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ABSTRACT 

In Vesely's binomial failure rate model, a system of m components is 

hit by random shocks which may cause components simultaneously to fail, 

each component with equal probability. Individual components may also fail 

when no shock has occurred. The data possibilities considered are that 

causes of single failures are identifiable (as shock or not) or not identi­

fiable. Given data from such a system, non-Bayesian and Bayesian point and 

interval estimators are found for the various quantities of interest. 

Residual analyses and hypothesis tests are presented for checking the model 

assumptions. An example is worked out. 
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ESTIMATORS FOR THE BINOMIAL FAILURE RATE 

COMMON CAUSE MODEL 

1. SUMMARY 

Vesely proposes a binomial failure rate (BFR) model for modeling 

common cause failures in a system. In this model, each component of the 

system has a constant failure rate x. In addition, a "common cause shock," 

or "secondary event" in the terminology of reliability analysts, can occur 

with constant occurrence rate y. If a shock occurs, the components fail 

independently of each other, each with probability p. 

This paper presents results concerning the BFR model. There are six 

or seven related, unknown quantities of interest. The exact number depends 

on whether the causes of single failures are identifiable (i.e., due to 

shock or just individual failures) or not identifiable. Maximum likelihood 

estimators are given for all of these quantities. One of the likelihood 

equations requires numerical solution. Confidence intervals are given, 

which are sharp for some quantities and conservative for others. Confi­

dence regions, not all rectangular, are given for estimating the quantities 

simultaneously. 

Bayes estimators (posterior modes and means) and Bayes probability 

intervals are given for all the quantities of interest, as is the three-

dimensional probability region for the three basic parameters. All the 

Bayesian results, except finding the modes, require numerical integration. 

However, in almost all cases, only integrals with respect to a single vari­

able need to be done numerically. Depending on the parameters of the prior 

distribution, the integrand may contain an infinite series. 

Residual analyses and hypothesis tests are presented for checking the 

model assumptions. Most of the hypothesis tests require a large sample 

size. 

The results are applied to some of the boiling water nuclear reactor 

control rod data given by Vesely . 
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2. BASIC CALCULATIONS 

Let there be a system with m components operating for time t. (If 

there are several such systems with the same m, each operating for time 

t., consider them as one system with t = It-.) Assume m > 2. (In 

Section 6, where the causes of single failures are identifiable, we will 

relax this assumption to m >^2.) Each component has an exponentially 

distributed lifetime with parameter (failure rate) x, and the failures are 

mutually independent. In addition, a common cause shock may hit the sys­

tem, with the shocks mutually independent and the time between shocks expo­

nentially distributed with parameter y. If a shock hits the system, the 

components of the system fail independently of each other, each with prob­

ability p. All failures are discovered and repaired as soon as they occur. 

Define q = 1 - p. 

Let N. be the number of occurrences of i simultaneous failures. (We 

will follow the convention of using capital letters to denote random vari­

ables and using the corresponding small letters to denote specific values 

of the random variables.) Then, basic calculations (see Reference 1 or 
2 

Mann, Schafer, and Singpurwalla, Section 4.2) yield that 

N. are independent Poisson(x. t) 

with 

X, = mx + u r, (2.1) 

and 

x . = u r . , i = 2 , . . , m . 
1 1' ' ' 

Here, r. is defined by 

,mx 1 m-i /o 9\ 

r. = (.) p q . (̂ .2) 
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The special expression for x, comes from the fact that a single failure 

may be simply an individual failure or it may come from a common cause 

shock that caused only one component to fail. (Reliability analysts would 

refer to a common cause shock that failed fewer than two components as a 

"potential common cause.") 

The model has been formulated in terms of x, p, and p. Also of inter­

est, indeed perhaps of great interest, are x-i, defined by (2.1), and 

x^, defined by 

m 
x+ = Z X. = M(1 - r - r j . (2.3) 

i=2 

The quantity x^ is the rate of common cause failure occurrences. It must 

be distinguished from n, the rate of common cause shocks. A last quantity 

of interest is yp for 2 £ k _< m. This is the rate at which some specific 

k components fail simultaneously, and is the relevant rate corresponding to 

a k-element "AND" gate in a fault tree, or to a k-element cut set. 

It may be that the causes of single failures are identifiable as either 

individual failure or common cause shock. Then, N-i can be decomposed 

into Nj + Np, where NT is the number of individual failures, distri­

buted Poisson(mxt), and Np is the number of single failures due to common 

cause shocks, distributed Poisson(iir.,t). It may be very difficult to 

extract the necessary information for this decomposition from failure 

reports. For example, in nuclear industry Licensee Event Reports, the 

information may simply be unavailable: the cause is reported "unknown." 

Or, it may be difficult to interpret: is "dirt in valve" a common cause 

shock that happened to fail only one valve? Finally, the report may be 

untrustworthy: in one report, 96 control rods failed to insert fully. A 

possible cause reported was that oil leaked past 96 independent piston 

seals. We do not believe in such a coincidence, but assume some common 

cause unrecognized by the reporter. But do we then classify a reported 

single oil leakage past a piston seal as an individual failure, or as a 

common cause shock that failed only one component? 
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There are data sets in which causes of single failures are identifi­

able. For example, failures due to personnel error may all be regarded as 

due to common cause shock. However, the major portion of this paper assumes 

that Nr and Np are not separately available. Everything simplifies if 

they are available, so the results are summarized in Section 6. 

Since t is fixed, basic calculations show that the probability distri­

bution of a set of failure data depends only on the number of failures, not 

on the times of the failures (Reference 2, page 180). Define 

N+ = Z N. 
i=2 

Then 

Ppl = "!'••' \ = \] 
= P[N^ = n j P[N^ = n^] P[N2 = n^,.., N^ . n^|N^ = n^] 

symbolically written as 

L = L^ X L2 X L3 . (2.4) 

This decomposition is useful because 

N, ~ Poisson(x,t) 

N^ ~ Poisson(\^t) 

N^,.., Nĵ  I N̂ . = n^ ~ multinomial(n^, z^,.., z^) 

where 

i = ^i/(l - ^0 - ^1) • (2-^) 



The multinominal probabil i ty Lo can be written out as 

m 
n-PfN, = n , , . . , N„ = n^lN. = n,1 = — r - ~ - r - r n z. ^ L 2 2 m ml + +J n^; . . n ! -2 i 

, mn. - s n. 
_ ;" PA TT (^ 

1 - q - m p q 

where s is defined as 

m 

n (") (2.6) 

s = Z i n . , 
i=2 ^ 

the total number of components failing in multiple failures. 

Note that 2n^ < ^ < "in̂ . Note also that (N,, N+, S) is a 

sufficient statistic. 
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3. NON-BAYESIAN INFERENCE 

3.1 Maximum Likelihood Estimators 

It will be most convenient to parametrize the model in terms of (x,, 

x+» P)- From estimators of these quantities, estimators of x, p, and 

yp will also be developed. The parameters x-,, x+, and p are related 

by (2.1) through (2.3). If we set x >_ 0 in (2.1), we obtain that the param­

eters satisfy the constraint 

r m-1,, T m m-1 H / -, i \ 
x^ > x^. [ m p q /(I - q - m p q )J. (3.1) 

This can be abbreviated x-, ^ ^+ z-i, in the notation of (2.5). 

From (2.4), the logarithm of the likelihood is 

log L = log L, + log Lo + log Lo 

where 

log L^ = -Xi + n-|logXi - log (n-ĵ l) 

log L^ = -x+ + n^logx+ - log (n̂ .:) 

and Lo is given by (2.6) and does not depend on x-i or x̂ .. 

Let us first maximize log L ignoring the constraint (3.1). The maxi-

izing values of x-, and x+ are mi 

x^ = n-ĵ /t 

^+ = n+/t. 

The maximizing value of p, denoted p, must now be found. 
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If m = 2 or if n^ = 0, then Lo is identically 1, We have assumed 

throughout that m > 2. Now assume also that n^ > 0. Differentiation of 

log L, is straightforward: 

3 log L, . -, ^m-1 

It is shown in Section 8.2 that if s = 2n^, then p = 0. If s = m n+, 

then p = 1. And otherwise, q(8 log Lo/ap) is strictly decreasing in p 

and changes sign between 0 and 1; that is, p is the unique solution of 

1 m-1 
.i_-_q (3.3) 

1 - q - m p q 

If m = 3, the smallest value that allows p to be estimated, then (3.3) has 

an explicit solution: p = 3(s - 2n^)/(2s - 3n^.). For larger m, the 

solution must be found numerically. 

The naive estimate of p would be s/m n^, the average proportion of 

failed components in multiple failure occurrences. We would expect this 

naive estimate to be biased upwards, since it is based on only those common 

cause shocks that happen to result in at least two failures. And, in fact, 

s/m n^ is somewhat larger than p, the MLE. The naive estimator s/m n^ 

can be used as an initial guess for solving (3.3). 

It is interesting to note that an estimator based on the conditional 

first moment of S is the same as p, because the equation 

s = E [S|N^ = n^] 

reduces to (3.3). This can be shown directly or derived from (3.2) and 

the well-known fact that, under regularity conditions, 

E(3 log L^/ap) = 0. The equality of the two estimators is not mere 

coincidence, but follows from the fact that the truncated binomial 

distribution is in tne exponential family. 
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If s/n_̂  » 2, then the naive estimate and the MLE are approximately 

equal. For in this case, the data show many failures per observed shock, 

indicating that virtually all common cause shocks result in at least two 

failures. If s/n^ is close to 2, then the two estimates differ 

appreciably. The quantity S/N̂ . will tend to be large if mp is large and 

small if mp is small. 

Sometimes m is not known exactly. Then it is important to know how p 

varies as a function of m. It is shown in Section 8.1 that the right side 

of (3.3) is an increasing function of m, for fixed p. Therefore, as m 

increases, p must be decreased to preserve equality in (3.3). That is, the 

MLE p decreases as m increases. 

Once L , x^, and p are found, x and y follow from (2.1) through 

(2.3), and the MLE for yp*̂  is yp'̂ . 

It may be that the above procedure makes x negative! This is because 

log L was maximized without any contraints, whereas it should have been 

maximized subject to the constraint (3.1); i.e., x >̂  0. In this case, 

proceed as follows. 

As a function of x,, x^, and p, log L has a unique local maximum. 

Therefore, the local maximum is still unique when log L is written as a 

function of x, y, and p. If this local maximum occurs at x < 0, then the 

maximum subject to x >_ 0 must occur at x = 0. So, set x = 0 in (2.4), and 

set X = 0. Define 

m 
N = I N. . 

i= l 

Then 

L = P[N = n]p[N, = n^,.. , N̂  = n |̂N = n] 

8 



where 

N ~ Poisson(x' t ) , x' = y( l - r^) 

and 

P [ N ^ . n j , . . , N„ = n J N = n] 

n l . ^_^ P^' q" " - ^' I ,«,"' 
"i I . . n^! „ n - 1 M ' 

1 m (^ _ qm^ i = l 

with 

m 
s' = E i n . . 

i=l 

The MLE's are found by setting 

X' = n/t 

and let t ing p be the solution of 

I / / I niv 

s' = m n p/ ( l - q ). 

This p is also the estimator obtained by setting 

s' = E[S'|N = n ] . 

It decreases as m increases. Then y follows from x', p, and the 

definition of x', as does yp . 
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3.2 Confidence Intervals 

3.2.1 Terminology. Since the data are discrete, all confidence regions 

are necessarily inexact, in the sense that 

P[region contains parameter] >_ 1 - a (3.4) 

for all values of the parameter, with strict inequality for some values of 

the parameter. This is a well-known characteristic of discrete data. A 

(1 - a) confidence region will be called sharp and the inequality (3.4) 

will be called sharp if the infimum over all values of the parameter 

satisfies 

inf P[region contains parameter] = 1 - o. 

[We do not simply say that equality is attained in (3.4) for some p, since 

attainment of equality depends on whether open or closed confidence inter­

vals are used and whether the parameter space is open or not. Use of the 

infimum avoids that difficulty.] The confidence region will be called 

conservative if (3.4) holds but is not sharp. 

3.2.2 Intervals for x-,, x+, and p. Sharp confidence intervals for 

X, and x^ are completely standard since N-. and N̂ . are independent 

Poisson variables. Expressions for the lower and upper limits for x, 

that are easy to compute from readily accessible tables, are 

hi = (̂' 2n^, a/2)/2t 

^lU = ^̂  2(n^+l), l-a/2^^^^ • 

The interval for x is of the same form, using n^ instead of n,. 
3 

For details, see Johnson and Kotz , Vol. 1, Sec. 4.6.2. 
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A sharp confidence interval (p , p ) for p can be based on the 

conditional distribution of S given N^, if N+ > 0. Let p. and Py 

satisfy 

P[S > s|N^ = n^, p = p j = cx/2 (3.5) 

P[S < S|N+ = n^, p = p J = a/2 . (3.6) 

Depending on whether s is large or small, it will be more convenient to 

rewrite one of these equations as 

P[S < slN̂ . = n^, p = P|_] = 1 - a/2 (3.5') 

P[S > s|N^ = n^, p = p j = 1 - a/2 . (3.6') 

This choice of the confidence interval has a mathematical statistics justi­

fication, given in Section 8.2. 

To use (3.5) and (3.6), the conditional distribution of S given N^ 

must be found. This involves some complexity, and more notation is needed. 

Let V = (vp,.., v ) be any vector of nonnegative integers. Define 

m 
v+ = Z v.. 

i=2 

Define the set T^ by 

= |v I v̂ . = n+, z iv. = k|. \ 

i=2 

11 



Let 

V . 

^^^)=V-:."vT n (i) 
2 -̂  i=2 

Then for 2n̂  1 k £ m n̂ . 

P[S = k I N, = nj = ^ P [N2 = v̂ ,.., N̂  = v j N, = n,] 

VeT, 
'k 

m n^ - k 
P_J1 .- ^ c(v) (3.7) 

1 n. -r 
,1 m m-K + VeT, ( 1 - q - m p q ) k 

from (2.6). The summation in (3.7) can be evaluated for the relevant values 

of k. Then (3.5) and (3.6) can be solved numerically for p. and p... 

The above procedure gives a sharp confidence interval for p, condi­

tional on N+ having any specified positive value. That is, the probabil­

ity that the interval contains p, conditional on N^, is ̂  1 - «> ̂ nd the 

inequality is sharp. There is no unconditional confidence level, because 

when N^ = 0 no interval has been defined. To remedy this, when N+ = 0 

the interval [0,1] can be used with confidence level 1. Let I(S,N+) 

denote the interval for p, depending on S and N^. Then the unconditional 

confidence level is 

P[p e I(S, N J ] 

= Z P[p e I(S,n^) I N̂ . = n^] P|̂ N+ = n̂ J 

I (1 - a) PTN^ = "+1 "" ^ ""K = °1 > 

> (1 - a) . 
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The first inequality results from the inexactness of the conditional confi­

dence intervals. 

Is the unconditional confidence interval sharp? For any fixed x^, 

Pfp e I(S,N+)1 is strictly greater than 1-a. However, as n+ > cx>, the 

distribution of S given n+ approaches a continuous distribution (S given 

n^ is asymptotically normal, by the central limit theorem). So for any 

fixed p, pfp e I(S,n^)|N+ = n H > (1-a) as n+ > ». Therefore 

pfp E I(S,N+)"| > (1-a) as x+t > 00, so 

^"^ ,p P[P " ^(S,N^)] = (1-a). 

In this sense, the unconditional confidence interval is sharp. This sense 

of sharpness may not be what the user really wants, since x^t may really 

be moderately small. It may perhaps be possible to shorten the conditional 

confidence intervals when n^ is small, and still maintain an unconditional 

confidence level (1-a). However if this is possible, the details are cer­

tainly quite complicated. 

3.2.3 Joint Region for (x-,, x^, p). Confidence intervals for x-i, 

x^, and p have been given separately. Now consider how to find a confi­

dence region for the three parameters taken together. 

Let a-,, a+, and a be between 0 and 1. Let I-i(N-,) denote the l-o-, 

confidence interval for x-i, and I+(N^) the l-o+ confidence interval for x̂ .. 

Let I (S,N+) be the 1-a conditional confidence interval for p if N+ > 0, and 

let it equal [0,1] if N+ = 0. Let us tentatively use the product of the 

three intervals as a joint confidence region for the three parameters. Then 

P[X^ e Il(N^), X^ e I^.(N^), p e Ip(S,N^)] 

= P[X^ e I^(N^)] P[X^ e I^(N^), p e Ip(S,N^)] 

CO 

> (1-a^) Z P[x^ e I + (n^.), p a Ip(S,n^)!N^. = n j p p ^ = n^J. 

13 



The inequality results from the inexactness of L , and is sharp. Now let 

'5(x+, n^) = 1 if x^ e I+(n^.), and let 6(x^, n^) = 0 otherwise. 

The last expression equals 

oo 

(1-aJ Z 6(x^, n^) pfp c I (S, n^)|N+ = n j PFN^ = n j 
n^=0 L K J L J 

00 

> (1-a^) Z 6(X^, n^) (1-ap) P[N̂ . = n̂ J + (1-a^) 6(x̂ ., 0) P p^. = Oj 

> (1-a^) (1-ap) (1-aJ . 

As x^t » 00, the last two inequalities approach equality, so the confi­

dence region is sharp. 

In fact, this product of the three intervals may be larger than neces­

sary because a portion of it may not satisfy the constraint (3.1). That 

portion can be deleted as impossible. To visualize this, think of the 

product of the three intervals as a block with rectagular cross sections. 

For any p, the cross section is a rectangle parallel to the (Xi, x̂ .) 

plane. Invocation of (3.1) typically cuts a corner off of the rectangle. 

Several cross sections for the example of Section 7 are shown in Figure 7. 

3.2.4 Joint Regions for Any Two of x-,, x+, and p. If we are interested 

in two of X,, x̂ ., and p, the constraint (3.1) does not apply, so the 

region is simply the product of the two intervals. Work parallel to that 

of the last section shows that the unconditional confidence level is the 

product of the two confidence levels for the intervals. 

3.2.5 Confidence Regions for Quantities Other than x-,, x+, and p. If 

we are interested in three independent parameters other than x,, x^, 

and p, for example if we want a confidence region for (x, y, p), the region 

for (Xj, x+, p) can be rewritten in terms of the three desired param­

eters. The results are not especially neat, but they are straightforward. 

14 



It is not apparent how to get sharp confidence intervals for x, y, or 

yp , or a sharp two-dimensional region for, say, (x, y). One conserva­

tive region for (x, y) is the set of all (x, y) corresponding to any point 

in the three-dimensional region. Its confidence coefficient is at least 

that of the three-dimensional region. 

A conservative region for y is based on 

M = x+ /(I - q - m p q ). 

I'f' (x+> p) is in a confidence region with some confidence level, then 

the resulting maximum and minimum values of y form a confidence inter­

val with at least that confidence level. Similarly, a conservative 

interval for yp is based on 

k k,,, m m-K 
yp = x ^ . p / ( l - q - m p q ). 

The right hand side is monotone in p for k ̂  2, so conservative upper 

and lower values for yp can be obtained from the upper and lower 

values of x^ and p. 

A conservative one-sided interval for x can be based on 

X £ X,/m. 

A conservative two-sided interval can be based on 

X = x^/m -x^.Lpq / ( 1 - q - m p q )J. 

This last equation requires maximization or minimization over all three 

confidence intervals, and has coefficient at least (1-a, )(l-a^.)(l-a ). 

In the example of Section 7, the first method gives a smaller 95% confidence 

interval. 
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If the sample size is large, approximate confidence regions can be 

constructed using the Fisher information matrix. (A reference is Cox and 

Hinkley, Sec. 9.2.iii.) The Fisher information for x-, or x^ is 

t/x-. or t/x̂ ., respectively. To get the information for p, write the 

right hand side of (3.2) as 

s A 
M - "> "-H B 

Then 

2 
I(p) E -E ^ log L 

9p 

E(S) (p-q) + _ ^ B A' - A B' 
2~2 - f" "-H 2 

p q B 

= m 
[Mq-p) ̂  B_AL^_A^1] (3 8) 

"+ [ pqB g2 J • ^^'^' 

The off-diagonal elements of the information matrix are 0. So, if the 

sample size is large, x,, x+, and p are approximately independent nor­

mal with means x,, x̂ ., and p, and variances x W t , x^/t, and 1/I(p). 

From this, approximate confidence regions can be found for any subset of 
, ) k 
X,, x̂ ., pj. A conservative interval for x, y, or yp can be based 

on the intervals for x-,, x̂ ., and p. 
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4. BAYESIAN INFERENCE 

4.1 Pr 1̂0r _and P_osterior _Dis_tri_butions 

The constraint (3.1) makes the Bayesian problem inherently more com­

plicated than the non-Bayesian one. Any prior distribution must be consis­

tent with (3.1). The posterior distribution cannot be factored neatly as 

could the likelihood (2.4). 

A suitable class of prior distributions must be selected. For greatest 

usefulness, this class should include the noninformative prior of Box and 
5 

Tiao , Sees. 1.3.4-7. Box and Tiao argue that a noninformative prior for 

a parameter should be proportional to the square root of the Fisher infor­

mation for the parameter. Therefore, the (improper) noninformative prior 
-1/2 -1/2 

density for x,, resp. x+, is proportional to x-, , resp. x^ 

These distributions are in the class of (improper) gamma distributions. In 

this paper, x, and x^ will have gamma prior distributions, possibly 

improper. 

The information for p is the complicated expression (3.8). Therefore, 
1/2 

the noninformative prior density for p is proportional to I ' (p), the 

square root of (3.8). It may be approximated in several ways by a beta 

distribution, as follows. The beta (1/2, 1/2) distribution would be non-

informative if the common cause failures were not restricted so that only 

multiple failures are observable. This is a first approximation to the 

noninformative prior. Better approximations are obtained by adjusting the 
1/2 

parameters of a beta (c,d) distribution. If c = 1/2, then I ' (p) and 
-1/2 

the beta density will both be asymptotic to p for p near 0. Then d 

may be chosen so that the two distributions have the same mean. For a 

still better overall approximation, c and d may be chosen so that the two 

distributions have the same mean and the same variance. Tables 1 and 2 

show the correct values c and d for these approximations, for many values 

of m. Figures 1 through 3 show the noninformative prior cumulative distri­

bution and the three approximations, for m = 5, 20, and 100. In the example 

considered in Table 7, the third beta approximation appears adequate. In 

this paper it will be assumed that p has a beta prior distribution, possible 

one of these approximations to the noninformative distribution. 
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TABLE 1. BINOMIAL WITH 0 AND 1 TRUNCATED: APPROXIMATELY NONINFORMATIVE d 
FOR BETA(l/2,d) 

m 

3 

4 

5 

6 

7 

8 

9 

10 

12 

14 

16 

18 

20 

25 

30 

40 

60 

80 

100 

150 

200 

300 

oo 

d 

0.2893 

0.3148 

0.3323 

0.3455 

0.3560 

0.3645 

0.3716 

0.3777 

0.3877 

0.3956 

0.4020 

0.4073 

0.4119 

0.4209 

0.4276 

0.4372 

0.4486 

0.4555 

0.4602 

0.4676 

0.4720 

0.4773 

0.5000 
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TABLE 2. BINOMIAL WITH 0 AND 1 TRUNCATED: 
PARAMETERS FOR BETA(c,d) 

APPROXIMATELY NONINFORMATIVE 

m 

3 

4 

5 

6 

7 

8 

9 

10 

12 

14 

16 

18 

20 

25 

30 

40 

60 

80 

100 

150 

200 

300 

00 

c 

0.6386 

0.6641 

0.6/62 

0.6813 

0.6824 

0.6314 

0.6791 

0.6762 

0.6695 

0.6626 

0.6560 

0.6498 

0.6442 

0.6321 

0.6223 

0.6075 

0.5888 

0.5772 

0.5692 

0.5567 

0.5492 

0.5404 

0.5000 

d 

0.3695 

0.4181 

0.4495 

0.4708 

0.4858 

0.4967 

0.5048 

0.5108 

0.5191 

0.5242 

0.5274 

0.5294 

0.5307 

0.5321 

0.5322 

0.5312 

0.5283 

0.5259 

0.5239 

0.5206 

0.5185 

0.5159 

0.5000 
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0.0000 O.IOOO 0.8000 0.3000 O.HOOO 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 

Figure 1. Cumulative distribution functions for noninformative prior and three beta approximations, 0 and 
1 truncated, m = 5. 



0.0000 O.IOOO O.aOOO 0.3000 O . H O O O O.SOOO O.SOOO 0.7000 0.8000 0.9000 1.0000 

Figure 2. Cumulative distribution functions for noninformative prior and three beta approximations, 0 and 
1 truncated, m = 20. 
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gure 3. Cumulative distribution functions for noninformative prior and three beta approximations, 0 and 
1 truncated, m = 100. 



Since x,, x^, and p must satisfy the constraint (3.1), we will 

take the joint prior density to be proportional to the product of the indi 

vidual prior densities in the region where (3.1) is satisfied. (See also 

Reference 5, pp. 56-58 and Section 1.5.) In summary, the following class 

of prior densities will be considered: 

L(Xp x̂ ., p) 

-b,x, a,-l -b+x^ b.-l 1 ._i 
= C U(x^,x^ , p) e ' ' x^ ' e x^ p^ ' q^'' (4.1) 

where C is a constant, and U(x-i, x+, p) equals 1 where (3.1) holds, and 

equals 0 elswhere. 

The parameters should be restricted as follows: require a, > 0 and 

a^ > 0 in order to guarantee that the posterior density, given by (4.2) 

below, has finite integral for n, >_ 0 and n+ >• 0. Require bi >_ ̂  and 

b^ >. 0» to force the posterior density to have finite integral for all 

t > 0. Require c > 0 and d > 0. For, if c £ 0 and s = 2n^ + 1, then the 

posterior density would be positive at p = 0, and if d £ 0 and s = mn^ - 1, 

the posterior density would be positive at p = 1. Either of these possi­

bilities defies any reasonable interpretation of a posterior density, so 

restrict c and d to prevent it. 

If a-, = a^ = 1/2 and b-, = b+ = 0, the prior distribution is 

noninformative for x, and x^. 

The posterior density of (x-,, x+, p) is obtained by multiplying 

(2.4) by (4.1) and adjusting the constant. It will be convenient to write 

it as follows: 

L(x^, x^, pidata) = C U(Xp x^, p) V(Xp x+, p) (4.2) 

23 



where 

a +n. 
(b-^n) -(b^n) x^ a^^n^l 

V(x^, x^, p) = ^^-^^^-^.-y- e x^ 

V"+ 
(b^n) -(b^.n) x^ a^+n^-1 

• TCa >7g- ^ '^ 

s+c-1 ^".-s-^d-l 
p q 

. 
.p,,, m m-l\ + 
r(l-q -mpq ) 

Here C is that constant such that///L(x,, x+, p data) = 1. 

4.2 Bay e s _P_oi n t__E s t imators 

4.2.1 Posterior Modes. One estimate of (x., x^, p) is the mode of 

the posterior density. If the constraint (3.1) is ignored, the maxi­

mizing values for x. and x̂ . are the maximizing values for (4.3), 

h = (̂1 ^ "l " ̂ ^̂ ^̂ 1 "" ̂^ 

x+ = (a^ + n^ - l)/(b^ + t). 

To find the maximizing p, compute 

-t- 1 ( 1 "'"•'• ) 

q 1;̂  109 L(Xj. .,. Pidata) = 5 . - - ^ . ^ - |c * d - 2 * mn, -_-JS^--^1CT)' 

It is shown in Section 8.1 that this quantity either is always positive, 

or is always negative, or else is decreasing and equals zero at just one 

point. The possible cases are tabulated in Section 8.1. Therefore, 

there is a unique posterior mode p. The corresponding values of x, y, 

and yp follow from the defining relations (2.1) through (2.3). 

(4.3) 
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Suppose now that the above values of x,, x^, and p do not satisfy 

constraint (3.1). Expression (4.3) is unimodal, so a maximum of (4.2) must 

occur where equality occurs in (3.1). Substitute x,=x^z, in (4.2) 

and maximize the result with respect to x^, say at x^ . Then 

L(x^ Zp x^ , pjdata) 

C -

a +n,-l 

(b^n)z^+(b^n) 

s-Hc-l "in̂ -s+d-l 
p q 

n. a +n^+a^+n^-2 „^ 
n m m-U 
(1-q - mpq ) 

s+a,+n^+c-2 m(n^+n^+apl)+d-l-(s+aj^+n^-l) 
_P „q _ „ 

iai+ni+aj_+n_,.-2 „ „ , n_̂ +ni+ai-l r -\di.-^n.-<-A.->-n.-/: ^ ^ 1 n.-^n-i-rai-

[(b^n)z^+(b^+t)J (1-q -mpq ) 

Here C is some constant. This must be maximized with respect to p. If 

b, = b^, the expression simplifies to the following, with s'=s+a.,+n.|-l, 

n'=n^+n,+a,-l: 

s'+c-l mn'-s'+d-l r 

(1-q ) 
n' 

1 

M^-m'pq"^-^ 

â -1 

This must be maximized numerically with respect to p. (Note, if c=d=ai=a^=l, 

then this was the expression which was maximized to get the MLE.) 

With this p used to calculate z., the maximizing x+ is x+ = 

(a^ + a+ + n^ + n̂ . - 2)/r(bĵ  + t)z^ + (b+ + t)l, and then x^ = x+z^ 

4.2.1 Posterior Means. A more difficult estimate to obtain is the triple 

of posterior means. The difficulty arises from having to integrate (4.3) 

over the region satisfying (3.1) rather than over the region x, > 0, 

x^ >̂  0, 0 <_ p < 1. 

The integrals needed are usually of the following forms. For A > 0 

and B > 0, define 
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I(A,B,x) = 
T( 

•^f e-^^ t'^-^ dt (4.4) 

the gamma(A,B) cumulative distribution function. Note that I(A,B,oo) = 1 

for any A and B. Now assume that A, B, A', and B' are all positive, and 

define 

M, D n. D. ^ f^ f°° B'̂  -Bt .A-1 (B')'^' -B'S A'-l ,, . ,, ,̂ 
J(A,B,A',B',x) = I J YTKJ rCAT" dt ds. (4.5) 

In Section 8.3, formulas are given for evaluating I(A,B,x) and J(A,B,A',B',x) 

as finite sums or infinite series. The formulas are simplest if A and A' 

are integers, somewhat harder to evaluate if A and A' are integers plus 

1/2, and hardest to evaulate if A and A' are arbitrary. In practice, the 

formulas for evaluating I and J should be written into computer subprograms. 

To express the results compactly, let us also define 

f (P) = C — P - g r (4.6) 
M m m-K (1-q -mpq ) 

where 

D = s+c-1 

E = mn_̂ -s+d-l 

F = n^ 

C = normalizing constant. 
0 

Let 

\ = a^+n^ 
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B̂  = (b^n)z^ 

K = K^^ 

With this notation defined, the results are easily expressed. Let us 

begin by obtaining L(p|data). This is done by integrating (4.2), first 

with respect to x̂  (making the change of variables u = x-j/z,), and 

then with respect to x+. Integration is over the region satisfying (3.1). 

Then 

L(p|data) = f(p) J(A^, B^, A^, B^, » ) . (4.7) 

The quantity J depends on p through B-,. The constant C in f(p) is such 

that /L(P|data) dp = 1. It must be found numerically. 

Once C is found, p L(p|data) can be integrated numerically to get 

the posterior mean of p. To find the mean of x-,, x+, y, or yp , 

multiply (4.2) by the appropriate quantity and integrate. Integration with 

respect to x-, and x^ resembles the integration to obtain (4.7), and 

gives an expression of the form 

C^ f(p) J(Ap B p A+, B^, oo) (4.8) 

with redefined values for some of the constants. The changes in the con­

stants are 

for X-, A. = a-, + n, + 1 

for x^ A^ = a^ + n̂ . + 1 

for y A^ = a^ + n^ + 1, F = n̂ . + 1 

for yp'̂  A^ = a^ + n^ + 1, D = s+c-l+k, F = n^ + 1. 

The multiplicative constant C, is (a.,+n, )/(b.,+t) for x,, and (a^+n^)/B^ 

for x^, y, and yp . The constant C remains the same throughout, the 

27 



value needed to make /L(p|data)dp = 1. The desired posterior mean is found 

by integrating (4.8) numerically with respect to p. 

The posterior mean of x is given by 

E[x^/m]-E[x, pq^'-l/d - q ^ - m p q ' " - ! ) ] . 

E X, has just been found. The second term is found in the same way, using 

A+ = â . + n+ + 1, D = s + c, 

E = m n ^ - s + d + m - 2 , F = n + + 1 , 

and multiplicative factor C-, = (a+ + n^)/B^. 

4.3 Bayes Probability Regions 

^'^•^ Joint Region for Three Parameters. A three-dimensional region R is 

sought such that P (Xi, x+,p) e Rldata equals some specified value. 

There are many such regions R. One approach is to try to treat the three 

parameters one at a time, so that R will, to some extent, resemble the 
5 

confidence region of Section 3. Another approach, following Box and Tiao , 

Sec. 2.8, is to choose R such that the posterior density is greater at any 

point inside R than at any point outside R. This is called the highest 

posterior density (HPD) region. While this second approach is natural in 

principle, it requires numerical triple integration, so is awkward in prac­

tice. Moreover, if such a region were found it would be shaped like a 

highly distorted ellipsoid and so would be difficult to describe. In par­

ticular, it would not be defined by any simple set of equations. For these 

reasons, the first approach is the only one which will be followed for a 

three-dimensional region. 

The posterior density of p is given by (4.7), so for any desired a 

between 0 and 1, an interval I can be found numerically such that 

P p e I Idata = 1 - a . This interval may be the interval with equal 

tail probabilities, or the HPD interval for p, or another interval. 
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Now use 

L(x^|p, data) = / L ( X , , X^., p|data) dxWL(p|data) 

in tegrat ing over x, sa t i s fy ing (3 .1 ) , to obtain 

B+ -B^x^ A_,-l 
L(x^|p, data) = r ^ y e x^ ^1 - I(A^, B^ x ^ ) l / J ( A p B^, A^, B^, 

The constants A-,, B,, A+, and B+ are as defined below (4.6). There­

fore, for any p, an interval I+(p) can be found numerically such that 

P U + e I+(p)|P5 data = 1 - a^. This interval may be such that there 

is equal probability (conditional on p and the data) that x^ is on each 

side of I+(p). Or, the interval may be the conditional analogue of an 

HPD interval, chosen now so that L(x+|p, data) is highest in I+(p). Or 

the interval may be chosen in some other way. 

Finally, from (4.2), the conditional density of x, is 

(b,+t) -x.(b,n) A,-l 
L(x^|x^, p, data) = —Y^TT ^ h '^ - ^^h^ ^1' ̂ +)] 

for X. > x_^_ z, . 

So an interval Ii(x^., p) can be found such that 

Pfx^ e I^(x+, p)lx+, p, datal = 1 - a-̂ . 

The resulting three-dimensional region has posterior probability 

(l-«i) (1-a^) (1-ap). 

If desired, this three-dimensional region can be re-expressed as a 

region for (x, y, p). 
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4.3.2 Intervals for Single Parameters. Let us find a probability interval 
k for yp . For any c > 0, 

pTyp"̂  < c|datal = P 
X. p 

TT^rYT^ < c data 

= P Xi >̂  z. x+, x+ £ c(l-rQ-rT|̂ )/p , 0 < p < l|data 

1/ 

Denote (l-r„-r,)/p by u(p). Make the change of variables t = x-i/z,. 

Then, using the notation (4.5) and (4.6), the above probability equals 

J j k , B^, A^, B^, cu(p)l f(p) dp. (4.9) 

The expression J may be evaluated using (8.10) through (8.13). Even if the 

evaluation requires summing an infinite series, this is probably faster 

than performing a double or triple integral numerically. So an interval 

[c,d] can be found numerically such that P[c <_ yP <_ d Idata] equals any 

desired value 1-a between 0 and 1. The interval can be chosen so that 

p[yp'̂  < c I data] = p[yp'̂  > d Idata] = a/2. 

This gives the interval with equal tail probabilities. If instead the HPD 

interval is desired, the posterior density of yp must be found by differ­

entiating (4.9) with respect to c. By the definitions (4.5) and (4.4), 

L . (c 
MP^ 

1̂ ^̂ )̂ = / h 4^' 1̂' ̂ +' ̂ +' ̂^̂ P̂ ] ^̂ p) 

1 
1 A. 

0 r(A^) 

+ -B+cu(p) A^ 
e [cu(p)] [1 - I(Ap B p cu(p))J u(p) f(p) dp. 
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Evaluation of this density requires use of one of (8.5) through (8.7) fol­

lowed by numerical integration, but when this is done the HPD interval for 

yp can be found. 

An interval for y follows from the above by setting k = 0. An inter­

val for x_^_ is obtained by replacing u(p) by 1 in (4.9). An interval for 

X, can be found by using 

Pfx, < c jdata"! 

= Pfz, x^ £ x-, < c, 0 < p < l|data"l 

= Pfx^ £ c/z-| Idatal 

- Pfx, > c, x^ £ c/z,, 0 < p < lldata"! 

= / J(A,, B,, Â ., B^, c) f(p) dp 

-J [l - I(Ap Bp c/z^)] I(A^, B^, c/z^) f(p) dp. 

Numerical integration can be used to evaluate this. 

An interval for x can be found using 

P[x £ cldata] 

= Pfx, - x^ z, £ mcIdatal 

= 1 - Pf^i/Zi > ̂ -̂  "•" nic/z-|, 0 < p < lldataj 

/•I /.oo B^ - B ^ x^. A^.-l 
= 1 -J J 11 - I(Ap Bp x̂ . + mc/z^) I Y^j e x+ f(p) dx^ dp. 
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This must be evaluated by numerical double integration. 

Two-dimensional probability regions for pairs of the parameters will 

not be given. 
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5. DIAGNOSTIC CHECKS ON THE MODEL 

5.1 Poisson Parameters 

Suppose that there are I "sources" of data. These sources could be 

plants, vendors, time periods, etc. Let us investigate whether the sources 

all have the same values of x-, or x^. The methods below do not use the 

binomial distribution assumptions at all. The only assumption is that the 

single failures and multiple failures form two Poisson processes. 

5.1.1 Graphical Methods. Denote the x^ corresponding to the ith source 

by x^.. Suppose that all the sources but the ith have a common x̂ ., 

denoted x. .. Let N^- and t. be the number of multiple failures and 
, 1 1 1 

the operating time for the ith source. 

To test the null hypothesis x^- = x+ -, a uniformly most powerful 

similar test is based on N̂ .- given N^. The conditional distribution of 

N+-|N+ = n+ is binomial(n+, t-/t) under the null hypothesis. 
4 (These assertions are all shown in Cox and Hinkley , pp. 136-7.) 

One can therefore examine either residuals or the corresponding signi­

ficance levels. The ith standardized residual is defined as 

N+i - "+t /t 
D J J 

t. t 1 1'2 

If x^. is the same for all i, then for a given n̂ ., the R-'s all have 

mean 0 and variance 1. Define the ith significance level a- as 

M in(2P[N^. > n^i)N^=nJ, 2P[N^. £ n^i|N^=n^], 1), 

That is, the ith significance level is 2PrN+- >.n+.|N^.=nn if the 

observed n^. is greater than the median, and it is similarly defined if 

n^. is less than the median or equal to the median. The tail probability 
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is doubled to reflect the fact that N^. could be, a priori, either large 

or small. 

Outliers correspond to large values of R. or to small values of 

a.. The standardized residuals can be graphed, but they have a skewed 

distribution, so a glance at the plot will not necessarily pick out the 

values which are significantly large or small. For this, the individual 

significance levels are preferable. 

These methods can be used to identify sources for which x̂ .- seems to 

be substantially different from the others. They cannot be used for an 

overall test of whether all the x^.'s are equal, for if the number of 

sources is large, then random variability alone will produce some 

apparently extreme values of N̂ .-. Testing is discussed below. 

For investigating x-, , exactly the same techniques work, replacing 

N^. and n^ by N-. • and n,. 

5.1.2 Hypothesis Tests. Let us test 

H^: N+- ~ Poisson(x+ t^), i = 1,..,I 

Hi: H+- ~ Poisson(x^.-), i = 1,..,I, with no relation among the x+-'s. 

If the sample size n^ is large, the generalized likelihood ratio 

can be used, 

test statistic is 

test can be used. (See Mood, Graybill, and Boes , Sec. IX.5.1.) The 

-2 logA = 2 Z N̂ . l o g ^ ^ ^ j . (5.1) 

i=l 

The null hypothesis should be rejected if (5.1) is greater than the 1-a 
2 

point of a X distribution with I-l degrees of freedom. 
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This is exactly the same test as would be used to test 

H : (N^.,,. .,N,.y)|n^ ~ multinomial(n^, t,/t,.. ,t./t). (5.2) 

If n^ is not large, the test statistic (5.1) can still be used, but since 

x^ is unknown the critical point should be derived from the multinomial 

distribution (5.2). The exact distribution can be calculated for small I 

and n^ by using the program POLYPOW, presented by Atwood . This works 

because the multinomial probabilities are the terms in the algebraic expan­

sion of 

(t./t + . . . + tjt) , 

and POLYPOW finds these terms, 

2 
The X test statistic 

could be used instead of the likelihood ratio test statistic. 

For studying x-,, simply replace N+. and N+ by N-,- and N,. 

5.2 Bjnomial Parameter 

Suppose again that there are I sources of data, which may be plants, 

etc., as before, but may now also be the n^ individual observations of 

multiple failures. Let us investigate whether the I sources have the same 

p, and whether the data as a whole seem consistent with the assumption of a 

binomial distribution. 
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5.2.1 Graphical Methods. Let the random variable X be the number of failed 

components in a multiple failure. (We have been assuming that X is trun­

cated binomial(m,p), truncated so that X>2.) Let S- denote S (i.e., 

the total number of failed components in multiple failures) based on obser­

vations from only the ith source. So, conditional on n.., S- is a sum 

J ' +1' 1 

of n^. independent observations of X. Denote S - S- by S_.. Then, 

conditional on n.. and n. ., S-/n.. - S ./n^ • has expectation 0 and 
I 5 ^ 1 I I I 5 I 

variance 

[ l /n+. + l/n+^_i] var X. 

Define 

Ri = [Si/n^i - S_i/n^^_.]/[l/n^. + l/n^^_i]^^^ • (5.3) 

If all sources correspond to the same distribution of X (in particular, if 

all sources obey the BFR assumptions with the same p), then, conditional on 

the n, .'s, the R- are identically distributed with mean 0 and variance 
+ 1 ' 1 -̂  

= var X. If X is truncated binomial(m,p) with X >_ 2, then direct calcula­

tion yields 

EX = J!L£(1.-J L 
1 m m-1 
1 - q - mpq 

Ex(x-i) =JL1^L=J1JL 
^ ' 1 m m-1 

1 - q - mpq 

and the variance of X is 

a^ = EX(X-l) - EX(EX-l) 

This may be estimated by substituting some estimate for p. The standardized 

residuals are then obtained by dividing R. by Sw, the estimate of ow. 
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They are not independent, but a plot of i versus R^/^v will help point 

out sources with unusually high or low p. 

The above method was used to identify sources with high or low numbers 

of failures. The following method investigates whether the distribution 

within a source is really truncated binomial. To simplify the notation, 

assume that there is a single data source, with n^ multiple failure occur­

rences. For 2 £ i £ m, conditional on n^, the number of instances of i 

failures, N-, is binomial(n^,z.), with z- defined by (2.5) and 

(2.2). Let z- be the estimate based on the MLE p, i.e., 

^ /m^ '̂i ^m-i,/i ^m ^/vm-l\ 
2. = (̂ ) p q / ( 1 - q - mpq ) . 

Then 

N. - n^ z. 
U = - J 1- (5.4 

has mean and variance approximately 0 and 1. Large or small values, or 

strong patterns, indicate that the distribution is not truncated binomial. 

5.2.2 Hypothesis Tests. Let us test the null hypothesis that X is a trun­

cated binomial(m,p) random variable truncated such that X ^ 2. Under this 

hypothesis, P[X = i] = z-, in the notation of (2.5), for i=2,..,m. 

Possible alternate hypotheses are that p varies from source to source, 

and that the distribution of X is the same for all sources but is not trun­

cated binomial(m,p). 

If the sample size is large, the generalized likelihood ratio test can 

be used. For testing against the alternate hypothesis that the sources are 

BFR but with possibly different p's, the test statistic is 

I 
-2 log A = -2 L + 2 Z L-

^ 0 . , 1 
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where 

LQ = s log (p/q) + n+ log [q /(I - q - m p q )J (5.5) 

and 

L. = s. log (p./q-) + n̂ .. log [q. /(I - q. - m p. q. )J. (5.6) 

Here p is the MLE based on all the data, and p. is the MLE based on only 
2 

the ith source. Under H , -2 log A is asymptotically X (I-l). 

To test against the alternate hypothesis that X is not truncated bino­

mial (m,p), the test statistic is 

m 
-2 log A = 2 Z n. log (n./(n+ z-)) 

i=2 ^ ^ ^ 

where z. was defined above (5.4). Under H , the asymptotic distribu-
2 

tion of -2 log A is X (m-4). Another possible test in this case is the 

ordinary chi-square goodness of fit test. The test statistic is 

m „ 
Z (n. - n^z.) /n^.z. 
i=2 

2 
and its asymptotic distribution under H is X (m-4). If the sample 

size is only moderate rather than large, then the cells can be grouped and 

the degrees of freedom adjusted in the usual way. 
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6. RESULTS IF CAUSES OF SINGLE FAILURES ARE IDENTIFIABLE 

6.1 Definitions 

The data consist of (n,, n^, n̂ ,,.., n ), where n̂  is the 

number of single failures that were not due to common cause shocks, and 

n„ is the number of single failures due to common cause shocks. Now m 

may be as small as 2. Define 

n^' = np + n+ 

x+' = Mr^ + x+ = y(l - r^) 

s' = n̂ , + s 

z.' = r-/(l - r^) for i = 1,.., m. 

Then 

P[Nj = nj, N^ = n̂ ,, N^ = n^,.., N^ = n j 

= P[Nj = n j P[N/ = n,'] P^^ = n^, N^ = n^,.., N^ = n^|N/ = n,'] 

where 

N., ~ Poisson(xmt) 

N^' ~ Poisson(x^.'t) 

\ , - - , \ \ K ' = "+' ~ multinomial (n^', ẑ  ',.., z^'). 

Inference follows the pattern of Sections 3 through 5, but is much simpler 

because the most easily estimable parameters, x, x̂ .', and p, are not 

constrained by any analogue of (3.1). 
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6.2 Non-Bayesian Inference 

The Poisson parameters x and x^' can be estimated, both by MLE's and 

by confidence intervals, in the standard way. The MLE for p is the solu­

tion of 

m. s' = m n̂ .' p/(l - q ) 

[In the special case m = 2, the solution becomes simply p = 2(s'-n^')/s'.] 

Maximum likelihood estimates for any other parameters—x,, x., y, or 

yp —follow from substitution of x, x^, and p into the appropriate 

defining equations involving the desired quantities. 

If n^' > 0, a confidence interval for p can be based on the condi­

tional distribution of S' given N+', using analogues of (3.5) and 

(3.6). This conditional distribution is now given. Let v = (v-,,.., v ) 

be any vector of nonnegative integers. Define 

m 

Define the set T. by 

Tk= V 
m 

V ' = n ', Z iv. 
i=l ^ 

Let 

Vj. • m „ V. 

c(v) = ~ r ^pr n (.) 
^ l " - " m̂- i=l ^ 

Then, for n^ £ k £ m n^, 
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P[S' = k|NV = n / ] = Z PĴ N̂  = v^, N2 = v ^ , . . , N̂  = v^ N / = n / ] 

^, mn '̂ - s' 

. ^-^—r--- ^ (̂") • 
( 1 - d™) * ""•'k 

If the interval [0,1] is used when N+' = 0, then the procedure has 

unconditional confidence level (1-a). 

A joint confidence region for more than one of x, x+', and p is 

simply the product of the confidence intervals. Conservative intervals for 

y and yp can be based on the intervals for x^' and p in the obvious 

ways. For x-. and x+, conservative intervals can be based on the inter­

vals for X, x^', and p. Alternatively, the confidence intervals of Sec­

tion 3.2 can still be used for x, and x+. 

If n-r and n+' are large, then x, x+', and p are asymptotically 

independent normal with means x, x^', and p, and with variances x/mt, 

x^'/t and 1/I(p), where 

mn. ' T m „,.,„m-l 
i(p) =_L. l^ i_q__i^pq . (6.1) 

P^ (1 -q^)2 

Approximate confidence intervals can be based on this asymptotic 

distribution. 

6.3 Bayesian Inference 

We will consider the class of prior distributions: x ~ r(a,b), 

^+' ~ r(a^',b^'), p ~ beta(c,d), with x, x+' and p independent. If 

a=a^'=l/2, b=b^'=0, then the (improper) priors are noninformative for x 
5 

and x_̂ '. The noninformative prior advocated by Box and Tiao for p is 
1/2 

proportional to I (p), with I(p) given in (6.1). If c=d=l/2, the 

beta(c,d) distribution approximates the noninformative prior. Tables 3 and 

4 give values of c and d that provide better approximations, and Figures 4 

through 6 show these cumulative distributions for m = 5, 20, and 100. 
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TABLE 3. BINOMIAL WITH 0 TRUNCATED: APPROXIMATELY NONINFORMATIVE d FOR 
BETA(l/2, d) 

m 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12 

14 

16 

18 

20 

25 

30 

40 

60 

80 

100 

150 

200 

300 

00 

d 

0.3541 

0.3776 

0.3923 

0.4027 

0.4105 

0.4167 

0.4217 

0.4260 

0.4296 

0.4355 

0.4401 

0.4439 

0.4470 

0.4496 

0.4549 

0.4588 

0.4642 

0.4708 

0.4748 

0.4775 

0.4817 

0.4842 

0.4872 

0.5000 
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TABLE 4. BINOMIAL WITH 0 TRUNCATED: APPROXIMATELY NONINFORMATIVE 
PARAMETERS FOR BETA(d,0) 

m c d 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12 

14 

16 

18 

20 

25 

30 

40 

60 

80 

100 

150 

200 

300 

00 

0.5902 

0.6051 

0.6101 

0.6108 

0.6096 

0.6075 

0.6050 

0.6024 

0.5998 

0.5949 

0.5904 

0.5864 

0.5828 

0.5795 

0.5728 

0.5675 

0.5597 

0.5497 

0.5436 

0.5394 

0.5327 

0.5287 

0.5240 

0.5000 

0.4179 

0.4569 

0.4786 

0.4919 

0.5004 

0.5063 

0.5103 

0.5132 

0.5154 

0.5181 

0.5197 

0.5205 

0.5210 

0.5212 

0.5211 

0.5207 

0.5196 

0.5177 

0.5162 

0.5151 

0.5132 

0.5120 

• 0.5106 

0.5000 
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The posterior density factors into the product 

L(x, x^', p|data) = L(x|data) L(x^'|data) L(pldata) 

where 

x|data ~ r(a + n., b + mt) 

x^'jdata ~ r(a^' + n^', b^' + t) 

and 

n,' : "C m ^ "i s'+c-l "'n.'-s'^d-l 
L(pIdata) = C „ , " „ , (^ n (̂ ) P ^—--. . 

C m 1=2 /I m̂s + 
(1 - q ) 

Bayes point and interval estimation of x, x^', and p are routine, 

using numerical integration to treat p. Point estimates of x-i, x., y, 

and yp corresponding to the mode of the posterior density follow from 

the equations relating the parameters, and the posterior means of these 

quantities are obtained by straightforward integration. 

A probability interval for yp can be found as in Section 4.3.2: 

P c £ yp £ d data 

= J p[c(l-q'^)/p^ < ^+' < d (l-q'̂ )/p'̂  I p,datal L(p|data) dp 

/ P cu(p) £ x+' £ d u(p)|p,data L(p|data) dp 

m k 
with u(p) = (1-q )/p . In the notation of (4.4), this equals 
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/ [l(A+', B^', d u(p)) - I(A+', B+', c u(p))] L(p|data) dp 

with A^' = â .' + n^' and B+' = b+' + t. The integrand may be evaluated 

using (8.6) through (8.8), and the integral may be evaluated numerically. 

For y, the method is the same, with k=0. For 

1/1 m m-1V ,,1 m^ x+ = x+' (1 - q - mpq )/(l - q ), 

the method is the same as for yp , but now set u(p) = (1-q )/(l-q -mpq ) 

For 

x^ = mx + x̂ .' (mpq"" )/(l-q'"). 

the method is similar, but integration is with respect to x and x+'. The 

details are messy and will not be given. If NT and N^ are identifiable, 

then X, is a less natural parameter than x and may not be of interest to 

the user. 

6.4 Diagnostic Checks 

The checks for the Poisson parameters in Section 6 all carry over if 

N+.:, n^, x+., and x^ are replaced by N^.', n^', x̂ .-', and x+', and if 

N-| •, n., Xi-, and x-, are replaced by Nj-, n^, x.j, and x. 

The checks for the binomial parameter p carry over under the following 

translation. Now, X takes values from 1 to m. Primes should be given to 

S, S., S_., n^., n+ _., and z-. Equations (5.5) and (5.6) must be replaced 

by 
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^0-^' ' 
og (p/q) + n,' log [ q ^ d - f ) ] 

Li =s.' log (p./ q.) +n^.' log [q";* /(1-q^ )] 

To test against the alternate hypothesis that X is not truncated binomial, 

the likelihood ratio test statistic is 

m 
-2 log A = 2n(, log ^(^/(n^' 2̂ ')J + 2 Z n. log ^./(n^' z.')1 

where 

- , /m> ^i '̂ m-i .f, ^̂ m] 
:/ = (T) p q /[I - q J-

2 2 
Under H , the asymptotic distribution is X (m-3). The X test statistic 

("c - "+' ̂ l'^^ . ^ ("i - "/ ̂ i')^ 

n / z^' i=2 n / z.' 

may be used instead of the likelihood ratio test statistic. 

49 



7. ILLUSTRATIVE EXAMPLE 

7.1 Data Used 

Vesely gives data from 20 U.S. commercial boiling water reactors. 

The components are control rods, and a failure may be defined in at least 

two ways: failure to insert past notch 04, or any failure to meet techni­

cal specifications. The first definition includes failures that are serious 

enough to affect safety. The second also includes incidents such as slow 

rod insertion. 

This data set is used for illustrative purposes only' Much more data 

has become available since the data set of Reference 1 was published. The 

treatment presented here is also naive in that it ignores the event descrip­

tions given in the reports. These descriptions might suggest qualitative 

differences among the events, which would lead a careful analyst to consider 

portions of the data separately. Finally, the diagnostic checks point out 

inhomogeneity among the plants, and one failure occurrence which is a clear 

outlier. These are not investigated further here. A more thorough analysis 

of much more extensive data is now underway at the Idaho National Engin­

eering Laboratory. Those who are interested in the answers, not merely in 

the method, must refer to the INEL reports that will appear. The numerical 

results given below serve only to illustrate the method. 

The model of this paper assumes that m, the number of components, is 

constant. In Reference 1 the number of rods in a plant varies from 32 to 

185. We will consider plants with 177 or 185 rods. The data for these 

eight plants are summarized in Table 5. The effect of pooling data with 

these two values of m will be discussed below. 

The causes of single failures will be considered as not identifiable. 
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TABLE 5. SUMMARY OF FAILURE DATA 

Reactor 

Dresden 2 

Dresden 3 

Quad-Cities 1 

Quad-Cities 2 

Peach Bottom 2 

Peach Bottom 3 

Browns Ferry 1 

Browns Ferry 2 

Number of Rods 
(m) 

177 

177 

177 

177 

185 

185 

185 

185 

Total Operating 
Months 

(t)^ 

41 

61 

51 

49 

30 

25 

20 

13 

Failures to 
Insert Past 
Notch 04 

n3=l 

n,=l 

None 

None 

None 

None 

None 

None 

All 
Incidents 

"96-1 

"2-2 

"1-1 

"3-1 

None 

None 

None 

None 

None 

None 

290 

a. Operating time in hours assumes 720 hours per month, 

7.2 Analysis of Failures to Insert Past Notch 04 

For this data set, n^ = 1, n+ = 1, s = 3, t = 208800 hours, and 

estimates will be calculated using both m = 177 and m = 185. Estimates 
2 

will be found for x,, x^, x, y, p, and yp . The last quantity is an 

example of yp . 

Maximum likelihood estimates and 95% confidence intervals are given in 

Table 6. All the confidence intervals are two-sided (probability 0.025 for 
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TABLE 6. MAXIMUM LIKELIHOOD ESTIMATES AND 95% CONFIDENCE INTERVALS 

Parameter 

P 

10^ X x^ 

10^ X x^ 

10^ X X 

10^ X y 

9 ? 
10^ X yp"̂  

MLE 

0.0122 

4.79 

4.79 

1.65 

7.51 

1.12 

m = 177 

Confidence Interval 

(0.00043, 0.0483) 

(0.121, 26.7) 

(0.121, 26.7) 

(0, 12.8) 

(0.061, 42248) 

(0.0040, 87.4) 

MLE 

0.0117 

4.79 

4.79 

1.58 

7.51 

1.02 

m = 185 

Confidence Interval 

(0.00041, 0.0462) 

(0.121, 26.7) 

(0.121, 26.7) 

(0, 12.8) 

(0.061, 42468) 

(0.0037, 80.1) 

each tail), except for the interval for x. The interval for x is the con­

servative one-sided interval based on x < xWm (probability 0.05 for the 

upper tail). The two-sided interval for x that is based on x,, x+, and 

p, and is described in Section 3.2.5, turns out also to have its lower end 

point at 0, and the interval is strictly larger than the interval of 
2 

Table 6. The intervals for y and yp are based on two-sided intervals 

for x^ and p with (l-a)(l-a ) = 0.95 and o+ = a . 

Bayesian point and interval estimates are given in Table 7. The 

intervals all have posterior probability 0.025 in each tail. Highest 

posterior density intervals are not shown because the computer programming 

is not yet complete. An interval for x is not given because of the lengthy 

computation required. The prior distribution is noninformative for x-. 

and x_^_. The first two portions of the table use a beta prior distribu­

tion for p that is approximately noninformative. The third portion uses a 

beta(0.5, 0.5) distribution. 

A comparison of the first and third sections of Table 7 shows that the 

entries change very little, whether the prior beta distribution has 
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TABLE 7. BAYESIAN POINT ESTIMATES AND 95% INTERVALS 

— " — 

Parameter 

P 

10^ X x^ 

10^ X X. 

Posterior 

0.00769 

2.39 

2.39 

. 
m 

Mode 

— 
= 177, p ~ beta(0, 

Posterior Me; 

0.0189 

8.29 

6.07 

L552,_ 

in 

_q. .519) 

In terva l 

(0.00418, 0.0439) 

(0.923, 23.7) 

(0 .411, 19.6) 

10^ X X 

10^ X y 

in9 2 
10 X yp 

10^ X X-

10 X X, 

0.156 

6.06 

0.358 

4.05 

9.01 

3.55 

(0.626, 29.3) 

(0.0836, 18.4) 

m = 185, p ~ beta(0.551, 0.519) 

p 

10^ X x^ 

10^ X x+ 

10^ X X 

10^ X y 

9 2 
10^ X yp'̂  

0.00734 

2.39 

2.39 

0.145 

6.08 

0.327 

m = 177 

0.0180 

8.30 

6.07 

3.88 

9.01 

3.25 

, p ~ bete 1(0.5, 

(0.00399, 0.0420) 

(0.923, 23.7) 

(0.411, 19.6) 

— 

(0.626, 29.3) 

(0.0765, 16.8) 

0.5) 

0.00710 

2.40 

2.40 

0.0186 (0.00404, 0.0435) 

8.33 (0.937, 23.8) 

6.04 

10^ X X 

10^ X y 

9 2 
10 X yp 

0.00 

6.68 

0.337 

4.05 

9.08 

3.46 

(0.407, 19.5) 

(0.630, 29.6) 

(0.0804, 18.0) 
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approximately noninformative parameters or parameters 0.5 and 0.5. As 

shown in Figures 1 through 3, the approximately noninformative beta distri­

bution is "closer" to the noninformative prior than to the beta(0.5, 0.5) 

distribution. It therefore seems unlikely that the table entries would 

change much if the prior distribution were the noninformative prior based 

on the information matrix. This indicates that the beta approximation to 

the noninformative prior is adequate. Investigation of this point when m 

is small will be carried out at a later date. 

In Section 3.1, it was mentioned that the MLE p decreases as m increas­

es, so a more conservative (larger) estimate p will result from using 

m = 177, rather than m = 185. Tables 6 and 7 show that in this example, it 

is more conservative by any criterion to use m = 177 rather than m = 185, 
2 

since doing so gives larger estimates of x, p, and yp , and identical or 

virtually identical estimates of x-i, x+, and y. The maximum likelihood 

estimates and posterior means for p and for x are approximately propor­

tional to 1/m. 

In every case, the maximum likelihood estimate lies between the Bayes 

posterior mode and the Bayes posterior mean. In problems with a single 

binomial or Poisson parameter, it can be shown directly that this relation 

holds when the noninformative prior is used. It is interesting that it 

also holds for every parameter in the present multiparameter problem. 

For X,, x^, and p, the Bayes intervals are shorter than the cor­

responding confidence intervals. In problems with a single binomial or 

Poisson parameter, it can be shown directly that the Bayesian interval 

based on the noninformative prior must be strictly shorter than the cor­

responding confidence interval. This is because confidence intervals based 

on discrete data are inexact, with the (unknown) true confidence level 

being greater than or equal to the nominal level. In the present multi­

parameter problem, the same relation holds between the sizes of the confi­

dence interval and the Bayes interval, presumably for the same reason. For 
2 

y and yp , the Bayes intervals are also shorter than the confidence 

intervals. This is due both to the reason just mentioned and to the fact 

54 



that these confidence intervals are conservative rather than sharp. The 

Bayes interval for x is not shown because it requires lengthy computation. 

Figure 7 shows a 90% confidence region for (x^, x,), given three 

values of p. The values of p are the MLE and the ends of the 95% confi­

dence interval for p. For each p, the portion of the square which is above 

the corresponding line is that portion satisfying the constraint (3.1). 

Figures 8 through 11 show 90% Bayes regions for (x+, x,), given various 

values of p. The values of p are the posterior mode, the posterior mean, 

and the end points of the 95% probability interval for p. The Bayesian and 

non-Bayesian regions are not directly comparable, since they assume differ­

ent values of p. However, in all the figures, the estimates of x^ and 

X, are positively correlated, due to the constraint (3.1), and the 

correlation is strongest for small p. 
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Figure 7. Ninety percent confidence region fo r (x-^, x^ ) , given p. For each p, the region is that port ion 
of the rectangle above the l i ne corresponding to p. 
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7.3 Diagnostic Checks 

In order to have enough data to illustrate the methods for diagnostic 

checks, we will consider all five failure incidents. 

Let us combine single and multiple failures, and investigate x, + x+. 

Table 8 shows the standardized residuals and significance levels for the 

eight plants, and for the parameter x-, + x̂ .. The first plant shows a 

small significance level, indicating that the plant seems to be anomalous. 

However, one would expect random variability alone to produce some apparent 

anomalies among many plants. To test whether the plants all have the same 

value of X, + x^, the likelihood ratio statistic (5.1) can be calculated 

to be 13.76. If all the plants have the same value of x, + x̂ ., then 

P(-2 log A > 13.76|N^ + N+ = 5) = 0.016. 

This probability is exact rather than asymptotic, and indicates that the 

plants did not have the same value of x-. + x^. 

TABLE 8. STANDARDIZED RESIDUALS AND SIGNIFICANCE LEVELS FOR Xi + X-H 

Plant 

Dresden 2 

Dresden 3 

Quad-Cities 1 

Quad-Cities 2 

Peach Bottom 2 

Peach Bottom 3 

Browns Ferry 1 

Browns Ferry 2 

t. _2 

41 

61 

51 

49 

30 

25 

20 

13 

Observed Number 
of Failures 

4 

1 

0 

0 

0 

0 

0 

0 

Standardized 
Residual 

4.23 

-0.06 

-1.03 

-1.01 

-0.76 

-0.61 

-0.69 

-0.48 

Significance 
Level 

0.0035 

1.0 

0.76 

0.79 

1.0 

1.0 

1.0 

1.0 
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As an illustration of diagnostic checks for the assumptions about p, 

lot us consider the four multiple failure occurrences as the "sources." 

Then the values of n . and n̂ . _• are 1 and 3 for each source. For this 

data set, the MLE p is 0.14548. This agrees to five places with the esti­

mate s/mn^, which would be obtained if the observed data were treated as 

binomial rather than truncated binomial. Since the truncation effect is 

negligible, an approximate 95% confidence interval for p has upper end at 

p + 2 rpq/(mn^)"|^^^ = 0.1720. 

The standardized residuals from (5.3) are given in Table 9, based on 

p = 0.1455 and p = 0.1720. Plausible magnitudes of standardized residuals 

are, say, less than 3. The magnitudes in Table 9 are so much greater than 

3, whichever p is used, that it seems conclusive that the data do not come 

from a single BFR model. 

TABLE 9. STANDARDIZED RESIDUALS FOR p 
Each multiple failure treated =is data source, using formula (5.3) 

Number of Failed 
Components (=S.) 

96 

2 

2 

3 

103 

Even more dramatic results are seen if the data are treated as coming 

from a single source, and U- is calculated from (5.4). The values are 

summarized in Table 10. Truly enormous quantities are obtained because of 

observed failure numbers with extremely small estimated probabilities. 

R./ 1 X 

p = 0.1455 

17.29 

-5.85 

-5.85 

-5.60 

P. = 0.1720 

16.16 

-5.46 

-5.46 

-5.23 
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TABLE 10. STANDARDIZED RESIDUALS FOR BINOMIAL DISTRIBUTION 
Data treated as coming from single source, using formula 
(5.4) 

Number of Fai 

Components 

2 

3 

4 

5 

led 

i 

Number of 
Occurrences 

2 

1 

0 

0 

^ Ui = (Ni--n̂ . z.)/[n^ z. (l-£.)_ 

51914.0 

8237.0 

-0.000 

-0.001 

24 

25 

26 

27 

0 

0 

0 

0 

-0.595 

-0.608 

-0.607 

-0.591 

95 

96 

97 

0 

1 

0 

-0.000 

5.72 X 10^6 

-0.000 

177 -0.000 
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In fact, in this case, it is possible to test 

H : the four multiple failures come from a single BFR model. 

Under H , given that 103 components fail in four occurrences, the condi­

tional distribution of the four failure counts is multinomial(103, 1/4, 

1/4, 1/4, 1/4). The distribution can then be found subject to the addi­

tional condition that each failure occurrence involves at least two failed 

components. Somewhat tedious but direct combinatorial calculations yield 

P -2 log A 2 observed|H, n^ = 4, s = 103, each failure count >_ 2 

-49 
i 5 X 10 ^^ . 

Therefore, the occurrence with 96 failures does not come from the same BFR 

model as the other failure occurrences. 
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8. TECHNICAL DETAILS 

^• •'• Maximization of Likelihoods 

Consider 

s+c-i mn^-s+d-1 

L(p) = c P â 
1 "a. 

/I m m-lx + ( 1 - q - m p q ) 

If c > 0 and d > 0, this is the posterior density of p from a beta prior. 

If c = d = 1, it is the likelihood. 

If m = 2 or n^ = 0, then s can only take the one value 2n+, and 

the data contain no information about p. So assume m > 2 and n+ > 0. 

We will show that L(p) has a unique maximum (possibly infinite), at 

Po ' 
subcases, 
some p which is located according to the following seven cases and 

I f Then 

2n^ < s < m n ^ 0 < p < l 

0 < p^ < 1 

P = 1 

s 

s 

= m 

d 

d 

= 2r 

c 

c 

c 

"+ 

> 

< 

V 

> 

< 

= 

1 

1 

1 

1 

1 

n+(m- -2) 

0 < p^ < 1 

p = 0 
^0 

2 d + l > 0 0 < P g < l 

n+(m-2) 
— T — - d + 1 £ 0 PQ = 0 
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Moreover, if 0 < p < 1, it is the value at which expression (8.1) equals 

zero. 

Since s is an integer and c > 0 , s + c - 1 - 2n+ can be negative if 

and only if s = 2n^ and c < 1. In this case L(p) is finite for 0 < p £ 1 

and L(p) » <» as p » 0. So p = 0. 

Assume now that s + c - 1 - 2n+ >_ 0. Let us show that (3/3p)L(p) is 

zero at at most one point, and that the sign change can only be from posi­

tive to negative. The cases then follow from considering whether (3/3p)L(p) 

changes sign or not. Since (3/3p)L(p) has the same sign as q(3/3p)log L(p), 

it is sufficient to show that 

q I- log L(p) = ^ ^ -{c+d-2 + mn, -"^^—-;;rT? (8-1) 
^ *^ { 1-q -mpq J 

is strictly decreasing in p for 0 < p < 1. Add the constant c+d-2 to both 

sides of (8.1) and write the result as 

s+c-l-2n^ ( o 1 m-1 
M 1. (8.2) 'r 1-q ^m „„„m-r q -mpq 

Since s+c-l-2n+ >̂  0 by assumption, the first term of (8.2) is decreasing 

in p. Therefore it is sufficient to show that the expression in brackets 

is strictly decreasing in p for 0 < p < 1 and m > 2. 

The derivative of the expression in brackets in (8.2) is 

m(m-l) / q"̂ -2 (1-q^-mp) - 2(l-q'"-mpq"^V 

2 ,, m m-lv p (1-q -mpq ) 

Denote the numerator by A (p). It is not obvious that l\^{p) is nega­

tive, and we will show it by obtaining successively simpler expressions 
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B„(p), C^(p), and D„(p). The outline below omits the tedious but 

direct algebra. Each assertion is verified in the obvious way. 

A2(p) = 0 , for 0 < p < 1. 

= -mp^q"""^ }6 - (4m + 6)p + (m+l)^p^ 

+ q'"|_-6 - (2m - 6)p + (m-l)p^ 

2 m-1 _ , > 
= -mp q B^(p) 

i| 

defining B (p). Setting m=2 and q=l-p yields 

B,(p) = p > 0, for 0 < p < 1. 

V l ^ P ) - ^m^P) = P H "" (2m+3)p + q 
•!-

m [4 + (2m-3)p - mp^ | = pyp) 

Co(p) = P (5 - 2p) > 0, for 0 < p < 1, 

Cn,+i(P) - Cjp) = p{2 + q 
m 

|2 + q"̂ [-2 - 2mp + (m+1) p^] = p D^(p) 

D2(p) = p^(9 - lOp + 3p^) > 0, for all p. 

D^+l(p) - D^(P) = pV[2m+3 - (m+2)p] > 0, for m > 2, 0 < p < 1. 

Working up the above lines, we obtain successively D (p) > 0 for m 2 2, 

0 < p < 1, then C^{p) > 0 for m 2: 2, 0 < p < 1, then B^(p) > 0 for 

m 2 2, 0 < p < 1, and finally A^(p) < 0 for m > 2, 0 < p < 1. This shows 

that (8.2), and therefore (8.1), is strictly decreasing. So L(p) is maxi­

mized at a unique p . 

To locate p , consider first (8.1) as p » 1. The limit is 
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s - mn^ - d + 1, 

which is negative if and only if 

s < mn^ 

or 

s = mn^ and d > 1. 

So these are the cases for which p < 1. 

Now consider (8.1) as p » 0. Since 

1-q = (m-l)p - ( 2 )P + 0(p ) 

and 

1 m m-1 ,m. 2 m-2 . m̂, 3 . rMr.^\ 
1 - q - m p q = (2)p q + (3)p + 0(p ), 

we obtain after manipulation, that as p > 0 (8.1) equals 

s + c - 1 - 2n. n. (m-2) 
p- ^ (c+d-2) + 0(p). (8.3) 

Recall that s+c-l-2n+ is assumed to be > 0. Expression (8.3) is positive 

if 

s > 2n^ 

or 

s = 2n^, c > 1 

or 
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s = 2n^, c=l, -n^(m-2)/3 - d + 1 > 0. 

So these are the cases for which p > 0. 

All the assertions made at the start of this section about the maximi­

zation of L(p) have now been proved. 

We now verify the claim made in Section 3.1 that the right side of 

(3.3) is increasing in m. Let 

, m-1 
G(tTi) = mp ~-^ —y . 

1 ^m ,„„„m-l 
1 - q - mpq 

To show that G(m) is increasing in m, let us show that G(m+1) - G(m) 

is positive for p > 0. Algebraic manipulation shows that G(m+1) - G(m) is 

positive if and only if 

(m+Dd-q^d-q'" - mpq'""!) - md-q-^-^) (l-q'""! - (m+Dpq'") 

is positive. This quantity equals 

(l-q'")^ . ^2p2qm-l ^ , 

defining A. At p = 0, A is zero. The derivative sA/sp equals 

mq'^"^[2q(l-q'") - 2mpq + m(m-l)p^] = mq"^"^ B, 

defining B. At p = 0, B and its first derivative are both zero. The second 

derivative is 

2m(m+l)(l-q'"-^) > 0. 

Therefore, B is positive for all p > 0. Therefore, so is A, and therefore, 

G(m+1) > G(m) for p > 0. 
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8.2 Confidence Interval for_p 

In Section 3.2, a confidence interval for p was given, based on the 

conditional distribution of S given N+. The choice of this particular 

confidence interval is now justified. The argument uses the properties of 
Q 

similar tests and Neyman structure (Ferguson , pp. 226-7, or Reference 4, 

pp. 134-5) and monotone likelihood ratios (Reference 6, p. 423, or Refer­

ence 8, p. 208). 

By the factorization (2.4), the problem may be formulated in terms of 

(x^, p) and the sufficient statistic (N+, S), ignoring x-, and N-,. Suppose 

that we were testing 

^0= P < P o 

H^: P > PQ 

for some p and some desired level a. A "similar" test is one with 
•̂ 0 

P("reject H^jp = p 1 = a 

regardless of the value of x^. On the boundary 

|(x+, p)|p = 9Q) 

N^ is sufficient for x^. So, a test such that 

P (S, N+) in critical region|N+ = n J = a for all n+ (8.4) 

has "Neyman structure." Since a Poisson random variable is boundedly com­

plete, every similar test has Neyman structure, and any test which is uni­

formly most powerful (UMP) among tests satisfying (8.4) is UMP similar. 

The conditional distribution of S given N+ is written in (3.7). So 

the likelihood ratio is 
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Pfs = k|N^ = n^; P-^IPh = k|N+ = n^; P2I 

. 1 mn^ 1 n. 
f \ k + /I m m-lx + 
P2 ^ i \ ^2 (1 - qi - f"Piqi ) 
Oo Pi / mn, 1 + 

• 2 ' 1 / ,^ * ( 1 . q^™. „p^p^"-i) 

which is monotone increasing in k for fixed p-, and p^, p, < p̂ '. Therefore, 

a UMP test among tests satisfying (8.4) is to reject H if and only if S is 

greater than some c(n^), with possible randomization if S=c(n^.). This test 

is UMP similar. 

Since a UMP similar test of a one-sided hypothesis has a one-sided 

critical region, good tests of two-sided hypotheses have two-sided critical 

regions, and one convenient such test assigns equal probabilities to the 

two tails. The corresponding confidence interval is given by (3.5) and 

(3.6). 

8.3 Integrals 

Assume that A > 0 and B > 0. We repeat definition (4.4) here. 

I(A, B, X) = ^ / e"^^ t'̂ -̂  dt (4.4) 

Then I(A,B,«') = 1 for any A and B. For x < » the following three results 

hold. [See also Johnson and Kotz , Vol. 2, Ch. 17, equations (23.1) 

through (24).] 

If A is a positive integer, 

I(A, B, x) = 1 - e"^^ Z - ^ ^ . (8.5) 
j=0 J* 

If A = k + 1/2 for integer k > 0, 
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I(A, B, x) = -e-^^ I L B ^ - _ ^ - H 2 $[(2Bx)^^^] -1 (8.6) 

j=0 

where $ is the standard normal cumulative distribution function. 

For arbitrary A > 0, 

I(A, B, X) = e ̂^ z ĵ l̂-jTI)- • (8.7) 

To prove (8.5) and (8.6), integrate by parts and use induction. The 
proof of (8.6) is completed by observing that 1(1/2, B, x) = P[X £ x] where 
X ~ r(l/2, B). But this equals P[2BX £ 2Bx] where 2BX ~ X^(l). Finally, 
this equals 2'!' (2Bx) ' - 1. To prove (8.7), observe that the two sides 
have identical derivatives and are equal at x=0. 

Assume now that A, B, A', and B' are all positive. Define 

J(A, B, A', B', x) 

Jo -'s 

B^ Bt. A-l (B')^' ,-B's A'-l,. . ,. .. 
TjAj r ( A ^ e s dt ds. (4.5) 

Let 

uî A R A. R.\ / B \̂ /' B' V r(A+A') 
W(A, B, A , B ) = ] ^ : ^ j ^g^r^j -,̂ __̂ _-̂ ^̂  . 

Note the slight asymmetry of A and A' in W. The following four results 
hold. 

If A is an integer. 
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A-l 
J(A, B, A', B', x) = Z W(j, B, A',B') I(A'+j, B+B', x). (8.8) 

j=0 

If A' is an integer, 

J(A, B, A', B', x) 

= I(A, B, x) + I(A', B', x) - I(A, B, x) I(A', B', x) 

A'-l 

- E W(j, B', A, B) I(A+j, B+B', x). (8.9) 
j=0 

If A and A' are arbitrary positive numbers, 

J(A, B, A', B', x) 

= I(A', B', x) 

00 

- E W(A+j, B, A', B') I(A+A'+j, B+B', x) (8.10) 
j=0 

= I(A', B', x) [1 - I(A, B, x)] 

00 

+ Z W(A'+j, B', A, B) I(A+A'+j, B+B', x). (8.11) 
j=0 

Equation (8.8) follows from (4.5) and use of (8.5). So does (8.9), 

after reversing the order of integration in (4.5). Equations (8.10) and 

(8.11) follow from (8.7), using both possible orders of integration in 

(4.5). 

Of special interest is J(A, B, A', B',oo). If A or A' is an integer, 

then (8.8) and (8.9) give finite sums for J(A, B, A', B', oo). If A and A' 

are both integers plus 1/2, then there is also a finite expression for J(A, 

B, A , B,oo): 

If A=k+l/2 and A'=k'+l/2, for nonnegative integers k and k', then 
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J(A, B, A', B', oo) 

k-1 k'-l 
= 1 + I W( j+1/2, B, A', B') - E W(j<-l/2, B', 1/2, B) 

j=0 j=0 

- I arctan [(B/B')^^^J. (8.12) 

To prove this last assertion, use (8.6) on the inner integral of (4.5). 

Note that I(A, B, oo) = 1 for any A and B, and obtain 

J(A, B, A', B', oo) 

= 2 + E W(j+l/2, B, A', B') - 2 J $[(2Bs)^^^] - j . ^ ^ e"^'^ s'̂ '"̂  ds. 

Integrate the last integral by parts k' times, obtaining 

J(A, B, A', B', oo) 

k-1 k'-l 
= 2 + E W(j+l/2, B, A', B') - E W(j+l/2, B', 1/2, B) 

j=0 j=0 

-2jr%[(2Bs)l/2]iB^!e-B-s,-l/2,3^ 

The last integral equals p|_T £ (2BS)^^^J, where T ~ N(0,1) and S ~ r(l/2, B'). 

The distribution of 2B'S is X^(l), so the integral equals P T < (B/B')^^^|z| 
( ~2 

where T and Z are independent N(0,1). This probability is<l + — arctan 

1(B/B') J|/2, by the spherical symmetry of the bivariate normal distri­

bution. This proves (8.12). 

If J(A, B, A', B', oo) must be evaluated for arbitrary A and A', then 

one of (8.10) and (8.11) may converge much faster than the other. To decide 

which series to use, define 
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Q = B/(B+B') 

Q' = B'/(B+B'). 

The ratio of term j+1 of the infinite series to term j is 

A + A' + j ̂  
A + j + 1 ^ 

for (8.10), and 

A + A' + j ^, 
A' + j + 1 ̂  

for (8.11). These expressions are monotone in j (decreasing if A > 1 and 

A' > 1), so are bounded by 

max (1, j~Y'^ ^ ^^'^^^ 

and 

max (1, jy^i) Q' . (8.14) 

At least one of (8.13) and (8.14) is less than 1. For they are strictly 

bounded, respectively, by 

A7rA'+'"A7 ^̂ '̂ ^̂  

and 

Ql L-J (R^f,) 
A W T A + A') - 1 - A/fA + A'7 ^^-^^^ 

and the numerator of (8.15) is greater than the denominator if and only if 

the numerator of (8.16) is less than the denominator. So, reasonably fast 

convergence is assured by using (8.10) if (8.15) < (8.16) and using (8.11) 

otherwise. 
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