stand-alone sections outlining specific imaging technologies.
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2.0 Multispectral Airborne Imaging System

PNNL'’s goal in the development of an airborne imaging system has been to develop a low-cost,
multispectral imaging system that can 1) operate throughout significant portions of the visible and infrared
(IR) spectral range, 2) operate reliably from low-cost light aircraft, 3) perform image acquisition of the
required accuracy and dynamic range to detect features associated with undeclared facilities, and 4) be
sufficiently flexible to allow real-time variation of operating procedures. To the extent possible, commer-
cial off-the-shelf components have been used in the design and construction of the system. A fully inte-
grated, self-contained IR camera and associated electronics provides quantitative thermal imagery in the
3-5 micron spectral range. A unique tunable filter provides scene measurement at specific spectral bands
throughout the visible portion of the spectrum. The specific bands selected may be tailored in real time to
optimize the system for feature identification and change detection within the scene being investigated. The
following is a discussion of design requirements and the resulting hardware and software configuration.

2.1 Hardware Description

The current imaging system consists of a filtered charge coupled device (CCD) camera for detecting
signals with wavelengths in the visible portion of the spectrum, a focal plane array sensitive to emissions in
the mid-IR region, and a commercial digital camcorder for directional sighting and archival purposes. This
array is shown in Figure 2.1. Each of these components will be discussed, together with data gathered dur-
ing the initial flight testing program.

2.1.1 Visible Imaging System

The high-resolution and wide dynamic range provided by recent progress in CCD technology has made
this the detector of choice for this system. CCD’s are silicon solid-state devices that basically convert inci-
dent photons into a proportional quantity of electrical charge and store this charge within a MOS capacitor.
This charge is then sequentially transferred to an on-chip amplifier and associated analog-to-digital con-
verter. In many cases, the large range of illumination is encountered within the same image, driving the
need for wide dynamic range. Since the dynamic range can be thought of as the ratio of pixel saturation to
noise, it has been necessary to use a cooled, slow-scanned scientific-grade sensor to reduce system noise.
The excellent linearity characteristics of current CCD’s throughout the entire dynamic range provides a
linear signal transfer relationship to within a fraction of 1%.

To provide for sufficiently high spatial resolution, a 1317 x 1035 pixel imaging array was chosen
to incorporate into a vacuum housing. For the imaging system to achieve high dynamic range, it is criti-
cal that the sensor be cooled to a -25°C operating temperature within the vacuum chamber by using a
multistage thermoelectric cooler. The fine pitch of the individual pixels, 6.8 microns, allows for high-
speed readout; the 12-digit digitization at 5 megapixel/second readout rate yields a full-frame readout in
0.3 seconds.
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Figure 2.1. The Multispectral Airborne Imaging System with Front Windowing Plate Removed. Images
coming from the three separate cameras are available for image processing, archival, and
viewing by the operator at the accompanying control computers.

The CCD is a full-frame device, with exposure times determined by a conventional electromechanical
shutter that is controlled by the master computer system command sequence. Preceding the shutter and
CCD is an interchangeable camera lens that is selected by the user to satisfy the field of view requirements
of the mission.

Spectral discrimination is required to differentiate the wavelengths of interest from a background rich
in spectral signatures. The final spectral range available to the multispectral, visible imaging system is
determined by the optical properties of silicon, which is opaqﬁe to photons with wavelengths of less than
about 400 nanometers (nm) and transparent to wavelengths longer than 1100 nm and the available spectral
range of the filter element, which is 400-720 nm. The spectral discrimination requirement is met by using
an image-quality tunable birefringent filter that consists of several stages of linear parallel polarizers sur-
rounding liquid crystal retarder elements, referred to as a liquid crystal tunable filter (LCTF). The LCTF
includes an electronics module that provides direct computer control of wavelength selection. This filter is
positioned within the optical path directly preceding the camera lens. The LCTF rapidly becomes trans-
parent to light beyond 750 nm, leading to the requirement that the final component of the optical path be
a “hot mirror,” specifically rejecting light with wavelengths greater than 750 nm that would otherwise be
registered by the CCD sensor as being of the wavelength selected by the LCTF. The passband is randomly
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selectable throughout the 400-720 nm range, requiring a few tens of milliseconds for wavelength selection
and stabilization. Although the spectral position of the passband is fully controlled by the imaging system
user, the bandwidth is dictated by the mechanics of the LCTF; that is, it is constant in frequency space (Av
/v is constant), and for the present system, is nominaily 10 nm at 550 nm.

2.1.2 Infrared Imaging System

The second major component of the multispectral imaging system consists of a fully integrated, self-
contained IR camera and associated electronics to acquire, digitize, and store images of mid-IR scenes.
The core of the camera is a cryogenically cooled 256 x 256 pixel indium antimonide (InSb) image plane
sensor used in a staring mode. InSb offers the widest available dynamic range and sensitivity among
current IR sensing arrays. The camera’s sensitivity extends throughout the 3-5 micron spectral range.

This camera is bore-sighted with the filtered CCD system to provide simultaneous, multispectral imagery
of the target. The 38-micron pixel size, combined with the current 50-mm germanium-silicon lens, yields a
field of view of 11 degrees, comparable to that of the filtered CCD imaging system. During operation, the
InSb sensor temperature is maintained at 77°K by a closed-cycle sterling cooler. An internal iemperature—
controlled source calibrates the camera and normalizes the camera response for non-uniform pixel gain,
DC offset variability, and non-responsive pixel sites. Following a 12-bit analog-to-digital conversion, the
signal is downloaded to a high-speed digital frame grabber and image processing board within the master
computer for further processing and storage. Imaging speeds are available from video rates (60 frames/
sec) to individual, triggered acquisitions timed to coincide with data gathered by the filtered CCD imaging
system, NTSC composite and S-video output is available to provide continual video output to the operator
and may be recorded for further analysis. The interactions of the various components of the imaging sys-
tem are illustrated in Figure 2.2, which also shows the data and command flows.

2.1.3 Navigational System

Post-flight analysis of data collected during operations is aided by a positional and attitude logging sys-
tem incorporated onto the imaging system framework. The navigation system consists of a Global Posi-
tioning Satellite (GPS) receiver, an electronic compass, and a 6-axis dynamic measurement unit (DMU).
The GPS receiver can be connected to a radio receiver to provide real-time differential GPS data (<5-meter
resolution). An electronic compass utilizing magnetometers provides heading information. The compass
also includes two tilt sensors that provide roli and pitch information. The DMU provides X,Y,Z accele-
ration channels together with roll, pitch, and yaw angular rate gyro outputs. A Campbell Scientific Inc.
data logger collects data from these three sensors at 1-second intervals. The data are stored in memory for
later use in Geographic Information System (GIS) software. The flight path for a June 24, 1997 test flight
is shown in Figure 2.3, with flight duration increasing from light to dark.
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Figure 2.2. Flow Diagram Illustrating the Construction and Data Pathways of the Multispectral Airborne
Imaging System. The three camera systems and supporting computers are differentiated by
color in the illustration.

Figure 2.3. Flight Path During a Test Flight Conducted on June 24, 1997. The nearby Hanford boundary
is depicted in green, the flight path is shown in red, with flight time increasing from light to
dark.
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2.2 Software Description

Data collection and camera control for both visible and IR systems are based on Pentium processor
computers using the Windows 3.1/95 operating systems. Control scripts written to operate the CCD
system rely primarily on the programming language available from within the “V for Windows” imaging
processing application software, using Vpascal and PVCAM (Digital Optics Limited and Photometrics,
Ltd.). Scripts written for control of the IR system are command-line scripts available from within the
“ImageDesk” image analysis application software (Amber Engineering, Inc.). Image acquisition sequences
may be operator-controlled or placed in a fully autonomous operation mode. In the latter case, command
sequences are issued from the corresponding computers, with timing between the visible and IR systems
provided by a single-trigger pulse. During initialization of the imaging system, a number of control param-
eters specific to each camera (integration period, gain, pixel binning, sub-array readout, etc.) are set, the
communications ports are initialized, and the IR camera and LCTF filter are internally calibrated. In
addition, a sequence of spectral bands important to the mission is specified and entered into the control
scripts; this sequence is continuously looped-through during operations. Synchronization of exposures
between the visible and IR cameras is provided by a TTL puise issued by the visible camera’s control
computer during each image acquisition command. Image acquisition occurs at a rate of one frame per
1.3 seconds for full CCD resolution and is primarily dictated by A/D conversion times.

After the data are returned to the laboratory, CD-ROM copies of the data are created for analysis and
archival purposes. The data may be stored in various formats, depending on the final user’s computer plat-
form, preference, and the requirement of the metadata associated with each image.

Future enhancements may include the incorporation of software to automatically select spectral band
sequences that are optimized to expected target and background spectral signatures, and automatic selec-
tion of integration times to provide for maximum use of the available dynamic ranges.

2.3 Applications to Detection of Proliferation Activities

The objective of the multispectral airborne system is to provide rapid assessments of any changes that
might be a result of proliferation activities, both by direct image analysis and through the dynamic cluster-
ing and advanced change detection software (described further on in this report). This system is different
from existing airborne and satellite multisensor packages in size and ease of deployment. Specific advan-
tages of the multispectral airborne system for Broad Area Search and Analysis include:

* low cost: designed for a light aircraft platform, with minimum staff to operate (2 people; 1 person
besides pilot)

‘s rapid turnaround of data: allows immediate assessment of ground activities and features, rapid
redesign of flight missions according to the current information and conditions '
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taitored to data needs: tuneable spectral filters in the visible and the availability to collect in the visible,
near-IR, and thermal according to the requirements of the desired target (e.g., locating and mapping
new utilities and roads in a suspect area)

spectral bands available may be chosen in real time as conditions and targets dictate

rapid acquisition of images (i.e., overlap between images) allows directional reflectance information to
be exploited for target recognition.
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3.0 Landcover and Image Information Extraction

3.1 Classification of Washington Public Power Supply System Using
HYDICE Imagery

3.1.1 Background

Hyperspectral systems offer new detection and identification capabilities through tools that match the
spectral properties of known targets with image pixels. However, in order to utilize these ‘image spectros-
copy’ capabilities, the imagery has to be calibrated to surface reflectance. The calibration can be through
atmospheric (radiative transfer) models or by direct calibration to ground reference targets; the latter
approach is more computationally efficient given some knowledge about targets within an image. The
focus of this section is to demonstrate hyperspectral image exploitation for landcover analysis, discussing
some of the challenges and the use of scene targets for calibration of hyperspectral sensors.

This study takes advantage of a unique dataset of two HYDICE (Hyperspectral Data Image Collection
Experiment) flightlines collected during July 1996 over the Washington Public Power Supply System
(WPPSS) nuclear reactor located on the Hanford Site. The HYDICE sensor was flown at two altitudes,
providing pixel resolutions of 0.75 and 3 meters. The objective of this study was to demonstrate the capa-
bility of landcover classification using image spectrometry and its potential usefulness for detection and
characterization, especially focusing on the use of existing or derived datasets for image calibration and
~ classification.

3.1.2 Methods

The higher spatial resolution HYDICE imagery (75-cm pixel resolution) was used as a reference
image. This image was corrected to reflectance and then classified. Image spectra were then extracted for
the calibration panels and key targets; these spectra were then used to classify the higher altitude (3 m)
imagery. The methods and results are described in more detail below.

3.1.2.1 Calibrating the Reference Image

On the HYDICE overpass date, ground reference reflectance panels were set up, and ground-based
spectral measurements were collected for both the light and dark panels. The HYDICE imagery was later
received by Pacific Northwest National Laboratory (PNNL) as digital radiance data (2-byte integer) from
the Naval Research Laboratory (NRL). Calibration of the imagery from radiance values to reflectance was
performed using a two-point empirical line method, selecting image pixels from the light and dark reference
tarps, and relating these to the measured reflectance. '

3.1




3.1.2.2 Classifying the Reference Image

Several representative scene components were selected as end members, including several building
roofs’ materials, soil, vegetation, asphalt, and gravel types. An unsupervised classification was used as
guidance for selecting the components. Figure 3.1 shows the spectra for these end members; note the
similar shape for spectra of man-made features. Spectral Angle Mapping (SAM) was applied to the
reference image using the scene end members. The results demonstrate that SAM is insensitive to ampli-
tude differences among spectra so it is not able to distinguish among man-made features with similar
spectral shapes. A minimum-distance supervised classification was also used with the same image end
members. Minimum distance was chosen over maximum likelihood or Mahalanobis distance because the
statistics require (N bands +1) pixels representing each end member (supervised training set); for many of
the training sets (such as an individual automobile) this is not possible.

To use the strengths of the two classification approaches, the two classifications were combined on a
class-by-class basis. The minimum distance approach was used to separate some man-made features
(because this method is sensitive to spectral amplitude differences) and the SAM was used to identify the
other features more accurately based on spectral properties. Figure 3.2 shows this resulting combined
classification for the reference image.

3.1.2.3 Calibrating the Source Image with Derived Spectra
Although the calibration panels are visible in the source image, given the 3-m size of the pixels, there
were few ‘pure’ pixels comprising the panels; scrutiny of the radiance values indicated that the dark panel

was entirely mixed, and the white panel had one unmixed pixel. Rather than use the mixed pixels of the
calibration panels, in-scene targets were used instead. A building shadow (of the reactor building) and a
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Figure 3.1. Source Image Training Sets Showing the Similarity of Man-Made Features
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Figure 3.2. Classification Resﬁlting ﬁom Cdmbiniﬁg Spéciral Ahgle Mai)ping' ind Mlmmum Distance
Classifications of the Reference (75-cm resolution) Image

metal roof were used as invariant targets. The reflectance spectra for these in-scene calibration targets
were derived from the reference image; areas were chosen with more than 100 pixels each. A two-point
empirical line calibration was performed to relate reflectance to radiance values for the source image.

To check the accuracy of the calibration, the reflectances of the white calibration panel were compared
between the source and reference images; this comparison indicated that the panel reflectance in the source
image was lower (darker) than in the reference image. However, further analysis of corresponding vegeta-
tion areas (much larger than the panel) produced very similar spectra between the source and reference
images (see Figure 3.3), so the differences in the white panel spectra were thought to be a result of the '
mixed pixel problem in the source image.
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raflactarce

Figure 3.3. Image Spectra of a) White Calibration Panel, b) White Roof, ¢) Vegetation, and d) Building
Shadow Demonstrating the Mixed Pixel Problem Apparent in the White Calibration Panel
(note the spread between low- and high-resolution pixels)

3.1.2.4 Classifying the Source Image with Derived Spectra

A set of 12 signatures, representing various targets of interest, was selected from the reference image.
Using these signatures, a SAM classification was performed on the source image. The results are shown in
Figure 3.4. Most areas of the classification agree with the reference image. Some problems of confusion
among man-made features was evident; this would be expected from SAM. The classification did discrimi-
nate some cars from the asphalt parking lot.

To test the ability to detect sub-pixel targets, a linear unmixing was performed using the same 12

signatures. The fractional end members for red, blue, and yellow cars indicate that the technique was able
to detect some automobiles, despite mixing with the asphalt parking lot (see Figure 3.5).

3.1.3 Conclusions
Spectra from a higher resolution HYDICE image over the WPPSS nuclear plant was used to success-

fully calibrate and register a coarser resolution HYDICE image of the same area. In-scene targets were
used to calibrate the coarser (3-meter) imagery; the reflectance values for these targets were extracted from
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Figure 3.4. SAM Classification for the Source (3-m resolution) Image

the higher resolution (0.75-meter) imagery. Several signatures from the high-spatial resolution image were
also used to classify the lower resolution image using both SAM and linear unmixing. Using linear unmix-
ing with the derived end members from the high-resolution image, sub-pixel objects were detected in the
coarser resolution imagery. These results have interesting implications for monitoring. One high-spatial
and spectral resolution image may be used to calibrate and classify subsequent coarser resolution images,
such as those that will be available from upcoming satellite-based sensors.

The WPPSS classification also demonstrated that mari-made features often produce spectra that are
scalar multiples. In this work, a combination of SAM and minimum distance was found to be useful for
separating these similar man-made features while utilizing image spectroscopy was used for separating
other features.
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Figure 3.5. a) High-Resolution Photography of a Washington Public Power Supply System Parking Lot
Showing Location of Automobiles Near Time of High-Altitude HYDICE Overpass, b) Set

of 12 Signatures Used as End Members, and ¢) Subset of Yellow Car Fraction Image
Corresponding to a Portion of the Parking Lot
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3.2 Dynamic Clustering: A Rapid Multi-Classifier Approach

3.2.1 Need for a Dynamic Clustering Approach

The primary objective was to develop a near real-time classifier that would génerate landcover data
sets for use in BASA change detection analyses. This technology was designed to address several needs: -

» computational efficiency
¢ good separation of man-made features

+ ability to identify potential image end members

ability to apply the classifier to a complete image cube or a transformed data set.

Numerous classifications can be used to generate landcover, and each has its own set of problems that
impacts image classification. For example, spectral angle mapping (SAM) is a computationally efficient
approach that works well with hyperspectral datasets (Kruse et al. 1993); however, one of the unique char-
acteristics of the SAM approach is that it is insensitive to spectral amplitude, that is, two spectra that are
multiples will produce the same angle when compared to a pixel to be classed. This is problematic for
man-made features (such as asphalt and concrete), which have similar spectral shapes. Other parametric
approaches, such as maximum likelihood (Jenson 1986) and Mahalanobis Distance (Swain and Davis
1978), are more computationally intensive for images with tens or hundreds of bands. Also, the statistics
are valid only when the number of pixels representing the signature or end member is greater than the
number of bands plus 1. This is a problem for many end members that are often determined from as few
as one pixel,

3.2.2 Dynamic Clustering Approach

Because no single classification scheme meets the application needs described above, the dynamic
clustering approach combines three classifiers: SAM, maximum likelihood, and minimum distance (Jenson
1986) to maximize the classification capabilities. Each of these classifiers is described briefly below:

« SAM determines the angle between the mean in hyperspace (i.e., the mean of each of the N image
bands) for an individual pixel and the means (in hyperspace) of each of the image end members. The
pixel is then classed to the end member that produces the smallest angle; if the pixel lies outside of a
user-specified angle from all of the end members, it is not classed.

+ The maximum likelihood classifier determines the likelihood that a pixel belongs to a particular class
(represented by the signature or end member); the weighted distance metric that is calculated between a
pixel to be classed and each of the signatures is based on both the means and the covariance matrix of
the signature pixels. '
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* The minimum distance classifier computes the euclidean distances between a pixel and the cluster
means (in hyperspace) of each of the signatures (or end members).

The dynamic clustering strategy is outlined in Figure 3.6. The process starts with the image to be
classified and a set of signatures or end members. These signatures include the mean for each band and the
number of pixels that were used to determine the signature. PNNL has developed an autonomous approach
for developing image end members (discussed elsewhere in this report). There are also three user-selected
parameters:

» Cluster acceptance angle, a pixel that lies outside all of the signatures by an angle greater than or
equal to this value should be clustered as unclassified

* Resolution angle, the minimum angular difference between two signatures that will allow separation by
SAM. ' '

* Resolution length, the minimum length of a vector (either pixel or cluster) that required for classifica-
tion by SAM.

Because of inherent noise in the instrument systems and atmosphere, various transforms might be
applied to the image. These include:

» Noise reduction, such as principal components analysis or minimum noise fraction (Green et al. 1988)
* Atmospheric corrections (e.g., MODTRAN, ATREM, etc.)

« Correction to ground reflectance values

* Bandset reductions or band selection (Lundeen et al. 1996b)

The image pixel values must be in the same units and waveband regions as the end members so any
transformation that alters these image characteristics will be applied to the end members as well. Also,
before classification begins, each of the signature vectors are checked to flag the signatures that have only
amplitude differences. For each set of two or more similar signatures, a representative signature is selected
to use in the classification. In this way, a set of signature vectors is determined for which all of the spectra
have unique curves.

After the initial processing (the above steps occur only once for each image), the classification begins.
For each pixel, the pixel vector is computed. If the pixel is not within the cluster acceptance angle of any
of the sighature vectors, it is flagged as unclassified and is added to a set of potential end members. For .
pixels matched with one of the signature sets, the signature is checked to see if it has been flagged as a
multi-signature vector. If not, then that pixel is classed with that signature. For pixels that best match one
of the multi-signature vectors, either maximum likelihood or minimum distance classification is used,
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Figure 3.6. Logic Diagram for Dynamic Clustering

depending on how many pixels were used to develop the signature. If all of the signatures in the multi-
signature vector were developed from a minimum of (N bands +1) pixels, then maximum likelihood is used,
otherwise, minimum distance is used.

3.2.3 Test Case: WPPSS Reactor Facility

To test the proposed approach, PNNL developed software to perform the combined classification. For
this test case, only SAM and minimum distance classifiers were used; future implementations will include
maximum likelihood classification. That is, if a given pixel fell within the angular tolerance of a cluster
vector that represented two of more signatures, then minimum distance was used to classify that pixel. The
software was tested on imagery over the WPPSS nuclear power plant at the Hanford Site. The imagery
used was 75-cm resolution HYDICE collected during July 1996. For the test case, 12 image spectra were
extracted to represent the main features of the area covered by the HYDICE frame.
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For the user-supplied parameters, a series of threshold values (0.05, 0.1, 0.2, and 0.4 radians) was
used for the cluster acceptance angle. A range of values for resolution angle was also selected (0.01, 0.05,
0.08, and 0.1 radians); the resolution length was set at 10 (the image data had been scaled from 0-100).
Figure 3.7 shows six resulting classifications based on the 12 initial clusters and 6 different combinations
of the user-selected parameters.

3.2.4 Results and Discussion

The classification results are shown in Figure 3.7. These results show that the selected parameters will
influence the classification. As cluster acceptance angle increases (e.g., Figure 3.7a versus 3.7b), the
number of unclassified pixels decreases. For this test case, an angle of 0.2 radians (or larger) captures all
of the pixels. This may not always be desirable however, because there may be pixels that are not best
represented by any of the current clusters. Note the number of unclassified pixels on the left-hand edge of
the image (shown in Figure 3.7b and 3.7c), which could be explained by a calibration effect; later this same
area appears to have a confusion between transformer yard (gravel) and asphalt roof. As the resolution
angle increases, the number of pixels that are classified using SAM decreases, which most affects the man-
made features; note the difference between Figure 3.7b and 3.7c. For this classification, the results in
Figure 3.7d (cluster acceptance of 0.2 radians and resolution angle of 0.05 radians) agree well with knowl-
edge of the landcover in the area of the reactor.

The initial results from this test show the great potential to develop rapid and accurate surface charac-
terization from hyperspectral imagery. Given signatures of known targets, classification of an image to the
desired features (classes) can be performed more accurately in one pass than with other classifiers. For
non-proliferation needs, this provides accurate image classifications using hyperspectral datasets in a real-
time or near real-time environment, providing up-to-date information on surface activities and conditions.
This information is critical in performing change assessments and in establishing the likelihood of
undeclared facilities. '

Given the encouraging initial results, several improvements to the approach are planned. The first is to
include adding the maximum likelihood classifier. Default values for the user-supplied parameters will be
provided based on image statistics and the number and characteristics of the features (end members). A
direct interface with the end member extraction sofiware (discussed separately in this report) would be use-
ful in that end members could be developed autonomously and incorporated, and the unclassified pixels
could be fed back to the end member ex(raction. Results from the WPPSS test case indicate that there is
still some confusion among man-made features; for further discrimination, potential methods based on
spatial information would be very useful.
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Figure 3.7. Results of Dynamic Clustering for WPPSS HYDICE Imagery. The six frames represent

six different runs of the classifier using different values for the cluster acceptance (the
first number) and resolution angle (the second number) parameters. These values are

2a) 0.05, 0.01; 2b) 0.1, 0.01; 2¢) 0.1, 0.05; 2d) 0.2, 0.05; 2e) 0.4, 0.08; 2f) 0.2, 0.1. Note
that as the cluster acceptance angle increases, the number of unclassified pixels decreases;

as the resolution angle increases, the number of pixels which are classified using SAM
decreases.
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3.3 Hyperspectral Image Dimensionality Reduction with End Member
Analysis

3.3.1 Introduction

The greatly increased spectral resolution of hyperspectral data sets offers the promise of greatly
improving identification and characterizing important features. For example, the HYDICE sensor divides
the light energy from the visible to the near IR into 210 bands (Figure 3.8). With this fine resolution it is
theoretically possible to resolve features by very fine differences in ‘color’. However, such improved
capabilities do not come without cost. The large amounts of data that must be processed present issues of:
increased operational complexity and cost, computational burdens, bandwidth data transmission limita-
tions, and loss of capabilities that might be offered though design trade-offs. For instance, there is often a
trade-off between the number of bands that are collected and the spatial resolution. Further, while higher
spectral resolution may permit delineation of narrow spectral features, this advantage often comes at the
cost of reduced signal-to-noiSe ratio compared to broader band measurements. These problems have pro-
vided strong motivation for PNNL to investigate ways to exploit the correlation structure in the data so that
the number of bands that have to be collected to characterize a given problem can be reduced to 20 or fewer
and still retain the ability to discriminate important features (Lundeen et al. 1996b). This work success-
fully investigated methods on how to best exploit known information to minimize the collection of bands
that contain redundant data and maximize the collection of bands that have the greatest discriminating
power. This section describes work that builds on this experience to investigate another approach based
on the idea of defining a hyperspectral image in terms of low dimensionality end members.

3.3.2 End Member Strategy

With the end-member strategy (e.g., Smith et al. 1985, 1987, Pech et al. 1986), each pixel in an image
is considered a mixture of different cover types or spectral end members. Specifically, in linear mixing the
value of each pixel in an image is a linear combination of the end members, and the weight given each end
member is directly proportional to the arca covered in the pixel by the corresponding cover type. For
hypothetical example, consider a two-band sensor system used to capture an image of a farming district
with ground cover consisting of only trees, wheat, and corn. If a pixel in the image covered only half of a
corn field and half of a wheat field, then the values of the bands collected in the corresponding pixel would
be

band1 = (0.5* pure corn value of band 1) + (0.5* pure wheat values of band 1)
band2 = (0.5* pure corn value of band 2) + (0.5* pure wheat values of band 2)

In Figure 3.9 the possible pixel values are given by the triangle formed by the pure end members. With
standard linear unmixing techniques it is possible to transform the original two-band image into three bands
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Figure 3.8. Example Spectra from the HYDICE Sensor (fewer bands affected by water vapor absorption)

that reflect the percentage of corn, wheat, and trees in each pixel. This simple example represents the
optimum case in which two independent bands are transformed into new bands with direct physical mean-
ing. Since, in this example, the bands are not correlated (i.e., the dimensionality of the system is really two)
it is possible to transform the collected data exactly into three new bands (i.e., the number of bands plus
one). However, with hyperspectral data the bands are often highly correlated. In some sense there is a
great deal of redundant data, and the true dimensionality of the image is considerably less than the number
of bands. Previous work by PNNL suggests that this redundancy implies that less than 20 end members
can often adequately represent a scene (Lundeen et al. 1996b). Thus, once the correct number of end
members have been properly identified, it is possible to reduce the dimensionality of the problem to the
number of the end members. Further, the new bands have a direct physical interpretation (e.g., a band
where each pixel gives the percentage of wheat). However, in applying this strategy several problems
typically occur. For instance, as with a supervised classification, the user must specify the end members.
Our experience strongly suggests that if the end members are incorrectly chosen, or characterized, then the
results can be problematic. In a complex scene the selection of the correct number and type of end member
ground cover spectrums can be difficult. Further, in some cases the problem set only requires the identifi-
cation of one target, and the effort to properly characterize other end members is inefficient.
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Figure 3.9. Plots of Pure Corn, Wheat, and Tree Spectral for Pure Corn, Wheat, and Trees for
an Idealized Two-Band System '

To address these problems, an experiment was investigated with a way to automatically pick end members
building on a hyperspectral image classification and dimensionality reduction method proposed by
. Harsanyi and Chang (1994). -

3.3.3 Orthogonal Subspace Projection

The Harsanyi and Chang (1994) methodology starts with the assumption that a user can provide the
end members, one of which is of direct interest (Figure 3.10). For this experiment, a HYDICE hyperspec-
tral image was used with seven end members: trees, grass, water, a dirt road, a paved road, shade, and
Scotch broom. This example was chosen because:

* vegetation types are notoriously difficult to separate, even using spectral methods

» changes in vegetation can be a key indicator of man-induced changes, such as the presence of toxic
chemicals, underground structures, or increased off-road vehicle traffic

» a DoD client needs timely and accurate assessments of noxious weeds for resource management.

In this example, the goal is to find the amount of these weeds over the site in order to plan and budget weed
control activities. Given the true end members, the method first projects the spectral data of each pixel into
a subspace that is orthogonal to the undesired signatures. In our example, these include the spectral sig-
natures for trees, grass, water, dirt roads, shade, and paved roads. Once the interfering signatures have
been nulled, the residual is projected onto the signature of interest (i.e., weed spectra). This results in a
single component image that best represents (in a signal-to-noise ratio sense) the ground cover of interest
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(i.e., weed content in our example). However, the methodology depends on the user supplying a complete
and accurate description of the end members. Leaving out end members can lead to misleading results.
For instance, in testing the methodology with the example image (Figure 3.10) the tree end member was
accidentally left out in one case. The resulting image was not a satisfactory representation of weed content
in that the tree pixels, which should have been close to zero in weed content had high values in the weed
bands. This error was corrected when the tree spectral was added to the end member list. However, this
problem case also suggested a mechanism for selecting end members. Specifically, those pixels that were
misidentified as having high weed content could be used to identify candidates for empitically based end
members.

3.3.4 Candidate Method for End Member Selection

In extending the Harsanyi and Chang (1994) method to select end members, the first step is to provide
an adequate spectral representation of the main feature of interest (Scotch broom, in our example) and define
areas in the image where pixels have been classified either as weed or candidate pixels (Figure 3.11). The
procedure then iterativly follows the next steps:

 Calculate the single band representation for the target (Scotch broom in this example)

* Find the 100 largest values in the background candidate pixels (which would 6ptima11y be zero if the
end members were specified comrectly). Of these high-error pixels, choose the pixel that is most unlike
the target (Scotch broom) as the new end member; use the spectral angle difference to choose the pixel
that is the most unlike the target

-« Continue the procedure until either the change is small or the image is reduced to noise.

Figure 3.11 shows the results of the first step. Figure 3.12 show the results after nine iterations. Note
that the definition of Scotch broom is significantly improved.
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Figure 3.11. Weed Centent Color Coded from Low (blue) to High (red)
with End Members Missing

Figure 3.12. Weed Content Color Coded from Low (blue) to High (red)
Calculated with all End Members
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3.3.5 Conclusions

‘The standard Harsanyi and Chang (1994) methodology is analogous to the supervised classification
methodology, in that it requires the user to provide spectral characterization of each class. This extension
is more analogous to an unsupervised classification since it iterativly selects its own best end members in
some mathematical sense. Like unsupervised classification, it also does not provide a physical interpreta-
tion of the spectral end members. However, the process of attempting to attach physical meaning to the
derived points may be of value in its own right.

To date, PNNL has generated prototype software and experimented with a single scene. This effort
has been extremely promising. However, to fully test and develop the methodology more work is needed,
preferably using an example of a proliferation facility.
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4.0 Change Detection Optimized for Broad Area Search

4.1 Introduction

An important part of the U.S. Department of Energy’s (DOE’s) mission is the identification and char-
acterizing of nonproliferation activities around the world. This challenging effort includes the monitoring
of board areas of the earth’s surface, with diverse physical and cultural characteristics, for suspicious
activities. This inherently difficult effort is further complicated by budget, human resources, and time
restrictions. One important tool used to meet these challenges is change detection using remotely sensed
images. Examples include the use of both civilian SPOT imagery and NTM data sets. However, these
data sets have limitations. For instance, SPOT is limited by relatively coarse 10-meter pixels, foreign con-
trol, significant costs, scheduling issues, high image registration costs and limited revisit times. NTM data
sources avoid some of these issues but the extensive use of NTM data sources is severely constrained by
other factors. However, with the expected launch of a suite of new satellite systems in the near future (see
our web site at http://www.pnl.gov /remote/projects /paper/begin.htm for more details) many more capa-
bilities will be available to meet DOE’s mission requirements. Examples of increased capabilities include
improved

¢ spatial resolution (1-meter pixels)

» ground location accuracy

» frequent revisit times

+ global coverage

+ band options

* stereo

» signal-to-noise ratios and dynamic range.

While exploiting these new capabilities will greatly increase opportunities to nionitor events around the
world, they will also present DOE with a significant challenge to effectively exploit the 1) changing nature
of the bands collected (e.g., hyperspectral data sets), 2) vast amounts of data (e.g., 100 times the amount of
data in a SPOT image), and 3) integration with other new spatial data sets. In particular, several ongoing

trends support the exploitation of these new satellite systems. These trends include

» cost reductions and more powerful computer hardware
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* increased growth in geographic information system (GIS) and global positioning satellite (GPS)
technologies

« competitive forces that promote better turnaround times and reduced cost
* mature software

* transition from analog to digital data collection

* pool of experienced personal

* availability of supporting digital data sets (e.g., DEM).

Of particular importance are GIS data sets, which are growing in use and availability around the
world. DOE must be in a position to fully exploit these data sets. This section describes a change detec-
tion methodology that is being developed to address these issues to take advantage of new GIS capabilities.

4.2 Change Detection Methodology

The overall methodology for improved change detection is shown in Figure 4.1. The first step is to take two
registered images (the step called raw difference in Figure 4.1) and create a first approximation image of
the differences (Lundeen et al. 1996a). In this step, several options are available, including 1) subtraction
of images, 2) image ratios, or 3) line fitting. In line fitting, the two images are used to generate a line of
points by plotting the corresponding pixel pair in a graph (i.e., let a pixel from time 1 give the value for the
X axis, and let the y value be taken from the pixel at the same location from the image at time 2). If the
images were exactly the same, then the line would be a straight line though the origin at 45 degrees. If only
broad atmospheric changes occurred between images, the offset and slope of the line would change. Local
changes (e.g., new roads) would displace local pixel pairs away from the broad trend. Thus, to identify
local changes and minimize the effect of broad-scale atmospheric changes between images, the line fitting
procedure 1) plots the data, 2) fits a line (which normally accounts for atmospheric differences), and
3) creates a new image in which each pixel value represents its distance from the main trend line. This new
image can then be level-gliced to identify changes. The main advantage of this line fitting methodology is
that is tends to minimize the changes associated with broad atmospheric effects and enhance the effects of
local changes (e.g., new buildings) that are of more interest. Figure 4.1a illustrates the procedure with an
example using the 200 Area nuclear site from Hanford. One way to improve on this line fitting methodol-
ogy is to treat the change detection process as a classification problem. In the classification change detec-
tion methodology (the classification process in Figure 4.1) a scatter diagram is again made with the two
images. However, using the first raw difference image (Figure 4.1) has a guide, the user interactively out-
lines in the scatter diagram areas that represent changes. Typically, four classes are identified: major
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increases in energy (e.g., a new white roof on a building), minor increases, minor decreases and major
decreases, (e.g., a new asphalt parking lot). This strategy allows the user to define changes much more
finely, but at increased labor cost.

Once a raw difference map is created, the next step is to group all the individual pixels into objects.
This is done by grouping all individual pixel that touch each other. Two options define touching. In one
case, pixels are defined as touching if they share a common side (e.g., pixels directly to the east, west, north
or south). An alternative is to also include pixels that touch at the corners (e.g., northwest, northeast,
southeast, southwest). In general, our experience suggests that the simpler option of grouping only pixels
sharing sides works best. Regardless of which grouping option is used, the next operation is to characterize
each object. The software calculates for each object a number of geometric attributes that include

* area

» surface area

» center of gravity
* moment of inertia
* bounding box.

At this stage, GIS data are also included. In the nuclear site example, distances from major roads and
buildings were calculated (buffers image in Figure 4.1a). With this information, the attributes for each
object can be enhanced with GIS information that can include

« minimum distance to a road
* maximum distance to a road:
* average distance to a road
¢ minimum distance to a building
« maximum distance to a building
+ average distance to a building.
The distance buffer images are normally created only infrequently (the blue path in Figure 4.1), which

has an important practical implication: adding GIS attribute information to the objects is relatively easy
and inexpensive once the initial investment is made in creating the buffer layers.
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Once the images have be transformed into abstract objects, it is practical to perform rule-based
selection on them. In our nuclear site example, each object is evaluated with a simple C program, and
points are given for each criteria met. For example, if a change is large and near a major building it is
ranked higher (i.e., given more points) than a small, isolated change. The final product is an image that
shows the ranking of changes between the two scenes (Figure 4.1a). These rankings can in turn be used
to optimize the expensive human analysis resources.

4.3 Conclusions

To date, a change detection methodology has been developed that is optimized for exploiting new trends
in remote sensing and GIS in broad area search. The end result is designed to optimize the expensive and
limited human analytical resources. Current experiments to date indicate the effectiveness of this approach
for detecting important changes in the environment; however, the need for more work is also indicated.

One example that will be explored in the near future is the use of a sophisticated database engine to
enhance the last step of rule-based ranking.
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5.0 Conclusions

This report described three main components of an integrated remote surveillance system: an airborne
multispectral imaging system, near real-time image information extraction, and advanced change detection
technology. The technologies provide important tools that will improve identification of specific targets
(e.g., evidence of underground structures) as well as the assessment of areas for suspect activities through
inference (e.g., the type of changes combined with intelligence and a priori information).

Future work on this system may include improvements in both data collection and analysis. For the
airborne imaging system, the use of GPS coordinates in the PNNL-developed autoregistration software
would provide near-autonomous image registration. In addition to complete landcover classification, the
extraction of 2-D features (such as roads, buildings, or water features) could be useful for the change
detection as another layer of information to compare against benchmark conditions. The DOE CERBIUS
project will provide an ideal real-world opportunity to demonstrate the integration of these technologies.
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