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ABSTRACT

This report characterizes the mineralogy of the Culebra Member of the Rustler
Formation based on studies of samples from cores of eight boreholes
surrounding the WIPP repository. This investigation had three main goals:
(1) to obtain accurate modal compositions of all the samples selected; (2) to
investigate both the lateral and vertical variation of the mineralogy of the
Culebra unit; and, (3) to characterize water-bearing fracture surfaces in

particular detail.

The Culebra Dolomite member of the Rustler Formation is mineralogically and

texturally heterogeneous, both vertically and horizontally. Although the
predominant mineral is dolomite, important constituents of the formation are
clay, quartz, gypsum, and calcite. Trace minerals include halite,

phyllosilicates of metamorphic origin, feldspar, and pyrite.

The origin of the dolomite is presumed to be the result of early stage
dolomitization of chemically sedimented calcite, which was deposited in
shallow waters; algal mats probably formed what is now interstitial organic
matter, which is mixed with clay. The dolomite content of the samples

averages 80%.

Clay is the second most abundant mineral present and is concentrated along
textural features, particularly the surfaces of fractures and wvugs, thus
making its presence of particular import to the characterization of
hydrological transport within the formation. Clay abundances range from less
than 1.0% to nearly 60% of the bulk samples.

The clay mineral assemblage includes corrensite (ordered mixed-layer
chlorite/smectite), illite, serpentine, and chlorite. Corrensite is the
dominant clay mineral, usually constituting about 50% of the clay assemblage;

*The work described in this report was performed for Sandia National
Laboratories under Contract No. 01-6328.
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illite is the next most abundant constituent, and serpentine and chlorite are
relatively minor components. Because of its high cation exchange capacity
(CEC), the presence of corrensite is of particular importance as it can be an
effective sorbent of radionuclides.

Gypsum is present largely as a vein and vug filling cement; it is probably
almost entirely of secondary origin.

Calcite is only present in measurable quantities in the WIPP-29 core, where
it is a major component of the top part of the core. It is interpreted to be
of secondary origin, produced by dedolomitization of dolomite by calcium-rich

waters of meteoric origin.
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. INTRODUCTION

This report characterizes the mineralogy of the Culebra Member of the Rustler
Formation based on studies of samples from cores of eight boreholes
surrounding the Waste Isolation Pilot Plant (WIPP) repository. The Culebra
Dolomite is characterized by a high fracture porosity (Ferrall and Gibbons,
1979) and is considered to be the most probable conduit of radionuclides to

the accessible environment in the event of a low-pressure breach in the

repository. This investigation had three main goals: (1) to obtain accurate
modal composites of all the samples selected; (2) to investigate both the
lateral and vertical wvariation of the mineralogy of the Culebra unit; and, (3)

to characterize water-bearing fracture surfaces in particular detail.

Instrumental methods used include x-ray diffraction (XRD) analysis, =x-ray
fluorescence (XRF) spectroscopic analysis, electron microprobe elemental (EMX)

analysis, analytical electron microscopy (AEM) and optical microscopy.



Il. SITE GEOLOGY

The WIPP site is situated about 25 miles east of Carlsbad (Figure II-1l) in
southeastern New Mexico. It lies in the northern part of the Delaware Basin,
which is ringed by the Capitan Limestone Reef Complex. The Upper Permian
(Ochoan) Rustler Formation is a sequence of evaporite and clastic rock units
overlying the Salado Formation (Figure II-2), which is composed mainly of

thick halite beds into which the WIPP repository has been excavated.

The Rustler Formation is composed of five major members (Figure II-3): the
Lower Member, which consists mainly of mud/siltstones and beds of halite and
anhydrite; the Culebra Dolomite; the Tamarisk Member (anhydrite, gypsum, and
mud/siltstones); the Magenta Dolomite, and the Forty-niner Member, which is
predominantly anhydrite and gypsum. The Culebra Dolomite appears to be an
aquifer with fracture permeability providing the dominant flow mechanism
(Ferrall and Gibbons, 1979).

II-1
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lll. SAMPLE CHARACTERIZATION

Core Locations and Sample Depths

Rock samples used in this study were taken from cores of eight different
boreholes in the vicinity of the WIPP site: H-6B, H-7C, H-10B, H-11, WIPP-12,
WIPP-25, WIPP-26, and WIPP-29 (Figure III-1). Sample depths for each core are
shown in Table III-1, which also includes the upper and lower depths of the

Culebra Formation and the altitude at the top of the core, included for
reference

Core samples for this study consisted of 116 portions of the eight cores
mentioned above. Sample length ranged from 3 to 8 cm and were either 1/4,

1/3, 1/2, or 2/3 sections of the core. Core diameters were either 3" or 4".

Selection Criteria

Samples were chosen by visual inspection to provide three different types of
information. First, maximum coverage of the Culebra section was attempted; in
some cases, however, cores were incomplete, allowing only partial coverage of
the dolomite unit. Second, lithologic boundaries such as contacts between
dolomite and mudstone, dolomite and gypsum, etc. were sampled. Third,

textural features, such as fractures, wvugs, and clay seams were sampled in

order to allow analysis of potential water-bearing surfaces.

ITITI-1
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H6B Core
Altitude: 3350’
Culebra:
Top: 604
Bottom: 627’

Mean
Sample ID Depth

H6B-1 614
H6B-2 616
H6B-3 631

H6B-4 637
H6B-5a 640
H6B-5b 640

IIT-2

Table 111-1. Core Sample Depths

H7C Core

Altitude: 3175

Culebra:
Top: 237

Bottom: 273.5

Sample ID

H7C-1
H7C-2
H7C-3
H7C-4
H7C-5
H7C-6
H7C-7
H7C-8
H7C-9
H7C-10
H7C-11
H7C-12
H7C-13

Mean
Depth

237.10
238.30
242.55
252.50
253.10
254.60
256.00
260.15
264.70
266.70
268.00
271.60
273.10

H10B Core

Altitude: 3650’

Culebra:

Top: 1360’
Bottom: 1387

Sample ID

H10B-1
H10B-2
H10B-3
H10B-4
H10B-5
H10B-6
H10B-7
H10B-8
H10B-9
H10B-10
H10B-11
H10B-12
H10B-13
H10B-14
H10B-15
H10B-16
H10B-17
H10B-18

Mean
Depth

1370.30
1372.30
1373.20
1374.40
1375.60
1379.40
1381.25
1381.95
1383.25
1385.90
1388.90
1389.40
1392.80
1395.25
1396.25
1397.25
1398.20
1398.95

H11 Core

Altitude: 3410’

Culebra:
Top: 731

Bottom: 760’

Sample ID

HIM
H11-2
H11-3
H11-4
H11-5

Mean
Depth

731.00
732.50
736.00
736.50
737.50



WIPP-12 Core
Altitude: 3475’

Culebra:
Top: 822

Bottom: 846.8

Sample ID

W12-1
W12-2
W12-3
W12-4
W12-5
W12-6
W12-7
W12-8
W12-9
W12-10
W12-11
W12-12
W12-13
W12-14
W12-15
W12-16
W12-17

Mean
Depth

828.40
830.50
831.40
832.00
833.70
834.50
835.10
836.20
836.70
837.00
837.70
838.60
839.30
839.80
840.60
842.20
842.40

Chapter lll: Sample Characterization

Table 111-1. Core Sample Depths (Continued)

WIPP-25 Core
Altitude: 3200’
Culebra:

Top: 447

Bottom: 472’

Mean
Sample ID Depth

W25-1 446.90
W25-2 447.30
W25-3 447.40
W25-4 450.00
W25-5 450.50
W25-6 451.50
W25-7 452.00
W25-8 453.95
W25-9 456.00
W25-10 459.00
W25-11 462.00
W25-12 470.00
W25-13 473.10
W25-14 473.95
W25-15 475.40
W25-16 477.20
W25-17 478.50
W25-18 479.90
W25-19 483.40
W25-20 483.90
W25-21 485.95
W25-22 490.60

WIPP-26 Core

Altitude: 3140’

Culebra:

Top: 186’
Bottom: 209’

Sample ID

W26-1

W26-2
W26-3
W26-4
W26-5
W26-6
W26-7
W26-8

Mean
Depth

188.00
188.70
189.90
190.95
192.40
193.20
194.50
198.00

WIPP-29 Core
Altitude: 2965’
Culebra:
Top: 12
Bottom: 42’
Mean
Sample ID Depth
W29-1 8.5
W29-2 9.7
W29-3 13.0
W29-4 13.5
W29-5 18.1
W29-6 19.25
W29-7 20.20
W29-8 21.55
W29-9 22.40
W29-10 23.55
W29-11 24.50
W29-12 26.00
W29-13 27.50
W29-14 29.30
W29-15 31.15
W29-16 32.00
W29-17 32.55
W29-18 43.60

III-3
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Of the 106 samples,

IV. WHOLE ROCK COMPOSITIONAL DATA

Si02, AI203, Ca0O, MgoO,

compositional data is listed in Tables IV-1 through IV-7.

Sample ID

H6B-1
H6B-2
H6B-3
H6B-4
H6B-5a
H6B-5b

Sample ID

H7C-1
H7C-2
H7C-3
H7C-4
H7C-5
H7C-6
H7C-7
H7C-8
H7C-9
H7C-10
H7C-11
H7C-12
H7C-13

Depth

614.00
616.00
631.00
637.00
639.00
640.00

Depth

237.10
238.30
242.55
252.50
253.10
254.60
256.00
260.15
264.70
266.70
268.00
271.60
273.10

and SO03.

Table IV-1. H6B Core XRF Compositional Data

SiC>2

6.74
5.12
51.03
4.30
2.51
9.48

Al203

1.36
0.99
12.58
0.74
0.41
1.58

Ca0O MgO
23.44 17.34
2714 18.05

2.09 19.21
27.90 16.19
22.93 1.48
20.79 6.13

FeO

0.39
0.35
0.68
0.31

0.14
0.29

Na20

0.09
0.09
0.93
0.06
0.04
0.06

Table IV-2. H7C Core XRF Compositional Data

Si02

0.25
0.50
0.41

0.26
0.90
2.36
237
2.85
6.43
4.40
2.82
2.61

1.54

Al203

0.05
0.10
0.09
0.06
0.17
0.49
0.49
0.59
1.33
0.87
0.51

0.52
0.31

CaO

26.99
28.91

28.96
28.60
28.43
28.14
27.96
28.35
2593
26.99
27.87
27.85
28.35

FeO

0.16
0.18
0.21

0.18
0.22
0.24
0.23
0.24
0.43
0.34
0.29
0.26
0.22

Na20

0.07
0.08
0.07
0.05
0.08
0.06
0.05
0.05
0.06
0.06
0.02
0.02
0.00

MgO

9.79
15.27
15.92
16.05
14.52
16.17
16.19
18.26
15.67
15.53
14.78
14.91
13.77

K20

0.60
0.44
1.19
0.25
0.01

0.13

SO3

12.62
0.23
0.07
0.12
0.12
0.08
0.07
0.08
0.07
0.07
0.06
0.05
0.08

S03

0.16
0.14
0.00
0.19
n.a.
n.a.

XRF was performed on 101 samples for 8 constituent oxides:
FeO, Na20, K20,

detailed description of the analytical methods used.

Appendix A includes a
The complete set of

Total

50.12
52.33
87.71
49.95
27.51
38.47

Total

49.95
4527
45.73
45.31

44.43
4754
47.37
50.41

49.92
48.25
46.36
46.23
44.27

Iv-1
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Sample ID

H10-1
H10-2
H10-3
H10-4
HI0-5
H10-6
H10-7
H10-8
H10-9
H10-10
H10-11
H10-12
H10-13
H10-14
H10-15
H10-16
H10-17

Sample ID

HIM
H11-2
H11-3
H11-4
H11-5
W12-1
W12-2
W12-3
W12-4
W12-5
W12-6
W12-7
W12-8
W12-9
WI2-10a
WI2-10b
W12-11
W12-12
W12-13
W12-14
W12-15
W12-16
W12-17

Iv-2

Depth

1370.30
1372.30
1373.20
1374.40
1375.60
1379.40
1381.25
1381.95
1383.25
1385.90
1388.90
1389.40
1392.80
1395.25
1396.25
1397.25
1398.20

Depth

731.00
732.50
736.00
736.50
737.50
828.40
830.50
831.40
832.00
833.70
834.50
835.10
836.20
836.70
837.00
837.20
837.70
838.60
839.30
839.80
840.60
842.20
842.40

Table IV-3. HIOB Core XRF Compositional Data

S102

9.38
2.23
0.75
1.60
1.39
2.40
2.64
4.65
1.73
2.46
2.1

1.89
1.18
1.28
1.71

9.86
213

Al203

1.92
0.40
0.16
0.29
0.27
0.47
0.52
0.99
0.34
0.47
0.38
0.32
0.22
0.21

0.29
1.90
0.36

CaO

22.29
26.91

27.95
27.31

27.80
27.53
26.22
25.79
27.73
27.52
27.90
27.45
28.17
27.95
26.37
22.52
27.16

MgO

13.57
15.77
15.72
15.30
17.29
17.85
13.09
15.90
15.95
16.48
18.00
16.67
16.20
15.84
12.53
16.94
14.59

FeO

0.54
0.27
0.20
0.30
0.23
0.24
0.21

0.31

0.22
0.25
0.23
0.25
0.22
0.21

0.20
0.49
0.22

Na20

0.19
0.28
0.22
0.15
0.23
0.15
0.09
0.20
0.13
0.14
0.15
0.12
0.13
0.10
0.12
0.28
0.11

Table IV-4. H11 Core XRF Compositional Data

Si02

5.46
2.88
4.33
3.97
5.91
4.72
3.89
1.93
1.65
1.72
1.65
1.44
1.55
1.34
1.29
1.10
2.22
1.62
1.33
1.35
1.99
16.10
2.30

Al203

1.03
0.53
0.86
0.75
1.16
0.90
0.72
0.31

0.29
0.29
0.28
0.23
0.26
0.21

0.22
0.17
0.38
0.27
0.22
0.23
0.36
3.23
0.42

CaOo

25.50
27.48
26.25
27.20
26.28
27.80
28.22
29.41

29.22
28.77
29.14
29.14
29.39
29.32
29.31

29.28
28.89
29.27
29.07
29.16
28.69
19.74
28.52

MgO

19.24
20.27
19.48
20.43
20.48
20.87
20.82
22.27
22.62
20.03
21.45
20.97
21.08
21.32
20.93
20.97
22.13
21.20
20.97
20.97
22.18
21.90
21.95

FeO

0.37
0.27
0.31

0.28
0.35
0.30
0.23
0.24
0.24
0.24
0.22
0.22
0.22
0.22
0.21

0.21

0.25
0.26
0.26
0.25
0.26
0.87
0.27

Na20

0.55
0.38
0.61

0.28
0.28
0.00
0.09
0.01

0.13
0.01

0.00
0.00
0.10
0.10
0.07
0.07
0.15
0.13
0.14
0.12
0.15
0.28
0.15

SO3 Total

0.94 6.73
0.22 0.40
0.08 2.66
0.18 1.87
0.12 0.21

0.20 0.18
0.22 10.33
0.42 2.92
0.13 3.29
0.17 2.94
0.16 2.01

0.14 1.59
0.07 3.85
0.06 4.98
0.07 11.25
0.61 1.79
0.10 714
K20 SO3
0.39 3.75
0.24 0.77
0.28 1.23
0.29 1.21

0.44 0.34
0.36 0.17
0.25 0.00
0.10 0.82
0.10 0.25
0.10 6.04
0.10 1.88
0.08 1.84
0.09 3.30
0.07 2.35
0.07 273
0.07 3.1

0.15 0.39
0.10 0.38
0.08 0.96
0.09 0.53
0.16 0.73
0.94 0.40
0.17 0.56

55.55
46.48
47.73
47.00
47.54
49.02
53.31

51.18
49.52
50.42
50.95
48.44
50.04
50.62
52.55
54.38
51.80

Total

56.29
52.81
53.34
54.41
55.24
55.1211
54.2247
55.0872
54.5020
57.2006
54.7179
53.9293
55.9728
54.9349
54.8401
54.9683
54.5495
53.2253
53.0177
52.6965
54.5264
63.4461
54.3515



Sample ID

W25-1
W25-2
W25-3
W25-4
W25-5
W25-6
W25-7
W25-8
W25-9
W25-10
W25-11
W25-12
W25-13
W25-14
W25-19
W25-20
W25-21
W25-22

Depth

446.90
447.30
447.40
450.00
450.50
451.50
452.00
453.95
456.00
459.00
462.00
470.00
473.10
473.95
483.40
483.90
485.95
490.60

Chapter IV: Whole Rock Compositional Data

Table IV-5. WIPP-25 XRF Compositional Data

Sio=2

21.44
3.17
48.79
5.45
4.24
5.71
5.66
5.89
4.08
2.64
2.22
1.63
49.06
48.07
0.15
0.88
0.24
1.49

Al=203

2.74
0.52
8.80
1.04
0.80
1.08
1.07
1.12
0.78
0.49
0.41

0.29
9.82
8.78
0.03
0.09
0.05
0.32

CaOo

19.00
2121
6.60
25.85
26.33
26.03
25.94
26.28
25.09
27.20
27.68
28.00
0.88
1.90
29.11
30.25
29.39
29.16

MgO

13.11
17.26
6.51
17.38
17.04
18.32
17.74
17.46
15.67
16.42
17.96
17.50
11.26
9.77
0.13
0.46
0.16
0.83

FeO

0.89
0.23
2.05
0.31

0.26
0.33
0.32
0.36
0.27
0.24
0.32
0.25
2.06
3.23
0.10
0.11

0.10
0.16

Na20

3.89
0.15
1.66
0.14
0.22
0.08
0.09
0.11

0.69
0.29
0.16
0.19
1.10
0.85
0.03
0.05
0.03
0.04

K20

1.03
0.29
4.60
0.55
0.40
0.56
0.56
0.54
0.29
0.18
0.13
0.10
2.38
1.95
0.00
0.00
0.00
0.02

SO

1.79
0.15
1.41
0.11
0.19
0.15
0.09
0.10
0.15
0.1
0.09
0.08
0.21
3.31
38.56
35.47
38.87
36.38

Total

63.89
48.97
80.41

50.84
49.48
52.25
51.47
51.85
47.01

47.56
48.97
48.04
76.76
77.85
68.10
67.30
68.84
68.39

Iv-3
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Sample ID

W26-1

W26-2
W26-3
W26-4
W26-5
W26-6
W26-7
W26-8

Sample ID

W29-1
W29-2
W29-3
W29-4
W29-5
W29-6
W29-7
W29-8
W29-9
W29-10
W29-11
W29-12
W29-13
W29-14
W29-15
W29-16
W29-17

Iv-4

Depth

188.00
188.70
189.90
190.95
192.40
193.20
194.50
198.00

Depth

8.50

9.70
13.00
13.50
18.10
19.25
20.20
21.55
22.40
23.55
24.50
26.00
27.50
29.30
31.15
32.00
32.55

Table IV-6. WIPP-26 XRF Compositional Data

Si0=z

5.80
4.67
7.57
4.93
7.97
6.64
2.71

0.96

Al203

1.12
0.91

1.50
0.95
1.62
1.21

0.47
0.17

CaO

25.80
26.85
2514
26.82
25.05
25.91

27.81

28.75

MgO

14.69
15.63

0.02
15.64
15.20
15.29
16.48
17.56

FeO Na20
0.59 0.14
0.36 0.09
0.54 0.08
0.38 0.06
0.58 0.08
0.43 0.12
0.31 0.11
0.25 0.12

Table IV-7. WIPP-29 XRF Compositional Data

Si0=

1.03
1.76
0.64
1.28
2.28
2.52
3.36
4.62
5.28
8.41

4.31

2.76
3.88
2.34
1.50
3.50
1.95

Al203

0.17
0.32
0.12
0.24
0.42
0.47
0.60
0.93
1.05
1.62
0.80
0.53
0.70
0.28
0.28
0.63
0.35

CaO

33.78
29.71

32.86
35.44
28.00
36.52
29.98
26.66
26.40
23.70
26.76
27.66
27.07
27.41

27.89
26.36
27.70

FeO

0.17
0.20
0.15
0.17
0.21

0.20
0.24
0.38
0.52
0.55
0.37
0.27
0.29
0.25
0.20
0.35
0.26

Na20

0.08
0.09
0.15
0.18
0.23
0.09
0.13
0.10
0.12
0.26
0.13
0.12
0.18
0.19
0.22
0.21

0.20

K20

0.08
0.17
0.08
0.15
0.31

0.34
0.37
0.52
0.61

0.90
0.45
0.31

0.42
0.34
0.26
0.45
0.25

K20

0.64
0.43
0.74
0.44
0.73
0.51

0.21

0.06

MgO

12.32
17.10
12.93
11.51
17.43
7.90
14.67
17.98
16.99
16.50
18.02
17.53
17.26
17.50
17.54
18.23
17.79

SOs

0.06
0.07
0.11

0.06
0.07
0.04
0.05
0.04

SOs

0.16
0.09
0.14
0.30
0.12
0.12
0.10
0.04
0.12
0.17
0.06
0.07
0.26
0.14
0.13
0.17
0.11

Total

48.86
49.02
35.70
49.28
51.31

50.16
48.16
47.90

Total

47.79
49.44
47.08
49.28
49.00
48.16
49.45
51.23
51.08
52.11

50.91

49.26
50.06
48.45
48.02
49.91

48.61



V. WHOLE ROCK MINERALOGICAL DATA

X-Ray Diffraction Analysis

Whole rock aliquots of the 106 samples used in this study were analyzed by
XRD. Analytical methods are described in Appendix A. Minerals identified are
dolomite, calcite, gypsum, anhydrite, halite, quartz, and clay. The results
of these analyses are listed in Tables V-1 through V-8. Figures V-1 through
V-4 show typical diffractograms from selected samples, illustrating the
presence of dolomite, calcite, gypsum, halite, quartz, and clay. Figure V-1
for sample WIPP-12 #4 is a very typical diffractogram: the sample contains
dolomite and quartz, the presence of traces of clay is inferred from XRF, and
petrographic data. All samples containing quartz also contain clay.

Figure V-2 for sample WIPP-25 #1 shows the presence of dolomite, halite,
gypsum, quartz, and clay; in this sample, the clay peaks are discernible,
particularly a broad peak at d=4.526A. XRD for clay rich sample WIPP-12 #16
(Figure V-3) also shows the presence of dolomite, halite, and quartz, but in
this case the clay peaks for corrensite, illite, and serpentine are clearly
discernible. Finally, the XRD pattern for sample WIPP-29 #1 (Figure V-4)
indicates the presence of calcite in addition to dolomite and quartz.

Quantitative Mineralogical Analysis

Mineral modes for the 101 samples, which were analyzed by XRF spectroscopy for
the constituent oxides, were calculated based on the compositional data and
the mineral identification tables listed in the previous section. The method
of calculation is described in Appendix B. The results of these calculations
are included in Tables V-9 through V-16.

Plots of the abundances of the major minerals in each core versus depth in the

Culebra section are shown in Figures V-5 through V-29.
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Sample ID Depth
H6B-1 614
H6B-2 616
H6B-3 631
H6B-4 637
H6B-5a 640
H6B-5b 640
tr trace
X present

XX = abundant
XXX = very abundant

Sample ID

H7C-1
H7C-2
H7C-3
H7C-4
H7C-5
H7C-6
H7C-7
H7C-8
H7C-9
H7C-10
H7C-11
H7C-12
H7C-13

Depth

237.10
238.30
242.55
252.50
253.10
254.60
256.00
260.15
264.70
266.70
268.00
271.60
273.10

Table V-1. H6B Core X-Ray Diffraction Mineral ID Chart

Clay

X
X
XX
X
tr
X

Quartz

X

pa

XX

> X X

Dolomite

XXX
XXX

XXX

Gypsum

XXX
XXX

Anhydrite

Table V-2. H7C Core X-Ray Diffraction Mineral ID Chart

Clay

tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr
tr

Quartz

X X X X X X X X X X

Dolomite

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

Calcite

Gypsum

XX

tr

X

Halite

Halite

XX
XX



Sample ID

H10B-1
H10B-2
H10B-3
H10B-4
H10B-5
HI OB-6
H10B-7
H10B-8
HI OB-9
H10B-10
H10B-11
H10B-12
H10B-13
H10B-14
H10B-15
H10B-16
H10B-17
H10B-18

Sample ID

H11-1

H11-2
H11-3
H11-4
H11-5

Depth

1370.30
1372.30
1373.20
1374.40
1375.60
1379.40
1381.25
1381.95
1383.25
1385.90
1388.90
1389.40
1392.80
1395.25
1396.25
1397.25
1398.20
1398.95

Depth

731.00
732.50
736.00
736.50
737.50
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Table V-3. H10B Core X-Ray Diffraction Mineral ID Chart

Clay

X
tr
tr
tr
tr
tr
tr
»ir
tr
tr
tr
tr
tr
tr
tr
X
tr
XXX

Quartz

X X X X X X X X X

—
=

Dolomite

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

tr

Calcite

Table V-4. H11 Core XRF Compositional Data

Si02

5.46
2.88
4.33
3.97
5.91

Al203

1.03
0.53
0.86
0.75
1.16

Ca0O MgO

25.50
27.48
26.25
27.20
26.28

19.24
20.27
19.48
20.43
20.48

FeO

0.37
0.27
0.31

0.28
0.35

Na20

0.55
0.38
0.61

0.28
0.28

Gypsum
XX

X
X

K20

0.39
0.24
0.28
0.29
0.44

S03

3.75
0.77
1.23
1.21

0.34

Halite

X X X X X X X X X

xX X 5

tr
tr

X

tr

Total

56.29
52.81
53.34
54.41
55.24
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Sample ID

W12-1
W12-2
W12-3
W12-4
W12-5
W12-6
W12-7
W12-8
W12-9
W12-10
W12-11
W12-12
W12-13
W12-14
W12-15
W12-16
W12-17

Sample ID

W25-1
W25-2
W25-3
W25-4
W25-5
W25-6
W25-7
W25-8
W25-9
W25-10
W25-11
W25-12
W25-13
W25-14
W25-15
W25-16
W25-17
W25-18
W25-19
W25-20
W25-21
W25-22

Table V-5. WIPP-12 Core X-Ray Diffraction Mineral ID Chart

Depth

828.40
830.50
831.40
832.00
833.70
834.50
835.10
836.20
836.70
837.00
837.70
838.60
839.30
839.80
840.60
842.20
842.40

Depth

446.90
447.30
447.40
450.00
450.50
451.50
452.00
453.95
456.00
459.00
462.00
470.00
473.10
473.95
475.40
477.20
478.50
479.90
483.40
483.90
485.95
490.60

Clay

tr
tr
tr
tr
tr
X
tr
tr
tr
tr
tr
tr
tr
tr
tr
X
tr

Quartz

X X X X X X X X X X X X X X X X X

Dolomite

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

XX
XXX

Calcite Gypsum

b

X X X X X X

tr

Table V-6. WIPP-25 X-Ray Diffraction Mineral ID Chart

Clay

X
tr
XXX
tr
X
tr
tr
X
X
tr
tr
X
XXX
XXX
XXX
XXX
XXX
XXX
tr
tr
tr
tr

Quartz

X

>
x X

X X X X X X X X X

MNoM X X XX
X 5 5 3 X X X X X X

Dolomite

XXX
XXX
XX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
X

X

Caicite Gypsum

X

XXX
X XXX
XXX
XXX

Halite

tr

tr

tr
tr
tr
tr
tr

Halite



Sample ID

W26-1

W26-2
W26-3
W26-4
W26-5
W26-6
W26-7
W26-8

Sample ID

W29-1
W29-2
W29-3
W29-4
W29-5
W29-6
W29-7
W29-8
W29-9
W29-10
W29-11
W29-12
W29-13
W29-14
W29-15
W29-16
W29-17
W29-18
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Table V-7. WIPP-26 Core X-Ray Diffraction Mineral ID Chart

Depth

188.00
188.70
189.90
190.95
192.40
193.20
194.50
198.00

Clay

tr
tr
tr
tr
tr
tr
tr
tr

Quartz

X X X X X X X X

Dolomite

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

Calcite

Gypsum Halite

tr

tr

Table V-8. WIPP-29 Core X-Ray Diffraction Mineral ID Chart

Depth

8.50

9.70
13.00
13.50
18.10
19.25
20.20
21.55
22.40
23.55
24.50
26.00
27.50
29.30
31.15
32.00
32.55
43.60

Clay

tr
tr
tr
tr
tr
tr
X
tr
tr
X
tr
X
X
X
tr
tr
tr
XXX

Quartz

X

g X

X X X X X X X X X X X X X X

x
X

Dolomite

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

tr

Calcite

XX
X
X

XX
X

XX
X

Gypsum Halite

X X X X X X X X X X X X X X X X
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Sample ID

H6B-1
H6B-2
H6B-3
H6B-4
H6B-5a
H6B-5b

Sample ID

H7C-1
H7C-2
H7C-3
H7C-4
H7C-5
H7C-6
H7C-7
H7C-8
H7C-9
H7C-10
H7C-11
H7C-12
H7C-13

Depth

614.00
616.00
631.00 8
637.00
640.00
640.00 1

Depth

237.10
238.30
242.55
252.50
253.10
254.60
256.00
260.15
264.70
266.70
268.00
271.60
273.10

Table V-9. H6B Core Quantitative Mineral Analysis

Clay

9.07
6.61

3.86
4.96
2.72
0.56

Quartz

2.57
2.08
12.46
2.02
1.26
4.63

Dolomite  Gypsum

77.09
89.28
0.00
91.78
0.00
6.69

0.00
0.00
0.00
0.00
70.33
63.78

Anhydrite

0.39

n.a.

Table V-10. H7C Core Quantitative Mineral Analysis

Clay

0.36
0.68
0.61

0.37
1.10
3.24
3.29
3.92
8.87
5.77
343
3.49
2.08

Quartz

0.09
0.19
0.13
0.09
0.39
0.88
0.86
1.05
2.35
1.75
1.24
1.01

0.58

Dolomite

59.68
95.09
95.25
94.08
93.53
92.58
91.98
93.25
85.29
88.80
91.68
91.60
93.25

Gypsum

2

7.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Halite

0.00
0.10
0.09
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Halite

0.00
0.00
1.18
0.00
0.00
0.00

Total

87.28
96.06
96.08
94.53
95.02
96.69
96.12
98.22
96.51

96.31

96.35
96.10
95.91

Total

88.73
97.98
97.49
98.76
74.31

85.65



Sample ID

H10-1
H10-2
H10-3
H10-4
H10-5
H10-6
HI0-7
HI0-8
HI0-9
H10-10
H10-11
H10-12
H10-13
H10-14
H10-15
H10-16
H10-17

Sample ID

H11-1

H11-2
H11-3
H11-4
H11-5

Depth

1370.30
1372.30
1373.20
1374.40
1375.60
1379.40
1381.25
1381.95
1383.25
1385.90
1388.90
1389.40
1392.80
1395.25
1396.25
1397.25
1398.20

Depth

731.00
732.50
736.00
736.50
737.50

Table V-11. HIOB Core Quantitative Mineral Analysis

Clay

12.77
2.66
1.05
1.91
1.81
3.12
3.46
6.61
2.29
3.10
2.56
2.15
1.47
1.42
1.96

12.65
240

Quartz

3.51

1.00
0.27
0.73
0.56
0.97
1.05
1.61

0.68
1.03
0.93
0.91

0.50
0.62
0.80
4.04
1.03

Dolomite

61.32
80.90
81.88
79.04
89.59
91.51

66.16
78.47
82.14
84.29
92.74
86.04
84.08
82.23
64.41

79.19
74.87

Calcite

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Chapter V: Whole Rock Mineralogical Data

Gypsum

14.48
0.00
5.71
4.03
0.00
0.00

22.22
6.27
7.07
6.32
4.33
3.43
8.29

10.70

24.19
3.84

15.35

Table V-12. Hi 1 Core Quantitative Mineral Analysis

Clay

6.89
3.54
5.71

4.99
7.75

Quartz

2.29
1.25
1.71

1.67
2.35

Dolomite

75.26
90.39
83.50
86.67
85.67

Gypsum

0.00
0.00
0.00
2.60
0.73

Anhydrite

6.37
0.00
2.09
0.00
0.00

Halite

0.23
0.35
0.27
0.19
0.29
0.19
0.11

0.25
0.17
0.17
0.19
0.15
0.16
0.13
0.16
0.35
0.14

Halite

0.70
0.48
0.77
0.35
0.35

Total

92.31
84.91
89.19
85.89
92.25
95.78
93.00
93.22
92.35
94.92
100.75
92.68
94.50
95.11
91.52
100.07
93.79

Total

91.50
95.66
93.78
96.29
96.85
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Table V-13. WIPP-12 Core Quantitative Mineral Analysis

Sample ID Depth Clay Quartz  Dolomite = Gypsum Halite Total
W12-1 828.40 5.99 1.96 91.46 0.00 0.00 99.41
W12-2 830.50 4.83 1.67 92.83 0.00 0.18 99.50
W12-3 831.40 2.07 0.97 94.85 1.77 0.00 99.66
W12-4 832.00 1.93 0.76 96.12 0.00 0.00 98.82
W12-5 833.70 1.96 0.82 80.70 12.99 0.00 96.48
W12-6 834.50 1.84 0.80 91.51 4.04 0.00 98.19
W12-7 835.10 1.55 0.73 91.61 3.96 0.00 97.85
W12-8 836.20 1.72 0.75 89.07 7.09 0.00 98.63
W12-9 836.70 1.42 0.68 91.03 5.06 0.00 98.19
W12-10a 837.00 1.50 0.60 90.11 5.88 0.00 98.08
WI2-10b 837.20 1.13 0.58 89.15 6.69 0.00 97.55
W12-11 837.70 2.50 1.07 95.02 0.00 0.29 98.88
W12-12 838.60 1.82 0.78 96.29 0.00 0.24 99.13
W12-13 839.30 1.46 0.66 95.62 0.00 0.26 97.99
W12-14 839.80 1.50 0.66 95.94 0.00 0.22 98.32
W12-15 840.60 2.39 0.89 94.39 0.00 0.29 97.96
W12-16 842.20 21.52 6.20 64.92 0.00 0.53 93.17
W12-17 842.40 2.78 1.02 93.83 0.00 0.29 97.93

Table V-14. WIPP-25 Core Quantitative Mineral Analysis

Sample ID Depth Clay Quartz Dolomite  Gypsum Halite Total
W25-1 446.90 18.29 13.02 59.14 3.85 4.92 99.23
W25-2 447.30 3.47 1.57 90.71 0.00 0.18 95.93
W25-3 447.40 58.64 21.81 21.99 0.00 2.10 104.54
W25-4 450.00 6.94 2.26 86.17 0.00 0.17 95.54
W25-5 450.50 5.31 1.79 87.78 0.00 0.27 95.16
W25-6 451.50 7.17 2.41 86.75 0.00 0.10 96.44
W25-7 452.00 7.15 2.37 86.45 0.00 0.12 96.09
W25-8 453.95 7.46 2.46 87.59 0.00 0.13 97.65
W25-9 456.00 5.20 1.68 83.62 0.00 0.87 91.37
W25-10 459.00 3.30 1.12 90.65 0.00 0.37 95.44
W25-11 462.00 2.72 0.97 92.27 0.00 0.21 96.17
W25-12 470.00 1.93 0.74 93.33 0.00 0.23 96.24
W25-13 473.10 65.46 18.94 2.93 0.00 0.00 87.34
W25-14 473.95 58.52 21.15 6.33 0.00 0.00 86.00
W25-19 483.40 0.19 0.06 0.00 82.92 0.00 83.16
W25-20 483.90 0.59 0.60 0.00 76.29 0.00 77.48
W25-21 485.95 0.31 0.10 0.00 83.59 0.00 84.00
W25-22 490.60 2.12 0.52 0.00 78.23 0.00 80.87



Sample ID

W26-1

W26-2
W26-3
W26-4
W26-5
W26-6
W26-7
W26-8

Sample ID

W29-1
W29-2
W29-3
W29-4
W29-5
W29-6
W29-7
W29-8
W29-9
W29-10
W29-11
W29-12
W29-13
W29-14
W29-15
W29-16
W29-17

Depth

8.50

9.70
13.00
13.50
18.10
19.25
20.20
21.55
22.40
23.55
24.50
26.00
27.50
29.30
31.15
32.00
32.55
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Table V-15. WIPP-26 Core Quantitative Mineral Analysis

Depth

188.00
188.70
189.90
190.95
192.40
193.20
194.50
198.00

Clay

7.49
6.05
9.98
6.36
10.82
8.10
3.16
1.11

Quartz

2.36
1.89
2.98
2.00
2.99
2.92
1.25
0.45

Dolomite

85.99
89.51
83.81
89.41
83.51
86.37
92.69
95.82

Halite

0.18
0.00
0.10
0.00
0.00
0.00
0.14
0.15

Table V-16. WIPP-29 Core Quantitative Mineral Analysis

1

Clay

1.1

213
0.79
1.59
2.80
3.1

3.97
6.17
7.00
0.77
5.36
3.52
4.67
1.88
1.88
4.21

2.36

Quartz

0.52
0.79
0.28
0.56
1.00
1.08
1.54
1.78
2.06
3.46
1.84
1.14
1.73
1.47
0.63
1.57
0.87

Dolomite

63.97
88.32
67.43
59.33
89.53
39.13
74.06
89.76
83.87
78.33
90.60
89.46
87.17
90.64
90.81

92.64
91.76

Calcite

26.05
5.74
22.55
31.51
2.03
44.25
13.86
0.00
2.22
0.00
0.00
0.00
1.63
0.00
0.00
0.00
0.00

Gypsum

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Total

96.02
97.45
96.87
97.77
97.33
97.38
97.25
97.52

Halite

0.00
0.12
0.19
0.23
0.29
0.12
0.17
0.13
0.15
0.33
0.17
0.15
0.23
0.24
0.27
0.26
0.25
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Figure V-1. X-Ray Diffractogram for Sample WIPP-12-4. Peaks represent angstroms/counts per seconds.
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Figure V-2. X-Ray Diffractogram for Sample WIPP-25-1. Peaks represent angstroms/counts per seconds.
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Figure V-3. X-Ray Diffractogram for Sample WIPP-12-16. Peaks represent angstroms/counts per
seconds.
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Figure V-4. X-Ray Diffractogram for Sample WIPP-29-1. Peaks represent angstroms/counts per seconds.
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Dolomite (wt. %)

Depth (ft.)

Figure V-5. H6B Core: Clay vs. Depth.

Depth (ft.)

Figure V-6. H6B Core: Dolomite vs. Depth.

TR 1-6342-502-0

TRI-6342-503-0
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Depth (ft.)
TRI-6342-510-0

Figure V-7. H7 Core: Clay vs. Depth.

Depth (ft.)
TRI-6342-511-0

Figure V-8. H7 Core: Quartz vs. Depth.
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Figure V-9. H7 Core: Dolomite vs. Depth.
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Figure V-10. HtOCore: Clay vs. Depth.
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Figure V-11. HIOCore: Quartz vs. Depth.
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Figure V-12. HIOCore: Dolomite vs. Depth.
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Figure V-13. H11 Core: Clay vs. Depth.
£
5
N
©
>
@]

Depth (ft.)

TRI-6342-505-0

Figure V-14. H11 Core: Quartz vs. Depth.
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Depth (ft.)
TRI-6342-506-0

Figure V-15. Hi1 Core: Dolomite vs. Depth.

Depth (ft.)
TRI-6342-516-0

Figure V-16. WIPP-12 Core: Clay vs. Depth.
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Figure V-17. WIPP-12 Core: Quartz vs. Depth.
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Figure V-18. WIPP-12 Core: Dolomite vs. Depth.
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826 830 834 838 842 846
Depth (ft.)
TRI-6342-519-0

Figure V-19. WIPP-12 Core: Gypsum vs. Depth.

Depth (ft.)

TRI-6342-520-0

Figure V-20. WIPP-25 Core: Clay vs. Depth.
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Quart2 (w, %)

Depth (ft.)

TRI-6342-521-0

Figure V-21. WIPP-25 Core: Quartz vs. Depth.

Dolomite (wt. %)

Depth (ft.)

TRI-6342-522-0

Figure V-22. WIPP-25 Core: Dolomite vs. Depth.
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Depth (ft.)
TRI-6342-507-0

Figure V-23. WIPP-26 Core: Clay vs. Depth.

Depth (ft.)

TRI-6342-508-0

Figure V-24. WIPP-26 Core: Quartz vs. Depth.
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Figure V-25. WIPP-26 Core: Dolomite vs. Depth.

Depth (ft.)

Figure V-26. WIPP-29 Core: Clay vs. Depth.
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Depth (ft.)
TRI-6342-524-0

Figure V-27. WIPP-29 Core: Quartz vs. Depth.

Depth (ft.)

TRI-6342-525-0

Figure V-28. WIPP-29 Core: Dolomite vs. Depth.
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Figure V-29. WIPP-29 Core: Calcite vs. Depth.
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Figure V-30. Fence Diagram Traverses.

Traverse #1
Traverse #2

Traverse #3

TRI-6342-485-0
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Figure V-31. Traverse Number One as Shown in Figure V-30.
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Figure V-32. Traverse Number Two as Shown in Figure V-30.
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Figure V-33. Traverse Number Three as Shown in Figure V-30.
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Discussion

The results of the mineralogical calculations of the previous section are
rather hard to evaluate in tabular form or in the individual graphs of mineral
abundance versus depth. In order to obtain a more comprehensive picture of
both the wvertical and horizontal variations of the major minerals in the eight
cores examined in this study, three fence diagrams (Figures V-31 to V-33) of
the Rustler Formation, which highlight the two dolomite members, Culebra and
Magenta, were prepared, based on the three traverses indicated in Figure V-30.
Within each fence diagram, the major minerals in each core are plotted beneath

the location of the borehole.

Several conclusions can be drawn from the inspection of these fence diagrams.
First, clay is present in all the cores, averaging around 3-5 weight percent
of the total. Second, the average dolomite content of these samples is 85-90
weight percent, with the remainder usually taken up by quartz, clay, and
gypsum. Third, where gypsum is present, it appears to replace dolomite,
leaving the clay content constant. Fourth, several clay-rich seams are

present in the Culebra.

The Culebra section of the WIPP-29 core is very shallow, and the presence of
abundant calcite in the samples from this core is probably due to the
calcitization ("dedolomitization") of dolomite by calcium-rich ground waters.
The fact that calcite is more abundant near the top of the core adds weight to
this argument. Calcite was also found in the WIPP-19 core (Sewards et al.,
1991.) at the top of the Culebra unit. Small amounts of calcite may be
present throughout the Culebra, principally close to water-bearing fractures.
In all probability, all the calcite has formed by dedolomitization; it is
unlikely that any of it is primary.

Gypsum is most abundant in the H-10 and WIPP-12 cores. There appear to be two
gypsum-rich seams that correlate between these two cores. Incomplete sampling
of the H-6 and H-11 cores, which lie in the vicinity of the aforementioned
cores prevents confirmation of an areal trend. Gypsum is a very minor
component in the remaining cores, all of which lie to the south and west of
H-10 and WIPP-12.



VI. DOLOMITE COMPOSITIONS

The composition of dolomite in six different samples, five from the WIPP-12
core and one from the H6B core, was obtained using the electron microprobe
(Appendix A). These compositions, listed in terms of component oxides and
cations, are included in Table VI-1. The iron content in all five dolomites
is quite low, the maximum being 0.23% FeO in sample WIPP-12 #1. The calcium
to magnesium ratio for these samples, for six non-evaporite dolomites and for
four other evaporite dolomites (Goldsmith and Graf, 1958) are plotted in
Figure VI-1. It should be noted that the Ca/Mg ratios from Goldsmith and Graf
(1958) were determined by X-ray diffraction methods rather than microprobe
analysis; thus, any systematic error might invalidate the comparison with the

Culebra samples.

Figure VI-1 shows that the Culebra Dolomite compositions have a Ca/Mg ratio
that lies between that of other evaporite dolomites, which is usually less
than 1.0, and that of non-evaporite dolomites, which lies above 1.1
Presumably, the brines that dolomitized the initial calcite deposits had a
higher Ca/Mg ratio than is normal in an evaporitic environment; this may have
been caused by the large non-marine (fluvial) water input into the Delaware

Basin at the time of deposition of these sediments.

The Ca/Mg ratio in dolomites is important because, unless the assumption is
made that the dolomite is ideal, the value of AGf (the Gibbs free energy of
formation) for dolomite depends on this ratio. Tardy and Gartner (1977) have
developed an empirical method to calculate AGf for carbonates based on
compositional data. If order-disorder phenomena in the dolomites can be
neglected, this method could be applied to calculate the free energy for the
Culebra dolomites. An accurate value for the Gibbs free energy is essential

for the calculation of phase equilibria in ionic solutions.
Since dolomite compositions were obtained for six samples representing only

two cores, it is not really safe to assume that the compositions in other

cores will be in the same range as those that were analyzed.
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No.

o OB W N~

VI-2

Sample ID % CaO
W12-1 30.66
W12-2 29.80
W12-9 28.59
W12-12 29.79
W12-16 29.83
H6B-4 30.12

Sample ID
W12-1
W12-2
W12-9
W12-12
W12-16
H6B-4

Table VI-1. Dolomite Compositions

S

0.27
0.32
0.44
0.46
0.51

0.26

Ca

1.019
1.020
1.010
1.040
1.013
1.037

% MgO s
21.09 0.59
20.44 0.92
20.07 0.28
19.71 1.06
20.78 0.53
20.03 0.26

Cations
Mg

0.975
0.976
0.987
0.960
0.981

0.959

% FeO

Fe

0.006
0.004
0.003
0.000
0.006
0.004

0.23
0.17
0.11

0.12
0.23
0.16

0.09
0.02
0.11

0.10
0.06
0.08

Ca/Mg

1.045
1.045
1.023
1.083
1.033
1.081

w

29

o~ O,

Total

2.000
2.000
2.000
2.000
2.000
2.000

Total

51.98
50.41
48.77
49.62
50.84
50.41
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Ca/Mg

G-1322
G-1331
G-1181
G-379
G-1055
G-1138
G-1387
G-1187
G-1121
G-1374
WIPP-12
WIPP-12
WIPP-12
WIPP-12
WIPP-12
H-6B

Sample ID
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Galena Platteville Formations, Ordovician, Oglesby, lllinois

Edgewood Dolomite, Silurian, Pike County, lllinois

Cogollo Formation, Cretaceous, Venezuela
Inglis Member, Moodys Branch Formation, Upper Eocene, Levy County, Florida
Avon Park Formation, Middle Eocene, Levy County, Florida
Funafuti (Pacific Island Core) Depth 840 Feet
Anhydrite-Dolomite Rock, Permian, Yorkshire
Salina Formation, Silurian, Michigan

Evaporite Sequence, Saskatchewan

Edwards Formation, Early Cretaceous, New Mexico

#1
#2
#9
#12
#16
#4

Figure VI-1.

Dolomite Compositions.
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VIl. CLAY MINERALOGY

Clay fraction separates (<2 micron) were obtained from three samples and
analyzed by XRD using oriented mounts (Drever, 1973) to both identify the clay
minerals present and determine the modes of each clay mineral. XRF analysis
was used to determine the bulk composition of the clay separates. AEM was
used to study the textural relationships of the clay minerals in one sample,
H6B #3.

X-Ray Diffraction Analysis

X-ray diffractograms for four different treatments on oriented mounts (air-
dried, glycolated, and heated to 400°C and 550°C) were obtained for the clay
fractions of three samples: WIPP-12 #3, a clay-poor dolomite; WIPP-12 #16, a
clay-rich dolomite; and H6B #3, a shale. These diffractograms are shown in
Figures VII-1 to VII-3. In addition, the diffractogram of the glycolated
(background removed) mount for sample H6B #3, which documents the presence of
chlorite (Figure VII-4), and a random mount diffractogram for sample WIPP-12
#16 (Figure VII-5) are included.

CLAY MINERAL IDENTIFICATION

Since all three sets of diffractograms (Figures VII-1 to VII-3) are quite
similar, and the clay minerals present are the same in all three, it is

appropriate to discuss the clay minerals individually.
lllite

The presence of illite is indicated by the characteristic 001 and 002 peaks at
10.1A and 5.0A. The dioctahedral nature of this clay mineral can be inferred
from the presence of a 060 peak at d=1.50A in the random mount for sample
WIPP-12 #16 (Figure VII-4). The nature of the illite polytype cannot be
determined from the random mount diffractogram because the presence of peaks

of other clay minerals, as well as quartz, renders interpretation difficult.
The 001 peaks for this mineral are broad, indicating that the average

crystallite size is small. Use of the Scherrer equation (Brindley, 1980)

yields an average crystallite size of about 130A.
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Figure VII-1. X-Ray Diffractogram for Sample WIPP-29-1. Peaks represent angstroms/counts per
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Figure VII-2. X-Ray Diffractograms for Sample WIPP-12-16. Peaks represent angstroms/counts per

seconds.
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Figure VII-3. X-Ray Diffractograms for Sample H6B-31. Peaks represent angstroms/counts per seconds.
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Figure VII-4. X-Ray Diffractograms of Glycolated Mount for Sample WIPP-12-16. Peaks represent
angstroms/counts per seconds.
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Figure VII-5. Random Mount Diffractogram for Sample WIPP-12-3. Peaks represent angstroms/counts
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Chapter VII: Clay Mineralogy

Serpentine

Peaks at d=7.2A and d=3.55A indicate the presence of a 7A phase, which could

be either kaolinite or serpentine. The fact that the intensities of these
peaks are reduced by the 400°C treatment and destroyed by the 550°C treatment
would seem to indicate that this mineral is kaolinite (Starkey et al., 1984).

However, the results of analytical electron microscopy show that this is a
magnesium-rich phase, which rules out kaolinite. Although exact compositional
data have thus far not been obtained, it is probable that the mineral is a
serpentine with a composition near that of an amesite, since this clay mineral
has been found previously in evaporite clay mineral assemblages (Harville and
Fritz, 1986; Braitsch, 1971). Average crystallite size, determined by the
Scherrer equation, is 160A.

Corrensite

The superlattice peak at d=32.0A, which shifts to d=34.5A upon glycolation,
indicates the presence of an ordered mixed-layer phase. The 002 peak (or
interference peak between the 001 peaks of the two components), which has a
d-spacing of 14A in the air-dried mount, shifts to 15.65A upon glycolation.
This is midway between the d-spacing of 001 (glycolated) peak for a smectite
(17.27A) and the d-spacing of a chlorite (14A); this suggests that the mixed-
layer phase is a corrensite (ordered mixed-layer chlorite/smectite). The heat
treatments collapse the smectite layers, causing the superlattice peaks to
move to d=21.5A and the 002 peak to 12.2A, midway between the collapsed
smectite peak (10A) and the chlorite peak.

Chlorite

The presence of chlorite in these samples is indicated by a small peak at
d=4.75A. This is the 003 peak of chlorite and is best seen in the glycolated
mount diffractogram for sample WIPP-12 #16 (Figure 42). The 001 chlorite peak
is obscured by the broad corrensite peak at d=15.7A, although a slight
asymmetry can be seen in this peak. Similarly, the 002 peak coincides with
the 001 peak of serpentine, so the 003 peak is the only clue to the presence

of chlorite.
Modal Analysis
Modal mineralogical calculations based on glycolated XRD patterns for clay

mineral separates were performed (see Appendix B for details). The results of

phese calculations are listed in Table VII-1. In all these samples,
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Table VII-1. Clay Mineral Modal Analysis

Sample Corrensite Serpentine Ilite Chilorite
W12-3 58% 3% 34% 5%
W12-16 62% 3% 32% 3%
H6B-3 49% 28% 18% 5%

corrensite is the dominant clay mineral; illite is abundant; serpentine is
abundant in one sample (H6B #3), and chlorite is a minor component in all

samples.
BULK CLAY COMPOSITIONS

Clay separates (<2 micron) of the three samples listed in the previous section
were analyzed by XRF to determine their compositions. These are listed in
Table VII-2. It should be noted that the clay separate for sample WIPP-12 #3
has substantial amounts of quartz in it, as can be seen in the diffractograms
in Figure VII-1. Thus, the value for Si02 is probably high with respect to
the actual clay assemblage composition, and the values for the remaining
oxides are correspondingly low. However, even taking this fact into account,
it is hard to understand why the clay compositions of WIPP-12 #3 and WIPP-12
#16 are so different, given the fact that the clay mineral components
determined by modal analysis are nearly identical. In particular, the wvalue
for MgO in sample WIPP-12 #16 is nearly twice that of WIPP-12 #3, whereas the
value of K20 in WIPP-12 #3 is twice that of WIPP-12 #16.

Analytical Electron Microscopy

Analytical Electron Microscopy was employed to examine microtomed sections of
the clay fraction (air dried) of sample H6B #3 (see Appendix B for details of
the methods and instrumentation used). Lattice fringe images of four clay
minerals, with d-spacings of 7A, 10A, 14A and 33A, were obtained. These are
shown in Figures VII-6 through VII-9; the corresponding energy dispersive
spectrometer (EDS) spectra are shown in Figures VII-10 through VII-13.

Figures VII-6 and VII-10 correspond to the 7A phase: the lattice fringe image
shows a well-ordered basal periodicity and well defined morphology with good
crystalline structure for up to 400A in basal direction. The spectrum
indicates the presence of Mg, Al, and Si, which confirms the identification of

the 7A phase as serpentine.
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Figure VII-6. High-Resolution Lattice Fringe Image of Serpentine from Sample H6B-3.
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Table VII-2. Clay Separate Compositions

Sample ID Sl02 Al203 MgO FeO CaO K20 Na20 Total
W12-3 45.94 14.88 13.57 2.02 0.29 3.95 0.44 81.09
W12-16 4242 14.14 24.58 2.52 0.39 2.05 0.73 86.83
H6B-3 42.79 16.27 22.83 3.03 0.09 2.19 0.72 87.92

The lattice fringe image for the 10A phase (Figure VII-7) shows the typical
morphology of an illite (Ahn and Peacor, 1986). Of the three clay minerals
imaged, these illites have the largest size in the basal direction (>4003)
The spectrum (Figure VII-11l) indicates the presence of Al, Si, and K, with
minor amounts of Mg and Fe. The potassium peak is, however, somewhat low
compared to that of typical illite spectra; this may be due to elemental loss

(Mackinnon and Kaser, 1987) or an atypical composition.

The 14A phase (Figures VII-8 and VII-12) crystallites have smaller basal
dimensions (<150A), but form well-ordered crystallites in the c-axis

dimension. The spectrum suggests that the mineral is an Fe-rich chlorite.

Observations on samples intercalated with laurylamine hydrochloride (Lee and
Peacor, 1986), for which mixed-layer 14A and 18A basal spacings occur in
corrensite, are shown in Figure VII-O. In general, corrensite expanded layers
are very difficult to image using high resolution transmission electron
microscopy techniques because of rapid damage rates and poor diffraction
contrast. Nevertheless, examples of image contrast consistent with
intercalated corrensite are shown. Regular alteration of 14A and 18A layers
is often restricted to two or three repeats, and in some instances, the
variable extent of layer expansion due to intercalated laurylamine
hydrochloride is readily seen. The presence of these very thin, or
"fundamental," particles is evidence that interparticle diffraction may be

responsible for the XRD peaks for corrensite (Nadeau et al., 1984).

A typical EDS spectrum for this phase is shown in Figure 51; it shows that the

phase contains primarily Si, Al, Mg, and Fe.
Discussion
Clay minerals in evaporite environments have been discussed extensively by

Bodine and coworkers (Bodine and Standaert, 1977; Bodine, 1978, 1983, 1985;

Bodine and Madsen, 1985). In some ways, their work does not apply too well to
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Figure VII-7. High-Resolution Lattice Fringe Image of lllite from Sample H6B-3.

VII-11



SAND90-7008

Figure VII-8. High-Resolution Lattice Fringe Image of Chlorite from Sample H6B-3.
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Figure VII-9. High-Resolution Lattice Fringe Image of Corrensite from Sample H6B-3.
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Figure VII-10. EDS Spectrum for Serpentine.
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Figure VII-11. EDS Spectrum for lllite.
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Figure VII-12. EDS Spectrum for Chlorite.
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Figure VIM 3. EDS Spectrum for Corrensite.
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the clay minerals in the Culebra Dolomite, because the Rustler Formation was
never buried as deeply as the formations from which Bodine and coworkers took
their samples, and temperature effects are therefore not as important.

Sewards et al., 1991 studied the clay minerals of the Rustler Formation in

detail, so this report merely summarizes the results of that work.

Palmer (1981) concluded that detrital clay minerals that were deposited into
the Permian Delaware, Midland, and Palo Duro Basins include dioctahedral
smectite, illite and mixed-layer illite/smectite kaolinite, and clay

chlorite

Because the interlayer space of illite is fixed with potassium ions, this
phase is a relatively stable one, especially at low temperatures. Even in an
environment that, being very magnesium rich, is clearly out of the stability
field for illite, illite crystallites apparently do not react with the pore
fluid that surrounds them; the crystallites we see today are probably

essentially unchanged from those that were deposited in Permian times.

Dioctahedral smectite, which is a far more reactive phase than illite,
undergoes a more radical transformation: the pore fluids in these sediments
constitute an "infinite reservoir" for magnesium. This magnesium replaces
aluminum in the original smectite octahedral layers, while aluminum replaces
silicon in the tetrahedral layers; copcurrently, brucitic hydroxide layers are
deposited in some of the interlayer spaces. The result is a mixed-layer
chlorite/smectite; if the ratio of chlorite to smectite layers is 1:1 and

stacking sequence is ordered, the result is corrensite.

Mixed-layer illite/smectite would undergo a similar transformation. Those
layers not fixed by potassium (the smectite layers) would take up magnesium
from the pore fluid; some of the interlayer spaces would accept brucitic
hydroxide layers, while the illite layers would remain essentially unchanged.
The result would be a mixed layer illite/smectite/chlorite. Reynolds (1980)
has calculated theoretical diffractograms for mixed-layer illite/smectite/
chlorite. These diffractograms are very similar to diffractograms of mixed-
layer chlorite/smectite, provided the percentage of illite layers is small; so
it would not be possible, based on XRD analysis alone, to determine whether

this phase is present.

Serpentine is formed by direct transformation from kaolinite: magnesium
replaces some of the aluminum in the octahedral layer, while aluminum replaces
some of the silicon in the tetrahedral layer in order to maintain the charge
balance. The result is a serpentine with a composition similar to that of

amesite
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Clay chlorite deposited into a brine with high magnesium activity would
presumably not react too extensively, since it is already a high magnesium

phase

Sewards et al., 1991 conclude, based on the presence of authigenic quartz and
potassium feldspar in Rustler Formation samples, plus textural evidence from
lattice fringe images obtained on the AEM, that these reactions occurred layer
by layer (Bethke and Altaner, 1986): i.e., tetrahedral and octahedral layers
are not destroyed; their composition is altered, but the bulk volume of clay

remains essentially constant.

The fact that corrensite is the dominant phase in the Culebra samples is
important. Corrensite has a high CEC and high surface area, thus it is able
to sorb radionuclides very efficiently in the event of a low pressure breach
in the WIPP facility. Although the clay minerals of only three samples were
investigated, the results of Sewards et al., 1991 show that mixed-layer
chlorite/smectite is the dominant clay phase throughout the Rustler Formation,
so it is reasonable to suggest that the same is true in the Culebra unit.

This is to be expected, since corrensite forms from a dioctahedral smectite
precursor, and this is almost always the most abundant product of weathering
(Blatt, 1982).

There is, however, a discrepancy between the results of the quantitative XRD
analysis and the results of the AEM investigation of sample H6B #3. In that
sample, the XRD results show that the sample contains approximately 50%
corrensite. When imaging was attempted on the AEM, it was extremely difficult
to find any corrensite at all; the dominant phases appeared to be serpentine,
illite, and chlorite. Klimentidis and Mackinnon (1986) have noted a similar

discrepancy while attempting to image mixed-layer clay minerals.
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VIlIl. PETROGRAPHY

Most of the observations in the following section are based on samples from a
single drill core, WIPP-12. This core yielded a large number of relatively
massive samples that illustrate the range of mineralogical and textural
characteristics typical of a vertical section through the Culebra Dolomite.
Attention was primarily focused on features in the Culebra Dolomite that might
preserve a record of, or ultimately control, its permeability and reactivity

to past, present, and future through-going fluids.

Although most samples examined under the microscope display a fine-grained
mosaic of dolomite crystals, significant variations occur in: (1) the size,
shape, color, etc. of the dolomite crystals; (2) the relative abundance of
quartz, clay, gypsum, and other phases in the dolomite; (3) the nature and
distribution of organic material; (4) the abundance and character of fractures
and fracture fillings; and, (5) the abundance, size, and textural
characteristics of vugs and holes in the dolomite. Most of the
heterogeneities are spatially interrelated even though they undoubtedly
reflect variable amounts of primary depositional, digenetic, and

postdepositional (dissolution-reprecipitation, etc.) processes.

The following discussion will be divided into two main parts. The first will
be a discussion of the mineralogical and textural characteristics of "typical"
massive dolomite. The second part will focus on the nature and distribution
of vugs, holes, and fractures within the Culebra Dolomite.

Characteristics and Variations in "Typical" Culebra Dolomite

Typical Culebra Dolomite samples consist of domains or layers dominated by
relatively pure, massive dolomite separated by domains or layers with quartz
and clay-rich dolomite (Figure VIII-1). The thickness and relative purity of
the layers are extremely variable. Clay-rich layers range from discontinuous
lenses, less than 1 mm thick, to continuous laminae, several centimeters in
thickness. Clay-rich layers typically contain from approximately 5 to 15 or
20 percent quartz and clay, whereas massive dolomite typically contains less
than 3 percent quartz and clay. Both quartz/clay-rich and massive dolomite

layers are cut to varying degrees by fractures and vugs (see below).
MASSIVE DOLOMITE
Massive dolomite domains in the Culebra Dolomite are characterized by nearly

equigranular mosaics of dolomite crystals. Individual grain boundaries are

generally not visible in transmitted light because of the fine grain size and
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the high birefringence of the dolomite crystals (Figure VIII-2). Scanning
electron microscope images of dolomite reveal that grains are subhedral rhombs
with impurities (clay, organic matter) concentrated on the boundaries (Figure
VIII-3). Even massive dolomite domains contain isolated local pods and lenses
of clay minerals (Figure VIII-4). Coarse mica phases are also present and

include muscovite, biotite, and iron-rich and iron-poor chlorite.

Two main textural varieties of massive dolomite domains have been identified
in the Culebra samples. The first is characterized by extremely fine-grained
dolomite with relatively abundant interstitial fine black material interpreted
to be primarily of organic origin. At high magnification, these domains are
characterized by a heterogeneous, slightly impure, appearance that is somewhat
similar to the clay-rich layers (Figure VIII-5). However, XRD and electron
microprobe analysis have failed to reveal any significant clay or mica
component within these domains; therefore, their appearance is interpreted to
reflect primarily the interstitial organic material. The second textural
variety consists of slightly coarser dolomite, 1little or no interstitial black
(organic?) material, and abundant fine vugs. These organic-poor domains are
generally characterized by a homogeneous, lighter colored, cleaner appearance

than the organic-rich regions (Figure VIII-6).

Boundaries between the clean dolomite and organic-rich dolomite regions are
irregular. They are typically somewhat lobate in form and commonly intersect
bedding at relatively high angles. Figure VIII-7, VIII-8 VIII-9 illustrates

a variety of clean/organic-rich dolomite boundaries within massive dolomite.

Several lines of evidence suggest that the cleaner, wvuggy dolomite domains may
be secondary, perhaps representing dissolution and reprecipitation or fluid
interaction with the original organic-rich dolomite. Lobes of clean, organic-
poor dolomite are commonly aligned along fine fractures within the massive
dolomite (Figure VIII-10). Other microfractures are surrounded by selvages of
clean dolomite within a generally organic-rich subdomain (Figure VIII-11). In
some cases, fractures and vugs with clean dolomite selvages are surrounded by
dark halos of concentrated organic material, suggesting that the dark halos

may represent a type of insoluble residue (Figure VIII-12, VIII-13).

It should be noted that dissolution experiments with a number of dolomite
samples yielded a dark black, almost greasy insoluble residue. The dark black
color gave way to a brown color, typical of clay-rich insoluble residues, upon
prolonged heating. This dark black component of the insoluble residue is
interpreted to be the organic component associated with primary dolomite and

with some clay-rich layers.
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Figure VIII-1. Sample W12-9. Massive, vuggy dolomite grading into a clay-rich layer at one end of
section. (FOV=12.8x16mm)

Figure VIII-2. Sample W12-4. Massive dolomite domain. (FOV = 12.8 x 16mm)
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Figure VIII-3. SEM Micrograph of Dolomite Crystals.

Figure VIII-4. W12-1 Clay-rich lens in massive dolomite.
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Figure VIII-5.  Sample W12-2. Fine-grained massive dolomite with interstitial black material interpreted to
be of organic origin. (FOV = 2.7 x 3.4mm)
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Figure VIII-6. Sample W12-2. Clean, coarse grained, vuggy dolomite. (FOV = 2.7 x 3.4mm)
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Figure VIII-7. Sample W12-2 View A. Boundary between organic-rich dolomite and clean, vuggy dolomite
within a massive dolomite domain. (FOV = 2.7 x 3.4mm)

Figure VIII-8. Sample W12-2 View B. Boundary between organic-rich dolomite and clean, vuggy dolomite
with a massive dolomite domain. (FOV = 12.8 x 16mm)
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Figure VIII-9. Sample W12-2 View C. Boundary between organic-rich dolomite and clean, vuggy dolomite
with a massive dolomite domain. Note lobate form of boundary that cross-cuts primary
layering. (FOV = 12.8x16mm)

Figure VIII-10. Sample W12-2. Lobate region of a clean dolomite intruding organic-rich dolomite. The lobe
of clean dolomite and the vug at center are localized along a narrow fracture.
(FOV = 12.8 x 16mm)

VIII-7



SAND90-7008

Figure VIIM1. Sample W12-2. Microfracture cutting organic-rich dolomite. Note clean dolomite selvage
around microfracture. (FOV = 2.7 x3.4mm1

Figure VIII-12. Sample W12-1. Microfracture cutting organic-rich dolomite. Note clean dolomite selvage
and dark halo around microfracture. (FOV = 7.2 x 9mm)
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Figure VIII-13. Sample W12-8. Vug in dark organic-rich dolomite. Note clean dolomite selvage and dark
halo around vug.
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CLAY-RICH LAYERS

As noted above, massive dolomite domains are separated by generally concordant
layers that are rich in quartz, clay, detrital mica, and other phases. These
impure layers are extremely variable in thickness, lateral continuity, and in
relative abundance of non-dolomite phases. Quartz/clay layers are generally
most obvious in hand specimen, typically as dark brown horizons within light
tan brown dolomite (Figure VIII-14). In thin section they are characterized

by anastomosing pods and lenses of fine clay with disseminated quartz and mica

in a matrix of fine-grained dolomite (Figure VIII-15, VIII-16, VIII-17). Some
clay/quartz-rich layers are relatively thick (up to 1 cm), but are only
slightly more impure than massive dolomite. Other layers are extremely thin
(<0.2 mm), but contain a relatively dense concentration of non-dolomite phases
(Figure 18). All samples examined to date contain some quartz/clay-rich
horizons

Many quartz/clay-rich layers are planar and generally sub-parallel to the
inferred orientation of bedding in the sample. In these cases it is difficult
to distinguish between an origin involving primary accumulation of detrital
quartz, clay, and other phases, and an origin involving concentration of non-
dolomite phases by dissolution of associated evaporite minerals. In several
examples, however, clay/quartz-rich layers are distinctly non-planar (Figure
VIII-19) These layers are suspected to form by the irregular dissolution of
pre-existing evaporite phases and concentration of residual phases, although
an interpretation involving deposition in a primary irregularity in the

underlying bedding surface is also possible.

It should be noted that although the quartz/clay-rich layers account for only
a small percentage of the total dolomite volume, they may be extremely
important in evaluating chemical interactions with percolating fluids. As is
shown below, clay-rich layers appear to preferentially localize in fractures
and vugs in the Culebra Dolomite; therefore, these layers may be more likely

to interact with fluids than the associated massive dolomite domains.

Characteristics of Vugs and Fractures

VUGS

Vugs are present within most, if not all, samples of the Culebra Dolomite. In
general, they can be divided into two broad classes and a number of

subclasses. As noted above, small vugs (<0.5 mm) are associated with the
clean massive dolomite domains and probably formed during a secondary
recrystallization of the primary organic-rich dolomite. These micro-vugs are

extremely clean, containing no associated phases or halos (see Figure VIII-6).
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Figure VIIl-14. Sample W12-17. Dolomite hand specimen with clay-rich layers.

Figure VIII-15. Sample W12-1. Relatively thick clay-rich layer hear one end of sample. (FOV = 2.7 x 3.4mm)

VIII-11



SAND90-7008

Figure VIII-16. Sample W12-5. Subtle slightly clay-rich layer. (FOV = 3.2 x 4mm)

Figure VIII-17. Sample W12-5. Single clay-rich pod from layer shown in Figure VIII-16.
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Figure VIII-18. Sample W12-1. Dense clay-rich layer. Note (1) layer pinches out along strike, (2) subtle
quartz/clay-rich layers parallel to the main one, (3) cross-cutting fractures with dark
halos. (FOV = 12.8 x 16mm)

Figure VIII-19. Sample W12-9. Irregular quartz/clay-rich layer. The irregulai form of the layer is
suspected to result from dissolution of pre-existing evaporite minerals
(FOV = 12.8 x 16mm)
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The second broad class of vugs is larger (1 mm to 1 cm) and are extremely
heterogeneous in appearance. These wvugs are generally associated with
fractures and quartz/clay-rich layers in the Culebra samples. They occur most
commonly near the intersections of fractures and quartz/clay-rich horizons
(Figure VIII-20, VIII-21 and VIII-22), but they are relatively common near
fractures (Figure VIII-23) or quartz/clay layers alone (Figure VIII-24). The
association of vugs and clay-rich layers suggests a feed-back situation in
which the clay-rich layers may be characterized by increased permeability
contributing to the development of vugs, which in turn may contribute to
increased permeability and further wvug formation. As noted above, this may
indicate that the quartz/clay-rich layers are preferential localities for

fluid flow and fluid interaction in the Culebra Dolomite

Textures and mineralogical characteristics of the large vugs associated with
fractures and/or quartz/clay-rich layers are extremely variable. In a single

sample, W-12 #8, four distinct textural varieties have been distinguished.

Gypsum-Filled Vugs

These wvugs typically contain irregular, feathery fragments of dolomite
floating in gypsum. Most contain coatings, partial fillings, or adjacent
domains with brown clay-rich dolomite. Most are surrounded by regions with
clean massive dolomite, and many display weak black (organic-rich?) halos
(Figure VIII-25).

Empty Vugs

Empty wvugs typically contain no brown clay coatings or 1linings. They are
surrounded by distinct regions of clean, coarse, vuggy dolomite, which are in
turn surrounded by halos of dark (organic?) material (Figure VIII-26).

Vugs Filled with Impure Dolomite

These are typically filled with brown (clay-rich?) impure dolomite with
abundant black (organic?) material (Figure VIII-27). They are commonly
outlined by a ring of small holes that give them an almost fossil-looking
appearance. Several have subtle black halos.

Vugs Filled with Clean Dolomite

These are somewhat similar to Type 3 vugs, but are filled with extremely fine,

clean dolomite, with a small amount of fine clay (Figure VIII-28). Many are

surrounded by clean dolomite regions and by very subtle dark halos.
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Figure VIII-20. Sample W12-5 View A. Vug located at intersection of fracture and quartz/clay-rich layer.

(FOV = 8 x 10mm)

Figure VIII-21.  Sample W12-5 View B. Vug located at intersection of fracture and quartz/clay-rich layer.

(FOV = 8 x 10mm)
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Figure VIII-22. Sample W12-5 View C. Vug located at intersection of fracture and quartz/clay-rich layer.
(FOV = 12.8 x 16mm)
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Figure VIII-24. Sample W12-8. Vugs localized along a quartz/clay-rich layer without an obvious
intersecting fracture. (FOV = 4.8 x 6mm)

Figure VIII-25. Sample W12-8. Gypsum filled vugs.
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Figure VIII-26. Sample W12-8. Empty vugs. Note smooth clean edges and distinct halos.

Figure VIII-27. Sample W12-8. Vugs filled with clay-rich impure dolomite. Note ring of holes at edges and
lack of distinct halos.
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Figure VIII-28. Sample W12-8. Vugs filled with fine grained, clear dolomite.
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Discussion

Each of these vug types probably represents a stage in an ongoing and evolving
vug-forming process. The dolomite-filled -vugs may be in the early stages of
formation, or they may be relatively late-stage wvugs that have been filled by
secondary clay and dolomite. Because of the poorly developed halos and
selvages, the former hypothesis is preferred. Gypsum-filled vugs are
typically interconnected by gypsum-filled fractures, suggesting that non-
gypsum bearing fractures may have lacked access to fluids during gypsum
deposition (Figure VIII-29). It is interesting to note that the edges of
gypsum-bearing vugs are irregular and feathery, whereas the edges of empty
vugs are typically smooth and sharp. This may suggest that gypsum-bearing
vugs may have formed approximately synchronously with gypsum deposition, and
perhaps the gypsum-bearing solutions were partly responsible for wug
development. If so, it is 1likely that the empty wvugs represent a distinct
vug-forming period, possibly with different vug-forming fluids. No consistent
vug-forming paragenesis has yet been worked out for the Culebra samples, but
it is suspected that such a paragenesis exists and may be resolvable with

further microscopic investigations.

FRACTURES

Virtually all Culebra Dolomite samples display fractures to some extent
(Figure VIII-30). Similar to the vugs and holes, a wide variety of fracture
types and fracture fillings occurs, often within a single sample. Fractures
range from narrow, almost imperceptible structures, defined by subtle halos or
selvages, to broad, gypsum-filled structures. As noted above, fractures have
probably provided an important access to a variety of fluids throughout the

evolution of the dolomite.

A wide variety of fracture types has been observed in the Culebra Dolomite.

The following is a summary of several of the most common varieties.

Gypsum-Filled Fractures

These are relatively through-going fractures that are completely or partly
filled by gypsum. They typically have little or no edge effects or selvages.
If anything, they may have minor concentrations of clay minerals along the
fracture walls. Gypsum-filled fractures typically occur at relatively high
angles to layering and are usually associated with gypsum-filled wvugs and
holes (Figure VIII-31, VIII-32).
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Figure VIII-31. Sample W12-8. Fine gypsum-filled fractures in massive dolomite. Note associated
gypsum-filled vugs. Note also convoluted brown fracure. (FOV = 12.8 x 16mm)

Figure VIII-32. Sample W12-7. Gypsum-filled fractures in massive dolomite. Note irregular boundary on
smaller fracture (FOV = 2.7 x 3.4mm)
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Clay-Lined Fractures

These fractures are defined by narrow concentrations of brown/black clay-rich
material with little or no open space along the fracture. They display
extremely irregular, convoluted shapes somewhat similar to carbonate
stylolites. Several of these features cut, terminate against, or grade into
gypsum-filled fractures; some appear to have been subsequently filled by
gypsum. They are generally not associated with selvages, halos, or other edge
effects (Figure VIII-33).

"Healed" Fractures

"Healed" fractures appear as a string of tiny holes within clean dolomite
giving the appearance that an original fracture has been healed by secondary
precipitation of dolomite. They are typically associated along their length
with empty vugs. Of all fracture types, these are characterized by the most
pronounced edge effects. They are surrounded by a zone of coarser, clean
dolomite (that may represent secondary, reprecipitated dolomite), which is, in
turn, surrounded by halos of dark (organic-rich?) material (Figure VIII-34).

Fractures Along Clay-Rich Layers

Most of the relatively thick clay-rich layers in the Culebra Dolomite are
associated to some degree with fractures. These fractures are irregular,
almost anastomosing, in shape, and they are somewhat intermittent along the
clay-rich layer. In many cases, the fractures are associated with the
darkest, clay-richest parts of the quartz/clay layers. Although some of these
fractures may have formed during drilling and thin section preparation, others
show evidence of having localized gypsum, clay, or clean dolomite and are,
therefore, a significant feature in the dolomite. These fractures are
important because they suggest that fluids may be preferentially channelled
through clay-rich regions in the dolomite and, thus, may have an increased

opportunity to interact with the clay minerals (Figure VIII-35).

Open (Water Bearing) Fractures

Obviously, the most important types of fractures in the Culebra Dolomite are
open fractures that show evidence of fluid transport (Figure VIII-36, VIII-
37). These fractures are not visible in thin section, since the core sections
are invariably broken along their surfaces. The surfaces themselves are lined
with powdery dolomite and calcite, clay, quartz, and gypsum, in varying
proportions. The separation between adjacent surfaces is not deducible from
the samples in this study, since the adjoining core sections are separated

when extracted from the drill casing.
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Figure VIII-33. Irregular Brown Clay-rich Fractures. Fractures are almost serrate in form and commonly
curve back on themselves along strike of the fracture. (FOV = 5.6 x 7mm)

Figure VIII-34. Sample W12-8. "Healed" fractures in massive dolomite. These may represent fractures
that have been sealed with secondary dolomite.
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Figure VIII-35.  Fractures Associated with Quartz/Clay-rich Layers. Note that the fractures have dark clay
concentrations along their walls.

Figure VIII-36. Sample W12-12. Surface of open fracture in hand specimen.
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Figure VIII-37. Sample W12-10. Surface of open fracture in hand specimen.
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Discussion

Many Culebra Dolomite samples contain several fracture types within a
relatively small area (Figure VIII-38). Within a single thin section, gypsum-
filled fractures, clay-rich fractures, and open fractures are typically
present with cross-cutting relationships. As with the wvugs and holes, no
paragenetic sequence has yet been worked out for the evolution of the Culebra
fractures, but it is possible that such a sequence can be resolved with

additional petrographic investigations.

Additional Textural Features

Several samples of Culebra Dolomite contain abundant gypsum that is not
apparently related to fractures or wvug-fillings. In these samples, gypsum is
a major component of the matrix, typically occurring as large, irregular-
shaped, gypsum-bearing patches within massive dolomite. Boundaries between
gypsum-bearing and gypsum-absent domains are irregular, typically occurring at

a relatively high angle to layering (Figure VIII-39).

Several pieces of evidence suggest that the gypsum-rich regions may be
secondary, having replaced or intruded the original dolomite. Gypsum-rich
domains often contain irregularly-shaped dolomite patches with feathery edges
and shapes that suggest dissolution or reprecipitation of the dolomite patches
(Figure VIII-40). Further, the boundaries of gypsum-rich regions typically
display anomalous clay concentrations and dark (organic-rich?) halos similar

to those associated with fractures and vugs (Figure VIII-41).

Gypsum-rich domains occur in only three of the sixteen samples taken from the
WIPP-12 core. The regional abundance of these domains is not known at
present, nor is the significance of these domains with respect to primary

depositional or secondary processes within the Culebra Dolomite.
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Figure VIII-38. Sample W12-8. Massive dolomite displaying various types of fractures.
(FOV = 5.6 x 7mm)

Figure VIII-39. Sample W12-6. Gypsum-rich domain within massive dolomite. Note irregular, cross-
cutting nature of the domain boundary. (FOV = 12.8x 16mm)
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Sample W12-6. Gypsum-rich domain showing patches of dolomite "floating" in a gypsum

matrix. Note irregular, feathery edges on dolomite patches. (FOV = 2.7 x 3.4mm)

Figure VI1II-41.

Sample W12-6. Boundary between gypsum-rich domain and massive dolomite. Note clay

concentrations near the domain boundary and generally clay-rich nature of dolomite
outside of gypsume-rich region compared to dolomite within the gypsum-bearing domain.
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IX. SUMMARY AND CONCLUSIONS

The Culebra Dolomite member of the Rustler Formation is mineralogically and
texturally heterogeneous, both vertically and horizontally. Although the
predominant mineral is dolomite, important constituents of the formation are
clay, quartz, gypsum, and calcite. Trace minerals include halite,

phyllosilicates of metamorphic origin, feldspar, and pyrite.

Dolomite in the samples examined in this study forms an equigranular
microcrystalline mosaic in which individual grains are subhedral rhombs,
typically 5 microns in equivalent diameter, but varying from 2 to 20 microns.
Dolomite compositions have an average calcium to magnesium ratio of 1.05 and
an average of 0.004 atoms of iron per unit cell. The origin of the dolomite
is presumed to be the result of early stage dolomitization of chemically
sedimented calcite, which was deposited in shallow waters; algal mats probably
formed what is now interstitial organic matter that is mixed with clay. The
dolomite content of the samples examined in this study ranges from a few
percent to nearly 99% of the total; the majority of the samples had 80% or

more dolomite.

The next most important constituent of the Culebra Dolomite is clay. Not only
is clay the second most abundant mineral present, but the fact that it is
concentrated along textural features, particularly the surfaces of open (fluid
bearing) fractures and wvugs, makes its presence of particular importance to
the characterization of hydrological transport within the formation. Clay
abundances range from less than 1.0% to nearly 60% of the bulk samples.

Within the more typical "massive" dolomite samples, there are bedding parallel
domains, which alternate between clay-rich and clay-poor compositions; these
domains give the "massive" dolomite samples a laminated appearance. Organic
matter is intimately associated with the clay in all the samples and gives the

mixture a brown to dark black color.

The clay mineral assemblage includes four minerals: corrensite (ordered mixed-
layer chlorite/smectite), illite, serpentine, and chlorite. Corrensite is the
dominant clay mineral, usually constituting about 50% of the clay assemblage;
illite is the next most abundant constituent, and serpentine and chlorite are
relatively minor components. Because of its high CEC, the presence of
corrensite is of particular importance. Corrensite will be an effective
sorbent of radionuclide cations in the event of a breach in the WIPP facility.

The remaining clay minerals have much lower CEC's.

Gypsum is present largely as a vein and vug-filling cement; it is probably
almost entirely of secondary origin: the product of the gypsification of the

anhydrite in the Tamarisk member, which overlies the Culebra Dolomite. All
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fluid-bearing surfaces examined by XRD show the presence of gypsum, and it
seems likely that fluids moving through the formation are saturated with
respect to gypsum. Except for one sample in the WIPP-12 core, gypsum rarely
exceeds 10% of the total; usually, much less than that. EMX elemental
analysis of gypsum in the Culebra samples shows that it is almost pure
Cas04.2H20; all other elements that might have been present were below

detection levels

Calcite is only present in measurable quantities in the WIPP-29 core, where it
is a major component of the top part of the core. However, XRD analysis of
powders obtained from scraping fluid-bearing (open) fractures shows the
presence of varying amounts of calcite on the surfaces of these fractures.
Calcite is interpreted to be of secondary origin, produced by dedolomitization
of dolomite by calcium-rich waters of meteoric origin. Calcite in samples
from the WIPP-19 core is microcrystalline; the crystals form a mosaic pattern
that is very similar in appearance to the micritic dolomite of the same
samples. EMX analyses of a sample from the WIPP-19 core show that calcite is
nearly pure CaCC>3 with less that 1% total MgO+FeO.

Two texturally important features of samples from the Culebra Dolomite are
vugs and fractures. Vugs appear to have been formed by dissolution of
evaporitic material (presumably halite); they are sometimes filled with
secondary gypsum, dolomite, and clay, although those connected with open
fractures usually remain empty. The most important types of fractures in
these samples are those that bear evidence of fluid movement upon their
surfaces. The surfaces of these fractures are coated with clay, powdery
dolomite, calcite, and gypsum. The minerals on these surfaces will interact
directly with radionuclide bearing brines in the event of a low-pressure
breach in the WIPP facility.
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APPENDIX A-
ANALYTICAL PROCEDURES

X-Ray Fluorescence Spectroscopy

Whole rock samples were ground up in a ballmill and/or with a mortar and
pestle and then passed through a 100 mesh sieve. Samples were then
thoroughly mixed; an 8.5 gr. portion was weighed out and placed in a clean
plastic vial. 1.5 gr. of boric acid (H3BO4) was added. A clean styrene
ball was then placed in the vial, and the mixture was blended in a ball mill
shaker for ten minutes. The styrene ball was removed from the mixture, and
the powder was placed in an aluminum pellet container and pressed to 20 Kb
in a hand press. The pellets were then analyzed in a Rigaku 3064M x-ray
fluorescence (XRF) spectrometer for eight component oxides: Si02, ATI203,
Ca0, MgO, FeO, Na20, K20, and SO3. For the first seven oxides, standard
88b, a natural dolomite NBS (National Bureau of Standards) was used; for
sulfide, standard R2, a sample from the Lower Member of the Rustler
Formation, for which sulfate content was determined gravimetrically, was
used.

In order to obtain compositional data for the clay mineral separates, fused
disks of the three separates were made. Dried separates were ground with a
mortar and pestle, passed through a 100 mesh sieve, and thoroughly mixed. A
1.0 gr. portion was then weighed out and placed in a clean plastic wvial; 9.1
gr. of flux (9.0 gr. of lithium tetraborate mixed with 0.1 gr. of ammonium
nitrate) were added. The mixture was placed in a plastic vial and a styrene
ball added; the contents were thoroughly blended in a ball mill shaker for
ten minutes. The styrene ball was removed, and the contents were placed in
a platinum crucible and heated in a furnace to 1000°C for about five
minutes, until the mixture was completely fluid and had a reddish glow. A
platinum mold was then placed in the furnace and left to equilibrate for
five minutes. The fluid was poured into the mold within the furnace; the
mold was then removed from the furnace and held over a hot plate to prevent
it from cooling too rapidly. After one minute, the mold was set on the hot
plate, and the hot plate was cooled down slowly. When completely cool, the
fused glass disk was removed from the mold. The disks were analyzed on the
Rigaku XRF spectrometer for seven component oxides: 8iC>2, AI203, CaO, MgoO,
FeO, Na20, and K20 using standard AGV-1l, a USGS (United States Geological
Survey) standard.
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X-Ray Diffraction Analysis

Portions of the ground and sieved whole rock powders retained from the XRF
pressed pellet preparation were placed in Plexiglas containers (2.5 cm. x
2.5 cm. x 0.4 cm.), which have a 2 mm deep hollowed-out compartment that
holds the powder. The surface of the powder was then scraped off so that it
was level with the top surface of the Plexiglas holder. The Plexiglas
container was then placed in the sample holder of Scintag PAD-V automated
diffractometer and analyzed from 2° 2-9 to 60° 2-9 at a scanning rate of 3

degrees per minute, using a 0.03 degree chopper increment.

Oriented mounts of the clay fractions of three samples were analyzed from 2°
2-9 to 30° 2-9 at a scanning rate of 3° 2-9, using a 0.03 degree chopper

increment.

Electron Microprobe Elemental Analysis

Polished thin sections of the rock samples were prepared using no water and
maintaining a temperature below 60°C. The thin sections were coated with
carbon in a vacuum evaporator. Minerals were analyzed with a JEOL 733
electron microprobe using an acceleration potential of 15 KV, a beam current
of 2 nanoamps, a beam diameter of 1.5 microns, for a period of 124 seconds
per analysis. Minerals were analyzed for Si02, AI203, CaO, MgO, FeO, Na20,
and K20. Analyses were corrected according to standard Bence-Albee
procedures. The microprobe is equipped with an energy dispersive
spectrometer (EDS), which allows quick, qualitative identification of

minerals from their EDS spectra.

Clay Fraction Separation

To obtain the clay fraction of the samples, the dolomite in the samples was
dissolved using disodium ethylenediaminetetraacetic acid (EDTA) (Bodine and
Fernalld, 1973). In this procedure, powdered and sieved whole rock samples
were placed in a stainless steel container and boiled in a 0.25 molar
disodium EDTA solution for four hours, or until the dolomite was completely
dissolved. The residue was then passed through a filter to separate the
insolubles from the fluid. The residue was dried, ground, and sieved (100
mesh), mixed with water, and left overnight. A portion of the dried and
sieved powder was retained to obtain a random mount x-ray diffraction (XRD)
pattern. The mixture was disaggregated using a sonic dismembrator and the
<2 micron fraction was separated by centrifugation (Hauff, 1982). Oriented

diffractometer mounts were prepared by the method of Drever (1973) .



Appendix: A

Analytical Electron Microscopy

A small portion of the <2 micron powder fraction of sample H6B #3 was
embedded in Spurrs epoxy and sectioned to thicknesses of less than 900A
using a diamond knife on a Reichert-Jung ultramicrotome. The microtomed
sections were mounted on a copper grid and examined using a JEOL 2000FX AEM.
High-resolution images and selected area diffraction patterns for several

microtomed sections were obtained.

Appendix A References
Drever, J.TI. 1973. "The Preparation of Oriented Clay Mineral Specimens for
X-ray Diffraction Analysis by a Filter-Membrane Peel Technique." Am.

Mineralogist 58, 533-554.

Hauff, P.L. 1982. "Sample Preparation Procedures for the Analysis of Clay
Minerals by X-ray Diffraction." Workshop syllabus, USGS O.F.R. 82-934, 37p.



APPENDIX B:
MODAL MINERALOGICAL CALCULATIONS

Whole Rock Modal Analysis

Modes for the minerals identified by x-ray diffraction (XRD) were determined
from the compositional data obtained by x-ray fluorescence spectroscopy

(XRF) . Based on the compositions of the individual minerals, either ideal
or determined by electron microprobe analysis (EMX), a particular element,
when present in only one mineral, was used to determine the mode of that
mineral. For example, the only phase containing aluminum in these samples
is clay and the EMX and XRF compositions of the clay fraction show that the
clay fraction has an average of 15% AI203; thus, the weight percent of clay
was calculated using the formula:

Clay(wt%) = AI203 / 0.15

Quartz, since it contains only Si02, was determined by:

Quartz (wt%) = Si02 - Clay(wt%) =x 0.46

since the average Si02 content of the clay fraction is 46%.

The remaining mineral modes were determined by the following formulae:

Gypsum(wt%) = SO3 / 0.465

Halite (wt%) = Na20 / 1.886

Dolomite (wt%) - (CaO - Gypsum x 0.326) / 0.304
or
Dolomite (wt%) = (MgO - Clay x 0.15) / 0.19
Calcite (wt%) - (CaO - Dolomite x 0.304) / 0.56
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The mineral modes determined by this method result in totals that typically
lie between 90% and 100%, which suggests that the method has an accuracy of

about + or -10% of the amount present.

Clay Mineral Modal Analysis

Modes for the component of the clay mineral assemblages in these samples
were determined by quantitative X-ray diffraction analysis (Reynolds, 1985).
Theoretical oriented (glycolated) diffractograms for the individual clay
minerals present in the samples were calculated using the NEWMOD program.
These were compared with the diffraction patterns of the glycolated mounts
for the samples in this study. The following peaks were selected for

quantitative analysis:

Corrensite: d=3.46A
Chlorite (003): d=4.73A
Illite (002): d=5.00A
Serpentine (002): d=3.51A

The integrated areas of the peaks in the sample diffractograms were divided by
the corresponding integrated areas of the peaks in the calculated
diffractograms for each mineral; the ratios were summed, and the individual

ratios were normalized to 100% to obtain the mode for each clay mineral.
Appendix B References
Reynolds, R.C. Jr. 1985. "Principles and Techniques of Quantitative Analysis

of Clay Minerals by X-ray Diffraction Methods." Clay Mineral Identification,
a Short Course. University of Denver, July 15-19, 1985.
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