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Topics in Inflat ionary Cosmologies 

Shobhit Mahajan 

A B S T R A C T 

In this thesis we discuss several aspects of inflationary cosmologies. The 

first chapter is an introduction to the standard hot big bang cosmological 

model. We review the model and some of the problems associated with it. 

In the second chapter, a short review of the proposals for solving the 

cosmological conundrums of the big bang model is presented. We study the 

old and the new inflationary scenarios and show why they are not accept­

able. Some alternative scenarios especially those using superaymmetry are 

reviewed briefly. 

The third chapter is a study of inflationary models where the same set of 

fields that breaks supersyrametry is also responsible for inflation. In these 

models, the scale of supersymmetry breaking is related to the slope of the 

potential near the origin and can thus be kept low. We find that we can get 

a supersymmetry breaking scale of the order of the weak breaking scale. The 

cosmology obtained from the simplest of such modela is discussed in detail 

and we find that there are no particular problems except a low reheating 

temperature and a violation of the thermal constraint. We then present a 

possible solution to the thermal constraint problem by introducing a second 

field and discuss the role played by this second field in the scenario. 
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In the fourth chapter, an alternative mechanism for the generation of 

baryon number within the framework of supergravity inflationary models 

is studied. We use the gravitational couplings of the heavy fields with the 

hidden sector(the sector which breaks supersymmetry). This mechanism is 

applied to two specific models — one with and one without supersymmetry 

breaking. We emphasize the complete generality of this mechanism. The 

baryon to entropy ratio is found to be dependent on parameters which are 

mode! dependent. Finally, we remark on the effect of direct couplings be­

tween the two sectors on our results. 



i 

Acknowledgments 

I am grateful to the Theoretical Physics Group at LBL for providing a 

stimulating environment to do the work which has led to this thesis. I would 

like to thank Ian Hinchliffe for his encouragement, advise and for sharing 

his unending enthusiasm for physics. His penetrating reading of this thesis 

is responsible for it being in its present state. It is a pleasure to thank 

Geoff Chew for encouragement and his patient reading of this manuscript. 

It was a very pleasant experience collaborating (on physics and discussions 

on cinema) with Pierre Binetruy for the work which forms Chapter 3 of 

this thesis. I also owe my gratitude to everybody in the Theory Group, 

especially Sally Dawson, Mark Claudson and Bob Cahn for being extremely 

helpful and patient in answering questions on physics, computers etc. Betty 

Moura, Luanne Neumann and Susan Fidelman deserve a special word of 

thanks for being extremely helpful and nice during my stay here. Susan and 

Luanne also are to be thanked for the arduous task of typing Chapters 3 and 

4. 

Many friends have contributed towards providing me with a fun time 

in Berkeley. All my colleagues in the Physics 6 office, who taught me how 

working on problem sets at 2 a.m. could be fun, deserve my gratitude. I 

particularly thank Mitchell Golden for those endless hours of stimulating 

discussions on politics, physics and everything else. I am also grateful to 



ii 

the Texpert, Jon Yamron, for his cheesecake and his help with questions 

regarding Tex. I wish to extend my thanks to Myrna Garcia, Libby Wood 

and many others for making life pleasant here. I would forever cherish their 

friendship. Rajive Tiwari, my good friend for many years, deserves my deep­

est grati tude for constant support and encouragement. 

These acknowledgments will be incomplete without my thanking my par­

ents. They have contributed immensely to my being where I am now. Their 

affection, encouragement and confidence in me has been very important to 

me. Finally, most is owed to my life partner Nandita, for making my life 

so happy and for standing by me through all those crises of the last seven 

years. 

This work was supported by the Lawrence Berkeley Laboratory under its 

contract DE-AC03-76SF00098 with the Director, Office of Energy Research, 

Office of High-Energy and Nuclear Physics, Division of High-Energy Physics 

of the US Department of Energy. 



iii 

Contents 

Acknowledgements i 

1 In t roduct ion 1 

2 Inflation and New Inflation 12 

2.1 The Inflationary Scenario 13 

2.2 The New Inflationary Scenario 22 

2.3 Alternative Scenarios 30 

3 Supersymmetric Inflationary Cosmologies 35 

3.1 The Models 38 

3.2 Cosmological Constraints 48 

3.3 A Solution to the Thermal Constraint 58 

4 Baryogenesis in Supersymmetr ic Inflationary Cosmologies 64 

4.1 Review of Baryogenesis 68 

4.2 General Framework 72 

4.3 Model I 76 

4.4 Model II 85 

5 Conclusions 02 



IV 

6 Appendix 9 5 

7 References 9 8 

8 Figure Captions 1 ° 7 

9 Figures 1 0 8 



1 

I INTRODUCTION 

The past few years have seen a tremendous growth in the interaction 

between cosmology and particle physics. The relationship between these two 

seemingly different branches of physics is not new. The theory of primordial 

nucleosynthesis of light elements [l], an application of nuclear physics to 

cosmology, is the earliest example. What is striking is the way in which 

progress in both particle physics and cosmology has become dependent upon 

this interplay [2]. 

In particle physics, experiments have tended to confirm the validity of 

the SU(3) x SU(2) x U(l) [3] model as the correct low energy effective the­

ory. But a variety of unanswered questions have led to an investigation of 

theories which extend this model. Grand Unified Theories (GUTs) [4] unify 

the gauge fields of strong and electroweak interactions into a single gauge 

group with a single coupling constant. Apart from their aesthetic appeal, 

these theories provide us with explanations and predictions of parameters 

which are undetermined in the SU(3) x SU(2) x U(l) model. Among these 

are the equality of the electron and proton charge and the value of sin2 Bw 

(0W is the weak mixing angle) which controls the relative strength of the 

U(l) and SU(2) coupling constants and is an arbitrary parameter in the 

Glashow-Weinberg-Salam model of electroweak interactions [5]. However, 

some of the most striking predictions of GUTs like the nonconservation of 
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baryon number, existence of superheavy magnetic monopoles, occur a t en­

ergy scales of 1 0 u GeV or higher. These energy scales are accessible only in 

the early universe which becomes a natural laboratory to s tudy these the­

ories. Furthermore, cosmology provides us with an insight into the na ture 

of new predicted particles by put t ing very useful bounds on their masses, 

abundances, coupling strengths etc. As an example, following the evolution 

of stable or long lived neutrinos, we find tha t they must be lighter than 

100 eV or heavier than 3 GeV [6j. If their mass falls within this forbidden 

range, then their contribution to the energy density of the universe is too 

large. Similarly, the big bang nucleosynthesis provides us with a limit on the 

number of neutrino species [7]. The predicted abundance of light elements is 

consistent with the inferred primordial abundance if the number of neutrinos 

is less than or equal to four. 

On the other hand, particle physics plays an extremely important role in 

understanding the very early universe. The s tandard cosmological scenario 

of the hot big bang is very successful in explaining phenomena occurring 

after about 10~ ! seconds after the big bang (at a temperature of about 10 

MeV; we chose units such that k = c = h = 1. Temperature is expressed in 

GeV, lGeV=: 10 , 3 K.) , But in order to understand events happening before 

this time (i.e. at a higher temperature) , it is crucial to take into account the 

interactions of elementary particles. It is here tha t particle physics guides 

cosmology. 
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Grand Unified Theories have several features which have a profound cos-

mological importance. Among the most noteworthy are the non-conservation 

of baryon number and the existence of magnetic monopoles. Non-conservation 

of baryon number is important in cosmology [8] because it gives us a way to 

explain the observed baryon-antibaryon asymmetry of the universe, without 

taking it as an initial condition. It should be stressed that even though ex­

perimental evidence for non-conservation of baryon number (nucleon decay) 

still does not exist [9], it is important to have a mechanism to explain the 

observed net baryon number of the universe. We will discuss the importance 

of monopoles later in this introduction. 

At tempts have been made to construct models of the very early universe 

which incorporate Grand Unified Theories in an essential way [10], These 

models a t tempt to solve some of the problems which the big bang model 

does not address. We will review these models in the next chapter. The 

rest of this introduction is a brief outline of the big bang model and its 

shortcomings. 

The s tandard hot big bang scenario [11] assumes a spatially homogenous 

and isotropic universe which can be described in comoving coordinates by 

the Friedman-Robertson-Walker metric 

ds2 = -dt1 + R2(t) ** + r W (1.1) 
1 - f c r 5 

The expansion of the universe is described by the scale factor R(t) and the 



curvature by the parameter k. By adjusting R{t), we can normalize k to 

±1,0. k — +\ corresponds to a closed universe, k — — 1 to an open universe 

and A: = 0 to a spatially flat one. 

The energy-momentum tensor is assumed to have a perfect fluid form, 

T„v = pgflv + [p + p)VlJJv (1-2) 

where p is the pressure, p is the total mass-energy density and U^ — (1,0,0,0) 

is the velocity vector for an isotropic fluid in its rest frame. 

Given these assumptions, we can use the Einstein field equation, 

G„„ = SITGT,^ - A<J„„ (1.3) 

to derive a first order equation for the evolution of the scale factor. Here G^ 

is the Einstein tensor, G is the Newton's constant and A is the cosmological 

constant. Taking the time-time component of (1.3) gives us 

„ , 1 fdR\" k STTG A , v 

where H is the Hubble parameter. Furthermore, energy conservation (£>MT'/1„, 

D M being the covariant derivative) leads to 

d(pR 
dR 

3 \ 
= -3pR 2 . (1.5) 

With these equations, we only need to know the equation of state p(p), 

to study the evolution of the universe. In the big bang model, the equation 



of s ta te is taken to be that of a relativistic or non-relativistic ideal gas. 

For radiation or a relativistic ideal gas, (i.e. for T S> m ) 

p = p / 3 (1.6o) 

P = (9> + lsf)^T* (1.66) 

where gt and gj are the number of effectively massless bosonic and fermionic 

degrees of freedom. Using (1.4) and (1.5), we find that 

p oc R-* (1.7a) 

and (with k = 0, A = 0) 

R oc t1'2. (1.76) 

Similarly for a non-relativistic gas or mat ter (i.e. for T < : m ) 

p = 0 (1.8a) 

and 

p = mn (1.86) 

where m is the mass and n is the number density of the particles. Once 

again using (1.4) and (1.5) we get, 

p a R-3 (1.9a) 



and (again with k = 0, A = 0) 

R oc t*'s. (1.96) 

The assumption of thermal equilibrium and the conservation of energy 

(1.5) implies that the expansion of the universe is adiabatic. This means 

that the total entropy is constant i.e., 

^ 1 = 0 (1.10a) 
dt 

where s is the entropy density. 

For massless particles, 

7 I*2 

s = ( S i + | f f / ) ^ r s (1.106) 

and hence (for a fixed number of particle species), 

RT = constant. (1.10c) 

We will see later tha t this is an important result which will have to be 

modified in the context of inflationary models of the universe. 

The cosmology obtained from this theoretical framework is extremely 

successful in explaining a variety of observations [12]. Among these are the 

cosmological redshift, the cosmic miciuwave background radiation [13] and 

the origin of light elements in the universe. 

The expansion of the universe since the big bang accounts for the cos­

mological redshift. Radiation from the early universe which decoupled from 
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matter at a temperature of about 4,000.K" (when the electrons and ions re-

combined to form atoms) and has been redshiftmg since, is the microwave 

background radiation. The big bang model predicts correctly its blackbody 

nature as well as its temperature (2.7JJT). The light elements were synthe­

sized primarily in the early epoch of primordial nucleosynthesis. Even in the 

simplest model of nucleosynthesis, we find that the computed abundances 

of light nuclei like deuterium, s He, 4He and 7Li, compare very well with the 

aferred primordial abundances (from observational data) [14]. 

Successful as it is in explaining these observations, the standard scenario 

suffers from four problems which motivate our search for alternative models 

[10]. These are the horizon problem, flatness problem, monopole problem 

and problem of explaining inhomogenities in the structure of the universe. 

Horizon length or the particle horizon is the maximum distance light 

could have travelled since the big bang. It is the maximum radius of causal 

contact . It is given by (using 1.7a) 

l{t) = R(t) f J2(i') _ 1dt' = 2*. (1.11) 
Jo 

On the other hand the physical radius scales as 

m = m L { t r [l-12) 

Using (1.11) and (1.12), we find that at the time of decoupling of the cosmic 

microwave background radiation ( r ~ 10*K,t ~ 102 sees) there are 10 s 
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causally disconnected regions which grew into our present universe. 

Observationally, the microwave background radiation is highly isotropic. 

The current limit on the anisotropy is 

AT/T < 1 0 - 4 . (1.13) 

It is difficult to understand how so many causally disconnected regions came 

to the same temperature at the same time, as suggested by the anisotropy 

limit (1.13). This is the horizon problem [15] and ''3 not addressed by the 

s tandard scenario. 

The flatness problem [16] is another one which this scenario does not 

address. Observations suggest that the ratio of the energy density of the 

universe to the critical density pc (which gives us a flat universe i.e. k = 0 

in eq. (1.2)) is close to 1. Since we know that the present value of the 

cosmological constant is almost 0, we will take A = 0 in what follows. Prom 

(1.4), 

n = P/PC (1.140) 

0.1 < r u < 4.0. (1.14c) 

This in itself is not a problem but for the fact tha t fl = 1 is an unstable 
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fixed point under time evolution. To see this we compute the quantity '~^. 

Using (1.4), (1.5) and (1.10c) we have 

^"wh*"**- (1-15) 

Thus for n to be so close to 1 today, it has to be unnaturally fine tuned in 

the past. For example, at t = 1 second (after the big bang), fi has to be one 

to one part in 10 1 5 . This curious fact is also taken to be an initial condition 

in the big bang model. 

Many Grand Unified Theories [5j predict the existence of extended topo­

logical objects which have a mass of the order of the grand unification scale 

(10 H GeV). These stable topological knots in the Higgs field expectation 

value behave like magnetic monopoles. Cosmologically these monopoles are 

formed at the Grand Unified scale MOVT when the grand unified gauge group 

spontaneously breaks down to a group containing 17(1). 

The density of monopoles nm, is estimated by assuming that the corre­

lation length of the Higgs field expectation value is the size of the particle 

horizon (1.11). Then [17] 

nm(Tavr) ~ 1(TGUT)-*. (1.16) 

It can be shown that monopole-antimonopole annihilation is negligible at 

these densities (18). 

This density is disastrous because we get an energy density due to monopoles 
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alone which exceeds the critical energy density, pc, by many orders of mag­

nitude. Observationally, we know that the energy density of the universe is 

close to the critical density (1.14c). The standard model has no solution for 

this monopole problem. 

Finally, it is difficult to understand the formation of structure in our 

universe with the big bang model. Although the universe is homogenous 

on large scales, there is enough evidence for inhomogenities (galaxies, clus­

ters etc.) on the smaller scales. To account for this, the big bang model 

assumes a spectrum of initial inhomogenities which then evolve to give the 

observed distribution [19]. This ad-hoc nature of the initial spectrum is fur­

ther problematic because of the evolution of gravitational instabilities. For 

the observed galactic evolution, this implies choosing a very unnatural set of 

initial conditions. 

Thus we see that the hot big bang model, inspite of its success in explain­

ing many observations, suffers from some drawbacks. These drawbacks are 

basically related to the fact that the model assumes a set of very unnatural 

and arbitrary initial conditions. It is this which has motivated the search for 

alternative scenarios in cosmology. 

The rest of the thesis is organized as follows: In the next chapter, we 

will present a short review of inflationary cosmologies. We will discuss the 

various kinds of inflationary models and how they solve the problems of the 
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big bang scenario. The next two Chapters form the main part of this thesis. 

In Chapter 3 we discuss the motivations for constructing supersymmetric 

inflationary models. We then construct, and study in '.etail, models in which 

the same sector that is responsible for inflation also breaks supersymmetry. 

A study of the cosmology based on these models shows that there are no 

problems apart from a low reheating temperature and a violation of the 

thermal constraint. We propose a method for solving the thermal constraint. 

Chapter 4 is a study of baryogenesis in the supersymmetric inflationary 

models. We first review the standard scenario for baryosynthesis. We then 

go on to describe an alturnative mechanism for generation of baryons in 

these models. After giving a general framework, we apply this mechanism to 

models in which supersymmetry is unbroken in the inflaton sector and to the 

models discussed in Chapter 3, We find that this mechanism could lead to 

a sufficient amount of baryons under certain model dependent constraints. 

Finally, we present our conclusions in Chapter S. 
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II INFLATION AND NEW INFLATION 

In the last chapter, we discussed the hot big bang model and some of 

its shortcomings. We saw that the s tandard scenario leads to a set of very 

unnatural initial conditions when extrapolated back to very early times. In 

this chapter we will discuss some of the proposals for curing this problem. 

We will see how particle physics plays an increasingly important role in the 

formulation of these alternative cosmological models. 

The essential idea, in the solution to the cosmological conundrums of the 

big bang model, is to do away with the assumption of adiabatic expansion of 

the universe [10). Recall tha t in the big bang model, the total entropy of the 

universe was assumed to be constant (eq.l,10a-c). This need not necessarily 

be true if the universe went through one or several phase transitions during 

its evolution. 

Our belief in the correctness of the SU(3) x SU(2) x U( l ) model in de­

scribing low energy physics [3], leads us inevitably to expect phase transitions 

in the i uiverse. At temperatures ~ 10 s GeV, we expect a phase transition 

associated with the spontaneous breaking of SU(3) x SU(2) x U( l ) to SU(3) 

x U ( l ) . Again at T ~ few hundred MeV, we expect a transition when chiral 

symmetry, associated with Quantum Chromodynamics (QCD), is sponta­

neously broken [20]. Finally, at a slightly lower temperature , we might have 

a confinement transition of quarks in QCD. 
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Grand Unified Theories, provide us with one or several phase transitions 

at the GUT scale. If we compute the variation with energy of the gauge 

coupling constants of SU(3) x SU(2) X U{1), we find that the three are 

equal at an energy ~ 10 1 5 GeV [21]. This is the scale at which the unifying 

gauge group (eg. SU(5)) is broken spontaneously. This is another phase 

transition whicn could have important cosmological consequences. In fact, 

in the original formulation of the inflationaiy scenario, Guth [10] suggested 

using the GUT phase transition to solve the problems of the big bang model. 

In the next section we will review Guth's original proposal for the in­

flationary model, its realization and how it solves the naturalness problems 

which plague the big bang model. We will alBo discuss the essential flaws in 

this scenario and why it is untenable. 

1 THE INFLATIONARY SCENARIO 

An essential feature of the inflationary model is the description of matter 

by a quantum field theory. In particular, this means modifying the energy 

momentum tensor T^ of (1.2) to include the contribution of the energy mo­

mentum operator [22]. If the quantum state does not break the symmetries 

of the Friedman-Robertson-Walker background, then we add a contribution 

T,» = T" + T% (2.1a) 
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T% = M l u , (2.16) 

where T ^ is the energy momentum tensor of (1.2) and pQ is the energy 

density of the state. 

To illustrate the working of this scenario, we Bret discuss a toy model. 

Consider a field theory which has an effective potential V{4>), like the one 

in Fig 2.1. Here <j> is a scalar field called the inflaton. The figure shows 

the effective potential V{4>) for T = 0 and for T > T„ Tc being the critical 

temperature. An example would be a pure scalar theory with a quartic 

potential. 

To understand the oDeration of this model, we have to consider finite tem­

perature effects in quantum field theories }23j. Conventional field theories, 

describe events in a surrounding heat bath at T = 0. In the early universe, 

this assumption is inapplicable because of the presence of high matter and 

radiation density. So we have to study the field theory with a background 

heat bath at temperature T j£ 0 [24]. Using the formalism of quantum sta­

tistical mechanics with appropriate boundary conditions, we find that the 

effective scalar potential is [23] fin the high temperature limit) 

V.T„{+) = V%"W + CTV + O(^) (2.2) 

where C is a constant depending on the specific model. This temperature 

dependent correction causes a symmetry restoration at high temperature in 
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theories with broken symmetry. 

The effective potential has, at zero temperature, a global minimum at 

4> — Aru« = o and also a local minimum at 4> = 4fain = 0' w * t n energy po. 

We assume that there is a temperature T c above which the finite temperature 

effective potential has a lower value for <j>/aim than for 0(PU«. Ts is then the 

critical temperature for a first order phase transition and for T > Tc, we 

have symmetry restoration i.e., the symmetric phase <j>fai,c is preferred. 

We can now trace the evolution of the universe based on this toy model. 

The evolution starts at T = Tpianct ~ 10 l f lGeV. Above this temperature 

quantum gravitational effects are important. Initially the thermal energy 

dominates the energy momentum tensor and the universe expands like a 

radiation dominated one (1.6, 1.7). The temperature dependent term in the 

potential (2.2) causes the state <j>jai,a to be energetically favored. This will 

continue till the temperature falls to Te. Below this, the universe supercools 

and remains in the false vacuum 4>t<d>c The phase transition begins by 

formation of bubbles of the new phase [25], The time independent energy 

density of the false vacuum pB, dominates the energy momentum tensor. 

This acts like a cosmological term in Einstein equation (1.3) with 

A = 8irGp0. (2.3) 

Solving for the scale factor R(t) from (1.4), we find an exponential expansion 
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(or inflation [10]) of R(t). 

R{t) ~ ext (2-40) 

X=(f<?Po) , / S (2.46) 

During the phase of exponential expansion, the scale factor soon becomes so 

large that the metric (1.1) can be approximated locally with the k = 0 form 

ds' = -dt* + R^dZ*. (2.5) 

This space is called de Sitter space [26]. 

The temperature Tm of the universe supercools exponentially 

r m ( t ) ~ TGaT*-B{'~taOT)• (2.6) 

After a few e-foldings, i.e. the number of times the scale factor R expands by 

a factor of e, the state 4> = 0 is no longer a stable minimum of the effective 

potential but is a metastable false vacuum. It will decay to the true vacuum 

0<rue by tunnelling through the potential barrier. This phase transition is a 

first order one i.e., it proceeds like the boiling of water by the formation of 

bubbles of the new, energetically favored phase. 

Assuming now that this expansion continues for a time At and then the 

phase transition occurs instantaneously, we can calculate the increase in the 
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scale factor 

^m~eX" (2-7) 

When the phase transition terminates, the energy density po is released 

as latent heat. This energy, if rapidly thermalized, reheats the universe back 

to TR ~ TOUT- Reheating is a non-adiabatic process and generates entropy. 

The entropy density is the same as before the exponential expansion (because 

the temperature is the same (1.10b)), but the scale factor has increased by 

a factor of Z (2.7). Thus the total entropy increases by a factor of Z3. This 

entropy generation is the key to solving the problems we encountered with 

the standard scenario in the previous chapter. Guth [10] showed that with 

Z > 10 a 9 , the horizon, flatness and monopole problems of the big bang model 

are easily solved. 

The horizon problem does not exist in this version of the inflationary 

model. Recall that the crux of the horizon problem was the existence of 

many causally disconnected regions which evolved into our present universe. 

If the scale factor goes through an exponential expansion, the horizon length 

(1.11) also expands exponentially while the physical radhiB (1.12) remains 

constant. Thus the region which grew into our observed universe was well 

within one horizon length. The isotropy of the microwave background is in 

a sense due to the immense expansion. 

The flatness problem is also easily solved by the inflationary model. The 
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flatness problem was essentially the problem of understanding the closeness 

of fl to one in the present universe. The fine tuning of the initial conditions 

to give fl = 1 is also related to the large entropy of our universe. To see this, 

we consider the total entropy of the universe (a dimensionless quantity). 

S = Ras (2.8o) 

Using T = r 7 = 2.7K (the temperature of the background radiation) and 

(1.10b), we get 

s ~ lO'cm" 3. (2.86) 

Using (1.4) and (1.14), we obtain 

JE = fl-1|l-n|~1/*. (2.8c) 

With 0 < 2, R > 10 1 0 years, we get a value of S which is very big (10] 

S > 10". (2.8d) 

Thus thfl problem is reduced to explaining the enormous magnitude of this 

dimensionless number which we normally expect to have a value of order 1. 

In the inflationary model, with Z > 10 2 9 the entropy increases by a factor 

of Za = 10 8 7 . Therefore we expect fl to be one to a very high degree of 

precision. This is one of the firmest predictions of models of the kind which 

use exponential expansion. 

The monopole problem is also avoided in this model. The horizon length 
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is exponentially bigger, leading to a corresponding decrease in the number 

density of the monopoles. The exponential expansion dilutes the density of 

the monopoles to an acceptable value. 

The inflationary scenario outlined above does not address the problem of 

generation of inhomogenities which lead to galaxy formation. For that we 

have to go to the new inflationary models which we will discuss in the next 

section. 

The toy model that we have discussed above is obviously not very realis­

tic. A more realistic model is the Georgi-Glashow SU(5) model [4], In this 

case, the leld $ is in the adjoint representation of SU(5) i.e., it is a 24 of 

SU(5). For field configurations which break SU(5) down to SU(3) x SU{2) 

x U(l) i.e., where the expectation value of the Higgs field is of the form 

3 3 

^ = ^diag[l, 1 , 1 , - - , - - ] (2.9a) 

the finite temperature effective potential (to one loop) is given by 

V$ r ( t f ) = A<t>< In £ - i ] + i m V + C<fT* + P o (2.96) 

where A and C are constants determined by the gauge coupling constant 

otauT [27J. Here m is the mass parameter and m <c <ptrul = a. This is 

essential so as to get a temnerature independent potential barrier near the 

origin. It is thiB barrier which is responsible for the universe being trapped 

in the metastable false vacuum when the temperature falls below IT,.. This 
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potential looks similar to the one in Fig 2.1 (in one of the Higgs's directions). 

The previous discussion of the evolution of the universe can also be applied. 

Tha false vacuum is the SU(5) symmetric phase while the true vacuum is 

the SU(3) x SU(2) x U(l) symmetric phase. 

It was soon realized that the original scenario of Cuth could not provide 

a realistic cosmology [28]. To see this we have to iook in detail at the 

mechanism of phase transition in this model. 

In the preceding discussion we have assumed that the phase transition 

occurs instantaneously. This is actually not the case; the phase transition is 

a slow first order one taking place in an exponentially expanding space. 

The babbles of the nev phase nucleate at a rate A, given by [29] 

A = Ae~B (2.10) 

where A is a quantity which has dimensions of mass4 and B is the classi­

cal action associated with the 0(4) invariant solution of the Euclidean field 

equations (Instanton). Since the details of the parameter A are not impor­

tant for the following discussion, we will assume A to be T£VT (since TOUT 

is the characterstic scale of the phase transition). 

These bubbles expand at essentially the speed of light, due to the energy 

released by the conversion of the false vacuum into the true one. Thus the 

space inside the bubbles is causally disconnected from the region outside, 
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which is still described by the de-Sitter type metric (2.4 and 2.5). This is a 

problem because the phase transition never terminates. The space outside 

is expanding exponentially while the region inside grows only as t1!1 (1.7b). 

Therefore, the bubbles of the new phase never join to form the region which 

contains our universe. To ensure a large enough expansion to solve the 

cosmological problems, the barrier has to very high and the tunnelling prob­

ability low. But, precisely because of this, the tunnelling probability never 

catches up with the expansion rate. The universe remains in the de Sitter 

phase in the SU(5) symmetric phase with some isolated regions of the true 

SU(3) x SU(2) x U(l) phase. This problem, of the bubbles not percolating 

[28], has been called the problem of 'graceful exit'. 

The inflationary model suffers from another drawback — the problem of 

large inhomogenities. The bubble walls carry a large fraction of the original 

vacuum energy. These bubble walls form after the exponential expansion 

and hence remain within our observed horizon. Not only is the universe very 

lumpy but is almost empty. This is because the energy stored in the walls is 

never released since the bubbles never colMde. Thus this form of the scenario 

leads to unacceptably large energy perturbations in the universe [28]. 

This model, or the 'old' inflationary scenario is untenable. To address the 

problems associated with it, we must discuss the 'new' inflationary scenario. 
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2 T H E N E W I N F L A T I O N A R Y S C E N A R I O 

To overcome the problems outlined above, a modified version of this 

scenario, the new inflationary universe was proposed [30]. The basic idea 

behind this proposal is to ccnstruct a model in which inflation occurs after 

the bubbles of the new phase have been formed. Recall t ha t in the 'old' 

inflationary scenario, the problems arose because we had the phase transition 

(bubble formation) after the exponential expansion. Hence the bubbles did 

not percolate and there was no graceful end to the inflationary epoch. In 

the new inflationary model, these problems don' t arise because the observed 

universe lies within a single bubble. 

The crucial feature of the new inflationary model is the presence of a long, 

flat scalar potential. We assume tha t the effective potential of the inflaton 

i.e., the scalar field driving inflation, is of the Coleman-Weinberg type [31]. 

The second derivative of the effective potential vanishes at the origin. In the 

SU(5) model [4], the one loop effective potential takes the form 

vspw = A** b £ - i + C<f>*T7 + ^Ao* (2.11a) 

where A and C are coefficients given by [27] 

5625 
A = ~eT GUT ( 2 - l l f r ) 

75 
C = — •KotavT- (2.11c) 

4 
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Notice tha t in (2.11a) we don't have the mass term present in (2.9b). 

Actually there is a slight subtlety in discussing the mass terms in these 

models. If the effective potential in de Sitter space is computed, the effects 

of gravitational curvature for a t rue Coleman-Weinberg potential must be 

taken into account. This gives rise to a correction which behaves like an 

effective mass t e rm [32]. We have not only to set the bare mass term in 

(2.10) to zero, but also this gravitational correction [33], The potential is 

shown in Fig 2.2. There is now no temperature independent barrier near 

the origin to stabilize the state <f> = 0> once the temperature falls below the 

critical temperature . 

Once again we trace the evolution of the universe in this model. We 

s tar t a t T = Tptanck when the thermal part of the energy momentum ten­

sor dominates and the universe expands like radiation dominated. As the 

temperature falls to Tc, the vacuum energy starts dominating the energy 

momentum tensor and the universe expands like (2.4a) with 

Po = \Ao*. (2.12) 

As long as the temperature is non-zero, there exists a bump near the origin 

which stabilizes the state <f> = 0. The height of this bump is of order T 4 

and the width of order T [34]. This barrier is needed because otherwise the 

thermal or quantum fluctuations in the inflaton field will drive the transition 

too soon, resulting in insufficient inflation. 
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The quantum fluctuations now drive the infiaton field away from </> = 0 

tc-vards tfi — a. But as we have already noted, the potential is extremely flat 

near the origin and the phase transition is the 'slow rollover' type. Therefore, 

until the field evolves past the flat part of the potential, the universe contin­

ues to expand exponentially as it did in the metastable symmetric phase. If 

the time taken for 0 to roll over from 0 to <£ = <f>„,d (Fig 2.2) is sufficiently 

long, we will get enough inflation to solve the horizon and flatness problems. 

The evolution of the scalar field can be described accurately by its semi-

classical equations of motion. Initially the quantum effects are dominant 

but soon these become unimportant and the semi-classical solution is ap­

p l i c a b l e ^ ] . The semi-classical equation of motion for a scalar field in an 

expanding universe is 

dV 
4> + ZH<t>=--^r. (2.13) 

Here the dots imply time derivatives and the second term is the 'friction' 

term which is due to the redshifting of energy in an expanding universe. 

This slow rollover continues till <f> = <f>enA- The potential is not flat any­

more and the field falls rapidly towards 4> = o. Around the minimum, the 

field oscillates with a urne scale which is typically the GUT time (~ J J - ^ ~ ) 

and which is very small compared to the expansion rate of the universe. 

These oscillations are damped quickly and the energy is thermalized [36|. 

The damping is simply the decay of the infiaton into other lighter particles. 
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The release of energy reheats the universe back to a temperature of order 

Tc. Prom here on, the evolution continues like in the standard model. This 

reheating is very crucial for the generation of baryon number in the universe. 

We will discuss the reheating and baryosynthesis in detail in the following 

chapters. 

In this new inflaf ->.ry model, there are no horizon, flatness or monopole 

problems for the same reason as they were avoided in the old inflationary 

scenario. Furthermore, we can now use particle theories in which a discrete 

symmetry is broken spontaneously. When a theory has a discrete symmetry 

which is broken spontaneously, we get domain walls separating the phases. 

The presence of the domain walls in our observed universe is problematic in 

the same way as the presence of bubble walls — they make the universe too 

lumpy. In the old inflationary scenario, since we had the inflation before the 

phase transition, there was no way to get rid of the domain walls once they 

were created by symmetry breakdown. But in this scenario, the expansion 

takes place after the inflaton has chosen a direction in group space to roll 

over. Thus it is possible to inflate away the domain walls so that the typical 

domain size is much greater than the observed universe. 

Another success of the new inflationary scenario is in the explanation of 

galaxy formation [37]. The universe is homogenous on very large scales but 

there are inhomogenities which we see on many length scales. In the stan­

dard model, it is assumed that these inhomogenities evolved from small per-
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turbations about the Friedman-Robertson-Walker background [19]. These 

perturbations cannot be causally explained within the standard model, since 

the perturbations on all scales originate outside the effective psrticle hori­

zon, (The effective particle horizon [38], is the Hubble radius, H~l, and 

is the maximum distance that rnicrophysics can act coherently. For length 

scales larger than this, spatial correlations are exponentially suppressed and 

the cosmological expansion time is larger than the time taken by light to 

travel this distance.) 

Furthermore, a scale invariant spectrum of initial energy density fluctu­

ations explains the experimental constraints [39]. These experimental con­

straints come from the absence of observed anisotropies in the microwave 

background [40] and the requirement that the perturbations have enough 

time to grow to give the structure on the scales observed [41]. The standard 

scenario, does not give us any theoretical motivation for such a scale invari­

ant or Harrison-Zeldovich spectrum, but postulates it to fit the experimental 

observations. 

The new inflationary scenario is successful in explaining both these puz­

zles. When the inflaton starts rolling over from the unstable false vacuum, 

the universe is in the de Sitter phase. Within a fluctuation region (i.e., the 

region which grows to give us the observed universe), the expectation value 

of the 4> field is not spatially uniform. As already noted, there are zero-

point or vacuum(quantum) fluctuations initially, which provide the seed for 
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classical matter perturbations [42]. Moreover, the mechanism of exponential 

expansion provides a causal explanation of the scales of these perturbations. 

Perturbations on all scales originate inside the effective particle horizon or 

Hubble radius during this de Sitter phase. 

The Harrison-Zeldovich spectrum emerges naturally within this frame­

work because de Sitter space is time translation invariant [42]. So different 

scales reach the Hubble radius at different times but with essentially the same 

amplitude (actually, the time depends only logarithmically on the scales since 

R ~ em). Since microphysics is not operative coherently outside the Hubble 

radius, the evolution of the perturbations continues unchanged leading to a 

scale invariant spectrum. This qualitative explanation of the spectrum of 

perturbations was an impressive success of the new inflationary scenario. 

Even with all these spectacular successes, the new inflationary universe is 

untenable. The Coleman-Weinberg type of potential, which is very desirable 

because of its flatness, is not completely natural. The mass parameters have 

to be unnaturally fine tuned in order to obtain enough inflation [43]. The 

mass terms have to be fine tuned precisely down to 109 GeV while radiative 

corrections tend to push up their value to O(10 1 6 GeV). This is undesirable 

because it was precisely the unnatural fine tuning of parameters in the big 

bang model, that led us to search for alternate models. 

Another serioua problem with this model is that the transition from the 
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false, SU(S) symmetric vacuum might take place into a SU(4) x U(l) sym­

metric phase [44]. In the multidimensional configuration space, the SU(5) 

phase goes to a SU(4) x U(l) phase which decays to the desired SU(3) x 

SU(2) x U(l) minimum. Thus the scenario cannot be realized in our SU(5) 

model but it is possible in an SU(5) theory with an enlarged Higgs sector 

[«]• 

The fatal blow to this scenario, comes from the density perturbations 

which it produces. Even though, this model successfully explains the ori­

gin and spectrum of inhomogenities, it fails to give a correct estimate for 

their magnitude. Recall that the limit on anisotropy from the microwave 

background is given by 

AT/T < 10" 4. (1.13) 

This can be translated into a limit on the size of allowed fluctuations [38, 

42] 

— < 10"*. (2.14) 

In the new inflationary scenario, the calculation of this quantity [38, 42], 

yields a number which is five orders of magnitude too large 

6p 
j ~ 50. (2.15) 

There is no way to reconcile this result with the constraint (2.14). This is 

the most serious failure of the new inflationary universe. 
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Since the new inflationary model has many successes in explaining the 

cosmological conundrums, it is fruitful to investigate the requirements for a 

successful cosmology. Steinhardt and Turner [46], have set down the con­

ditions to be satisfied by the potential ol a scalar field to yield a successful 

cosmological model. We will briely summarize their results: 

1. The potential at the origin must be very flat. 

2. The flat portion of the potential i.e., from <ji = 0 to 4> = <t>tnd in Fig 2.2, 

must be long. 

3. The slow rollover transition must last long enough to give enough e-

foldings ( 2 > 1 0 2 9 in (2.7)). 

4. The potential should be such so as to give the correct order of magni­

tude for density fluctuations. It turns out that this puts a lower limit 

on the curvature near the origin. 

5. The curvature at the true minimum (j> = a must be large enough to 

reheat the universe to a temperature > 10 1 0 GeV. This is crucial for 

generating a net baryon number in the universe through GUT interac­

tions. 

Any model that we construct, must satisfy these conditions so as to produce 

a reasonable cosmological scenario — except for No.5 which we will see later 

can be violated and still enough baryons can be produced. 
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3 A L T E R N A T I V E S C E N A R I O S 

As we saw in the last section, the new inflationary scenario based on 

a reasonable Grand Unified Theory, eg. SU(5), is unacceptable cosmologi-

cally. In this section we will look at some alternative proposals to the new 

inflationary models. These proposals a t tempt to solve the problems of new 

inflation in a variety of ways — some natural and some unnatural . 

Before we go one to discuss these alternatives, we should recapitulate 

some of the problems we encountered in the previous section. The quantity 

which is of importance in solving the horizon, flatness and monopole prob­

lems is the number of e-foldings of the scale factor. For the new inflationary 

models, this is defined as [46] 

N = f*' Hdt (2.16) 

where <j>0 is the initial value of the inflaton field and (j>e = (j>cni (the end 

of the slow rollover in Fig 2.2.) Recall that to solve the problems of the 

standard big bang model we needed N > 65. The other quantity which 

was crucial in determining the success of the scenario was the magnitude of 

density fluctuations ^ . In the new inflationary model [22, 38, 42] 

" ~ urn ( ' 
where tt is the time of horizon crossing in the de Sitter phase and 6<t>[li) the 

size of the fluctuation at time t = t t . This quantity should be ~ 10"* for a 
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successful inflationary model (see the discussion surrounding eq. 2.14). 

To understand how the cosmology of these models depends on the pa­

rameters in the basic particle physics model, let us cut off the logarithm 

at aavr't'2 — H1 and parameterize the Coleman-Weinberg potential (2.11a) 

near <f> = 0 as (at T = 0) 

V{4>) = V0- \W (2.18a) 

where 

and 

V0 = ^Aa* (2.186) 

\~4A 
H* 1 

• log j + - (2.18c) 

In terms of this convenient parameterization it turns out that [33, 47] 

J V - O ^ A " 1 / 2 (2.19a) 

and [22, 38, 42] 

^ ~ 0{\ti)\W. (2.196) 
P 

In the previous section, A was fixed (because a, a and H were fixed) to be 

A ~ 4 (2.20) 

and therefore the constraints from (2.16) and (2.17) could not be satisfied. 

Alternative inflationary models try to satisfy these constraints in a variety 

of ways. One of the approaches taken is to construct a model with a separate 



inflaton field [48). Now since k is not fixed, we can tune it to a small value 

(k ~ 10" 1 0) and postulate a Coleman-Weinberg type of potential for it. This 

inflaton has to be a gauge singlet, otherwise the radiative corrections from 

gauge interactions will induce a self coupling much bigger than A. 

Another approach has been to use Bupersymmetry. Superaymmetry is a 

symmetry which transforms bosons into fermions and vice versa (49). Su-

persymmetric theories have become very popular in particle physics because 

they offer very natural solutions to some of the problems which plague gauge 

theories [50]. These problems include the gauge hierarchy problem which su-

persymmetry solves because of no-renormalization theorems [51]. 

The gauge hierarchy problem arises because of the existence of two widely 

separated scales in the theory — the weak breaking scale (~ 10 ! GeV) and 

the GUT scale (— 10 1 5 GeV). The masses of the scalar particles (which are 

responsible for spontaneous breakdown of the gauge symmetry) are subject 

to quadratic divergences in perturbation theory which tend to push them up 

to the GUT scale. To ensure that the scalar masses are O(102) GeV they 

have to be unnaturally fine tuned. This problem is solved in supersymmetry 

because the divergences due to the bosons are cancelled by those due to the 

fermions. Thus the scalar masses are stable against radiative corrections and 

fixing them at a low scale is technically natural. 

If Bupersymmetry has to do anything with our observed world, it must be 
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broken. (Otherwise, for example, we should see scalar electrons degenerate in 

mass with the electron.) This breaking of supersymmetry introduces another 

scale in the problem, namely the scale of supersymmetry breaking, M,. In 

most successful phenomenological models, the scale M , is related to the weak 

breaking scale Mw The no-renormalization theorems then guarantee that 

these scales are stable in perturbation theory. 

Initially, the supersymmetric models proposed employed global super-

symmetry which was softly broken [52]. However, it was soon realized that 

making supersymmetry local automatically introduces gravity in the theory. 

This incorporation of gravity is significant from the unification point of view. 

These supergravity models have been used very extensively and successfully 

in model building [50]. 

From the point of view of inflation, supersymmetric models have many 

advantages over non-supersymmetric models [33, 47]. Firstly, a weakly cou­

pled scalar field which is needed for inflation, arises naturally in supersym­

metric theories. In exact supersymmetry, the first order corrections of the 

Coleman-Weinberg type vanish because of the mass degeneracy between the 

bosons and the fermions. This indicates tha t A of (2.18c) is zero. However 

since supersymmetry must be broken, the mass degeneracy is lifted and we 

get a non-zero A. In fact A is propotional to Mfe where t is some cou­

pling constant. In most models, a value of A which is consistent with (2.16) 

and (2.17) is easily obtained. Furthermore, the no-renormalization theorems 
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guarantee a way out of the fine tuning problem. Recall that the mass terms 

in the new inflationary scenario had to be fine tuned to very small values to 

"btain enough inflation. This is no longer a problem because the corrections 

to the mass2 terms can now be kept as low as the mass degeneracy between 

the bosons and the fermions, i.e. 0(M*t). 

These considerations prompt us into constructing inflationary models 

incorporating supersymmetry [53). The models which are the most attractive 

phenomenologically are the supergravity models in which supergravity is 

broken spontaneously. In these models, Mw is related to M, in a natural 

way. We will construct such models with N=l supergravity in the next 

chapter and study them in detail. 
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III SUPERSYMMETRIC INFLATIONARY COSMOLOGIES 

The new inflationary scenario, while solving some of the cosmological 

problems of the standard hot big bang models, suffers from some drawbacks 

as we saw in the previous chapter. It was these drawbacks which forced us 

to look at alternative scenarios. 

For the new inflationary scenario to be implemented, we need the presence 

of a very weakly coupled scalar field. Locally supersymmetric or supergravity 

theories provide such a scalar field [53]. Non-renormalization theorems in 

supersymmetry solve the problems of ine tuning,and thus such theories are 

very attractive from the inflationary point of view. 

As remarked earlier, supersymmetry has to be broken to give us a realistic 

phenomenology. In the most popular supargravity theories, the breaking of 

supersymmetry is accomplished by the hidden sector. In analogy with the 

spontaneously broken gauge theories, the gravitino (the supersymmetric spin 

3/2 partner of the graviton) acquires a mass through the Super Higgs effect 

[54], The scale of supersymmetry breaking, M„ is related to the mass of 

the gravitino m 3 / 2 [55]. Although there is no compelling reason for the 

hidden sector and the inflaton sector to be the same, it still seems desirable 

that the sector which drives inflation should also be the one that breaks 

supersymmetry. 

Actually, in the case where this sector consists of one scalar field — called 
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inflaton — the thermal constraint imposes such a breaking of supersymmetry 

[56,57]. The thermal constra '* is the requirement that at high temperatures, 

a sufficient amount of energy is stored in the scalar field to give enough 

inflation - in other words, the inflaton field must start its evolution far 

away from its global minimum, slowly roll down (causing the universe to 

inflate) and eventually settle at its global minimum. The problem with 

this approach is that supersymmetry must be broken at a very large scale: 

typically [57], the maas of the gravitino m 3 / 3 must be greater than y?jM 

( M = Mvj\f%i = 2,4 x 10 1 8 GeV). Here ft* is the energy density of the false 

vacuum and a typical value for ^ of 1 0 - 3 to l O - 4 is required to give rise 

to density fluctuations with the right amplitude; m 3 / 2 is then greater than 

1 0 1 0 GeV. This has to be reconciled with models describing our low energy 

world where the breaking of SU(2) x U{\) gauge invariance is driven by soft 

terms induced by supergravity — which scale like m3/2 [58]. Therefore in 

these models, the gravitino mass and the mass of the weak gauge boson Mw 

must be of the same order. 

This problem has been addressed recently by Ovrut and Steinhardt who 

solve it by using two scalar fields in the inflationary sector [59]. They employ 

a mechanism [60] which sets the symmetry-breaking scale to a much smaller 

value than the scale n; typically, the gravitino mass is of order jjj^ which 

coincides therefore with the weak interaction scale (j(~ ~ 10~ 4 ) . This can be 

worked out into a successful inflationary universe scenario [59] a t the price 
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however of some fine-tuning (at least in the explicit example given in Ref. 

59). 

In this chapter, we will take a different point of view and relate the 

smallness of the scale of supersymmetry breaking to the smallness of a pa­

rameter which is of basic importance in any inflationary universe scenario: 

the slope e of the potential near the origin. Actually, since we want the 

scale of supersymmetry-breaking to be very small compared to the scales of 

relevance in the inflation sector (of the order of the Planck mass), it seems 

plausible that the ground state must be obtained by perturbing a supersym­

metry conserving ground state. We will see in Sect. 1 that this imposes some 

constraints on the model. We do not know for the moment what is the na­

ture of the perturbation but it has to be characterized by a parameter which 

must be very small. A natural (or possible) choice is precisely the slope c. if 

we want a slow roll-down along the plateau region of the potential, the slope 

has to be very small at the origin. Actually, in most models, it is taken to 

be zero. No symmetry argument supports such a choice and hence we have 

no reason for t to be so small. But we will show that the supersymmetry 

breaking ocale can be related to it for a particular class of potentials. More­

over, even though e is arbitrarily small, the scale of supersymmetry breaking 

that we obtain is stable under radiative corrections. In other words, in our 

approach, choosing the gravitino mass of the order of Mw is natural in the 

technical sense. In Sect. 2, we describe the inflationary scenario that arises 
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in a model which we consider as a typical example of our approach and we 

discuss what kind of constraints w< obtain for the parameters e and / i . It 

turns out that the thermal constraint mentioned earlier is violated. In Sect. 

3, we show how to circumvent this by introducing a second scalar field in the 

inflation sector. 

1 T H E M O D E L S 

We first detail the procedure tha t we adopt to find a model that fulfills 

our requirements. The idea is to s tar t with a potential for which e = 0 and 

the grotind s ta te is supersymmetry-conservmg, then per tu rb this potential 

by taking t ^ 0 and see under which conditions the minimum becomes 

supersymmetry-breaking. 

Let us first prove a result tha t applies to this situation in general, inde­

pendently of the nature of the parameter e. Consider a scalar field $ in a 

locally supersymmetric theory. Its interactions are described by a superpo-

tential / ( # ) and the corresponding potential reads (assuming a flat Kahler 

potential) [61]: 

V(» ) = e l * l ' / ^ [ | £>*/(*) I 5 - j j j j l / ( « ) | 2) (3.1) 

where 

D , m = °m+*im {3.2) 
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and M is the reduced Planck mass M = Mp/VSn =2 2.4 x 101 8GeV. The vari­

able e parametrizes a perturbation on the coefficients of the superpotential, 

which is left unspecified for tho present. 

If the minimum — oQM— of the potential V (with a zero cosmological 

constant) is supersymmetry-conserving when e = 0, then a necessary condi­

tion in order that the perturbed minimum (with zero cosmo'ogical constant) 

breaks supersymmetry is that: 

d¥{ao] = 0 (3.3) 
e=0 

An equivalent formulation involving the potential is that its second deriva­

tive (and then automatically its third one) is zero at the minimum: 

dsV d*V. , 
d¥M „ d*>{"0) = 0 (3.4) 

The proof is straightforward. 

Since, when e = 0, the minimum c0(V(a0) = ^'(CTO) -- 0) conserves super-

symmetry: 

/ M U = £/(«b)| = 0 (3-5) 
o w l«=o 

On the other hand, since we want a breaking of supersymmetry when we 

turn e on, we must require that: 

f{a) a 0(e) jt 0 D*f{a) * 0(E) ^ 0 (3.6) 
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The minimum a is determined by the equations {$ and / are taken to be 

real): 

V{c) = 0 H D*f(c) | 2 = 3 | f{a) | ! (3.7) 

V(a) = 0 « [ ^ U * / W l i ? * / W = 3[^/(<7)]/(<r) (3.8) 

Therefore combining (3.6) and (3.7), we obtain fron. (3.8): 

A i ? t / ( a ) = ±y/i±f{c) = 0(c) (3.9) 

which in turn gives (3.3). It is immediate to show, using the form of the 

potential [(3.1) and (3.2)] that (3.3) and (3.4) are equivalent. 

The condition (3.3) is only necessary. We now turn to the study of the 

potential near the perturbed minimum to determine the sufficient conditions. 

It will prove to be crucial to study the potential in the complex plane. We 

therefore write (we take M = 1) 

4 = <j> + ix = cr0 + j> + «'x- (3.10) 

The superpotential can be written as a power series in E: 

/ ( * ) = /o(*) + £/i(«) + «Vs(«) •• • (3.11) 

Using these notations, (3.3) and (3,5) now read 

M»o) = /ofai) = /o (°o) = 0. (3.12) 
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The non-linear nature of the relation between potential and superpotential 

causes 4> and x to get a vacuum expectation value of order e 1/ 2 . To determine 

under what conditions this happens, we have to keep terms in the potential 

up to order e s (where we consider 4> and X t 0 D e °f order e 1 / s ) . Using (3.12) 

we obtain from (3.1) l 

V(*.X)L, = e°l {lffi(*o) + \(* + &) ' /?(«•) + o*efxfa)\d 

- 3 | e/,(«70) I'} 

= ="» {*' [ ( / I K ) + o0h(aa)f - Zh{a0f] ( 3 - 1 3 ) 

+ * ) ( / l W + ^ W ) ( ? - x 2 ) 

We therefore have three possible extrema: 

a) 4>a - Xo =* 0(«) 

b) * , - 0 ( c ) , x l = 2 e ^ M ± g A M ( 3 , 1 4 ) 

where we have supposed that /o"(ffo) # 0, In all three cases, the require­

ment that there is no cosmological constant at the new minimum gives the 

'If J and x were of order e'/"{n > 2), the leading term in the potential would be 

«""l s ( 0 + «» /o"(»n) I which in of order £,|*'n > e1**/" (next to leading terms). This 

has clearly a minimum only at the origin. Therefore <j> and x a r < ! »ero at the order 

C

i/",n>2:i,X~a{<:lP). 
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condition: 

/ifo) = °- ( 3- 1 5) 

Moreover the second derivatives at the new minimum are non-negative at 

the condition that, respectively: 

a ) / , K ) = 0 

b)/J(«b) > 0 < 3 - 1 6 ) 

«0/ifa>)<° 

To conclude, a sufficient condition for having a perturbed minimum which 

is supersymmetry-breaking and corresponds to a zero cosmological constant 

is: 

/ i W = o Ato)¥>o (3.17) 

along with the constraint (3.3) on the unperturbed superpotential. Let 

us compute, for example, the gravitino mass corresponding to case (3.16c) 

(/!(<To) < 0). It is given by [61] 

« . / , = <'* 0 | a / 2 I /(*o) I - • o = » o + *» + Xo (3-18) 

where, to the lowest ord. .n the expansion parameter e, 

/Wo,Xo) - hfl(oo) + jftfffa). (3.19) 
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Therefore, using (3.14c) 

i r r i ^ . ^ 1 1 / * 
(3.20) mm = ^ V ^ 2 / I K ) 3 l l / 2 

'fS'M 

A similar result is valid in case (3.16b) (/{(oo) > 0)-

In case (3.16a) (/{(^o) = 0), one has to push the analysis to the next order 

in e to see if supersymmetry is broken at the new minimum. 

Before turning to a specific example, let us summarize at this point our 

analysis of the general case. In order to have a global minimum of the 

per turbed potential which is supersymmetry-breaking, we have to impose 

on the unpc' oed superpotential the conditions (3.3) and (3.5) 

/o(ffo) = /S(*o) = fSiva) = 0 (3.12) 

and on the unperturbed superpotential (to first order in the perturbation) 

the condition (3.17) 

/iN=0 fifa)?0. (3.17) 

In tha t case, the gravitino mass which determines the scale of supersymmetry-

breaking is of order e 3 / 2 (3.20). 

We now apply this result to a specific example where the small parameter 

e is related to the slope of the potential near the origin. Let us consider the 

superpotential 

/ ( * ) = M 2 M ( a 0 + a i t + a ^ + a 4 | £ ) . (3.21) 
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The corresponding potential reads, near the origin on the real axis, 

Vtf) = / xV ' / " * [ ( l - 3a*) + 4(«s - aa)^ + ...] (3.22) 

As a first step, we require that the potential is flat near the origin and 

that the minimum <TQM is supersymmetry-conserving. The first condition 

(V'(0) = 0) gives: 

aj = OosA (3.23) 

and the second (3.5) yields 

_ - 3 < r 0 2 -Pa ± JPo(Po + 12al) ,n n . 
A = 2(2 + ^ ) ' ^ = 6a~ ( 3 - 2 4 ) 

It has been noticed already [S6J that in such a family of superpotentials, 

where 0O and aa are of opposite signs there is a violation of the thermal 

constraint [56,57]. Condition (3.3) reads 

&<ncl + 0o = 0 (3.25) 

in which case we obtain from (3.24) 

1 3 
<4 = - j j 0 , v o = y/2 ,0o = —g"o- (3-26) 

Hence (3.21) takes the form 

which has a supersymmetry conserving minimum at a0 = i/2. 
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The corresponding potential F 0 (#) is very flat near its minimum a0 since 

its first three derivatives are zero (3.14): 

V0{*) - ^~Q>3 + X2f + 0ftWP,X*4) (3-28) 

One can easily show that the real axb is a valley of the potential V0. If 

initial conditions (high temperatures?) force the inflaton field to start at the 

origin, it will evolve along the real axis until it reaches the minimum o0. The 

behavior of V0 is therefore shown in Fig. 3.1 on the real axis, together with 

its shape at temperature T = M, as computed from the results of Ref. 57. 

As stressed earlier, the temperature corrections do not stabilize the field at 

the origin, at high temperatures.* We will return to that point in Sec. 3. 

We then relax condition (3.23) by allowing a small slope near the origin 

and we write instead: 

a 2 = oo - e = 0. (3.29) 

The superpotential now reads: 

0 = Pa + 0it + 0(e2) 

Condition (3.17) gives 

(3.30) 

fit = - | / I M = IM'VS/JI < 0. (3.31) 

3 0 n e can show that thia is ao even if we include a cubic term in (3.21). 
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which shows that we are in case (3.16c). The minimum is therefore at 

i 0 = £ i n ^ y X0^0(e) (3.32) 

and the gravitino mass which determines the scale of supersymmetry break­

ing is given by (3.20): 

= ? £ ! £ » / J e V / ^ / i (3.33) 
m*l*~*M 

The first terms of the corresponding potential expanded around the origin 

are, to order c, on the real axis: 

- i ^ + < + o ( , , £ ) 
(3.34) 

and around the minimum oM = tr0M + <f>o, to order e: 

(3.35) 

If this were plotted on Fig. 3.1, it will be indistinguishable from potential 

V0. 

An objection that could raised to our linking the scale of supersymmetry 

breaking to the parameter £ is that we need to choose an arbitrarily small 

value for e. This seems unnatural (in the technical sense); the radiative 
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corrections could induce large corrections to the scale of supersymmelry, 

thus putting an end to our hopes of bringing that scale down to Mw- But, 

as we will now see, one has to take into account the very special properties 

of renormalization in supersymmetric theories and the unique features of the 

superpotential that we consider [(3.3)]. The one-loop radiative corrections 

to the potential V of (3.1) are given by [62] 

SVA = K(v + e W V ^ i i M J ! ) (3.36) 

where 

In this formula, A is the cut-off which is of 0 (M) and N is the total number 

of chiral fields in the theory. 

We first note that, since / (oo) | € = 0 = /'( f fo)l,=o = °> the ground state 

remains unchanged at the zeroth order in e when we include the radiative 

corrections. Moreover it is straightforward to prove that if V satisfies (3.4) 

then V + SVA satisfies also (3.4) (using (3.3) for / ) . Therefore our necessary 

condition is stable under radiative corrections. Moreover, the second term 

in (3.36) does not contribute to the development of the potential up to order 

t 2 , when we study the region <j>, x — 0(e^ 2), since, in this region, 

/ ( * ) = J / n » o ) ( * + »'x)' + e('4> + tx)/I(»o) + • • • * °(* 3 / 3 ) (3-38) 
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Let us note that this is true only because we required fi(aa) = 0 ( 3.17). 

Thus the expression (3.13) for the potential up to order £ ! is only multiplied 

by an overall factor (1 + K) when we include the one-loop corrections and our 

analysis of the minimum is unchanged. Therefore the mass of the gravitino 

which determines the scale of supersymmetry breaking is still of order j ^ e 3 ' 2 

as in (3.20) or (3.33). It is precisely this fact that justifies our approach 

a posteriori. Had corrections of order (i*K, for example, appeared in the 

gravitino mass, the smallness of the scale of supersymmetry breaking would 

have been a unnatural feature of our model. 

2 C O S M O L O G I C A L C O N S T R A I N T S 

We now review the set of constraints tha t the models that we consider 

must satisfy in order to give rise to a successful cosmological scenario [see 

for example Ref. (46)]. We will do tha t for the explicit example of (3.30) 

but, its salient features being a consequence of (3.3) and therefore shared 

by more general potentials, we believe that this analysis is applicable to any 

such potential. The time evolution of the inflaton field is summarized in 

Table 1. 

The inflationary period starts when the energy density becomes domi­

nated by the energy stored in the vacuum: 

A> = V0 = — ii* (3.39) 
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We assume that the inflaton field is initially located near the origin; then its 

value when inflation starts is of the order of the Hubble parameter: 

As long as radiation can be neglected, the classical evolution of the inflaton 

field is governed by the equations 

dV 

(3.41) 

Hi = zhil¥t+VM 
During the slow rollover — i.e. the inflationary period — the motion of 4> 

is friction dominated and the ^ term is negligible. In terms of the potential, 

this can be expressed as [46] 

V'M < ± I V&) I 
(3.42) 

V[*) < ^ I V{4>) I 

In the class of potentials that we consider, it is the second of these equations 

that breaks down first, at a value <j>. that is almost independent of e: 

4>c ~ 0.71M , V (</>.) a 8 X l r r V • (3.43) 

The number of e-foldings that the scale factor undergoes during inflation is 

given by 

N-LvyDd*- (3-44) 
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We can approximate the Hubble parameter in the numerator by its value at 

the origin [(3.39)] and the potential in the denominator by the first terms 

of its expansion [(3.34)]. When e < ^ (in particular e = 0), the main 

contribution comes from the lower bound (j>a (where the field spenda most of 

the inflation epoch): 

/ 5 M2 „ , M . ,„ ,„ . 
J V = Vii l^ + 0 ( 7 ) ( 3 - 4 5 o ) 

On the other hand, when e » fp (non-negligible linear term in the 

potential), the upper bound <j>t gives the leading contribution which happens 

to be independent of fi: 

i V = 5 l _ _ * e"1'* (3.45b) 
32 (24V/2)1/' v ' 

We checked numerically that these approximate formulas are very accurate 

and computed JV in the intermediate region (e = fi*/MA). A value of N 

typically greater than 60 is required [10] if we want our present observable 

universe to have emerged from a single causally-connected patch. Using (eq. 

3.45a,b) and our numerical computation, we can use the condition JV > 60 

to constrain our parameters e and fijM. To be more accurate, we must 

take into account that some time elapses between the end of inflation and 

reheating. During this period, the cosmic scale factor R grows by a factor 

R(r-1) /,P#(*.)V/VMt.)V/1Vr\-*/» 
(H)' R(tc) \ M* J \ M* 

(c.f. (3.49) and (3.53); t, is defined in (3.50), (3.51) and T is the inflaton 
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decay rate). Expressing all these quantities in terms of fj. and e, we obtain 

the condition on the number of e-foldings [46] 

JV > 66.5 + 5 |n iL _ J . i n £ . (3.46) 
3 M 12 

We draw the corresponding curve (labelled "JV = 60") in the e, /x/M plane 

of Fig. 3.2. 

The inflation field reaches the value <j>c at time t, ~ j - ^ . This value 

corresponds also to the point where the curvature of the potential changes 

sign. The field therefore starts oscillating around the minimum a. At first, 

it does not feel the details of order e of the potential near the minimum 

[(3.35)] and therefore oscillates in the </>* potential of (3.28). We show in Fig. 

(3.3) the first few oscillations of the inflation field (4, < t < 1.006ie). It is 

straightforward to compute the frequency of these oscillations: 

We have 

M*M = (iM^j ~ °-13W ( 3 > 4 8 ) 

and, after a few oscillation, w » H. Following Turner [63], we average over 

an oscillation period, and note that the energy associated with the coherent 

field oscillations behaves like relativistic matter. Therefore the cosmic scalar 
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factor R and the coherent energy density p$ scale with time as: 

m -•••>* "-»"• afa-m (3.49) 

This will continue until time t, when the field oscillations take place only in 

the close vicinity of the minimum where the potential can be approximated 

by the first term of its expansion in (3.35). This will happen approximately 

for: 

M 

which gives, from (3.49) 

c ^ / ' I V V S , V{4>t) a 32cVe 2 (3.50) 

t, s 6 x 10 V 1 — . 3.511 

From t, onward, we can consider that the field oscillates in a (f>7 potential, 

with a frequency equal to the mass of the inflaton field: 

M (3.52) 

and (since m # > H(<j>,) ~ H,), according to Ref. [63], the coherent energy 

density behaves like non-relativistic matter. Therefore, for t > tt, 

*(«) 
R(tt) -i-"-'r m-mr- ™ 

This will last until t ~ r - 1 when reheating takes place through the decay 
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of the inflaton field. The decay rate is, following (3.52), 

r ~ 2 t ~ J?_ (3/*. (3.54) 

The photon density at t = T _ 1 reads (assuming that the inflaton decays 

mostly into photons) 

One can check that Rff~J » 1 and p${tt) » p.,(t()> m which case the second 

t«"-m i s dominant. Using (3.53), we thus obtain 

p ^ r - 1 ) * ^ ( r M ) J (3.56) 

and the universe is reheated to a temperature 

W] {TM)1'7 (3.57) 

where g* is the number of effective spin degrees of freedom (g" ~ 102). We 

see that, although our potential has some peculiar features, the result for the 

reheating temperature agrees with the standard one (in the so-called poor 

reheating case) [46,63,64]. Using (3.54) we find that 

TRH ~ £&*. (3.58) 

We wish to emphasize at this point the complete generality of this result. 

Because all the potentials that we consider must satisfy (3.4), the mass of 
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the inflaton field must of of order e and is therefore given by (3.52) [in the 

general case, ft is an overall scale defined as in (3.10)]. This in turn gives 

(3.54) for T and (3.58) for TRH. 

Before discussing the consequences of such a low reheating temperature, 

we have to further constrain the parameter fijM by studying the amplitude 

of the density fluctuations. It is well known [22,38,44] that inflationary 

models yield a scale independent spectrum (the so-called Harrison-Zel'dovich 

spectrum [39]) with an amplitude at time tf when the fluctuations reenter 

the horizon in the FRW phase given by: 

^ = 0 ( 1 ) ^ (3.59) 

where (,• is the time when the perturbations leave the horizon in the de Sitter 

phase, and 6<j)[t) is tho space-averaged perturbation of the scalar field. 

One can show that the number of e-foldings that take place between f, 

and the end of inflation te is given, for a scale £, by [46] 

where Mi is the corresponding mass scale. Considering the typical scale of 

a large galaxy (Mt ~ 1O 1 6M 0) and using Eqs. (3.43) and (3.58), this gives: 

Nt = m + l\n— + llnf (3.61) 
3 fi 4 k ' 

It is easy to show that the corresponding value for the scalar field </>(«,-) 
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( > e1!2) is given by 

* M ~ — L ~ 1.7 x io- ' . (3.62) 
M 48\/2 Nt 

Since we are in the slow-rollover period of the evolution of the if> field, its 

motion is friction-dominated and, linearizing the equation of motion for Scf>, 

we can write (3.59) as: 

^ ( t , ) - 0 ( l ) «*(*,)« 0 ( 1 ) ^ 4 (3.63) 

Taking 6$[ti) =s g» [22,33,38,42], we obtain from (3.40) and (3.62) 

£(*/)«*&• <*•"> 

Let us note that the uncertainty on the numerical factor (20) is at least of 

one order of magnitude. If we consider that the amplification factor due to 

the evolution of the fluctuations subsequent to tj is not larger than 105 [see 

e.g. Ref. (41)], galaxy formation {s-j — 0(1)) requires 

— {tf) > 10~6 and ^ > 7 x 10"". (3.65) 

On the other hand, the scales relevant to the cosmic microwave background 

reenter the horizon when the universe is matter-dominated, which decreases 

the amplitude of the density fluctuations [(3.61)] by a factor i [38]. Follow­

ing Sachs and Wolfe [40], this gives an anisotropy in the cosmic microwave 
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background 

SZ „ I *± {tf) * J^L. (3.66) 

Allowing for an observed temperature anisotropy on large angular scales 

smaller than 10~ 4 puts a limit 

£ < 1 0 - ' . (3.67) 
M 

Therefore the study of the amplitude of the density fluctuations restrict 

the parameter fi/M to the region 10""1 < fi/M < 10" 2 , as shown in Fig. 3.2. 

On the same figure, we have also drawn the curve m 3 / j = Mw where m 3 / 2 is 

given by (3.33). If we restrict ourselves to such values of the supersymmetry-

breaking scale, then £ is typically of order 1 0 _ ' r ± 1 5 ' . 

We now turn to the problem >if baryon number generation. The limits on 

jj [(3.67)| and c (see Fig. 3.2) put a bound on the reheating temperature: 

TRH<lQ+sGeV (3.68) 

Similarly, because the mass of the <j> field is related to the gravitino mass 

according to [compare (3.33) and (3.52)] 

the <j> field is too light (taking m 3 / 2 = Mw gives m^ < 10°M w - 1 0 " GeV) to 

decay into the color triplet isosinglet superheavy Higgs bosons whose decays 
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can lead to baryon number generation. Therefore, such superheavy Higgs 

bosons cannot be produced directly by the decay of the coherent inflaton field 

oscillations, as in the standard poor reheating scenarios [36]. We thus have to 

resort to models of cosmological baryon generation at low temperature [65]3 

We will also see in Sect. (3) that in trying to fulfill the thermal constraint, 

we gain another possible solution to baryogenesis. We will discuss the issue 

of baryosynthesis in these models in great detail in the next chapter. 

We finally consider the so-called gravitino problem. Light gravitinos such 

as the ones that we consider have a very long lifetime: 

r 3 / I ~ - ^ ~ Wse> (3.70) 

It is therefore quite plausible that they will become non relativist;. and 

dominate the energy density of the universe before they decay, which would 

dramatically perturb the successes of the standard big bang scenario. Grav­

itinos produced before inflation are diluted away [66] and we need not con­

sider them. But they can be produced by thermal equilibrium processes 

after reheating [67,68] or directly through the decay of the inflaton field [69]. 
3 L e t us note however that in the case of interest to us (mj / j = Mw), the reheating 

temperature is in the 10 2 GeV, 10° GeV region {TBU = ( m 3 / 2 / A f ) 3 / ! , A / £ - 3 / 2 = 10"° 

GeV c~3'2). We therefore need to adapt the models of Ref. [65] to such a low reheating 

temperature. This is possible because the mass of the fields responsible for baryon number 

generation is only limited by the mass of the inlUton field which lies in the 10 s to 1 0 u 

GeV region [see (3.69)]. 
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In the first case, the density of gravitinos produced after reheating has been 

shown to be proportional to TRH [68] and a low value for TRH can solve the 

problem. It turns out that the most stringent bound comes from the analy­

sis of deuterium dissociation caused by the photons resulting from gravitino 

decays; this gives [68] 

It is easy to check from (3.33) and (3.58) that this does not give any further 

constraint on the parameters t and njM. 

The second source of gravitinos is the decay of the inflaton itself. Using 

an argument due to Ovrut and Steinhardt [69), one can show that, because 

the mass of the inflaton field is much bigger than the reheating temperature, 

the gravitinos that it produces will remain relativistic for a long period and 

will decay before they dominate the energy density of the universe. 

3 A SOLUTION T O T H E THERMAL C O N S T R A I N T 

We stressed earlier that the temperature corrections to the potential Vo 

or V do not have an absolute minimum at the origin [see Fig. 3.1). Therefore 

the thermal constraint is not satisfied. In this section, we wish to study in 

detail a remedy to this problem which has been recently suggested [64]. The 

idea is to introduce a second chiral field in the infiaton sector of the theory. 

We will denote its scalar component by * . The superpotential is chosen to 
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be: 

W(9, f ) = / (# ) + **§(*) (3.72) 

where / ( # ) is given by (3.30) and g is a function of the $ field only. Actually, 

we will only be interested here in the first terms of §($) and write 

*(*) = M'M^o + fc!—]. (3.73) 

The corresponding potential V($, *) is given by the standard formula, gen­

eralizing (3.1) to the case of two fields: 

V-(*,tf) = £££+££ aw $• nr + 
2 

(3.74) 

From the results of Ref. [57], it is easy to compute the temperature correc­

tions to that potential. For a moment, we will restrict ourselves to the * = 0 

direction, where the potential at temperature T reads: 

VH*, tf = 0) = VT{9) + ^ J j 1 2 ^ * 1 ^ |60 + bt ± | * (3.75) 

Vj"(<&) is the non-zero temperature version of the potential V($) studied in 

the previous sections. Its first terms in a * expansion are: 

(3.76) 

- j ^ " + a > ( £ + f f ) + ° u + - } 
where JV is the total number of chiral fields in the theory [57,70]. Typically, 
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N is of order 10 2 . It is clear from (3.76) that the potential V alone does 

not satisfy the thermal constraint since already the linear te rm in * tends 

to destabilize the inflaton field towards the minimum a. But if we allow the 

parameters of g(¥) — ba and bi — to satisfy the relation: 

606. >~V2(N + 2) (3.77) 

the extra terms in (3.75) will thwart this effect and stabilize the field * 

near the origin (at least along * = 0). Similarly, the coefficients of higher 

order terms in g($) can be arranged in order to cancel destabilizing effects 

of higher order terms in Vj<($). 

Of course, if we consider the superpotential W ( # , * ) as a whole, the 

constraint (3.77) which imposes tha t certain parameters (60,61) are of order 

N (=; 10 2) compared with the others, is extremely artificial. This could be 

a sufficient reason for rejecting the solution of introducing a second field in 

the inflation sector, and advocating some new mechanism to explain why the 

scalar field $ s tar ts its evolution near the origin. 4 We will however pursue 

tha t solution to see what we can gain from it. In fact, we will take b0 of 

order N and 61 of order 1 [satisfying (3.77)] and show tha t this is enough 

to obtain an absolute minimum at high temperature near the origin and a 

valley of the potential (at T = 0 and T jt 0) in the * = 0 direction. 

It is easy to see tha t , because W(*,\&) has only terms independent of * 

4The chaotic inflation scenario of Linde [71] could actually provide an answer. 
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or quadratic in * , ^ is of order *". Keeping only terms of order 6;, which 

are leading in JV(0(iV!)), we have 

dV 
• i * = »• /(|#|M*!!) 

/(l*lM*l2) 

> 0 

(3.78) 

or equivalently, 

3 ^ - M / ( | . | \ W ' ) 
(3.79) 

Since / ( | * | J , |* | 2 ) is strictly positive, this shows that S e * = JmVP = 0 is a 

(global) minimum. A similar analysis can be performed on the temperature 

corrections which shows that dlety = Im9 = 0 remains the minimum at non­

zero temperature. Therefore, at high temperature, the $ field is stabilized 

around the origin and as the temperature decreases it evolves with \& fixed at 

the origin, in precisely the way studied in the previous section since V ($, <& = 

0) = F($ ) . The only apparent effect of the * field is to give the right 

behavior at high temperatures. 

But what happens to the * field subsequently? To answer this question, 

it is interesting to note the following point. From (3.72), (3.73), (3.74), we 
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find the * field mass: 

m* = 2\/2e^(6o + M =* 0 K-JVJ (3"8°) 

Therefore in the region ^ ~ 10~ J , the 9 field is heavy enough to decay 

into the superheavy color triplet Higgs field of GUTS, which can lead to the 

s tandard scenario of baryogenesis. Of course the $ fields tha t we consider 

here are not the primordial ones since those have been diluted away by 

inflation in the !Re$ direction.' But , in most cases, the behavior near the 

global minimum (3ie$ = oM, Im$ = * = 0(e)) of the terms coupling * and 

$ will induce oscillations in the * direction. This scenario requires a detailed 

analysis of the coupled terms near the minimum, including non-leading terms 

in W (we have jus t shown tha t there are no such oscillations in the leadirg 

N approximation: (3.78) and (3.79)). 

We conclude therefore that there exist viable cosmological scenarios which 

allow a mass for the gravitino as low as Mw (see also Refs. [59] and [69]). 

This is because we related the scale of supersymmetry breaking to a small 

parameter, the slope of the potential at the origin. This scale can be as low as 

the mass Mw of the weak gauge boson. These models share in common a low 

reheating temperature which helps in solving some of the problems (e.g. the 

gravitino problem) that inflationary models usually face but is also somewhat 

undesirable from the point of view of baryosynthesis. In the next chapter, 

we will discuss baryosynthesis in detail and study an alternative mechanism 
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which might be operative in these models. This mechanism could lead to a 

production of enough baryons and hence circumvent the problems associated 

with a low reheating temperature. 
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IV BARYOGENESIS IN SUPERSYMMETRIC INFLATION­

ARY COSMOLOGIES 

In the last chapter we saw that inflationary scenarios employing local 

supersymmetry seem to be very attractive for providing "natural" solutions 

to many cosmological conundrums . The success of these models is some­

what marred by one potentially serious problem - a low reheating temper­

ature after the exit from the inflationary era. A low reheating temperature 

is undesirable because it is a potential blow to one of the most important 

achievements of the application of Grand Unified Theories to cosmology -

the generation of baryon-antibaryon asymmetry from symmetric initial con­

ditions [8j. This is so because in the standard scenario, in order to generate a 

baryon asymmetry after the de-Sit ter expansion has diluted any primordial 

asymmetry, one needs to reheat the universe to at least a temperature of 

O ( l 0 9 - 10 1 0 GeV) [46]. It could be argued that the standard out of equi­

librium decay of the color-triplet Higgs is not the mechanism responsible 

for the generation of the asymmetry, but alternative mechanisms: decay of 

coherent Higgs field oscillations which are very far from equilibrium [36], low 

temperature baryon generation scenarios [65] etc. could be operative. While 

this may be reasonable, it still seems fruitful to us to investigate alternate 

origins for baryon number generation , since this feature is potentially the 

most restrictive on model building. 
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In this chapter, we will investigate the possibility of generating a satis­

factory baryon excess within the framework of locally supersymmetric infla­

tionary models. More specifically, we will use the hidden sector models [72], 

since they seem to be the most attractive phenomenologically. ("no-scale " 

models [73] will not be considered here.) 

These models have a very weakly coupled scalar field, the inflaton which 

is responsible for the de-Sitter expansion and the subsequent reheating. The 

very weak interactions of the inflaton imply the reheating temperature is low 

because the lifetime is large and there is a significant redshifting of energy 

[46,63,64]. This causes problems for baryosynthesis. 

We investigate the possibility of remedying this situation by using other 

heavy fields in the theory (e.g. the adjoint Higgs in SU(5)). Due to the 

gravitational couplings between these heavy fields and the hidden sector, 

energy is transferred from the inflaton to these fields. Since these fields have 

gauge interactions and hence a short lifetime, their decays occur before any 

significant redshifting has taken place, giving rise to a significant baryon 

excess. 

After giving a brief review of baryogenesis, we establish a general frame­

work in Section II. We then investigate two representative models in Section 

III and IV. Supersymmetry is unbroken in the first model, which is simpler 

to analyze while in the second model it is broken. We compute the baryon to 
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entropy ratio in both these models and show that with reasonable values of 

various model-dependent parameters we obtain a satisfactory baryon excess. 

Both the models, in spite of giving a satisfactory cosmology, do not however, 

satisfy the thermal constraint. We find that even with the incorporation 

of heavy fields, the situation does not change. Finally, we comment on the 

finite temperature corrections and the use of direct couplings between the 

heavy fields and the inflaton in solving the thermal constraint and its effect 

on our results. 

1 R E V I E W OF BARYOGENESIS 

The observed universe seems to be dominated by matter and not by anti­

matter. There are a variety of experimental observations which support this 

claim. At galactic scales, energetic cosmic rays (i.e., with energies > .1 GeV 

and which are supposed to originate outside of our solar system) have many 

more particles than anti-particles. This is true for both protons and helium-

4 nuclei [74]. At the scales of galactic clusters, absence of a significant 7 

ray flux indicates that matter and anti-matter galaxies do not coexist. For if 

they did, the sr°'s from the collisions of nucleons and anti-nucleons will decay 

to give a significant 7 ray flux [75]. Thus we can be reasonably certain that 

even if there is an equal quantity of matter and anti-matter in the universe, 

it is separated on scales greater than (1-100) LgaWy-

This asymmetry in the universe is quantified by a dimensionless number, 
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B, which is the ratio of the average baryon number density to the entropy 

density. Since the most abundant particles in the universe are the 3 K 

microwave photons, the asymmetry is also characterized by r), the ratio of the 

baryon density to the photon density. Observationally, the number density 

of photons, n-,, is well determined 

«, = 399(J^) 3 cm- 3 (4.1) 

where T is the temperature of the microwave background. The number 

density of baryons, nB, is not constrained very much by direct observations 

[76]. However, from big bang nucleosynthesis, we know t h a t the abundances 

of light elements depends strongly on IJ. To produce quantities of these 

elements which are consistent with observations, we must have [7,77] 

^ = ^ £ ^ ( 2 _ 8 ) x l 0 - 1 0 (4.2) 

From this value of rj, and the fact that the present entropy is divided equally 

between the photon and the neutrino backgrounds, we can get a value for B. 

Assuming the constancy of entropy (1.10a), we obtain 

B = 01 ~ ^ ~ (3 - 10) x 1 0 - " . (4.3) 

It is this small number which has to be explained. It should be noted 

that an initially baryon symmetric universe (with no baryon number non-

conservation) will lead to a value of tj that is many orders of magnitude 
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smaller than (4.3) [75,78]. Before the advent of GUTs, there was no theoret­

ical motivation for having baryon number non-conservation. Thus this small 

value of r\ had to be chosen as an initial condition. 

To generate a non-zero 17 from a universe which is initially symmetric, 

three conditions have to be satisfied [79]: 

1. Baryon. number violating interactions. 

2. C and C P violation. 

!S. Departure from thermal equilibrium. 

It is necessary to have B number violation or otherwise a baryon sym­

metric universe will stay symmetric. GUTs proviua us with exactly these 

interactions but at very high energy scales. 

There must exist particle-antiparticle asymmetry, i.e., charge conjugation 

(C) symmetry and charge conjugation with a parity inversion (CP) symme­

try must be violated. If C and C? are not violated, then an initial s tate 

which is symmetric (and hence C and CP invariant) evolves into a symmet­

ric s tate . C and CP violations are needed to provide an arrow and insure 

that e x ^ s " baryons are produced. Weak interactions violate C but there is 

no system apart from the K°-K° w h t ' e CP violation is observed [80]. It 

seems highly unlikely that this is the only system in nature which violates 

CP. A detailed understanding of CP violation is still unavailable, neverthe-
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less, GUTs can incorporate CP violation and hence can provide two of the 

ingredients necessary for the evolution of an asymmetry. 

The necessity of departure from thermal equilibrium is slightly more sub­

tle. Firstly, we have to define the meaning of thermal equilibrium. Although 

a rigorous definition of thermal equilibrium is not possible in an expand­

ing universe, it can be defined operationally. When the interaction rates of 

the important processes are much greater than the expansion rate H of the 

universe, then we say that there is thermal equilibrium. In equilibrium we 

always get the same number of baryons as anti-baryons. This is so because 

of unitarity and CPT [12,81]. Unita?ity Implies that the chemical potential 

is vanishing and CPT ensures that the masses of baryons and anti-baryons 

are the same. Thus the equilibrium distributions for them are identical 

/W=[exp(^)±l]_1 (4.4) 

where the 4- sign is for Fermi-Dirac statistics smd the - sign is for Bose-

Einstein statistics. Also ft is the chemical potential and E s = p 2 + m ! for 

the particles. In standard cosmology, the universe has gone through several 

epochs when the reaction rates have not been able to keep up with the 

expansion rate (or vice-versa). 

The essential ideas of baryogenesis can be incorporated into the standard 

out-of-equilibrium scenario [R2]. We will briefly discuss this scenario in a 

semi-qualitative way to fix our ideas for the following sections. 
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Let X be a superheavy boson (either Higgs or gauge) of mass M whose 

interactions violate baryon number. If its coupling strength to fermions is 

a, then dimensionally its decay rate, TD, is given by 

VD ~ a'M. (4.5) 

We start at T ~ Tpt with a baryon symmetric universe. From T ~ Tpt to T ~ 

M, the X and X are in equilibrium and as abundant as the photons. When 

the temperature falls below M, the equilibrium abundance of the bosons 

relative to the photons is given by 

If the decay rate To > H then the X's can decay fast enough and adjust 

their abundance to this equilibrium value. (Decay is the dominant process 

since all other processes are higher order in a.) There is then no departure 

from thermal equilibrium and no asymmetry develops. 

If however Tg > / / (for T ~ M) then the X's cannot decay rapidly 

enough and are overabundant. There is then a departure from thermal 

equilibrium which is needed for the generation of an asymmetry. 

Consider a pair of X and X decaying into two channels with baryon 

number B) and B 2 and branching ratios r and (1 - r) [for X, the quantities 

are -Bi, -B 2 , P and (1 - f)\ Thus the decay of a pair of X and X will produce 
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on average a baryon number e 

e = ( r - F ) ( B i - B , ) . (4.7) 

It can be shown that if C and CP are not violated then r = ? and hence 

£ = 0. 

Now when the temperature falls to T <. M, the decay rate catches up 

with the expansion rate (because H is decreasing) and the X bosons decay 

freely. At this time, nx ~ n, and thus the net baryon number density 

produced is nB ~ en.,. Since s ~ g,n^ (where g, is the number of degrees of 

freedom), we get 

IE „ L „ 1 0 - * 6 . (4.8) 
s g. 

It turns out the favored candidates for producing the asymmetry are 

the Higgs bosons. Recall that the condition for falling out of equilibrium is 

To < H (at T = M) which means 

M > g^cfMp,. (4.9) 

For gauge bosons, a is fixed to be the gauge coupling constant ~ 1/45, 

but it is essentially arbitrary for the Higgs boson. Thus we can have a 

fairly light Higgs and still satisfy the condition for being out of equilibrium. 

Furthermore, the CP violation for a Higgs is expected to be more than that 

for a gauge boson [83]. This is because we get CP violation (and hence a 

non-zero e) at a lower number of loops for a Higgs than for a gauge boson. 
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For example, in minimal SU(5), we get a non-zero £ at three loops for the 

color triplet Higgs, H 3 , and at four loops for the superheavy X and Y gauge 

bosons [83j. 

This completes our brief review of baryogenesis. We now go on to give a 

general framework within which we will present alternative mechanisms for 

baryosynthesis in supersymmetric inflationary models. 

2 G E N E R A L F R A M E W O R K 

Consider a set of scalar fields </>,- in a locally supersymmetric theory with 

a superpotential W(4>i) (This is the quantity wa called / ( & ) in the last 

chapter), ^ h e n the corresponding scalar potential is given by (assuming a 

flat Kahler metric) [61] 

Vfa) = exp (E l&l2 /M'j [E \D,W{^)\2 - A \W^ 

where Dj,tW{4>i) is the Kahler covariant derivative 

(4.10) 

Dt.Witi) -j^ + — ^ - (4.11) 

and M = ^ | | ~ 2.4 x 10 1 S GeV is the reduced Planck Mass. 

We consider the superpotential W to be a function of two fields 4> and E. 

<j> is the field which causes inflation, the inflaton and E is some heavy field 

in the theory. Throughout we assume that 4> is a gauge singlet while £ can 

have non-trivial transformation properties under the gauge group. We will 
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for our purposes take E to be the adjoint Higgs of SU(5) but most of the 

results will be independent of this choice. 

As a first step, we assume that the superpotential W(<j>, E) be written as 

the sum of two superpotentials f[4>) and s(E). This implies that the two 

fields only interact gravitationally (we will comment on the effect of direct 

coupling later). Then, 

W(0,E) = / ( 0 ) + f l ( E ) . (4.12) 

Next we demand that at the true minimum, <f>0, E 0 , the cosmological 

constant is zero and supersymmetry is unbroken. It is easy to show that 

these conditions imply 

= 0 (4.13a) 34 

/ ( * o ) + f f ( E 0 ) = ^ 

#0 

•0 (4.136) 

The most general gauge invariant and renormalizable superpotential for E 

is given by 

ff(E) = ^ T r E 2 + | r r E 3 + 60 (4.14) 

where the constants 6OI*I,6J will be fixed by condition (4.13b). It is conve­

nient to work with dimensionless variables x and y defined as 

x = <j>/M y = E/M. (4.15) 
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Then 

5(y) = -^Tr y2 + -^r-Tr y3 + b0. (4.16) 
2 " 3 

Furthermore, we want the true minimum in the E direction to break SU(5) 

-» SU(3) x SU(2) x U(l) which implies that 

/ 

E 0 A 

2 0 

2 

2 

V 
- 3 

(4-17) 

J 
where A is a scale characteristic of E (typically MGVT)- NOW the condition 

ff(Sfo) = 0 implies 

156iA3 - 106 3A ! + b0 = 0 (4.18a) 

and 

dg 
dVab 

= 0(with the constraint Tr y = 0) 

implies 

b0 = - 5 A S 

6i = A6 2. 

(4.18&) 

(4.18c) 

With the choice 62 = 1> we have 

, , AM* , ., Af3 , „ , 
9(y) = —j-Tr{y2) + ^ - r r ( y 3 ) - 5A 3 . *.18d) 
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For our case 

W(x,y) = f(x)+g(y) 

and 

V(x,y) 
M* 

2 

% f _ _ + z W r | + f _ + yahW\ -3W (4.19) 

assuming x and y to be real. 

From this expression, it is straightforward but tedious to compute the 

derivatives of the potential in the two directions. We only display | ^ since 

the others are messy and not particularly illuminating 

h = 2xV + - ^ p - t ( / ' + x W ) U " + w + xf,) 

+ Wf'Tr y7 + AM2f'Tr t/1 (4-20) 

+ M3}'TT y* - 3Wf] 

where primes denote J j . Using these expressions, one can determine what 

the value of the E field is when <f> — ° i-e. at the beginning of inflation. 

In the Appendix we show that it is impossible to simultaneously satisfy 

f i = 0 = |K = o,F > 0 and V ~ 0(fi*) at <f> = 0 if the E field is at its true 

minimum i.e. in the 3-2-1 phase. Since all the above conditions are necessary 

for a successful inflationary model, the E field must start its evolution away 

from the true minimum. If the E field is at its true minimum when <j> = 0 

then it will be less likely that E oscillations will be generated as rf> evolves 
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from 4> = 0 to <)> = 4>o-

We now estimate the baryon to entropy ratio in two representative mod­

els. 

3 MODEL I 

The superpotential for the infiaton field is [64] 

f(x) = i^M{x -if i s </>/M (4.21) 

where the scale /i is fixed at (10~3 - 10~*)M by demanding that the model 

gives the correct order of magnitude of density fluctuations which lead to 

galaxy formation. [41,64] This superpotential leads to an absolute minimum 

at x = 1 with zero cosmological constant and unbroken supersymmetry. 

The evolution equations for x and y can be solved numerically and the 

energy stored in the E field can be determined. We find that a more trans­

parent strategy is to solve the evolution equations analytically using various 

physically reasonable approximations. This is the approach we choose in the 

following analysis. 

There are two natural scales in this model: the scale fi associated with 

the inflation sector ( ^ ~ 0(10~3 - lO*"1)) and the scale A associated with 

the E sector which has a typical value ~ 10~2M [84], Thus a reasonable 

parameter to use is fi/A. We will throughout keep only the lowest order 
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terms in / i /A . 

At <f> = 0, we need to determine the value of the S field. Assuming that 

the value at (j> = 0 is a. small perturbation from the true minimum, we write 

/ 

M 

2 + a / i /A 

2 + a / i /A 

2 + a / i /A 

-3 - |afi/A 

-3 - fa/i/A 

(4.22) 

U'sing the derivatives | ^ we can solve for o to get 

21 Af 

which confirms our expectations of keeping only the lowest order terms in 

M/A. 

Next we need to trace the evolution of the tj> and S system in the </• — £ 

plane as (j> evolves from 4> = 0 to ip = (fi0 = M. Once again we need to solve 

the evolution equations numerically, but we can simplify mat ters . Since the 

position of < y > at ^ = 0 is not very different from that at <j> = 4>0, it is 

reasonable to assume tha t the evolution of 4> is unaltered. 

With these assumptions, we now obtain the position of the £ field at the 

end of inflation. The inflationary epoch is characterized by a slow rollover 
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in the (j> direction and in terms of the potential this implies,[46] 

V"W<-fii\vm (3-42) 

V'W<^§\V(4>)\. (3.42) 

For the potential we consider, the first equation breaks down first at a 

value 

xt ~ 0.2425. (4.23) 

Using this value of xc, we once again solve ^£ to get the value of E at this 

point (to lowest order in fi/A). Assuming the form of y to be as in (4.22) 

we get 

y(x = x,) = 

( 

M 

2 + 1 - 1 5 ^ 

2 + !' 1 52fo 

2 + 1 . 1 5 ^ 

-3 - 1.725-

-3 - 1 . 7 2 5 ^ 
(4.24) 

The evolution of the 4> and E fields is governed by the evolution equations 



which are [36] 
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(4.25) 

where 

1 dV x + 3Hx + TIx = - ~ ~ 
M* ox 

„ „ . „ . i av 
yab + 3Hyab + T^y^ = ~r=-=;— M2 dyai 

H^^f,\V(4'^) + \4>i + \ii + P1}- (4-26) 

Here Tx and T„ are the decay rates of the <j> and 2 fields respectively and 

/>, is the energy density in radiation. The equation for y can be rewritten as 

an equation for a using (4.22) 

1 BV 
fiM ay 

We can get a sensible approximation scheme for these quantities by com­

paring the orders of magnitude. Since the <j> field has only gravitational 

couplings, its decay rate is 

F , ~ g . (4.28) 

On the other hand, £ is a gauge nonsinglet and its decay rate is 

TE ~ am-z ~ a A (assuming m E ~ A) (4.29) 

where a is the GUT gauge coupling constant. At the origin in the (j> direction, 

the value of the Hubble parameter H is ~ fa. Assuming m^, ~ fa [64] and 

and a ~ ~ [85], we obtain 

Tj«3H <<aA. (4.30) 
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Furthermore, the time taken for slow rollover, tc, is given by [64] 

t. ~ ^ » r j 1 . (4.31) 

The physical picture which emerges from this is as follows: at t = 0, the 

4> field is at its origin while the E field is displaced from its t rue minimum 

at a value given by (4.22), From t — 0 to t = te, the <j> field evolves slowly 

from 0 = 0 to (j> = <j>e, giving rise to the de-Sitter expansion of the scale 

factor. Since this time is much longer than the lifetime of the E's , all the 

primordial E's decay and the density of the decay products is exponentially 

diluted. However, at t = t„ , E is not at its t rue minimum but is displaced 

to a value given by (4.24). 

Taking into account the inequalities given by (4.30), we can approxi­

mately solve the evolution equations for tf> and E. These equations give us 

essentially the same result as if the E field was moving in a pure quadratic 

potential around the true minimum. Thus for our purposes, we take the 

motion in the E direction to be governed by 

(4.32) 

2 A 

At time t = te, the value of E is given by (4.24) and the total energy in 

the E direction is at least 

M« = « . ) ~ A » i l (4.33) 
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The field is oscillating in a pure quadratic potential with a frequency 

given by its mass. Since this frequency is comparable to the decay rate of S, 

this energy rapidly goes into decay products before redshifting decreases it 

significantly. On the other hand, the <p field has a very long lifetime and it 

continues to oscillate near 4> = 4>o for a long time, with its energy redshifting 

significantly before decay into radiation. So we need to study the evolution 

of the energies associated with the (j> and E directions from time t = te to 

t = tj, = T^ 1 and compute the ratio ^f- at t = t^. 

To study the evolution, note that the energy associated with the oscil­

lations in the (f> direction is 0(ft*) and that in the E oscillations is Q(fi*jjs). 

Since A ~ 10_IJVf, we can safely ignore the contribution of p% to the evolu­

tion of the scale factors. 

We assume that the dominant mechanism for the production of baryon 

asymmetry is the decay of color triplet Higgs which are produced in the 

decay of E. This will give us a lower limit on the magnitude of sf-. 

Let riff be the number density of the Higgs triplets of mass ma produced 

by the decay of the E's. Then the energy density pu is given by, since the 

Higgs' are non relativistic, 

"•H=PH/™H- (4.34) 

Further let a fraction / of the E energy before decay go into the triplets 
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and for simplicity the rest into photons. Then 

PH = fPT. (4.35) 

and the reheat temperature is 

T (>) _ 30 
(1 - /)PE 

i /< 

where g, are the effective relativistic degrees of freedom. 

The potential in the (j> direction is given by 

V = e ' V [s 6 - 4 i B + 7x* - 4z s - x 1 + 1] 

(4.36) 

(4.37) 

and near x = x 0 by 

V = ^^[i(x - x0f + 12(x - x 0 ) 3 + . - . ] . (4.38) 

Thus near x = XQ, the dominant term is the quadratic term and the 

expansion is matter dominated [63]. The energies at t = tc and t = t$ are 

related by 

(4.39) 

where R is the cosmic scale factor. But 

R(t = t,) 
R(t=te) 

«4 + ?*„,,,-«,>] 2/3 
(4.40) 

where Hl=tm is the Hubble parameter at t = t e. 
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From (4.30), (4.31) we obtain 

Rfo 
R(te) 

Also from (4.26) and p$[tc) ~ nA we get 

y ~ ( l + - ^ . T ; 1 ) • (4-41) 

PB[U) = \pB(U)~i. (4-42) 

Using (4.42) and p%(t,) ~ -^pl*4 we obtain the number density of the 

triplets at the time of (j> decay as 

»*(*,) = -**- X A ^ . (4.43) 
mg ma Mm 

Assuming that es is the baryon excess produced per triplet decay we 

obtain the number density of excess baryons as 

From Ref. 64, we know the reheat temperature for this model, 

TRH ~ TJM?* ~ l?IM\ (4.45) 

Note that this is the final reheat temperature, produced by the decay of the 

inflaton. There might be some intermediate reheating associated with the 

decay of other particles, for eg. Tjift associated with the decay of S's. This 

produces a negligible amount of entropy because the small amount of energy 
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gets redshifted significantly between tt and t t . Thus the baryon to entropy 

ratio at t = t$ is given by 

!!*„ _i5_5*£*!£." (4.46) 

Using (4.46), we can estimate the numerical value of ^f- and compare 

it to the observed value of ~ 10~ 1 0 . There are however, ambiguities in the 

values of the parameters entering (4.46). The values of ^ and ^ can be 

fixed, as already indicated at 10""3 - 10~* and 1 0 - 2 respectively [64, 85). g, 

can be assumed to be 0(2 x 10 s) at these scales. tB,f and mg are more 

uncertain and model dependent. 

It is known [86], tha t in supersymmetric models, apart from the usual 

dimension 6 operators responsible for proton decay, there can also exist di­

mension 5 operators which could give a disastrously small proton lifetime. 

If these operators are present, we have a lower bound on the mass of the 

superpartners of the triplets given by [87). 

m^ > WleGeV. (4.47) 

However, one can invoke certain symmetries, for example a Peccei Quinn 

symmetry (88] or a discrete symmetry, which forbid proton decay by dimen­

sion 5 operators. In these cases the limit is much smaller. For example Ref. 

88 shows that it is possible to reconcile a low mass Higgs triplet with the 

experimental bounds on proton lifetime. The lower bound is considerably 
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reduced to 

mH > 2.85 x 10 1 0GeV. (4.48) 

The value of £B, or the net baryon number produced by the decay of a 

particle-antiparticle pair is also very model dependent. At tree level, e^ = 0 

and tfl 7̂  0 comes from loop diagrams. For supersymmetric GUTs, no 

"surprising" cancellations occur at one loop level and so eg 5 0(a/4»r)[84]. 

The quantity / is to be determined by looking at the decay modes of the 

£\s. The E's can decay into anything lighter-triplet, doublet Higgs, gluons 

etc. A value of 1/10 is not an unreasonable value for this parameter. Using 

eB ~ 1 0 - 3 [88], we obtain from (4.46) 

V± „ 1Q-*M:i*M_. (4.49) 
s mB 

If we use mH ~ 10 + 1 0GeV and y. ~ 10" SM, we obtain a value of 2* 

which almost agrees with that observed. However, if the higher bound on 

ma is taken from models where dimension S operators are not suppressed 

by some symmetry, then this mechanism gives us a much smaller value of 

^f in disagreement with observations. 

4 MODEL II 

Having computed ^ for this simple model with no supersyrnmetry break­

ing, we go on to consider a model with supersymmetry breaking in the in-
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flaton sector. We will use the simple model discussed in Chapter 3. 

To recapitulate what we found in the previous chapter, consider the in-

flaton superpotential 

f{x)=^M{0 + e + x + fSx*-±0x4} (3.27) 

where 0 = - § \ / 2 — |e + 0(e 2). The minimum is supersymmetry breaking 

and is at 

* = v / 2 + ( ^ ) l / 3 (3.32) 

and the gravitino mass is 

m 3 / ! = | V s ^ e ^ V " . (3.33) 

In this model, supersymmetry breaking is associated with a non-zero 

value of e. However, for the first part of our analysis we will assume e = 0 

since this does not change our conclusions. We start with a superpotential 

/ ( i ) = y/2(i*M - H = x H 
. 8 s/2 8 32 

(4.50) 

Coupling the E field to <j> and carrying out the same analysis as for model 

I, we obtain the value of S at the end of inflation. The slow rollover or the 

inflationary epoch ends at a time t = tc when the inequalities in (3.42) are 

no longer satisfied. We found in the last Chapter that the second inequality 
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<t>t ~ -71M. (3.43) 

Using this value of <£«, we solve | £ = 0 to obtain 

»(* = *.) = ] | 

2 + - 4 1 ^ 

2 + "«fe 
2 + "42fe 

- 3 - '62, 

- 3 - -62-fc AM J 
V (4.51) 

Once aga^n, as for Model I, we use these initial conditions to solve ap­

proximately the evolution equations for E and <f>. Not surprisingly, we find 

again that the motion in the £ direction is governed by a pure quadratic 

potential. At time te, the E field sits away from its true minimum and has 

energy ps ~ M 4 ^ which rapidly goes into its decay products. In computing 

o -̂, we need to trace the evolution of p$ and ps from te to 1$. It is here that 

the difference from Model I occurs. 

Recall that for Model I, the potential was predominantly quadratic in 

the <j> direction and hence the universe expanded like a matter dominated 

one. In Model II however, there are two stages of expansion (once again 
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p$ » PE and the evolution is governed by pt). From time tc to a time 

t = t ~ 6 x 1 0 ~ 3 £ - 1 " (3.51), the <j>* term dominates and the universe 

expands like radiation dominated . 

Thus for tc<t<U 

R(t) 
R{te) 

= [1 + 2Ht=lc(t - te)}1'1. (3.49) 

From time tt to t # = r j 1 , the dominant term is quadratic and expansion is 

matter dominated. 

(3.53) 
S/3 

Now following the same steps as in Model I with the same notation, we 

find that 

f l f i = !*M = ^ f r j . (4.52) 

Since the energy density in E is much smaller than that in <j>'s, one can 

easily check that the reheating temperature is the same as obtained in the 

previous chapter. 

TK„ ~ t— (3.58) 

Using (4.52), (3.58) and T* ~ ^ - ^ - (3.54) we obtain 

2 - ~ ^ ^ . (4.53) 
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Prom the last chapter, we have fi/M ~ 1 0 _ s - 10" 4 and « ~ lCT 7 * 1 8 (Fig. 

3.2). Taking g. ~ 2xl0 ! , ^ ~ lO"*, mH ~ 10laGeV , e f l ~ 1CT3 and 

/ ~ 1 0 _ 1 we obtain 

^ ~ 10-"-* (4.54) 

which is similar to that obtained in Model I apart from a factor of e1^4. In 

fact the reheating temperature in this model is smaller by f3/4 than that of 

Model I, and so one expects a larger sf-. However, because the inflaton field 

has a longer lifetime in Model II we do not get a larger sf-. The energy in 

the triplets is redshifted more and the enhancement due to a lower reheating 

temperature is more than cancelled to give us ^f- in (4.54). 

The two models we have considered suffer from the same disease; they 

both violate the requirement that at high temperatures, a sufficient amount 

of energy is stored in the scalar field <p to give enough inflation - the thermal 

constraint. In other words, the inflaton must start its evolution far away 

from its global minimum, slowly roll down and eventually settle in its global 

minimum. This is not surprising however, because of a general result given 

in Ref. 57. In a hidden sector with a single field i nd a flat Kahler metric, 

the temperature corrections do not stabilize the field at the origin. 

A possible solution to this problem suggested in Ref. 64 and discussed in 

Chapter 3 is to allow for direct couplings between <f> and another field 0. For 

our case, we have until now, only considered the situation where the GUT 
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sector and the in l a ton sector are separate, i.e., only coupled gravitationally. 

If direct couplings between the two sectors are allowed, the situation in the 

two models is somewhat different. 

In Model I, the inflaton sector does not break supersymmetry and hence 

direct coupling of <f> and B, will not be in danger of changing the super-

symmetry breaking scale. In Model II however, the inflaton sector is also 

responsible for the breaking of supersymmetry (with £ ^ 0) . In this case we 

need to be careful because there is a danger tha t the supersymmetry break­

ing scale will be pushed up to maVT since the £ ' s now couple directly to the 

Thus in both cases we see that if we include direct coupling of <j> and E, 

then the thermal constraint can be satisfied. Furthermore, it is possible tha t 

with direct couplings, the value of ^f- will improve because more energy can 

be transferred now from the inflaton to the E. However, the direct couplings 

make the analysis very complicated. This is because firstly, one has t o be 

careful tha t gauge radiative corrections do not spoil the nice features of 

the inflationary potential. Secondly, both the fields are now responsible for 

inflation and reheating [for an exception see Ref. 59]. We do not carry out 

this analysis since it is beyond the scope of the present work. 

We conclude then that there exists another possible mechanism for baryon 

number generation (beyond the standard scenario) within the framework of 
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supersymmetric inflationary cosmologies. This is significant because in su-

persymmetric models, the reheating temperature is usually low and hence 

the generation of enough baryons could be a problem. 
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V CONCLUSIONS 

In this thesis, we first outlined briefly the standard hot big bang cosmo­

logical scenario. We discussed the successes of this model and some of the 

problems which it does not address. 

In the next chapter, we presented a brief review of the various attempts 

to solve the problems associated with the hot big bang model. These in­

cluded the original idea of 'old' inflation and the 'new' inflationary scenario. 

We saw how, even though these scenarios are successful in explaining some 

of the cosmological conundrums of the big bang model, they suffer from 

some drawbacks. We outlined some alternative proposals, especially those 

incorporating supersymmetry. 

In Chapter 3 we discussed some of the motivations to construct inflation­

ary models using supergravity. We then studied inflationary models where 

the scale of supersymmetry breaking is proportional to a small parameter 

which we chose to relate to the slope of the potential at the origin. This scale 

can therefore be as low as the mass M\y of the weak gauge boson. The study 

of the simplest of these models showed that no particular problem arises 

except for a violation of the thermal constraint. We showed however that 

one can deaj with this problem by introducing a second field in the inflaton 

sector, whose sole effect is to modify the temperature corrections. Anyway, 

whether or not we introduce this second field, the only field which plays a 
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dynamical role as far as inflation is concerned is the original infiaton. 

In the fourth chapter, a brief review of the mechanism for baryosynthesis 

was given. We then outlined the general framework to study an alternative 

mechanism for the generation of baryon asymmetry which involves the use of 

the couplings of heavy fields with the hidden sector. This mechanism seems 

to be a very general one since in any model with an inflationary sector and 

a GUT sector which has heavy fields, there will exist the possibility of the 

transfer of energy from the inflaton to the heavy fields. We obtained the 

value of 2*- in the case of two inflaton superpotentiate (one with and one 

without supersymmetry breaking). The numerical value of ^ however was 

se«sn to be dependent upon parameters which are model dependent. We saw 

that if we use the bound ea mn from supersymmetric GTJTs where some 

symmetry prohibits dimension S operators for baryon decay, then a value of 

^f- which is almost in agreement with the observations is obtained. In both 

models the thermal constraint is violated unless one includes direct couplings 

between the inflaton and the S fields. 

We have seen how supersymmetric inflationary models offer solutions to 

some of the problems which exist in non-supersymmetric models. However, 

there are two problems which plague these models: the thermal constraint 

and the generation of an appreciable baryon asymmetry. Baryon generation 

is a problem because of a low reheat temperature which is needed to solve 

the gravttino problem. Although we have studied a mechanism to generate 
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enough baryons in models with a low reheat temperature, there still is the 

question of direct couplings between the inflaton and the heavy fields in 

the theory. The effect of these couplings might very well be to increase 

the baryon asymmetry. A careful study of the case with direct couplings is 

needed before this issue is settled. A similar analysis should also be carried 

out in the context of no-scale models. These models are attractive because 

they might emerge naturally from superstring theories. A detailed analysis 

of the mechanism of energy transfer needs to be carried out in such models 

to understand the issue of baryon generation. 
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In this appendix we show that under very general conditions it is impos­

sible for the E field to sit at its absolute minimum when <j> = 0. The notation 

is that of the text. Let f(x) and g(y) be the superpotentials in the 2 sectors. 

Let 

/(*) = u-'Mfdx) (Al) 

S(y) = A 3

f f l (y) (A2) 

where /i(x) and ffi(y) are dimensionless. Further assume that there is no 

direct coupling between the 2 fields. Then 

W(x,y) = f(x)+g(y). (A3) 

Now we impose the following conditions: at x = x0 , y = yo (the true 

minimum) we must have unbroken supersymmetry and zero cosmological 

constant. This implies 

/ i ( * d ) = / ! ( s b ) = 0 (A4) 

Si(!to)=ffI(sro)=0 (A5) 

Assume that when 2 = 0 , y = go i.e. the field y starts off at its absolute 

minimum. Then demanding that the potential be flat means 

3V__ <PV_ _ &V_ 
dm dx1 dy s= = -zzz = -5T = ° a t x = ° • y = *>• t - 4 6 ) 
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These conditions imply 

/**Af {/{[/r + Crf - 2)/il} = ° 

SM* {/?(y* - 2) + r\ + f'J" +»U'l + (»S - Vf'f'i] = ° 
A 3 

li"M'y0 f'l + (!/o - 2)/? + h9" H2M. 
= 0. 

Futhermore at i = 0, y = y 0 

^•;o)!/o) = ^ [ / ' 2 + (y2-3) / 1

! ] . 

M7) 

(A8) 

(A10) 

Using (A9) gives us 

V'(0,y o) = M4 

M 3 

A 3 

h h + g'l 
A 3 

M 2 M 

(Al l ) 

But fl"(yo) ~ O ( ^ ) since y0 ~ O(^) for the example in text which is quite 

general. Then ( A l l ) immediately tells us that 

K ( 0 , y 3 ) ~ 0 ( A s m 2 ) . 

This is unacceptable because we know that the potential at (j> = 0 must scale 

like n* with n ~ 0 (10- ' ) to give us the correct density fluctuations! If the 

field £ at </> = 0 sits at its absolute minimum then the scale /j. drops out of 

the potential. 
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Thus we assume that the iieJd £ starts at some other value at 4> — 0> i-e-

we solve for j£- = 0 at <f> = 0 as in the text. 
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F i g u r e C a p t i o n s 

Figure 2.1 Schematic sketch of the scalar potential for the old inflation­

ary scenario (for T = 0 and T > Tc\. 

Figure 2.2 Schematic sketch of the scalar potential for the new inflation­

ary scenario. 

Figure 3.1 Potential V//i* corresponding to the superpotential f[4>) given 

by Eq. (3.30) (or Eq. (3.27) since, on this scale, they are 

indistinguishable). The dashed curve gives the shape of the 

potential at T — M (taking N = 50 chiral superfields in 

the theory [57]). 

Figure 3.2 Cosmolo^ical constraints on the parameters e and n/M. The 

curve N = 60 limits the region where enough inflation takes 

place [see the condition given by Eq. (3.46)]. The study of 

the amplitude of density fluctuations gives limits on fijM 

only [Eqs. (3.65 - 3.67)]. Finally, we have drawn the line 

m 3 / j = Mw [Eq. (3.33)] which corresponds to the success­

ful low energy models [58]. 

Figure 3.3 Oscillations of the # field around the minimum oM of po­

tential V (Fig. 3.1) immediately after the end of inflation 

[t, < t < 1.006t«). 
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