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Topics in Inflationary Cosmologies
Shobhit Mahajan

ABSTRACT

In this thesis we discuss several aspects of inflationary cosmologies. The
first chapter is an introduction to the standard hot big bang cosmological
mode]l. We review the model and some of the problems associated with it.

In the second chapter, a short‘ review of the proposais for solving the
cosmological conundrums of the big bang model is presented. We study the
old and the new inflationary scenarios and show why they are not accept-
able. Some alternative scenarios especially those using supersymmetry are

reviewed briefly.

The third chapter is a study of inflationary models where the same set of
fields that breaks supersymmetry is also responsible for inflation. In these
models, the scale of supersymmetry breaking is related to the slope of the
potential near the origin and can thus be kept low. We find that we can get
a supersymmetry breaking scale of the order of the weak breaking scale. The
casmology obtained from the simplest of such models is discussed in detail
and we find that there are no particular problems except a low reheating
temperature and a violation of the thermal constraint. We then present a
possible solution to the thermal constraint problem by introducing a second

field and discuss the role played by this second field in the scenario.



In the fourth chapter, an alternative mechanism for the generation of
baryon number within the framework of supergravity inflationary models
is studied. We use the gravitational couplings of the heavy fields with the
hidden sector(the sector which breaks supersymmetry). This mechanism is
applied to two specific models ~- one with and one without supersymmetry
breaking. We emphasize the complete generality of this mechanism. The
baryon to entropy ratio is found to be dependent on parameters which are
model dependent. Finally, we remark on the effect of direct couplings be-

tween the two sectors on our results.



Acknowledgments

I am grateful to the Theoretical Physics Group at LBL for providing a
stimulating environment to do the work which has led to this thesis. I would
itkke to thank Ian Hinchliffe for his encouragement, advise and for sharing
his unending enthusiasm for physics. His penetrating reading of this thesis
is responsible for it being in ita present state. It is a pleasure to thank
Geoff Chew for encouragement and his patient reading of this manuscript.
It was a very pleasant experience collaborating (on physics and discussions
on cinema) with Pierre Binetruy for the work which forms Chapter 3 of
this thesis. I also owe my gratitude to everybody in the Theory Group,
especially Sally Dawson, Mark Claudson and Bob Cahn for being extremely
helpful and patient in answering questions on physics, computers etc. Betty
Moura, Luanne Neumann and Susan Fidelman deserve a special word of
thanks for being extremely helpful and nice during my stay here. Susan and
Luanne also are to be thanked for the arduous task of typing Chapters 3 and

4.

Many iriends have contributed towards providing me with a fun time
in Berkeley. All my colleagues in the Physics 6 office, who taught me how
working on problem sets at 2 a.m. could be fun, deserve my gratitude. I
particularly thank Mitchell Golden for those endless hours of stimulating

discussions on politics, physics and everything else. [ am also grateful to



the Texpert, Jon Yamron, for his cheesecake and his help with questions
regarding Tex. I wish to extend my thanks to Myrna Garcia, Libby Wood
and many others for making life pleasant here. I would forever cherish their
friendship. Rajive Tiwari, my good friend for many years, deserves my deep-
est gratitude for constant support and encouragement.

These acknowledgments will be incomplete without my thanking my par-
ents, They have contributed immensely to my being where I am now. Their
affection, encouragement and confidence in me has been very important to
me. Finally, most is owed tc my life partner Nandita, for making my life
so happy and for standing by me through all those crises of the last seven
years.

This work was supported by the Lawrence Berkeley Laboratory under its
contract DE-ACO03-76SF00098 with the Director, Office of Energy Research,
Office of High-Energy and Nuclear Physics, Division of High-Energy Physics

of the US Department of Energy.



Contents

Acknowledgements

Introduction

Inflation and New Inflation

2.1 The Inflationary Scenario . . . .« « « « « v 4« « s 2 s e oo
2.2 The New Inflationary Scenario ... ........... ...
2.3 Alternative Scenarios . . . . . . . . . v . v i e e

Supersymmetric Inflationary Cosmologies
31 TheModels . . . .. .. . ... oo
3.2 Cosmological Constraints . . .. .. ... ........ ...

3.3 A Solution to the Thermal Constraint . . ......... ..

Baryogenesis in Supersymmetric Inflationary Cosmologies

4.1 Review of Baryogenesis . . . .. . . ... v v an v
4.2 General Framewotk . . . . . . e e e e e e e
43 ModelI . . . . .. e e e
44 ModelIl . . . . . . L. 0. e e,

Conclusions

i

92



Appendix

References

Figure Captions

Figures

iv

95

98

107

108



I INTRODUCTION

The past few years have seen a tremendous growth in the interaction
between cosmology and particle physics. The relationship between these two
seemingly different branches of physics is not new. The theory of primordial
nucleosynthesis of light elements [1], an application of nuclear physics to
cosmology, is the earliest example. What is striking is the way in which
progress in both particle physics and cosmology has become dependent upon
this interplay [2].

In particle physics, «xperiments have tended to confirm the validity of
the SU(3) x SU(2) x U(1) [3] model as the correct low energy effective the-
ory. But a variety of unanswered questions have led to an investigation of
theories which extend this model. Grand Unified Theories (GUTSs) (4] unify
the gauge fields of strong and electroweak interactions into a single gauge
group with a single coupling constant. Apart from their aesthetic appeal,
these theories previde us with explanations and predictions of parameters
which are undetermined in the SU(3) x SU(2) x U(l) model. Among these
are the equality of the electron and proton charge and the value of sin? 8y
(w is the weak mixing angle) which controls the relative strength of the
U(1) and SU(2) coupling constants and is an arbitrary parameter in the
Glashow-Weinberg-Salam model of electroweak interactions {5]. However,

some of the most striking predictions of GUTs like the nonconservation of



baryon number, existence of superheavy magnetic monopoles, occur at en-
ergy scales of 10'* GeV or higher. These energy scales are accessible only in
the early universe which becomes a natural laboratory to study these the-
ories. Furthermore, cosmology provides us with an insight into the nature
of new predicted particles by putting very useful bounds on their masses,
abundances, coupling strengths etc. As an example, following the evolution
of stable or long lived neutrinos, we find that they must be lighter than
100 eV or heavier than 3 GeV [6]. If their mass falls within this forbidden
range, then their contribution to the energy density of the universe is too
large. Similarly, the big bang nucleosynthesis provides us with a limit on the
number of neutrino species [7]. The predicted abundance of light elements is
consistent with the inferred primordial abundance if the number of neutrinos

is less than or equal to four.

On the other hand, particle physics plays an extremely important role in
understanding the very early universe. The standard cosmological scenario
of the hot big bang is very successful in explaining phenomena occurring
after about 10~? seconds after the big bang (at a temperature of about 10
MeV; we chose units such that k = ¢ = k = 1. Teinperature is expressed in
GeV, 1GeV= 10K.}. But in order to understand events happening before
this time (i.e. at a higher temperature), it is crucial to take into account the
interactions of elementary particles. It is here that particle physics guides

cosmology.



Grand Unified Theories have several features which have a profound cos-
mological importance. Among the most noteworthy are the non-conservation
of baryon number and the existence of magnetic monopoles. Non-conservation
of baryon number is important in cosmology [8] because it gives us a way to
explain the observed baryon-antibaryon asymrmetry of the universe, without
taking it as an initial condition. It should be stressed that even though ex-
perimental evidence for non-conservation of baryon number (nucleon decay)
still does not exist [9], it is important to have a mechanism to explain the
observed net baryon number of the universe. We will discuss the importance
of monopoles later in this introduction.

Attempts have been made to construct models of the very early universe
which incorporate Grand Unified Theories in an essential way [10]. These
models attempt to solve some of the problems which the big bang model
does not address. We will review these models in the next chapter. The
rest of this introduction is a brief outline of the big bang model and its

shortcomings.
The standard hot big bang scenario [11} assumes a spatially homogenous
and isotropic universe which can be described in comoving coordinates by

the Friedman-Robertson-Walker metric

dr?
1—kr?

ds? = —dt? + R’(t)[ + r’dﬂ’] . (1.1)

The expansion of the universe is described by the scale factor R(t) and the



curvature by the parameter k. By adjusting R(f), we can normalize & to
+1,0. k = +1 corresponds to a closed universe, £k = ~1 to an open universe

and & = 0 to a spatially flat one.

The energy-momentum tensor is assumed to have a perfect fluid form,
Ty = PG + (p + p)ULUL (1-2)
where p is the pressure, g is the total mass-energy density and U, = (1,0,0,0)

is the velocity vector for an isotropic fluid in its rest frame.

Given these assumptions, we can use the Einstein field equation,
G = 87GT,, — Ag,, (1.3)

ta derive a first order equation for the evolution of the scale factor. Here G,,,

is the Einstein tensor, G is the Newton’s constant and A is the cosmological

constant. Taking the time-time component of (1.3) gives us

pr=L (4RY K _81G A
dt 3

R? (1.4)

where H is the Hubble parameter. Furthermore, energy conservation (D,T,,

D, being the covariant derivative) leads to

d

©
]
<
N

A= ~3pR%. (1.5)

With these equations, we only need to know the equation of state p{p),

to study the evolution of the universe. In the big bang model, the equation



of state is taken to be that of a relativistic or non-relativistic ideal gas.

For radiation or a relativistic ideal gas, (i.e. for T > m )

p=p/3 (1.6a)

p=(g+ Zg,)"r—zT‘ (1.6b)
87°°30
where g; and g; are the number of effectively massless bosonic and fermionic

degrees of freedom. Using (1.4) and (1.5), we find that
pox R4 (1.7a)

and (with k= 0,A = 0)

R o 12, (1.78)
Similarly for a non-relativistic gas or matter (i.e. for T < m )
p=0 (1.8a)

and

p=mn (1.88)

where m is the mass and n is the number density of the particles. Once

again using (1.4) and (1.5) we get,

po R™® {1.9a)



and (again with k¥ = 0,A = 0)
R o 25, (1.98)
The assumption of thermal equiliprium and the conservation of energy

(1.5) implies that the expansion of the universe is adiabatic. This means

that the total entropy is constant i.e.,

AR _ g (1.10a)
dt
where s is the entropy density.
For massless particles,
5= (g + :;—gf)il;Ts (1.108)

and hence (for a fixed number of particle species),

RT = constant. (1.10¢)

We will see later that this is an important result which will have to be

modified in the context of inflationary models of the universe.

The cosmology obtained from this theoretical framework is extremely
successful in explaining a variety of ¢hservations [12]. Among these are the
cosmological redshift, the cosmic micruwave background radiation [13] and
the origin of light elements in the universe.

The expansion of the universe since the big bang accounts for the cos-

mological redshift. Radiation from the early universe which decoupled from



matter at a temperature of about 4,000K (when the electrons and ions re-
combined to form atoms) and has been redshifting since, is the microwave
background radiation. The big bang mode! predicts correctly its blackbody
nature as well as its temperature (2.7K). The light elements were synthe-
sized primarily in the early epoch of primordial nucleosynthesis. Even in the
simplest model of nucleasynthesis, we find that the computed abundances
of light nuclei like deuterium, 3He, *He and 7Li, compare very well with the

‘nferred primordial abundances (from observational data) [14].

Successful as it is in explaining these observations, the standard scenario
suffers from four problems which motivate our search for alternative models
[10]. These are the horizon problem, flatness problem, monopole problem
and problem of explaining inhomogenities in the structure of the universe.

Horizon length or the particle horizon is the maximum distance light
could have travelled since the big bang. It is the maximum radius of causal

contact . It is given by (using 1.7a)
¢
[t) = R(t)/o R(¢)7'dt' = 2. (1.11)

On the other hand the physical radius scales as

0]

L{t) = I—z(t—,)-L(t'). (1.12)

Using (1.11) and (1.12), we find that at the time of decoupling of the cosmic

microwave background radiation (T ~ 10*K,t ~ 10% secs) there are 10°



causally disconnected regions which grew into our present universe.

Observationally, the microwave background radiation is highly isotropic.

The current limit on the anisotropy is

AT/T <1074 (1.13)

It is difficult to understand how so many causally disconnected regions came
to the same temperature at the same time, as suggested by the anisotropy
limit (1.13). This is the horizon problem [15] and ‘s not addressed by the

standard scenario.

The flatness problem [16] is another one which this scenario does not
address. Observations suggest that the ratic of the energy density of the
universe to the critical density p. (which gives us a flat universe i.e. k = 0
in eq. (1.2)) is close to 1. Since we know that the present value of the

cosmological constant is almost 0, we will take A = 0 in what follows. From

(1),
3H? N

Q= p/p. (1.140)

0.1 < 1y, < 4.0 (1.14¢)

This in itself is not a problem but for the fact that = 1 is an unstable



fixed point under time evolution. To see this we compute the quantity I%l

Using {1.4), (1.5) and (1.10c) we have

o — o k -
> o (BT o T3 (1.15)

Thus for {1 to be so close to 1 today, it kas to be unnaturally fine tuned in
the past. For example, at ¢ = 1 second (after the big bang}, {1 has to be one
to one part in 10'®. This curious fact is also taken to be an initial condition
in the big bang model.

Many Grand Unified Theories [5] predict the existence of extended topo-
logical objects which have a mass of the order of the grand unification seale
(10 GeV). These stable topological knots in the Higgs field expectation
value behave like magnetic monopoles. Cosmologically these manopoles are
formed at the Grand Unified scale Mgy when the grand unified gauge group

spontaneously breaks down to a group containing U(1).

The density of monopoles n,,, is estimated by assuming that the corre-
lation length of the Higgs field expectation value is the size of the particle

horizon (1.11). Then [17]

nm(Tgur) ~ Z(TGUT)"S'. (1.16)

It can be shown that monopole-antimonopole annihilation is negligible at

these densities [18].

This density is disastrous because we get an energy density due to monopales
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alone which exceeds the critical energy density, p,, by many orders of mag-
nitude. Observationally, we know that the energy density of the universe is
close to the critical density (1.14c). The standard model has no solution for

this monopole problem.

Finally, it is difficult to understand the formation of structure in our
universe with the big bang model. Although the universe is homogenous
on large scales, there is enough evidence for inhomogenities (galaxies, clus-
ters etc.) on the smaller scules. To account for this, the big bang model
assumes a spectrum of initial inhomogenities which then evolve to give the
observed distribution {18}, This ad-hoc nature of the initial spectrum is fur-
ther problematic because of the evolution of gravitational instabilities. For
the observed galactic evolution, this implies choosing a very unnatural set of

initial conditions.

Thus we see that the hot big bang model, inspite of its success in explain-
ing many observations, suffers from some drawbacks. These drawbacks are
basically related to the fact that the model assumes a set of very unnatural
and arbitrary initial conditions. It is this which has motivated the search for

alternative scenarios in cosmology.

The rest of the thesis is organized as follows: In the next chapter, we
will present a short review of inflationary cosmologies. We will discuss the

various kinds of inflationary models and how they solve the problems of the
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big bang scenario. The next two Chapters form the main part of this thesis.
In Chapter 3 we discuss the motivations for constructing supersymmetric
inflationary models. We then construct, and study in ‘etail, models in which
the same sector that is responsible for inflation also breaks supersymmetry.
A study of the cosmology based on these models shows that there are no
problems apart from a low reheating temperature and a violation of the
thermal constraint. We propose a method for solving the thermal constraint.
Chapter 4 is a study of baryogenesis in the supersymmetric inflationary
models. We first review the standard scenario for baryosynthesis. We then
go on to describe an alternative mechanism for generation of baryons in
these models. After giving a general framework, we apply this mechanism to
models in which supersymmetry is unbroken in the inflaton sector and to the
models discussed in Chapter 3. We find that this mechanism could lead to
a sufficient amount of baryons under certain rmodel dependent constraints,

Finally, we present our conclusions in Chapter 5.
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II INFLATION AND NEW INFLATION

In the last chapter, we discussed the hot big bang model and some of
its shortcomings. We saw that the standard scenario leads to a set of very
unnatural initial conditions when extrapolated back to very early times. In
this chapter we will discuss some of the proposals for curing this problem.
We will see how particle physics plays an increasingly important role in the

formulation of these alternative cosmological models.

The essential idea, in the solution to the cosmological conundrums of the
big bang model, is to do away with the assumption of adiabatic expansion of
the universe [10]. Recall that in the big bang model, the total entropy of the
universe was assumed to be constant (eq.1.10a-c). This need not necessarily
be true if the universe went through one or several phase transitions during

its evolution.

Our belief in the correctness of the $U(3) x SU(2} x U(1) model in de-
scribing low energy physics 3|, leads us inevitably to expect phase transitions
in the 1 aiverse. At temperatures ~ 10° GeV, we expect a phase transition
associated with the spontaneous breaking of SU(3) x SU(2) x U(1) to SU(3)
x U(1). Again at T ~ few hundred MeV, we expect a transition when chiral
symmetry, associated with Quantum Chromodynamics (QCD), is sponta-
neously broken [20]. Finally, at a slightly lower temperature, we might have

a confinerent transition of quarks in QCD.
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Grand Unified Theories, provide us with one or several phase transitions
at the GUT scale. If we compute the variation with energy of the gauge
coupling constants of SU(3) x SU(2) x U(1), we find that the three are
equal at an energy ~ 10'® GeV [21]. This is the scale at which the unifying
gauge group (eg. SU(5)) is broken spontaneously. This is another phase
transition which could have important cosmological consequences. In fact,
in the original formulation of the inflationary scenario, Guth [10] suggested

using the GUT phase transition to solve the problems of the big bang model.

In the next section we will review Guth’s original proposal for the in~
flationary model, its realization and how it solves the naturainess problems
which plague the big bang model. We will also discuss the essential flaws in

this scenario and why it is untenable.

1 THE INFLATIONARY SCENARIO

An essential feature of the inflationary model is the description of matter
by a quantum field theory. In particular, this means modifying the euergy
momentum tensor T}, of (1.2) to include the contribution of the energy mo-
mentum operator [22]. If the quantum state does not break the symmetries

of the Friedman-Robertson-Walker background, then we add a contribution

To = Tht + T3, (2.1a)
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T,,?y = PoGur (2‘1b)

where Tﬂ is the energy momentum tensor of (1.2) and pg is the energy

density of the state.

To illustrate the working of this scenario, we first discuss a toy model.
Consider a field theory which has an effective potential V(¢), like the one
in Fig 2.1. Here ¢ is a scalar field called the inflaton. The figure shows
the effective potential V(p) for T = 0 and for T > T;, T, being the critical
temperature. An example would be a pure scalar theory with a quartic
potential.

To understand the operation of this model, we have to consider finite tem-
perature effects in quantum field theories [23]. Conventional field theories,
describe events in a surrounding heat bath at T = 0. In the early universe,
this assurnption is inapplicable because of the presence of high matter and
radiation density. So we have to study the field theory with a background
heat bath 1t temperature T # 0 [24]. Using the formalism of quantum sta-
tistical mechanics with appropriate boundary conditions, we find that the

effective scalar potential is {23} (in the high temperature limit)
Vir(8) = VI7°(4) + CT ¢ + 0(4*) (2.2)

where C is a vonstant depending on the specific model. This temperature

dependent correction causes a symmetry restoration at high temperature in
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theories with broken symmetry.

The effective potential has, at zero temperature, 2 global minimum at
¢ = ¢y = o and also a local minimum at ¢ = @4y, = 0. with energy po.
We assume that there is a temperature T, above which the finite temperature
effective potential has a lower value for @4, than for @iy, T: is then the
critical temperature for a first order phase transition and for T > T, we
have symmetry restoration i.e., the symmetric phase ¢sq,, is preferred.

We can now trace the evolution of the universe based on this toy model.
The evolution starts at T = Tpignet ~ 10YGeV. Above this temperature
quantum gravitational effects are important. Initially the thermal energy
dominates the energy momentum tensor and the universe expands like a
radiation dominated one (1.6, 1.7). The temperature dependent term in the
potential (2.2) causes the state ¢ a.. to be energetically favored. This will
continue till the temperature falls to T,. Below this, the universe supercools
and remains in the false vacuum ¢y,,,. The phase transition begins by
formation of bubbles of the new phase [25], The time independent energy
density of the false vacuum py, dominates the energy momentum tensor.

This acts like a cosmological term in Einstein equation (1.3) with
A= 87I'Gpo. (2.3)

Solving for the scale factor R(t) from (1.4), we find an exponential expansion
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(or inflation [10]) of R(2).

R(t) *~ ex‘ (2.40]

8 1/2
x = (?Gpo) (2.48)
During the phase of exponential expansion, the scale factor soon becomes so

large that the metric (1.1) can be approximated locally with the k = 0 form
ds? = —dt* + R*(t)dE". (2.5)

This space is called de Sitter apace {26].

The temperature 7}, of the universe supercools exponentially
T (t) ~ TGUTC_H(‘-‘OUT). (2.5,)

After a few e-foldings, i.e. the number of times the scale factor R expands by
a factor of e, the state ¢ == 0 is no longer a stable minimum of the effective
potential but is a metastable false vacuum. It will decay to the true vacuum
®iwue by tunnelling through the potential barrier. This phase transition is a
first order one i.e., it proceeds like the boiling of water by the formation of

bubbles of the new, energetically favored phase.

Assuming now that this expansion continues for a titne At and then the

phase transition occurs instantaneously, we can calculate the increase in the
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scale factor

P R(t) XA
7 o R(to) ~ € ‘. (27)

When the phase transition terminates, the energy density po is released
as latent heat. This energy, if rapidly thermalized, reheats the universe back
to Tg ~ Tgyr. Reheating is a non-adiabatic process and generates entropy.
The entropy density is the same as before the exponential expansion (because
the temperature is the same (1.10b)), but the scale factor has increased by
a factor of Z (2.7). Thus the total entropy increases by a factor of Z3. This
entropy generation is the key to solving the problems we encountered with
the standard scenario in the previous chapter. Guth [10] showed that with
Z > 10%, the horizon, flatness and monopole problems of the big bang mode!l

are easily solved,

The horizon problem does not exist in this version of the inflationary
model. Recall that the crux of the horizon problem was the existence of
many causally disconnected regions which evolved into our presenf universe.
If the scale factor goes through an exponential expansion, the horizon length
{1.11) also expands exponentially while the physical radius (1.12) remains
constant. Thus the region which grew into our observed universe was well
within one horizon length. The isotropy of the microwave background is in

a sense due to the immense expansion,

The flatness problem is also easily solved by the inflationary model. The
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flatness problem was essentially the problem of understanding the closeness
of 11 to one in the present universe. The fine tuning of the initial conditions
to give 2 = 1 is also related to the large ertropy of our universe. To see this,

we consider the total entrapy of the universe (a dimensionless quantity}.
S = R (2.8a)

Using T = T, = 2.7K (the temperature of the background radiation) and
(1.10Db), we gat

s~ 10%m™3, (2.88)

Using (1.4) and (1.14), we obtain
R=H1-q, (2.8¢)
With 1 < 2, R > 10'® years, we get 2 value of § which is very big |10
5 > 10, (2.84)

Thus the problem is reduced to explaining the enormous magnitude of this
dimensionless number which we normally expect to have a value of order 1.
In the inflationary model, with Z > 10%° the entropy increases by a factor
of 2% = 10%". Therefore we expect {1 to be one to a very high degree of
precision. This is one of the firmest predictions of models of the kind which

use exponential expansion.

The monopole problem is also avoided in this model. The horizon length
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is exponentially bigger, leading to a corresponding decrease in the number
density of the manopoles. The exponential expansion dilutes the density of

the monopoles to an »cceptable value.

The inflationary scenario outlined above does not address the problem of
generation of inhomogenities which lead to galaxy formation. For that we
have to go to the new inflationary models which we will discuss in the next

sectjon.

The toy madel that we have discussed above is obviously not very realis-
tic. A more realistic model is the Georgi-Glashow SU(5) model {4], In this
cage, the fleld ¢ is in the adjoint representation of SU(5) i.e., it is a 24 of
SU(5). For field configurations which break SU(5) down to SU(3)} x SU(2)

x U(1) i.e., where the expectation value of the Higgs field is of the form

¢= ¢dia’g[1n 1, 1’—21_2] (2.9(!)

the finite temperature effective potential (to one loop) is given by

Wry - st @11 g 22
Vers" (¢) = Ad[ln =5 — 21 + omié? + CH*T? + po (2.96)

where A and C are constants determined by the gauge coupling constant
agyr [27]. Here m is the mass parameter and m < ¢y, = o. This is
essential so as to get a temnerature independent potential barrier near the
origin. It is this barrier which is responsible for the universe being trapped

in the metastable false vacuum when the temperature falls below T,. This
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potential looks similar to the one in Fig 2.1 (in one of the Higgs’s directions).
The previous discussion of the evolution of the universe can also be applied.
The false vacuum is the SU(5) symmetric phase while the true vacuum is
the SU(8) x SU(2) x U(1) symmetric phase.

It was soon realized that the original scenario of Guth could not provide

a realistic cosmology [28]. To see this we have to look in detail at the

mechanism of phase transition in this model.

In the preceding discussion we have assumed that the phase transition
occurs instantaneously, This is actually not the case; the phase transition is

a slow first order one taking place in an exponentially expanding space.

The bubbles of the nev- phase nucleate at a rate A, given by [29]

A=Ae " (2.10)

where A is a quantity which has dimensions of mass* and B is the classi-
cal action associated with the O(4) invariant solution of the Euclidean field
equations (Instanton). Since the details of the parameter A are not impor-
tant for the following discussion, we will assume A to be T4, (since Tour

is the characterstic scale of the phase transition).

These bubbles expand at essentially the speed of light, due to the energy
released by the conversion of the false vacuum into the true one. Thus the

space inside the bubbles is causally disconnected from the region outside,
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which is still described by the de-Sitter type metric (2.4 and 2.5). This is a
problem because the phase transition never terminates. The space outside
is expanding exponentially while the region inside grows only as t1/% (1.7b).
Therefore, the bubbles of the new phase never join to form the region which
contains our universe. To ensure a large enough expansion to solve the
cosmological problems, the barrier has to very high and the tunnelling prob-
ability low. But, precisely because of this, the tunnelling probability never
catches up with the expansion rate. The universe remains in the de Sitter
phase in the SU(5) symmetric phase with some isolated regions of the true
SU(3) x SU(2) x U(1) phase. This problem, of the bubbles not percolating
[28], has been called the probler‘n of ‘graceful exit’.

The inflationary model suffers from another drawback — the problem »f
large inhomogenities. The bubble walls carry a large fraction of the original
vacuum energy. These bubble walls form after the exponential expansion
and hence remain within our observed horizon. Not only is the universe very
Iumpy but is almost empty. This is because the energy stored in the walls is
never released since the bubbles never co?ilde. Thus this form of the scenario

leads to unacceptably large energy perturbations in the universe (28|.

This model, or the “old’ inflationary scenario is untenable. To address the

problems associated with it, we must discuss the ‘new’ inflationary scenario.
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2 THE NEW INFLATIONARY SCENARIO

To overcome the problems outlined above, a modified version of this
scenario, the new inflationary universe was proposed [30]. The basic idea
behind this proposal is to ccnstruct a model in which inﬁation occurs after
the bubbles of the new phase have been formed. Recall that in the ‘old’
inflationary scenario, the problems arose because we had the phase transition
(bubble formation) after the exponential expansion. Hence the bubbles did
not percolate and (here was no graceful end to the inflationary epoch. In
the new inflationary model, these problems don’t arise because the ebserved
universe lies within a single bubble,

The crucial feature of the new inflationary model is the presence of a long,
flat scalar potential. We assume that the effective potential of the inflaton
i.e., the scalar field driving inflation, is of the Coleman-Weinberg type [31].
The second derivative of the effective potential vaniches at the origin. In the

SU(5) model [4], the one loop effective potential takes the form

2
ViT(9) = Agt [ln & %] +CHT? + 2 Ac? (211a)

where A and C are coefficients given by [27]

5625
A= Wa?mr (2.118)
75

C= TTI‘&GUT. (2.11C)
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Notice that in (2.11a) we don't have the mess term present in (2.9b).

Actually there is a slight subtlety in discussing the mass terms in these
models. If the effective potential in de Sitter space is computed, the effects
of gravitational curvature for a true Coleman-Weinberg potential must be
taken into account. This gives rise to a correction which behaves like an
effective mass term [32]. We have not only to set the bare mass term in
(2.10) to zero, but also this gravitational correction {33]. The potential is
shown in Fig 2.2. There is now no temperature independent barrier near
the origin to stabilize the state ¢ = 0, once the temperature falls below the
critical temperature.

Once again we trace the evolution of the universe in this model. We
start at T = Tpjanct When the thermal part of the energy momentum ten-
sor dominates and the universe expands like radiation dominated. As the
temperature falls to T;, the vacuum energy starts dominating the energy

momentum tensor and the universe expands like (2.4a) with
1,4
po = > Ad*. (2.12)

As long as the temperature is non-zero, there exists a bump near the origin
which stabilizes the state ¢ = 0. The height of this bump is of order T
and the width of order T [34]. This barrier is needed because otherwise the
thermal or quantum fluctuations in the inflaton field will drive the transition

too soon, resulting in insufficient inflation.
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The quantum fucluations now drive the inflaton field away from ¢ = 0
towvards ¢ = o. But as we have already noted, the potential is extremely flat
near the origin and the phase transition is the ‘slow rollover’ type. Therefore,
until the field evolves past the flal part of the potential, the universe contin-
ues to expand exponentially as it did in the metastable syminetric phase. If
the time taken for ¢ to roll over from 0 to ¢ = ¢.nq (Fig 2.2) is sufficiently
long, we will get enough inflation to solve the horizon and flatness problems.

The evolution of the scalar field can be described accurately by its semi-
classical equations of motion. Initially the quantum effects are dominant
but soon these become unimportant and the semi-classical solution is ap-
plicable[35]. The semi-classical equation of motion for a scalar field in an

expanding universe is

P+3HG = — . {2.18)
Here the dots imply time derivatives and the second term is the ‘“friction’
term which is due to the redshifting of energy in an expanding universe.

This slow rollover convinues till ¢ = ¢.n4s. The potential is not flat any-

more and the field falls rapidly towards ¢ = o. Around the minimum, the

field oscillates with a uime scale which is typically the GUT time (~ L )
Mour
and which is very small compared to the expansion rate of the universe.

These oscillations are damped quickly and the energy is thermalized (36].

The damping is simply the decay of the inflaton into other lighter particles.
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The release of energy reheats the universe back to a temperature of order
T.. From here on, the evolution continues like in the standard model. This
reheating is very crucial for the generation of baryon number in the universe.
We will discuss the reheating and baryosynthesis in detail in the following

chapters.

In this new inflat’ .~ry model, there are no horizon, flatness or monopole
problers for the same reason as they were avoided in the old inflationary
scenario. Furthermore, we can now use particle theories in which a discrete
symmetry is broken spontaneously. When a theory has a discrete symmetry
which is broken spontaneously, we get domain walls separating the phases.
The presence of the domain walls in our observed universe is problematic in
the same way as the presence of bubble walls — they make the universe too
lumpy. In the old inflationary scenario, since we had the inflation before the
phase transition, there was no way to get rid of the domain walls once they
were created by symmetry breakdown. But in this scenario, the expansion
takes place after the inflaton has chosen a direction in group space to roll
over. Thus it is possible to inflate away the domain walls so that the typical

domain size is much greater than the observed universe.

Another success of the new inflationary scenario is in the explanation of
galaxy formation [37]. The universe is homogenous on very large scales but
there are inhomogenities which we see on many length scales. In the stan-

dard model, it is assumed that these inhomogenities evolved from small per-



26

turbations about the Friedman-Robertson-Walker background {19]. These
perturbations cannot be causally explained within the standard model, since
the perturbations on all scales originate outside the effective particle hori-
zon. (The effective particle horizon [38], is the Hubble radius, ', and
is the maximum distance that microphysics can act coherently. For length
sczles larger than this, spatial correlations are exponentially suppressed and
the cosmological expansion time is larger than the time taken by light to

travel this distance.)

Furthermore, a scale invariant spectrum of initial energy density fuctu-
ations explains the experimental constraints [39]. These experimental con-
straints come from the absence of observed anisotropies in the microwave
background [40] and the requirement that the perturbations have enough
time to graw to give the structure on the scales observed [41]. The standard
scenario, does not give us any theoretical motivation for such a scale invari-
ant or Harrison-Zeldovich spectrum, but postulates it to fit the experimental

observations.

The new inflationary scenario is successful in explaining both these puz-
zles, When the inflaton starts rolling over from the unstable false vacuum,
the universe is in the de Sitter phase. Within 2 fluctuation region (i.e., the
region which grows to give us the observed universe), the expectation value
of the o field is not spatially uriform. As already noted, there are zero-

point or vacuum{quantum) fluctuations initially, which provide the seed for
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classical matter perturbations [42]. Moreover, the mechanism of exponential
expansion provides a causal explanation of the scales of these perturbations.
Perturbations on all scales originate inside the effective particle horizon or

Hubble radius during this de Sitter phase.

The Harrison-Zeldovich spectrum emerges naturally within this frame-
work because de Sitter space is time translation invariant {42]. So different
scales reach the Hubble radius at different times but with essentially the same
amplitude (actually, the time depends only logarithmically on the scales since
R ~ ¢M'). Since microphysics is not operative coherently outside the Hubble
radius, the evolution of the perturbations continues unchanged leading to a
scale invariant spectrum. This qualitative explanation of the spectrum of

perturbations was an impressive success of the new inflationary scenario.

Even with all these spectacular successes, the new inflationary universe is
untenable. The Coleman-Weinberg type of potential, which is very desirable
because of its flatness, is not completely natural. The mass parameters have
to be unnaturally fine tuned in order to obtain enough inflation {43]. The
mass terms have to be fine tuned precisely down to 10° GeV while radiative
corrections tend to push up their value to O(10*® GeV). This is undesirable
because it was precisely the unnatural fine tuning of parameters in the big

bang model, that led us to search for alternate models.

Another serious problem with this model is that the transition from the
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false, SU(5) symmetric vacuum might take place into a SU(4) x U(1) sym-
metric phase [44]. In the multidimensional configuration space, the SU(5)
phase goes to a SU{4) x U(1) phase which decays to the desired SU(3) x
SU(2) x U(1) minimum. Thus the scenario cannot be realized in our SU{5)
model but it is possible in an SU(5) theory with an enlarged Higgs sector
(45].

The fatal blow to this scenario, comes from the density perturbations
which it produces. Even though, this medel successfully explains the ori-
gin and spectrum of inhomogenities, it fails to give a correct estimate for
their magnitude. Recall that the limit on anisotropy from the microwave
background is given by

AT/T <1074, {1.13)
This can be translated into a limit on the size of allowed fluctuations [38,
42]
bp

" <107% (2.14)

In the new inflationary scenario, the calculation of this quantity [38, 42|,

yields a number which is five orders of magnitude too large

5
7” ~ 50. (2.15)

There is no way to reconcile this result with the constraint (2.14). This is

the most serious failure of the new inflationary universe.
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Since the new inflationary model has many successes in explaining the
cosmological conundrums, it is fruitful to investigate the requirements for a
successful cosmology. Steinhardt and Turner |46}, have set down the con-

ditions to be satisfied by the potential ol a scalar field to yield a successful

cosmological model. We will briefly summarize their results:

1. The potential at the origin must be very flat.

2. The flat portion of the potential i.e., from ¢ = 0 to ¢ = ¢.nq in Fig 2.2,

must be long.

L]

The slow rollover transition must last long enough to give enough e-

foldings (Z > 10% in (2.7)).

4. The potential should be such so as to give the correct order of magni-
tude for density Auctuations. It turns out that this puts a lower limit

on the curvature near the origin.

5. The curvature at the true minimum ¢ = ¢ must be large enough to
reheat the universe to a temperature > 10*° GeV. This is crucial for
generating a net baryon number in the universe through GUT interac-

tions,

Any mode] that we construct, must satisfy these conditions so as to produce
a reasonable cosmological scenario — except for No.5 which we will see later

can be violated and still enough baryons can be produced.
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3 ALTERNATIVE SCENARIOS

As we saw in the last section, the new inflationary scenario based on
a reasonable Grand Unified Theory, eg. SU(5), is unacceptable cosmologi-
cally. In this section we will look at some alternative proposals to the new
inflationary models. These proposals attempt to solve the problems of new

inflation in a variety of ways — some natural and some unnatural.

Before we go one to discuss these alternatives, we should recapitulate
some of the problems we encountered in the previous section. The quantity
which is of importance in solving the horizon, flatness and monopole prob-
lems is the number of e-foldirgs of the scale factor. For the new inflationary

models, this is defined as [46]

¢a
N=["Ha (2.16)
$a

where ¢g is the initial value of the inflaton field and ¢, = ¢ng (the end
of the slow rollover in Fig 2.2.) Recall that to solve the problems of the
standard big bang model we needed N > 65. The other quantity which
was crucial in determining the success of the scenario was the magnitude of

density fluctuations %‘3 In the new inflationary model [22, 38, 42]

Sp _ Hég(%)
> )] 2.17)

where ¢; is the time of horizon crossing in the de Sitter phase and &¢(1;) the

size of the fluctuation at time ¢t = ¢;. This quantity should be ~ 10~ for a
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successful inflationary model (see the discussion surrounding eq. 2.14).

To understand how the cosmology of these models depends on the pa-
rameters in the basic particle physics model, let us cut off the logarithm
at agpr$® = H? and parameterize the Coleman-Weinberg potential (2.11a)

near ¢ =0 as (at T = 0)

V(g) = Vo — %,\qﬁ‘ (2.18q)
where
Vo= %Ao‘ (2.188)
and
2
A~44]|-log = L (2.18¢)

—_ 4 =]
agyro®: 2

In terms of this convenient parameterization it turns out that [33, 47]

N ~0(1)x"12 (2.19a)
and [22, 38, 42]
% ~ 01022, (2.195)

In the previous section, A was fixed (because g, & and H were fixed) to be

A~4 (2.20)

and therefore the constraints from (2.16) and (2.17) could not be satisfied.

Alternative inflationary models try to satisfy these constraints in a variety

of ways. One of the approaches taken is to construct a model with a separate
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inflaton feld [48]. Now since A is not fixed, we can tune it to a small value
(A ~ 107'°) and postulate a Coleman-Weinberg type of potential for iv. This
inflaton has to be a gauge singlet, otherwise the radiative corrections from

gauge interactions will induce a self coupling much bigger than A.

Another apprcach has been to use supersymmetry. Supersymmetry is a
symmetry which transforms bosons irto fermions and vice versa [49]. Su-
persymmetric theories have become very popular in particle physics because
they offer very natural solutions to some of the problems which plague gauge
theories {50]. These problems include the gauge hierarchy problem which su-

persymmetry solves because of no-renormalization theorems [51].

The gauge hierarchy problem arises because of the existence of two widely
separated scales in the theory — the weak breaking scale {~ 10* GeV) and
the GUT scale (~ 10'® GeV). The masses of the scalar particles (which are
responsible for spontaneous breakdown of the gauge symmetry) are subject
to quadratic divergences in perturbation theory which tend to push them up
to the GUT scale. To ensure that the scalar masses are 0(10%) GeV they
have to be unnaturally fine tuned. This problem is solved in supersymmestry
because the divergences due to the bosons are cancelled by th;)se due to the
fermions. Thus the scalar masses are stable against radiative corrections and

fixing them at a low scale is technically natural.

If supersymmetry has to do anything with our observed world, it must be
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hroken.(Otherwise, for example, we should see scalar electrons degenerate in
mass with the electron.) This breaking of supersymmetry introduces another
scale in the problem, namely the scale of supersymmetry breaking, M,. In
most successful phenomenological models, the scale M, is related to the weak
breaking scale My. The no-renormalization theorems then guarantee that

these scales are stable in perturbation theory.

Initially, the supersymmetric models proposed employed global super-
symmetry which was softly broken [52|. However, it was soon realized that
making supersymmetry local automatically introduces gravity in the theory.
This incorporation of gravity is significant from the unification point of view.
These supergravity models have been used very extensively and successfully

in model building [50].

From the point of view of inflation, supersymmetric models have many
advantages over non-supersymmetric models [33, 47]. Firstly, a weakly cou-
pled scalar field which is needed for inflation, arises naturally in supersym-
metric theories. In exact supersymmetry, the first order corrections of the
Coleman-Weinberg type vanish because of the mass degeneracy between the
bosons and the fermions. This indicates that A of (2.18¢) is zero. However
since supersymmetry must be broken, the mass degeneracy is lifted and we
get a non-zero A. In fact A is propotional to MZe where € is some cou-
pling constant. In most models, a value of A which is consistent with (2.16)

and (2.17) is easily obtained. Furthermore, the no-renormalization theorems
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guarantee a way out of the fine tuning problem. Recall that the mass terms
in the new inflationary scenario had to be fine tuned to very small values to
obiain enough inflation. This is no longer a problem because the corrections
to the mass? terms can now be kept as low as the mass degeneracy between

the bosons and the fermions, ‘.e. O(MZe).

These considerations prompt us into constructing inflationary models
incorperating supersymmetry [53]. The models which are the most attractive
phenomenologically are the supergravity models in which supergravity is
broken spontaneously. In these models, Mjy is related to M, in a natural
way. We will construct such models with N=1 supergravity in the next

chapter and study them in detail.
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III SUPERSYMMETRIC INFLATIONARY COSMOLOGIES

The new inflationary scenario, while solving some of the cosmological
problems of the standard hot big bang models, suffers from some drawbacks
as we saw in the previous chapter. It was these drawbacks which forced us

to look at alternative scenarios.

For the new inflationary scenario to be implemented, we need the presence
of a very weakly coupled scalar field. Locally supersymmetric or supergravity
theories provide such a scalar field [53]. Non-renormalization theorems in
supersymmetry solve the problems of fine tuning,and thus such theories are
very attractive from the inflationary point of view.

As remarked earlier, supersymmetry has to be broken to give us a realistic
phenomenclogy. In the most popular supergravity theories, the breaking of
sapersymmetry is accomplished by the hidden sector. In analogy with the
spontaneously broken gauge theories, the gravitino (the supersymmetric spin
3/2 partner of the graviton) acquires a mass through the Super Higgs effect
[54]. The scale of supersymmetry breaking, M,, is related to the mass of
the gravitino mg/; [55]. Although there is no compelling reason for the
hidden sector and the inflaton sector to be the same, it still seems desirable
that the sector which drives inflation should also be the one that breaks

supersymmetry.

Actually, in the case where this sector consists of one scalar field -— called
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inflaton — the thermal constraint imposes such a breaking of supersymmetry
|56,57]. The thermal constra -t is the requirement that at high temperatures,
a sufficient amount of energy is stored in the scalar field to give enough
inflation - in other words, the inflaton field must start its evolution far
away from its global minimum, slowly roll down (causing the universe to
inflate) and eventually settle at its global minimum. The problem with
this approach is that supersymmetry must be broken at a very large scale:
typically [57], the mass of the gravitino mgsj; must be greater than u®/M
(M = M,//Bx = 2.4 x 10" GeV). Here ! is the energy density of the false
vacuum and a typical value for § of 1073 to 107* is required to give rise
to density fluctuations with the right amplitude; mg;; is then greater than
10'® GeV. This has to be reconciled with models describing our low energy
world where the breaking of SU(2) x U(1) gauge invariance is driven by soft
terms induced by supergravity — which scale like mg;; [58]. Therefore in
these models, the gravitino mass and the mass of the weak gauge boson My

must be of the same order.

This problem has been addressed recently by Ovrut and Steinhardt who
solve it by using two scalar fields in the inflationary sector {59]. They employ
a mechanism [60] which sets the symmetry-breaking scale to a much smaller
value thar the scale u: typically, the gravitino mass is of order ﬁ:, which
coincides therefore with the weak interaction scale (£ ~ 10™*). This can be

worked out into a successful inflationary universe scenario [59] at the price
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however of some fine-tuning (at least in the explicit example given in Ref.
59).

In this chapter, we will take a different point of view and relate the
smallness of the scale of supersymmetry breaking to the smallness of a pa-
rameter which is of basic importance in any inflationary universe scenario:
the slope € of the potential near the origin. Actually, since we want the
scale of supersymmetry-breaking to be very small compared to the scales of
relevance in ihe inflation sector (of the order of the Planck mass), it seems
plausible that the ground state must be obtained by perturbing a supersym-
metry conserving ground state. We will see in Sect. 1 that this imposes some
constraints on the model. We do not know for the moment what is the na-
ture of the perturbation but it has to be characterized by a parameter which
must be very small. A natural (or possihle) choice is precisely the slope e: if
we want a slow roll-down along the plateau region of the potential, the slope
has to be very small at the origin. Actually, in most models, it is taken to
be zero. No symmetry argument supports such a choice and hence we have
no reason for ¢ to be so small. But we will show that the supersymmetry
breaking scale can be related to it for a particular class of potentials. More-
over, even though ¢ is arbitrarily small, the scale of supersymmetry breaking
that we obtain is stable under radiative corrections. In other words, in our
approach, choosing the gravitino mass of the order of My is natural in the

technical sense. In Sect. 2, we describe the inflationary scenario that arises
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in a model which we consider as a typical example of our approach and we
discuss what kind of constraints we obtain for the parameters € and p. It
turns out that the thermal constraint mentioned earlier is violated. In Sect.
3, we show how Lo circumvent this by intrcducing a second scalar field in the

inflation sector.

1 THE MODELS

We first detail the procedure that we adopt to find a model that fulfills
our requirements. The idea is to start with a potential fcr which € = 0 and
the ground state is supersymmetry-conserving, then perturb this potential
by taking ¢ # 0 and see under which conditions the minimum becomes

supersymmetry-breaking.

Let us first prove a result that applies to this situation in general, inde-
pendently of the nature of the parameter . Consider a scalar field ® in a
locally supersymmetric theory. Its interactions are described by a superpo-
tential f(®) and the corresponding potential reads (assuming a flat Kihler

potential} [61):
V(8) = e Dof() - 22| £() I (21)

where

Das@) = 22 2 pia) (3.2)
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and M is the reduced Planck mass M = M,/v/87 ~ 2.4 x 10'®GeV. The vari-
able ¢ parametrizes a perturbation on the coefficients of the superpotential,

which is left unspecified for the present.

If the minimum — ogM — of the potential V (with a zero cosmological
constant) i3 supersymmetry-conserving when € = 0, then a necessary condi-
tion in order that the perturbed minimum (with zero cosmological constant)

breaks supersymmetry is that:

%‘;(%) =0 (3.3)

€220

An equivalent formulation involving the potential is that its second deriva-

tive (and then automatically its third one) is zero at the minimum:

dv

dTI,‘;(Uo) =0 (3.4)

=0

a3V
= s ()

€0

The proof is straightforward.
Since, when ¢ = 0, the minimum go(V (69) = V'(0o) =: 0) conserves super-
symmetry:

[o0)emo = g5 f(o0)] =0 (335)

On the other hand, since we want a breaking of supersymmetry when we

turn ¢ on, we must require that:

f(0) 20() 0  Def() = 0(¢) #£0 (3.6)
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The minimum ¢ is determined by the equations (® and f are taken to be

real):
V(e) =0+|Def(0) ’=3]|f(o) (3.7)

V(o) =0 [5eDef(0)IDef(0) = S35 /(@NI(@) (38

Therefore combining (3.6) and (3.7), we obtain fror. (3.8):

8 3
35 Def(0) = ﬂ:\/ﬁﬁf(a) = 0(e) (3.9)

which in turn gives (3.3). Tt is immediate to show, using the form of the

potential [(3.1} and (3.2)] that (3.3) and (3.4) are equivalent.

The condition (3.3) is only necessary. We now turn to the study of the
potential near the pertt;rbed minimum to determine the sufficient conditions.
It will prove to be crucial to study the potential in the complex plane. We

therefore write (we take M = 1)
& =¢+ix =00+ +ix. (3.10)
The superpotential can be written as a power series in e:
F(®) = fo(®) + /1(B) + 2 £2(D) ... (3.11)
Using these notations, (3.3) and (3.5) now read

fo(oo) = foloa) = fg(a0) = 0. (3.12)
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The non-linear nature of the relation between potential and superpotential
causes 3& and x to get a vacuum expectation value of order €'/2, To determine
under what conditions this happens, we have to keep terms in the potential
up to order ¢? (where we consider ¢ and x to be of order ¢'/?). Using (3.12)

we obtain from (3.1)!

V@], = e {leron + 36+ )" ow) + ooerlon)|

~3| f1(00) |}

= e {&* [(/1(e0) + a0 i(e0))* = 3f1(00)’] (8.13)
+ef2! (00) (fi(00) + G0 fu(00))(#* — x?)
+%fé"(aa)’($ + x’)’}
We therefore have three possible extrema:
a)  ¢o=xo~0(e)
b do=0(c), x3=2edil0eltc0fa(on) (3.14)

Ji'(00)

FHCORELTACD)

29
C) ¢O - 2E f(’]"(aﬂ) 3

Xo 22 O(e)

323

where we have supposed that f;’(op) # 0. In all three cases, the require-

ment that there is no cosmological constant at the new minimum gives the

1f Jz and x were of order ¢//*(n > 2), the leading term in the potential would be
- 2

7] b+ ix]nfé”[an) | which is of order e4/™ > €'F2/% (next to lending terms). Thia

has clearly a minimum only at the origin. Therefore § and x are sero at the order

e/mn > 20§, x = 0(eF).
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condition:

fi(o) =0. (3.15)

Moreover the second derivatives at the new minimum are ron-negative at

the condition that, respectively:
a) fi(oo) =0
b) fi(a0) >0 (3.16)

C)f{(ag) <0

To conclude, a sufficient condition for having a perturbed minimum which
is supersymmetry-breaking and corresponds to a zero cosmological constant
is:

fi{oo) =0 filoo) #0 (3.17)

along with the constraint (3.3) on the unperturbed superpotential. Let
us compute, for example, the gravitino mass corresponding to case (3.16c)

(fi{o0) < 0). 1t is given by [61]

myp = el | f(®) |, @0 =00+ o+ Xo (3.18)

where, to the lowest ord. .n the expansion parameter &,

Tdo,x0) = Befilen) + 538" (00). (3.19)
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Therefore, using (8.14c)

f 1 (aﬂ)

2 o3
my/y = 553/25 0/1[ f"'( o)

] , (3.20)

A similar result is valid in case (3.16b) (fi(c0) > 0).
In case (3.162) (f{(oo) = 0}, one has to push the analysis to the next order

in € to see if superaymmetry is broken at the new minimum.

Before turning to a specific example, let us summarize at this point our
analysis of the general case. In order to have a global minimum of the
perturbed potential which is supersymmetry-breaking, we have to impose

on the unpe:  oed superpotential the conditions (3.3) and (3.5)
fo(o0) = foloo) = fglon) =0 (3.12)

and on the unperturbed superpotential (to first order in the perturbation)

the condition (3.17)

fi{og) =0 fi(oo) #0. (3.17)

In that case, the gravitina mass which determines the scale of supersymmetry-

breaking is of order €3/2 (3.20).

We now apply this result to a specific example where the small parameter
e is related to the slope of the potential near the origin. Let us consider the
superpotential

2 Q!

o
f(®) “sz\’f(ﬂo+¢11—*+‘12M.2 +‘14M4

). (3.21)
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The corresponding potential reads, near the origin on the real axis,

V($) = u'e?™*[(1 - 3a2) + 4(az — o) = + .. ] (3.22)

Rle

As a first step, we require that the potential is flat near the origin and
that the minimum ooM is supersymmetry-conserving. The first condition
(V#(0) = 0) gives:

ay = Qg = ,30 (3.23)

and the second (3.5) yields

. —3a _ —Bot vV Bo(Bo + 12a4)
Bo = Erol’ ok = ™ (3.24)

It has been noticed already [56] that in such a family of superpotentials,
where f; and o, are of opposite signs there is a violation of the thermal

constraint [56,57]. Condition (3.3) reads
6a0: + =0 (3.25)
in which case we obtain from (3.24)
1 3
ay=—758,00= V2,80 = —200. (3.26)

Hence (3.21) takes the form

2 3 & 1, 9 *

fol®) = u’M\/f[-g + (3.27)

which has a supersymmetry conserving minimum at g = /3.



45

The corresponding potential Vy(3) is very flat near its minimum o, since

ita first three derivatives are zero (3.14):
9 - 2 - - -
Va(®) = we’ (87 + x°) +0(8%, x76% x"9) (3.28)

One can easily show that the real axis is a valley of the potential V5. If
initial conditions (high temperatures?) force the inflaton field to start at the
origin, it will evolve along the real axis until it reaches the minimum oq. The
behavior of V} is therefore shown in Fig. 3.1 on the real axis, together with
its shape at temperature T' = M, as computed from the results of Ref. 57.
As stressed earlier, the temperature corrections do not stabilize the field at

the origin, at high temperatures.? We will return to that point in Sec. 3.

We then relax condition (3.23) by allowing a small slope near the origin
and we write instead:

ag = ag — € = f3. (3.29)
The superpotential now reads:

P o ? 3 4
1®) =t o+ et b+ 8 - S0()

(3-30)
B = Bo + fie + O(€*)
Condition (3.17) gives
3 , 4,
Pr=-32 fi(oo) = 3# v2p, < 0. (3.31)

20ne can show that this is 5o even if we include a cubic term in (3.21).
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which shows that we are in case (3.16¢). The minimum is therefore at
1/2
- 2
bo = €'/? (2—3\/———) Xa =2 O(e) (3.32)

and the gravitino mass which determines the scale of supersymmetry break-

ing is given by (3.20):

2 2
My = B /2

57 eV/3v2 (3.33)

The first terms of the corresponding potential expanded around the origin

are, to order ¢, on the real axis:

V}E?) =‘;:l(1 +9v2¢) - 4e—+e \/——-
(3.34)

1 ¢5 ¢4
- §(ﬁ+ 5¢) 35 +0 (e’, KF)

and around the minimum oM = oM + &a, to order e:

ig) (i - o) :eg\/i+ (% - a)3 [e”’;(ﬁx/i)llz + ei—g]

ple? M

) ‘ro ,,45 2 95 . ¢ s
+ (A_{f —‘0') [16 / (6\/—) + 6—\/5] +0(€ )+0((H —(:’)35))

If this were plotted on Fig. 3.1, it will be indistinguishable from potential

Vo.

An objection that could raised to our linking the scale of supersymmetry
breaking to the parameter ¢ is that we need to choose an arbitrarily small

value for €. This seems unnatural (in the technical sense); the radiative
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corrections could induce large corrections to the scale of supersymmetry,
thus putting an end to our hopes of bringing that scale down to M. But,
as we will now see, one has to take into account the very special properties
of renormalization in supersymmetric theories and the unique features of the
superpotential that we consider {(3.3)]. The one-loop radiative corrections

to the potential V of (3.1) are given by [62]

2
5V, =k (V + e:axa/mi_fgz_l_) (3.36)
where
1 A?
K= —16”2 W(N - 1). (337)

In this formula, A is the cut-off which is of O(M) and N is the total number

of chiral fields in the theory.

We first note that, since f(oo)}l,-y = f'(00)l._¢ = 0, the ground state
remains unchanged at the zeroth order in ¢ when we include the radiative
corrections. Moreover it is straightforward to prove that if ¥V satisfies (3.4)
then V + 6V, satisfies also (3.4) (using (3.3) for f). Therefore our necessary
condition is stable under radiative corrections. Moreover, the second term
in (3.36) does not contribute to the development of the potential up to order

€, when we study the region ¢, x ~ 0(€'/?), since, in this region,

J(®) = é W(00)(3+1ix)" + (B + ix) filoo) + ... = O(¢¥?) (3.38)
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Let us note that this is true only because we required fi(og) = 0 ( 3.17).
Thus the expression (3.13) for the potential up to order €2 is only multiplied
by an overall factor (1 + &) when we include the one-loop corrections and our
analysis of the minimum is unchanged. Therefore the mass of the gravitino
which determines the scale of supersymmetry breaking is still of order fl‘»—;e”’
as in (3.20) or (3.33). It is precisely this fact that justifies our approach
a posteriori. Had corrections of order u?x, for example, appeared in the
gravitino mass, the smallness of the scale of supersymmetry breaking would

have been a unnatural feature of our model.

2 COSMOLOGICAL CONSTRAINTS

We now review the set of constraints that the models that we consider
must satisfy in order to give rise to a successful cosmological scenario [see
for example Ref. (46)]. We will do that for the explicit example of (3.30)
but, its salient features being a consequence of (3.3) and therefore shared
by more general potentials, we believe that this analysis is applicable to any
such potential. The time evolution of the inflaton field is summarized in

Table 1.

The inflationary period starts when the energy density becomes domi-

nated by the energy stored in the vacuum:

5
=V, = — 4
Po 0 32# (3.39)
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We assume that the inflaton field is initially located near the origin; then its

value when inflation starts is of the order of the Hubble parameter:

)1/1 _5_“'_2 (3.40)

%o = Ho= (337 96 M

3M?

As long as radiation can be neglected, the classical evolution of the inflaton

field is governed by the equations

. \4
¢+3HP = -%3
(3.41)
2. 2
B = s 547+ V()]
During the slow rollover — i.¢. the inflationary period — the motion of ¢

is friction dominated and the ¢ term is negligible. In terms of the potential,

this can be expressed as {46]

VI9) < 2 | V(D) |

(e < 2 ivie)|

(3.42)

In the class of potentials that we consider, it is the second of these equations

that breaks down first, at a value ¢, that is almost independent of «:

¢. ~0.TIM , V(¢.)~8x107%u". (3.43)

The number of e-foldings that the scale factor undergoes during inflation is

given by

¢ 3H?
N = — e (. .
o V(@) d¢ (3.44)
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We can approximate the Hubble parameter in the numerator by its value at
the origin [(3.39)] and the potential in the denominator by the first terms
of its expansion [(3.34)]. When ¢ < #“ (in particular ¢ = 0), the main

contribution comes from the lower bound ¢o (where the field spends most of

5 M? M
= ) — — — 3.45
N ”48 e +0(F] (3.45a)

On the other hand, when ¢ > M-“—‘. {non-negligible linear term in the

the inflation epoch):

potential}, the upper bound ¢, gives the leading contribution which happens

to be independert of u:

3.4 1 ~1/2

L N
ST Y YW,

(3.45b)

We checked numerically that these approximate formulas are very accurate
and computed N in the intermediate region (¢ =~ p*/M*). A value of N
typically greater than 60 is required {10] if we want our present observable
universe to have emerged from a single causally-connected patch. Using (eq.
3.45a,b) and our numerical computation, we can use the condition N > 60
to constrain our parameters ¢ and p/M. To be more accurate, we must
take into account that some time elapses between the end of inflation and

reheating. During this period, the cosmic scale factor R grows by a factor
R(CY (ot ) [ oat)\ " (L )""
R(t.) M1 M4 M

{c.f. (3.49) and (3.53); t; is defined in (3.50), (3.51) and T is the inflaton
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decay rate). Expressing all these quantities in terms of x and ¢, we obtain

the condition on the number of e-foldings [46]

5 n 1
N > 66. -In— - — . 3.46
> 5+3lnM 12 Ine (3.46)

We draw the corresponding curve (labelled “N = 60") in the ¢, /M plane

of Fig. 3.2.

The inflation field reaches the value ¢, at time t, =~ % This value
corresponds also to the point where the curvature of the potential changes
sign. The fleld therefore starts oscillating around the minimum o, At first,
it does not feel the details of order € of the potential near the minimum
[(3.35)] and therefore oscillates in the ¢* potential of (3.28). We show in Fig.
(3.3) the first few oscillations of the inflation field (¢, < ¢t < 1.0062,). It is

straightforward to compute the frequency of these oscillations:

u?

% =025 (3.47)
We have
w _H, _ (V)" p
733 = (W") = 0137 (3.48)

and, after a few oscillation, w >»> H. Following Turner [63], we average over
an oscillation period, and note that the energy associated with the coherent

field oscillations behaves like relativistic matter. Therefore the cosmic scalar
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factor R and the coherent energy density py scale with time as:

R _ o esld) _ (RO
R(t,)‘[1+2H‘(t te)) 2o(te) (R(t,)) (3.49)

This will continue until time ¢, when the field oscillations take place only in
the close vicinity of the minimum where the potential can be approximated

by the first term of its expansion in (3.35). This will happen approximately

for:
‘E‘- o] = /22 6v2, V(¢ =32du'e? (3.50)
M 3
which gives, from (3.49)
t =2 6 X 10-15-15%. (3.51)
u

From t; onward, we can consider that the field oscillates in a ¢? potential,

with a frequency equal to the mass of the inflaton field:

2
my o %s'“e\/l&ﬁ (3.52)

and (since m, > H(¢é:) = H,), according to Ref. [63], the coherent energy

density behaves like non-relativistic matter. Therefore, for ¢ > t,,

R(t) _ 3 s 0 _ (RO
m = (1+ EH;(t — t:) f:?ﬁ = (m) . (3.53)

This will last until ¢ ~ I'"! when reheating takes place through the decay
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of the inflaton field. The decay rate is, following {3.52),

T~—%~._ 81 (3.54)

The photon density at ¢ = I'"! reads (assuming that the inflaton decays

mostly into photons)

1 @) = (B e (BE) 7w

One can check that %%“—:P > 1 and py(t) > p, (L), in which case the second

term is dominant. Using (3.53), we thus obtain

pa(I7) = S (CM)? (3.56)

and the universe is reheated to a temperature

4
Taw = (;‘:%_) (CM)V? (3.57)

where g* is the number of effective spin degrees of freedom (g* ~ 10%). We
see that, although our potential has some peculiar features, the result for the
reheating temperature agrees with the standard one (in the so-called poor

reheating case){46,63,64]. Using (3.54) we find that

B s
TRH ~ Xl—zf / . (3.58)

We wish to emphasize at this point the complete generality of this result.

Because al] the potentials that we consider must satisfy (3.4), the mass of



54

the inflaton field must of of order € and is therefore given by (3.52) [in the
general case, u is an overall scale defined as in (3.10)]. This in turn gives

(8.54) for T and (3.58) for Tra-

Before discussing the consequences of such a low reheating temperature,
we have to further constrain the parameter u/M by studying the amplitude
of the density fluctuations. It is well known [22,38,44] that inflationary
models yield a scale independent spectrum (the so-called Harrison-Zel’dovich
spectrum [39]) with an amplitude at time t; when the fluctuations reenter

the horizon in the FRW phase given by:

bp,, oo 68(t:)
, &) =07 (3.59)

where ¢; is the time when the perturbations leave the horizon in the de Sitter

phase, and §¢(t) is the space-averaged perturbation of the scalar field.

One can show that the number of e-foldings that take place between t;

and the end of inflation ¢, is given, for a scale &, by |46

N, = L = — a—— —
F3 ./; Hd In (J\-f MV MeVE (360)

where M, is the corresponding mass scale. Considering the typical scale of

a large galaxy (M, =~ 10'*M;) and using Egs. (3.43) and (3.58), this gives:

5 M 1
N,=60+§ln7+zlns (3.51)

It is easy to show that the corresponding value for the scalar field o(t;)
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(3> €'/?) is given by

#(t:)

~

M 48

l .

1
e 1.7 % 1079, 3.62
w x (3.62)

S

Since we are in the slow-rollover period of the evolution of the 4 field, its
motion is friction-dominated and, linearizing the equation of motion for 5@,

wa can write (3.59) as

%t = ot [N 60 = o 220 (3.03)

Taking 8¢(t:;) ~ o [22,33,38,42), we obtain from (3.40) and (3.62)

6
f(t,) ~ 20‘&—{; (3.64)

Let us note that the uncertainty on the numerical factor (20) is at least of

one order of magnitude. If we consider that the amplification factor due to
the evolution of the fluctuations subsequent to t; is not larger than 10° [see

e.g. Ref. (41}], galaxy formation ("—f ~ 0(1)) requires

5
f(t,) >10"° and % > 7% 107, (3.65)

On the other hand, the scales relevant to the cosmic mizrowave background
reenter the horizon when the universe is matter-dominated, which decreases
the amplitude of the density fluctuations [(3.61)] by a factor ;% [38]. Follow-

ing Sachs and Wolfe [40], this gives an anisotropy in the cosmic microwave
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background

O

T
T

~

& 2
7" (ty) ~ Ttﬁ (3.66)

=

Allowing for an observed temperature anisotropy on large angular scales
smaller than 107* puts a limit

% <1072 (3.67)

Therefore the study of the amplitude of the density fluctuations restrict
the parameter u/M to the region 107* < u/M < 107%, as shown in Fig. 3.2.
On the same figure, we have also drawn the curve ms;; = Mw where my); is
given by (3.33). If we restrict ourselves to such values of the supersymmetry-
breaking scale, then ¢ is typically of order 10~ {7£15),

We now turn to the problem of baryon number generation. The limits on

7 1(3.67)] and € (see Fig. 3.2) put a bound on the reheating temperature:

Try < 1078 GeV (3.68)

Similarly, because the mass of the ¢ field is related to the gravitino mass

according to [compare (3.33) and (3.52)]
My =

f”l M3/ (3.69)

the ¢ field is too light (taking mg;, = Mw gives my < 10°My = 10" GeV) to

decay into the color triplet isosinglet superheavy Higgs bosons whose decays
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can lead to baryon number generation. Therefore, such superheavy Higgs
bosons cannot be produced directly by the decay of the coherent inflaton field
oscillations, as in the standard poor reheating scenarios [36]. We thus have to
resort to models of cosmological baryon generation at low temperature [65]°
We will also see in Sect. (3) that in trying to fulfill the thermal constraint,
we gain another possible solution to baryogenesis. We will discuss the issue

of baryosynthesis in these models in great detail in the next chapter.

We finally consider the so-called gravitino problem. Light gravitinos such

as the ones that we consider have a very long lifetime:

ms J
I‘s/z ~ 'ﬁs/;' ~ %Gg/z (3.70)

It is therefore quite plausible that they will become non relativist:. and
dominate the energy density of the universe before they decay, which would
dramatically perturb the successes of the standard big bang scenario. Grav-
itinos produced before inflation are diluted away [66] and we need not con-
sider them. But they can be produced by thermal equilibrium processes

after reheating [67,68] or directly through the decay of the inflaton field [69).

3Let us note however that in the case of interest to us {maja = Mw), the reheating
temperature is in the 102 GeV, 10° GeV region (Trg = {myja/M)*/2Me3/2 ~ 107°
GeV ¢~%/3). We therefore need to adapt the models of Ref. [65] to such a low reheating
temperature. This is possible because the mass of the fields responsible for baryon number
generation is only limited by the mass of the inflaton field which lies in the 10% to 10

GeV region [see (3.69)].
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In the first case, the density of gravitinos produced after reheating has been
shown to be proportional to Try [68] and a low value for Tpy can solve the
problem. It turns out that the most stringent bound comes from the analy-
sis of deuterium dissociation caused by the photons resulting from gravitino

decays; this gives [68]

-1
Tan < (ﬂ’—-) x 10°GeV. (3.1)

It is easy to check from (3.33) and (3.58) that this does not give any further

constraint on the parameters ¢ and p/M.

The second source of gravitinos is the decay of the inflaton itself. Using
an argument due to Ovrut and Steinhardt [69], one can show that, because
the mass of the inflaton field is much bigger than the reheating temperature,
the gravitinos that it produces will remain relativistic for a long period and
will decay before they dominate the energy density of the universe.

s

3 A SOLUTION TO THE THERMAL CONSTRAINT

We stressed earlier that the temperature corrections to the potential V;
or V do not have an absalute minimum at the origin [see Fig. 3.1]. Therefore
the thermal constraint is not satisfied. In this section, we wish to study in
detail a remedy to this problem which has been recently suggested [64]. The
idea is to introduce a second chiral field in the inflaton sector of the theory.

We will denote its scalar component by ¥. The superpotential is chosen to
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be:

W(D,¥) = /(@) + () (3.72)

where f(®) is given by (3.30) and g is a function of the @ field only. Actually,

we will only be interested here in the first terms of g(®) and write
o(®) = 1M [bo + by (3.73)
M

The corresponding potential ‘7(11?, V) is given by the standard formula, gen-~

eralizing (3.1) to the case of two fields:

2 2

+

sw I

2% T aE”

= o 2 (HOW B
V(®,0) = et ik [|20 w
(2, %) 35 T 3
From the results of Ref. [57], it is easy to compute the temperature correc-
tions to that potential. For a moment, we will restrict ourselves to the ¥ =0
direction, where the potential at temperature T reads:

2

r . _ Tz 4 ’glil/Mz @

Vr(®) is the non-zero temperature version of the potential V (®) studied in

the previous sections. Its first terms in a ® expansion are:

‘ lol’/w{(Z 1_3)
ue 8N+16

_,\/‘(N+2) (M M) +O(e)+...}

Vr(@) =

(3.76)

where N is the total number of chiral fields in the theory {57,70]. Typically,
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N is of order 10%, 1t is clear from (3.76) that the potential V alone does
not satisfy the thermal constraint since already the linear term in @ tends
to destabilize the inflaton field towards the minimum o. But if we allow the

parameters of g{®) — by and b, — to satisfy the relation:
1
boby > Té\/i(N +2) (3.77)

the extra terms in (3.75) will thwart thie effect and stabilize the field &
near the origin {at least along ¥ = 0). Similarly, the coefficients of higher
order terms in g(®) can be arranged in order to cancel destabilizing effects
of higher order terms in Vr({®).

Of course, if we consider the superpotential W{®,¥) as a whole, the
constraint (3.77) which imposes that certain parameters (o, b,) are of order
N (=~ 10*) compared with the others, is extremely artificial. This could be
a sufficient reason for rejecting the solution of introducing a second field in
the inflation sector, and advocating some new mechanism to explain why the
scalar field @ starts its evolution near the origin.* We will however pursue
that solution to see what we can gain from it. In fact, we will take b, of
order N and b, of order 1 [satisfying (3.77)] and show that this is enough
to obtain an absolute minimum at high temperature near the origin and a

valley of the potential (at T =0 and T # 0) in the ¥ = 0 direction.

It is easy to see that, because W (®, ¥) has only terms independent of ¥

4The chaotic inflation scenario of Linde [71] could actually provide an answer.



61

or quadratic in ¥, % is of order ¥*. Keeping only terms of order b} which
are leading in N(O0(N?)), we have
=Y 12l er)

7 (1811 1%) = w'bEexp (%. N %)

[L"i‘_“’_?’.(zHW*)HMM L ""1]>o

M? M? M? Y ERA VOIS v
(3.78)
or equivalently,
dv _ 2 2
awew) ~ 22/ (12, 12?)
(3.79)
v 2 (o2
T d) = 2Im¥7 (|3}, |2])

Since f(|®*,|¥|*) is strictly positive, this shows that Re¥ = Im¥ =0 is a
(global) minimum. A similar analysis can be performed on the temperature
corrections which shows that ReW¥ = Im¥ = 0 remains the minimum at non-
zero temperature. Therefore, at high temperature, the ® field is stabilized
around the origin and as the temperature decreases it evolves with ¥ fixed at
the origin, in precisely the way studied in the previous section since 12 (P, =
0) = V(®). The only apparent effect of the ¥ field is to give the right

behavior at high temperatures.

But what happens to the ¥ field subsequently? To answer this question,

it is interesting to note the following point. From (3.72), (3.73), (3.74), we
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find the ¥ field mass:
s »2
my = NieM(bo +b6) =0 (HN) (3.80)

Therefore in the region £ ~ 102, the ¥ field is heavy enough to decay
into the superheavy color triplet Higgs field of GUTS, which can lead to the
standard scenario of baryogenesis. Of course the ¥ fields that we consider
here are not the primordial ones since those have been diluted away by
inflation in the Red direction. But, in most cases, the behavior near the
global minimum (Re® = oM, Im® = ¥ = 0(¢)) of the terms coupling ¥ and
® will induce oscillations in the ¥ direction. This scenario requires a detailed
analysis of the coupled terms near the minimum, including non-leading terms
in W (we have just shown that there are no such oscillations in the leadirg

N approximation: (3.78) and (3.79)).

We conclude therefore that there exist viable cosmological scenarios which
allow a mass for the gravitino as low as My (see also Refs. [59] and [69]).
This is because we related the scale of supersymmetry breaking to a small
parameter, the slope of the potential at the origin. This scale can be as low as
the mass My of the weak gauge boson. These models share in common a low
reheating temperature which helps in solving some of the problems (e.g. the
gravitino problem) that inflationary models usually face but is also somewhat
undesirable from the point of view of baryosynthesis. In the next chapter,

we will discuss baryosynthesis in detail and study an alternative mechanism



63

which might be operative in these models. This mechanism could lead to a
production of enough baryons and hence circumvent the problems associated

with a low reheating temperature.
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IV BARYOGENESIS IN SUPERSYMMETRIC INFLATION-

ARY COSMOLOGIES

In the last chapter we saw that inflationary scenarios employing local
supersymmetry seem to be very attractive for providing “natural” solutions
to many cosmological conundrums . The success of these models is some-
what marred by one potentially serious problem — a low reheating temper-
ature after the exit from the inflationary era. A low reheating temperature
is undesirable because it is a potential blow to one of the most important
achievements of the application of Grund Unified Theories to cosmology -
the generation of baryon-antibaryon asymmetry from symmetric initial con-
ditions [8]. This is so because in the standard scenario, in order to generate a
baryon asymmetry after the de—Sitter expansion has diluted any primordial
asymmetry, one needs to reheat the universe to at least a temperature of
0(10° — 10'°GeV) [46]. It could be argued that the standard out of equi-
librium decay of the color-triplet Higgs is not the mechanism responsible
for the generation of the asymmetry, but alternative mechanisms: decay of
coherent Higgs field oscillations which are very far from equilibrium [36], low
temperature baryon generation scenarios [65] etc. could be operative. While
this may be reasonable, it still seems fruitful to us to investigate alternate
arigins for baryon number generation , since this feature is potentially the

most restrictive on model building.
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In this chapter, we will investigate the possibility of generating a satis-
factory baryon excess within the framework of locally supersymmetric infla-
tionary models. More specifically, we will use the hidden sector models [72],
since they seem to be the most attractive phenomenologically. (“no-scale ”

models [73] will not be considered here.)

These models have a very weakly coupled scalar field, the inflaton which
is responsible for the de-Sitter expansion and the subsequent reheating. The
very weak interactions of the inflaton imply the reheating temperature is low
because the lifetime is large and there is a significant redshifting of energy

[46,63,64]. This causes problems for baryosynthesis.

We investigate the possibility of remedying this situation by using other
heavy fields in the theory (e.g. the adjoint Higgs in SU(5)). Due to the
gravitational couplings between these heavy fields and the hidden sector,
energy is transferred from the inflaton to these ﬁel(is. Since these fields have
gauge interactions and hence a short lifetime, their decays occur before any
significant redshifting has taken place, giving rise to a significant baryon
excess.

After giving a brief review of baryogenesis, we establish a general frame-
work in Section II. We then investigate two representative models in Section
ITT and IV. Supersymmetry is unbroken in the first model, which is simpler

to analyze while in the second model it is broken. We compute the baryon to
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entropy ratio in both these models and show that with reasonable values of
various model-dependent parameters we obtain a satisfactory baryon excess.
Both the models, in spite of giving a satisfactory cosmology, do not however,
satisfy the thermal constraint. We find that even with the incorporation
of heavy fields, the situation does not change. Finally, we comment on the
finite temperature corrections and the use of direct couplings between the
heavy fields and the inflaton in solving the thermal constraint and its effect

on our results.

1 REVIEW OF BARYOGENESIS

The observed universe seems to be dominated by matter and not by anti-
matter. There are a variety of experimental observations which support this
claim. At galactic scales, energetic cosmic rays (i.e., with energies > .1 GeV
and which are supposed to originate outside of our solar system) have many
more particles than anti-particles. This is true for both protons and helium-
4 nuclei {74]. At the scales of galactic clusters, absence of a significant ~
ray flux indicates that matter and anti-matter galaxies do no1; coexist. For if
they did, the 7%s from the collisions of nucleons and anti-nucleons will decay
to give a significant v ray flux [75]. Thus we can be reasonably certain that
even if there is an equal quantity of matter and anti-matter in the universe,

it is separated on scales greater than (1-100) Lealaxy-

This asymmetry in the universe is quantified by a dimensionless number,
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B, which is che ratio of the average baryon number density to the entropy
density. Since the most abundant particles in the universe are the 3 K
microwave photons, the asymmetry is also characterized by 7, the ratio of the
baryon dens';ty to the photon density. Observationally, the number density

Of photons, Ny, iS well deaerrnined
T 3 .
n., = i m™ 4.1
7 399(2.7}{) € (4.1)

where T is the temperature of the microwave background. The number
density of baryons, ng, is not constrained very much by direct observations
[76]. However, from big bang nucleosynthesis, we knaw that the abundances
of light elements depends strongly on n. To produce quantities of these

elements which are consistent with observations, we must have [7,77)

n= ’;—” ~(2-8) x 10710 (4.2)

v

From this value of n, and the fact that the present entropy is divided equally
between the photon and the neutrino backgrounds, we can get a value for B.

Assuming the constancy of entropy (1.102), we obtain
n -11
~ 7~ (3—10) x 107, (4.3)

It is this small number which has to be explained. It should be noted
that an initially baryon symmetric universe {with no baryon number non-

conservation) will lead to a value of 1 that is many orders of magnitude
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smaller than (4.3) [75,78]. Before the advent of GUTs, there was no theoret-
ical motivation for having baryon number non-conservation. Thus this small

value of n had to be chosen as an initial condition.

To generate a non-zero 1 from a universe which is initially symmetric,

three conditions have to be satisfied {79]:

1. Baryon number viclating interactions.
2. C and CP violation.

. Departure from thermal equilibrium.

oy

Tt is necessary to have B number violation or otherwise a baryon sym-
metric universe will stay symmetric. GUTs provide us with exactly these

interactions but at very high energy scales.

There must exist particle-antiparticle asymrmetry, i.e., charge conjugation
(C) symmetry and charge conjugation with a parity inversion (CP) symme-
try must be violated. If C and C?> are not violated, then an initial state
which is symmetric (and hence C and CP invariant) evolves into a symmet-
ric state. C and CP violations are needed to provide an arrow and insure
that exrns= baryons are produced. Weak interactions violate C but there is
no system apart from the K°-K? where CP violation is observed [80]. It
szems highly unlikely that this is the only system in nature which violates

CP. A detailed understanding of CP violation is still vnuvailable, neverthe-
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less, GUTs can incorporate CP violation and hence can provide two of the

ingredients necessary for the evolution of an asymmetry.

The necessity of departure from thermal equilibrium is slightly more sub-
tle. Firstly, we have to define the meaning of thermal equilibrium. Although
a rigorous definition of thermal equilibrium is not possible in an expand-
ing universe, it can be defined operationally. When the interaction rates of
the important processes are much greater than the expansion rate H of the
universe, then we say that there is thermal equilibrium. In equilibrium we
always get the same number of baryons as anti-baryons. This is so because
of unitarity and CPT [12,81]. Unitazity implies that the chemical potential
is vanishing and CPT ensures that the masses of baryons and anti-baryons

are the same. Thus the equilibrium distributions for them are identical

J(p) = [exp(“;E) + 1]_1 (4.4)

where the + sign is for Fermi-Dirac statistics and the - sign is for Bose-
Einstein statistics. Also p is the chemical potential and E2? = p? + m? for
the particles. In standard cosmology, the universe has gone through several
epochs when the reaction rates have not been able to keep up with the
expansion rate (or vice-versa).

The essential ideas of baryogenesis can be incorporated into the standard

out-of-equilibrium scenario [R2]. We will briefly discuss this scenario in a

semi~-qualitative way to fix our ideas for the following sections.
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Let X be a superheavy boson (either Higgs or gauge) of mass M whose
interactions violate baryon number. If its coupling strength to fermions is

a, then dimensionally its decay rate, I'p, is given by
I'p ~ o’ M. (4.5)

We start at T ~ Tp; with a baryon symmetric universe. From T ~ Tp;to T ~
M, the X and X are in equilibrium and as abundant as the photons. When
the temperature falls below M, the equilibrium abuundance of the hosons

relative to the photons is given by

- ﬁi)s/’ (=)
Xeg = . (T exp( — ). (4.6)

If the decay rate 'p > H then the X’s can decay fast enough and adjust
their abundance to this equilibrium value. (Decay is the dominani process
since all other processes are higher order in @) There is then no departure

from thermal equilibrium and no asymmetry develops.

If however I'p >» H (for T ~ M) then the X's cannot decay rapidly
enough and are overabundant. There is then a departure from thermal

equilibrium which is needed for the generation of an asymmetry.

Consider a pair of X and X decaying into two channels with baryon
number B; and B; and branching ratios r and (1 — r) [for X, the quantities

are -By, -Bg, F and (1 — F)| Thus the decay of a pair of X and X will produce
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on average a baryon number €
€= (1’ - F)(B]_ - Bz). (4'7)

It can be shown that if C and CP are not violated then r = # and hence
€==0,

Now when the temperature falls to T < M, the decay rate catches up
with the expansion rate (because H is decreasing) and the X bosons decay
freely. At this time, nx ~ n, and thus the net baryon number density
produced is np ~ en,. Since s ~ g.n, (where g, is the number of degrees of
freedom), we get

P — 10"25, (4.8)

It turns out the favored candidates for producing the asymmetry are
the Higgs bosons. Recall that the condition for falling out of equilibrium is

Ip < H (at T = M) which means
M > g;'*a* Mp,. (4.9)

For gauge bosons, a is fixed to be the gauge coupling constant ~ 1/45,
but it is essentially arbitrary for the Higgs boson. Thus we can have a
fairly light Higgs and still satisfy the condition for being out of equilibrium.
Furthermore, the CP violation for a Higgs is expected to be more than that
for a gauge boson [83]. This is because we get CP violation (and hence a

non-zero €) at a lower number of loops for a Higgs than for a gauge boson,
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For example, in minimal SU(5), we get a non-zero ¢ at three loops for the

color triplet Higgs, Hs, and at four loops for the superheavy X and Y gauge
bosons [83).

This completes our brief review of baryogenesis. We now go on to give a

general framework within which we will present alternative mechanisms for

baryosynthesis in supersymmetric inflationary models.

2 GENERAL FRAMEWORK

Consider a set of scalar fields ¢; in a locally supersymmetric theory with
a superpotential W(¢;) (This is the quantity we called f(¢;) in the last
chapter). Then the corresponding scalar potential is given by (assuming a

flat Kahler metric){61]
V(o) = exp (Sl 07 {10 G0~ 13 W] o

where Dy W (#;) is the Kéhler covariant derivative

aw W (o
Dy W(¢:) = a5t g‘—y(f—) (4.11)

and M = y—a—% ~ 2.4 x 10"® GeV is the reduced Planck Mass.

We consider the superpotentjal W to be a function of two fields ¢ and .
¢ is the field which causes inflation, the inflaton and T is some heavy field
in the theory. Throughout we assume that ¢ is a gauge singlet while T can

have non-trivial transformation properties under the gauge group. We will



for our purposes take T to be the adjoint Higgs of SU(5) but most of the

results will be independent of this choice.

As a first step, we assume that the superpotential W (¢, L) be written as
the sum of two superpotentials f(¢) and g(T). This implies that the two
fields only interact gravitationally (we will comment on the effect of direct

coupling later). Then,
W(#,x) = f(¢) + g(T). (4.12)

Next we demand that at the true minimum, &g, Tp, the cosmological
constant is zero and supersymmetry is unbroken. It is easy to show that

these conditions imply

Af|
3¢ . =0 (4.13a)
f(do) + (o) = % =0 (4.13b)
Eq

The most general gauge invariant and renormalizable superpotential for £

is given by

ba

b
g(%) = 79“-Trz’ + ET'ES +bg (4.14)

where the constants bg, by, 8; will be fixed by condition (4.13b). It is conve~

nient to work with dimensionless variables x and y defined as

z=¢/M y=I/M. (4.15)
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Then

b M? b, M3
a(y) = 12 Try® + 13 Try® + ba. (4.16)

Furthermore, we want the true minimum in the L direction to break SU(5)

— SU(3) x SU(2) x U(1) which implies that

(4.17)

5
I
R[&
i
Rl
()

-3

\ -3

where A is a scale characteristic of I (typically Mgyr). Now the condition

9(yo) = 0 implies

15b A% — 106;A% + by =0 (4.18a)
and
a
J = O(with the constraint Tr y = 0)
Fas y=vo
implies
bo = —5A° (4.18b)
bl = Abz. (4.18C)

With the choice b; = 1, we have

AM? AP
9(y) = Tr(y®) + 5 Tr(v°) - s4% {4.18d)

2
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For our case

W(z,y) = f(z) +9(v)

and

=+ oW Tofaw :
V(I, y) = E—M—Z_ [(-a;- + IW) + (aynb ) - 3W2} (4.19)

assuming x and y to be real.

From this expression, it is straightforward but tedious to compute the

derivatives of the potential in the two directions. We only display % since

the others are messy and not particularly illuminating

av 2&”

2z =2V + (74 NS+ W+ 2f)

+WfTry? + AM?f'Tr y? (4.20)
+ M3 f'Tr y® — 3W ]

where primes denote £ ;- Using these expressions, one can determine what

the value of the T field is when ¢ = 0 i.e. at the beginning of inflation.

In the Appendix we show that it is impossible to simultaneously satisfy

2

3
<
L]
-

!
!

=8—V=0V>Oa,ndv O(u?) at ¢ = Oif the E field is at its true

o
-

z z3

minimum i.e. in the 3-2-1 phase. Since all the above conditions are necessary
for a successful inflationary model, the I field must start its evolution away
from the true minimum. If the X field is at its true minimum when ¢ = 0

then it will be less likely chat T oscillations will be generated as ¢ evolves
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from ¢ = 0 to ¢ = ¢o.
We now estimate the baryon to entropy ratio in two representative mod-

els,

3 MODEL1I
The superpotential for the inflaton field is [64]

M) =p*M(z-1)? z=¢/M (4.21)

where the scale p is fixed at (107° — 107*) M by demanding that the model
gives the correct order of magnitude of density fluctuations which lead to
galaxy formation. (41,64] This superpotential leads to an absolute minimum

at £ = 1 with zero cosmological constant and unbroken supersymmetry.

The evolution equations for x and y can be solved numerically and the
energy stored in the & field can be determined. We find that a more trans-
parent strategy is to solve the evolution equations analytically using various
physically reasonable approximations. This is the approach we choose in the

following analysis.

There are two natural scales in this model: the scale u associated with
the inflation sector (,{‘7 ~ 01073 — 10“‘)) and the scale A associated with
the T sector which has a typical value ~ 1072M [84]. Thus a reasonable

parameter to use is u/A. We will throughout keep only the lowest order
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terms in u/A.

At ¢ = 0, we need to determine the value of the T field. Assuming that

the value at ¢ = 0 is a small perturbation from the true minimum, we write

2+ap/A
2+ ap/A
A
Y= u 2+ ap/A (4.22)
-3 - 3au/ts
k —3—dap/A
1Tsing the derivatives %% we can solve for a to get
5 u _§
==2£ _10
“Tam

which confirms our expectations of keeping only the lowest order terms in
ulA.

Next we need to trace the evolution of the ¢ and ¥ system in the ¢ —
plane as ¢ evolves from ¢ = 0 to ¢ = ¢9 = M. Once again we need to solve
the evolution equations numerically, but we can simplify matters. Since the
position of < y > at ¢ = 0 is not very different from that at ¢ = ¢y, it is

reasonable to assume that the evolution of ¢ is unaltered.

With these assumptions, we now obtain the position of the T field at the

end of inflation. The inflationary epoch is characterized by a slow rollover
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in the ¢ direction and in terms of the potential this implies,[46]

VI(8) < 15 V)] (3.42)
vi(e) < Yo v o). (3.42)

For the potential we consider, the first equation breaks down first at a
value

. ~ 0.2425. (4.23)

Using this value of z,, we once again solve %‘5- to get the value of ¥ at this
point (to lowest order in u/A). Assuming the form of y to be as in (4.22}

we get

viz=1z,) =
3
2+ 1.153%
2
2+ 1154

2+ 1154

Rl>

2
=3 - 17254,

2
-3 - 17254
(4.24)

The evolution of the ¢ and L fields is governed by the evolution equations




79

which are {36]

. N R 1 oV
T+3Hr+ Tz = —m*é?
(4.25)
" . . 1 oV
Has + 3H Yoy + Lyap = ~ M Ay
where
HY = _l_lv(qg L) + 1452 + liz + pl. (4.26)
3M? ’ 2 2 K

Here I'; and I', are the decay rates of the ¢ and I fields respectively and
p, is the energy deﬁsity in radiation. The equation for y can be rewritten as

an equation for @ using (4.22)

. . . 1 4v -
a+3Ha+I‘va=—m—a—y. (4.27)

We can get a sensible approximation scheme for these quantities by com-
paring the orders of magnitude. Since the ¢ field has only gravitational

couplings, its decay rate is

3
m
¢
I‘¢ ~ "-M-—z. (4.28]
On the other hand, T is a gauge nonsinglet and its decay rate is
Ty ~ amp ~ aA(assuming my ~ A) (4.29)

where a is the GUT gauge coupling constant. At the origin in the ¢ direction,
the value of the Hubble parameter H is ~ ‘-‘A; Assuming my ~ % (64] and

and a ~ § (85}, we obtain

Ty << 3H << aA. (4.30)
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Furthermore, the time taken for slow rollover, t., is given by [64]

M -
ty ~ o >>Tgh (4.31)

The physical picture which emerges from this is as follows: at ¢ = 0, the
¢ field is at its origin while the T field is displaced from its true minimum
at a value given by (4.22). From ¢ = 0 to ¢ = t,, the ¢ field evolves slowly
from ¢ = 0 to ¢ = ¢,, giving rise to the de-Sitter expansion of the scale
factor. Since this time is much longer than the lifetime of the T's, all the
primordial I’s decay and the density of the decay products is exponentially
diluted. However, at t = ¢, , L is not at its true minimum but is displaced
to a value given by (4.24).

Taking into account the inequalities given by (4.30), we can approxi-
mately solve the evolution equations for ¢ and ©. These equations give us
essentially the same result as if the L field was moving in a pure quadratic
potential around the true minimum. Thus for our purposes, we take the

motion in the ¥ direction to be governed by
1,2 o 2
= M*mz(y - wo)
(4.32)
1 @
= MIAZ2 H
2 “a
At time ¢ = ¢,, the value of ¥ is given by (4.24) and the total energy in

the ¥ direction is at least

4
pu(t =1t.) ~ Azi%' (4.33)
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The field is oscillating in a pure quadratic potential with a frequency
given by its mass. Since this frequency is comparable to the decay rate of X,
this energy rapidly goes into decay products before redshifting decreases it
significantly. On the other hand, the ¢ field has a very long lifetime and it
continues to oscillate near ¢ = ¢, for a long time, with its energy redshifting
significantly before decay into radiation. So we need to study the evolution
of the energies associated with the ¢ and X directions from time t = t, to
t =ty = I';' and compute the ratio 22 at ¢ = t,.

To study the evolution, note that the energy associated with the oscil-
lations in the ¢ direction is O{x*) and that in the T oscillations is 0(u*23).

Since A ~ 1072M, we can safely ignore the contribution of py to the evolu-

tion of the scale factors.

We assume that the dominant mechanism for the production of baryon
asymmetry is the decay of color triplet Higgs which are produced in the

decay of %. This will give us a lower limit on the magnitude of 22,

Let ny be the number density of the Higgs triplets of mass my produced
by the decay of the I's. Then the energy density pg is given by, since the

Higgs’ are non relativistic,

ny = py/my. (4.34)

Further let a fraction f of the I energy before decay go into the triplets
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and for simplicity the rest into photons. Then
o = [px (4.35)
and the reheat temperature is

TS} = [———(1 - f)pz]m (4.36)

where g. are the effective relativistic degrees of freedom.

The potential in the ¢ direction is given by

Vo= e® pt(z® — 4z + T2t — 42® — 2?4 1] (4.37)

and near z = xp by

V = pte(4(z — z)® + 12(z — z)* + - -] (4.38)

Thus near z = x5, the dominant term is the quadratic term and the

expansion is matter dominated [63]. The energies at ¢ = ¢, and t = ¢, are

related by
pult = 1) = pu(s = 1) [ e = 2] (4.39)
where R is the cosmic scale factor. But
R(ty) s
) = ufte— )] (4.40)

where Hy-,, is the Hubble parameter at ¢t = ¢,.
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From (4.30), (4.31) we obtain

EEL) E -1 ia {4.41
R(te) (14 3Hers) (4.41)

Also from (4.26) and py(t,) ~ p* we get
pu(ts) = Px( ')Ma - (4.42)

Using (4.42) and pp(t,) ~ AA{;“‘ we obtain the number density of the

triplets at the time of ¢ decay as

pH f a2 p®?
nH(t¢,) = ;;; ;-I;AQW. (4.43)

Assuming that ep is the baryon excess praduced per triplet decay we

obtain the number density of excess baryons as

esf 2 4!
ng ~ = A’Mm {4.44)

From Ref. 64, we know the reheat temperature for this model,

Tei ~ /MLy ~ p*/M?. (4.45)

Note that this is the fina] reheat temperature, produced by the decay of the
inflaton. There might be some intermediate reheating associated with the
decay of other particles, for eg. T,%Z, associated with the decay of &'s. This

produces a negligible amount of entropy because the small amount of energy
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gets redshifted significantly between ¢, and ty. Thus the baryon to entropy
ratio at ¢ = tg4 is given by

ng 45 (BfAzl-Ls -

s | 2rtg.mg M*

(4.46)

Using {4.46), we can estimate the numerical value of *2 and compare
it to the observed value of ~ 107!%, There are however, ambiguities in the
values of the parameters entering (4.46). The values of # and NA!- can be
fixed, as already indicated at 10~® — 10~* and 10~? respectively [64, 85]. g.
can be assumed to be 0(2 x 10%) at these scales. €p,f and mg are more

uncertain and model dependent.

It is known [86], that in supersymmetric models, apart from the usual
dimension 6 operators responsible for proton decay, there can also exist di-
mension 5 operators which could give a disastrously small proton lifetime.

If these operators are present, we have a lower bound on the mass of the

superpartners of the triplets given by [87].

my > 10"GeV. (4.47)

However, one can invoke certain symmetries, for example a Peccei Quinn
symmetry (88] or a discrete symmetry, which forbid proton decay by dimen-
sion 5 operators. In these cases the limit is much smaller. For example Ref.
88 shows that it is possible to reconcile a low mass Higgs triplet with the

experimental bounds on proton lifetime. The lower bound is considerably
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reduced to

my > 2.85x 10'°GeV. (4.48)

The value of €p, or the net baryon number produced by the decay of a
particle—antiparticle pair is also very model dependent. At tree level, eg =0
and eg # 0 comes irom loop diagrams. For supersymmetric GUTs, no
“surprising” cancellations occur at one loop level and so ey < 0{a/47)[84].
The quantity f is to be determined by looking at the decay modes of the
L's. The I'’s can decay into anything lighter—triplet, doublet Higgs, gluons
etc. A value of 1/10 is not an unreasonable value for this parameter. Using

€s ~ 1073 [88], we obtain from (4.46)

"5 jo-wses M (4.49)
3 mpyg

If we use my ~ 10Y1°GeV and g ~ 10-3M, we obtain a value of ﬂ“
which almost agrees with that observed. However, if the higher bound on
mp is taken from models where dimension 5 operators are not suppressed
by some symmetry, then this mechanism gives us a much smaller value of

28 in disagreement with observations.
s gT

4 MODEL II

Having computed #2 for this simple model with no supersymmetry break-

ing, we go on to consider a model with supersymmetry breaking in the in-
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flaton sector. We will use the simple model discussed in Chapter 3.

To recapitulate what we found in the previous chapter, consider the in-

flaton superpotential

1
flz) =’ MB+e+z+ Bzt — 1—2-3::‘] (3.27)
where # = —2v/2 — %€ + 0(¢*). The minimum is supersymmetry breaking
and is at
12
T=v2+ (2‘3/55) (3.32)

and the gravitino mass is
2 /™= p?
My z = 5 3\/5654#' ES/Z- (3.33)

In this model, supersymmetry breaking is associated with a non-zero
value of ¢. However, for the first part of our analysis we will assume ¢ = 0

since this does not change our conclusions. We start with a superpotential

3 z 3 Tt
f(z) = V2ulM a+\/§ 3= 33|

(4.50)
Coupling the I field to ¢ and carrying out the same analysis as for model
I, we obtain the value of T at the end of inflation. The slow rollover or the

inflationary epoch ends at a time t = ¢, when the inequalities in (3.42) are

no longer satisfied. We found in the last Chapter that the second inequality
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breaks first when the 4 field is at ¢, given by ,
¢= ~ 71M. (343)
Using this value of ¢,, we solve %:l = ( to obtain

yz=1=)=

&P

vl
2+ -4l4y
v}
2 + 4140
3
2+ 4235

2
-3 - 6245

k -3 - 6245
(4.51)

Once aga'n, as for Model I, we use these initial conditions to solve ap-
proximately the evolution equations for ¥ and ¢. Not surprisingly, we find
again that the motion in the I direction is governed by a pure gquadratic
potential. At time f,, the & field sits away from its true minimum and has
energy g ~ u‘ﬁ—: which rapidly goes into its decay products. In computing

2o, we need to trace the evolution of py and pg from ¢, to ty. It is here that

the difference from Model I occurs.

Recall that for Model I, the potential was predoﬁlinantly quadratic in
the ¢ direction and hence the universe expanded like a matter dominated

one. In Model II however, there are two stages of expansion (once again
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ps >> pp and the evolution is governed by pgy). From time ¢, to a time
=1 ~6x 10—75_1% (3.51), the ¢* term dominates and the universe

expands like radiation dominated .
Thus for £, <t <t

R(t)
R(te)

= [L+ 2H,o, {t — te)]V2 (3.49)

From time &; to 24 = 1‘;1, the dominant term is quadratic and expansion is

matter dominated.

L<t<ty
/ (3.53)

R(t) 3 /8

"m = {1+ Ethg,(t t:)

Now following the same steps as in Model I with the same notation, we

find that

5= copu(ts) _ enf A'p

1/2
p— g M7 t/ T, (4.52)

Since the energy density in £ is much smaller than that in ¢'s, one can
easily check that the reheating temperature is the same as obtained in the

previous chapter.

3,3/4
ule
Taw ~ £ (3.58)
Using (4.52), (3.58) and Ty ~ T ~ £ (3.54) we obtain
31/4A2
ns  sfue (4.53)

s g. Mimg '
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From the last chapter, we have u/M ~ 107% — 107 and € ~ 107 "!¥ (Fig.
3.2). Taking g. ~ 2x10%, & ~ 107%, my ~ 10GeV , eg ~ 107% and
f ~ 107! we obtain

BB jo-1s (4.54)
]

which is similar to that obtained in Model I apart from a factor of e!/4. In
fact the reheating temperature in this model is smaller by €/4 than that of
Maodel I, and so one expecis a larger 2. However, because the inflaton field
has a longer lifetime in Model II we do not get a larger *2. The energy in
the triplets is redshifted more and the enhancement due to a lower reheating

temperature is more than cancelled to give us 2 in (4.54).

The two models we have considered suffer from the same disease; they
both violate the requirement that at high temperatures, a sufficient amount
of energy is stored in the scalar field ¢ to give enough inflation — the thermal
constraint. In other words, the inflaton must start its evolution far away
from its global minimum, slowly roll down and eventually settle in its global
minimum. This is not surprising however, because of a general result given
in Ref. 57. In a hidden sector with a single field ( nd a flat Kdhler metric,

the temperature corrections do not stabilize the field at the origin.

A possible solution to this problem suggested in Ref. 64 and discussed in
Chapter 3 is to allow for direct couplings between ¢ and another field 1. For

our case, we have until now, only considered the situation where the GUT
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sector and the inflaton sector are separate, i.e., only coupled gravitationally.
If direct couplings between the two sectors are allowed, the situation in the

two models is somewhat different.

In Model I, the inflaton sector does not break supersymmetry and hence
direct coupling of ¢ and I, will not be in danger of changing the super-
symmetry breaking scale. In Model II however, the inflaton sector is also
responsible for the breaking of supersymmetry (with € 7 0). In this case we
need to be careful because there is a danger that the supersymmetry break-

ing scale will be pushed up to mgyr since the L's now couple directly to the
é.

Thus in both cases we see that if we include direct coupling of ¢ and X,
then the thermal constraint can be satisfied. Furthermore, it is possible that
with direct couplings, the value of 2 will improve because more energy can
be transferred now from the inflaton to the ¥,. However, the direct couplings
make the analysis very complicated. This is because firstly, one has to be
careful that gauge radiative corrections do not spoil the nice features of
the inflationary potential. Secondly, both the fields are now responsible for
inflation and reheating [for an exception see Ref. 59]. We do not carry out

this analysis since it is beyond the scope of the present work.

We conclude then that there exists another possible mechanism for baryon

number generation {beyond the standard scenario) within the framework of
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supersymmetric inflationary cosmologies. This is significant because in su-
persymmetric models, the reheating temperature is usually low and hence

the generation of enough baryons could be a problem.
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V  CONCLUSIONS

In this thesis, we first outlined briefly the standard hot big bang cosmo-
logical scenario. We discussed the successes of this model and some of the

problems which it does not address.

In the next chapter, we presented a brief review of the various attempts
10 solve the problems associated with the hot big bang model. These in-
cluded the original idea of ‘0ld’ inflation and the ‘new’ inflationary scenario.
We saw how, even though these scenarios are successful in explaining some
of the cosmological conundrums of the big bang model, they suffer from
some drawbacks. We outlined some alternative proposals, especially those
incorporating supersymmetry.

In Chapter 3 we discussed some of the motivations to construct inflation-
ary models using supergravity. We then studied inflationary models where
the scale of supersymmetry breaking is proportional to a small parameter
which we chose to relate to the slope of the potential at the origin. This scale
can therefore be as low as the mass My of the weak gauge boson. The study
of the simplest of these models showed that no particular problem arises
except for a violation of the thermal constraint. We showed however that
one can dea) with this problem by introducing a second field in the inflaton
sector, whose sole effect is to modify the temperature corrections. Anyway,

whether or not we introduce this second field, the only field which plays a
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dynamical role ns far as inflation is concerned is the original inflaton.

In the fourth chapter, a brief review of the mechanism for baryosynthesis
was given. We then outlined the general framework to study an alternative
mechanism for the generation of baryon asymmetry which involves the use of
the couplings of heavy fields with the hidden sector. This mechanism seems
to be a very general one since in any model with an inflationary sector and
a GUT sector which has heavy fields, there will exist the possibility of the
transfer of energy from the inflaton to the heavy fields. We obtained the
value of 22 in the case of two inflaton superpotentials (one with and one
without supersymmetry breaking). The numerical value of 22 however was
seen to be dependent upon carameters which are model dependent. We saw
that if we use the bound ca mpg from supersymmetric GUTs where some
symmetry prohibits dimension 5 operators for baryon decay, then a value of
2 which is almost in agreement with the observaticns is obtained. In both
models the thermal constraint is violated unless one includes direct couplings

between the inflaton and the ¥ fields.

We have seen how supersymmetric inflationary models offer solutions to
some of the problems which exist in non-supersymmetric models. However,
there are two problems which plague these models: the thermal constraint
and the generation of an appreciable baryon asymmetry. Baryon generation
is a2 problem because of a low reheat temperature which is needed to solve

the gravitino problem. Although we have studied a mechanism to generate
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engugh baryons in models with a low reheat temperature, there still is the
question of direct couplings between the inflaton and the heavy fields in
the theory. The effect of these couplings might very well be to increase
the baryon asymmetry. A careful study of the case with direct couplings is
needed before this issue is settled. A similar analysis should also be carried
out in the context of nmsca!e'models. These models are attractive because
they might emerge naturally from superstring theories. A detailed analysis

of the mechanism of energy transfer needs to be carried out in such models

to understand the issue of baryon generation.



a5

VI APPENDIX

In this appendix we show that under very general conditions it is impos-
sible for the T field to sit at its absolute minimum when ¢ = 0. The notation
is that of the text. Let f(x) and g(y) be the superpotentials in the 2 sectors.

Let
f(z) = *Mfi(2) (A1)

9(y) = A%a(y) (A2)

where f1(z) and g,(y) are dimensionless. Further assume that there is no

direct coupling between the 2 fields. Then

W(z,y) = f(z) + ¢(y). : (A3)

Now we impose the following conditions: at £ = z5 , y = yo (the true
minimum) we must have unbroken supersymmetry and zero cosmological
constant. This implies

fi(zo) = fi(zo) =0 (A4)

a1(%) = gi(yo) =0 (A5)

Assume that when £ = 0, y = yp i.e. the fleld y starts off at its absolute

minimum. Then demanding that the potential be flat means

av 8V eV .
.é;—ﬁ_a—y_omx-o,y—w- (A6)



These conditions imply
wM{ A+ (R -2DA)) =0
WM {HE — )+ 1+ A RS - VAR =
2 " As
WMy [ f'T+ (s - 2)f1 + flgl;‘—z—M_
Futhermore at z =0, ¥y = yo

Vi0,50) = S0 17+ (43 - 9) 1)

Using (A9) gives us

vi Al
V{0,%) = u 42 [fl flg ]

u tevd

fl [f1+gl ZM]
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(A7)

(48)

(49)

(A10)

(Al11)

But g} (o) ~ 0(35) since yo ~ 0(&) for the example in text which is quite

general. Then (A11) immediately tells us that

V(0,45) ~ 0(A*m?).

This is unacceptable because we know that the potential at ¢ = 0 must scale

like u* with u ~ 0(107*) to give us the correct density fluctuations! If the

field ¥ at ¢ = O sits at its absolute minimu.n then the scale # drops out of

the potential.
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Thus we assume that the L.eld I starts at some other value at ¢ = 0, L.e.

we solve for % =0 at ¢ = 0 as in the text.
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Figure Captions

Figure 2.1 Schematic sketch of the scalar potential for the old inflation-
ary scenario {for T =0 and T > T.].

Figure 2.2 Schematic sketch of the scalar potential for the new inflation-
ary scenario.

Figure 3.1 Potential V//u* corresponding to the superpotential f(#) given
by Eq. (8.30) (or Eq. (3.27) since, on this scale, they are
indistinguishable]. The dashed curve gives the shape of the
potential at T = M (taking N' = 50 chiral superfields in

the theory [57]).

Figure 3.2 Cosmolorical constraints on the parameters € and u/M. The
curve N = 60 limits the region where enough inflation takes
place [see the condition given by Eq. (3.46)]. The study of
the amplitude of density fluctuations gives limits on p/M
only [Eqs. (3.65 - 3.67)]. Finally, we have drawn the line
Ma; = Mw [Eq. (3.33)] which corresponds to the success-

ful low energy models (58]

Figure 3.3 Oscillations of the ¢ field around the minimum ¢ M of po-
tential ¥ (Fig. 3.1) immediately after the end of inflation

(te <t < 1.006¢,).
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