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INTRODUCTION

During the last two years, our group has been working
on the concept of "feasible" images in the context of image
reconstruction for emission tomography (ET). The concept
has been discussed previously in image processing in as-
tronomy (Skilling and Bryan, 1984; Ables, 1974; Gull and
Daniell, 1978; Narayan and Nityananda, 1986) and in infor-
mation theory (Trussell, 1983; Trussell and Civanlar, 1984;
Sezan and Stark, 1982), but had not been applied to tomo-
graphic image reconstruction until we related the deteri-
oration of Maximum Likelihood Estimator (MLE) images at
large number of iterations to the unfeasibility of the re-
sulting images (Llacer, Veklerov and Hoffman, 1987;
Veklerov and Llacer, 1987; Llacer and Veklerov, 1988;
Llacer and Veklerov, 1989). We have described a feasible
image as an image that, if it were a true radioisotope
distribution in a patient, could have generated the
measured data by the Poisson process that governs the
radicactive decay process. Formal definitions of
feasibility, as well as tests that can be applied to
computer generated data or to real tomographic data, have
been given in the literature cited above.

We consider feasibility necessary but not sufficient
for a reconstruction to be acceptable. Indeed, the true
radioisotope distribution in a patient is feasible since it
did generate the data by a Poisson process. One would then
hope that a reconstruction of that distribution is in the
same set of feasible images. On the other hand, we have
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reported feasible images that contain artifacts due to
having initiated the iterative process with an inappropri-
ate first guess {(Llacer, Veklerov and Nunez, 1989) and we
must, therefore, indicate that feasibility is not a suffi-
cient condition for image acceptability.

We have found several ways of obtaining feasible im-

ages:
a) by the MLE method stopping the iterations as
soon as the images pass our test for feasibility
b) by continuing the iterations past feasibility
and returning to it by slight Gaussian filtering
c) by Bayesian methods with entropy prior (Nunez
and Llacer, 1989; Nunez and Llacer, 1989%a)
d) by the method of sieves (Snyder and Miller,
1985; Snyder et al., 1987)
All the feasible images that we have obtained are
different from each other in some subtle ways. For the
case of MLE reconstructions, H. Barrett (private

communication), suggested that cutting the MLE iterative
process short of maximizing the likelihood function may
result in the loss of image eigenvectors corresponding to
small eigenvalues. We ~have examined methods. of
characterizing the differences among the different feasible
images and it will be the objective of this paper to
discuss the preliminary results of our efforts in that
direction.

RECONSTRUCTION METHODS

We will discuss results from the four different meth-
ods -of obtaining feasible images listed above, starting in
all cases from one single set of projection data from the
ECAT-III tomograph of UCLA (Hoffman et al., 1983) in a
measurement of the Hoffman brain phantom. Most of the re-
constructions have been carried out with transition
matrices calculated by the simple Shepp-Vardi prescription
of 1982 '‘and also with Monte Carlo generated matrices that
take into consideration detector geometry, detector
material properties, positron range and cross-talk
{(Veklerov, Llacer and Hoffman, 1988). Random coincidences
and background have been subtracted previocus to the
reconstruction and corrections due to absorption and
detector gain have been made to the data for the MLE case
and to the matrix for the Bayesian and sieve methods.
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The number of variations that can be expected from
all the possible combinations of processing steps is ex-
cessive for a reascnable presentation. A careful examina-
tion of the results allows, however, to draw some prelim-
inary conclusions about the major observed differences in
the results. They are preliminary in the sense that they
are based on only one instance of the projection data and
need, therefore, to be repeated adequately for verifica-
tion.

The FMAPE Method

Of the reconstruction methods indicated above, the
one that is least known 1s the FMAPE, for Fast Maximum a
Posteriori with Entropy (Nunez and Llacer, 198%a). It will
be described here briefly.

The notation that we are using is the following:

D. j=1,...,D - the projecticn data or the
number of counts

a, i=131,...,B - the radioisotope activity
or emission density

£.. - transition matrix elements,
or probability that a dis-

integration in box i will
be detected in tube j.

hj = E fji a; - the forward projection

The FMAPE is a Bayesian method based on maximizing
the target function

B D
By - - (ai/Aa) log ( ai/AaH‘ E [_hlj.‘}_(p*j/Apj) log(h!j)}
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The first term is the Shannon entropy with one ad-
justable parameter, Aa, which controls the relative weight
of the entropy vs. likelihood. It can be adjusted to yield
reconstructions that converge to feasible images. The sec-
ond term is the likelihood which contains a vector of pro-
jection data p*. incorporating absorption and detector gain

corrections ang a vector of those corrections Ap*.. The
third term insures the conservation of counts and contains
one Lagrange multiplier fi. The vector of elements h', cor-

responds to a modified projection of the current image a,
and, in fact, prescribes that the corrections be applied to
the matrix elements f... The iterative algorithm we have
devised for the maximization is based on the "successive
substitutions” method (Hildebrand, 1974) and is given by

B
k k
Aa fji(l/Apj) (p*j/ E £4a0-1 -log(a,)+C

1

i=1
3=1

i=1,...,B (3)

There are two constants in Egq. 3 whose values are ar-
bitrary. Within the range of values for which the itera-
tive process converges, the convergence point is independ-
ent of their value. The first constant is the exponent n
which controls the speed of convergence. We have found
that ~for wvalues 1 £ n £ 3, the rate of convergence is
roughly propcrtional to n. The second is the constant C,
which insures that no negative values will cccur during the
iterative process. We use routinely C = Aa with no prob-
lems.  Finally, K is computed at the end of each iteration
to conserve the number of counts and it is equivalent to
calculating the ‘Lagrange multiplier Uby

I
K=1/ {1+ Aa p - log(Aa) + C} (4)
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The Method of Sieves

We have 'studied the method of sieves proposed by Sny-
der and Miller for the regularization of MLE reconstruc-
tions (Veklerov and Llacer, 1989) for the purpose of find-
ing whether a proper selection of the value for the sieve
kernel width would result in feasible reconstructions. The
results have been positive and the initial arbitrariness in
the choice of that parameter can now be removed by the fea-
sibility requirement. From the computational point of
view, the method of sieves consists in an MLE iterative
procedure like that of Shepp and Vardi, with the difference
that the transition matrix f.i is pre-convolved with a
Gaussian kernel with parameter B, contrelling the smooth-
ness of the final result. 1In the notation of the present
paper, the recursive formula is

D
B
(k+1) _ _(k+1) (k)
a4 = a; 943 Py / E 951 24
i=1
i=1
i=1,...,B. {(5)
where
B
gji - E fjm Kot
=1

is the convolution with a Gaussian kernel K. After the it-
erative procedure has converged, the final image is ob-

tained from
_ :2 : (k)
a, = a; Kmi' (6)

A small amount of experimentation with the parameter B of
kernel K yielded feasible images for both computer genera-
ted and real data.



~IMAGE EVALUATION PROCESS

A basis for comparison of different reconstruction
results of phantom images should be the phantom itself.
With data from a real tomograph, -however, the finite size
¢f the detector elements will invariably result in projec-
tion data in-which the frequency response of the instrument
will limit the fidelity with which the phantom can be re-
produced. It appears, then, that the comparison of recon-
struction results should be made with the "best"™ image that
the tomograph can generate under ideal circumstances.  For
that purpose, we have used a data set with 55 million
counts (55M) and used a filtered backprojection algorithm
with the ‘Shepp-Logan filter (FBP), providing very sharp re-
sults and acceptably low noise. Because of the linearity
of the FBP method, we expect the activity wvalues obtained
in the two regions-of-interest (ROIs) that have been chosen
for bias comparisons (shown in Fig. la) to be a good repre-
sentation of the ratio of hot vs. cold activity levels in
the phantom. The size of the ROIs is large enough to in-
clude many ©pixels, located within image features much
larger than the point response of the instrument.

The FBP method assumes that the tomograph point re-
sporise function 1is space invariant. All the methods we
have used to obtain our feasible reconstructions are based
on transition matrices corresponding to non-space invariant
response functions. A pixel-by-pixel comparison between
the FBP results and those of the tested methods, in config-
uration space as well as in frequency or Hilbert space, re-
sults in failure by misregistration. Even comparisons be-
tween results of the Shepp-Vardi and the Monte-Carlo matri-
ces suffer from that effect, by as much as one pixel at the
phantom edges. For that reason, ‘we have limited our pixel-
by-pixel comparisons to within the groups of reconstruc-
tions ‘using the same. transition matrices. Inter-group
comparisons, or comparisons with the FBP results, have been
carried out only for major features in the phantom.

The question of whether it would be of advantage to
carry out comparisons through Fourier transforms, eigen-
images ‘or eigenanalysis based on the eigenvectors of the
transition matrices has been studied. The difficulty en-
countered by not being able to identify differences in .the
"frequency"” domain as being differences in noise or in high
frequency image features appears to render transform meth-
ods less useful, at this time, than work done in configura-
tion space, which is what we have done.
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PRELIMINARY RESULTS AND DISCUSSION

We present here our preliminary. observations, based
on one single data set of 1 million (1M) counts. All the
reconstructions have been normalized to 80% activity corre-
sponding to the average of the high activity ROI shown in
Fig. 1. Subtractions on a pixel-by-pixel basis have been
carried out bi-directionally, with negative values sup-
pressed. The difference images have been displayed in a
color scale 10 times (X 10) more sensitive than the scale
used to display the normal reconstructions. The abbrevi-
ations used to denominate the different reconstruction
methods are the following:

MLE. SR: Maximum Likelihood -Estimator, stopped according
to our Stopping Rule at the onset of feasibility

MLE.PF: MLE, stopped at a point with 60% more iterations
than " MLE.SR, and Post-Filtered with a Gaussian
kerniel of o= 0.7 to 0.8 pixels

FMAPE.PF: FMAPE reconstruction, with Aa chosen for conver-
gence past feasibility, with Post-Filtering as
above

SIEVE: Reconstruction by the method of sieves, with pa-
rameter ﬁ chosen so that ‘process converges to a
feasible image

The results that will be discussed here are for re-
constructions with the Shepp-Vardi (SV) matrix. In gener-
al, the reconstructions obtained with the Monte Carloc ma-
trices do not show any visible differences from the SV
results, although profiles taken. through the MC images
indicate sharper results.

Effect of Iterating Past Feasibility and Post~Filtering

Figures la), b), c) and d) show, respectively, the
MLE.SR and MLE.PF results and the X 10 differences between
the two images. The differences between la) and 1lb) are
too small to be noticeable in the printed image. This is a
characteristic of all our results and, for that reason, the
reconstruction results will not generally be shown.



XBB 806-4832 ~ XBB 896-4833
Fig. 1 - Reconstructions of a data set with 1 million
counts by the MLE method. &) Stopping at the onset of
feasibility, at iteration 30 (SR), b) Continuing to iter-
ation 50 and post-filtering with a Gaussian kernel of ¢=0.8
pixels (PF), c¢) Difference (SR-PF), magnified X 10, nega-
tive values set to zero, d) Difference {(PF-SR), same con-
ditions as c).

The difference image SR-PF shows pixel wvalues in
which the SR image has higher values than those of the PF
image and vice-versa for the PF-SR image. The phantom per-
iphery is clearly visible in both cases and it is due prin-
cipally -to the broadening and flattening effect of the
' Gaussian post-filtering in the PF image. 1In SR-PF of Fig.




1c), the most significant visible features are faintly vis-
ible mnarrow valleys and in PF-SR of Fig. 1d), the ‘most
prominent features are the smaller hot regions of the phan-
tom. )

The interpretation of the difference images is that
iterating past the onset of feasibility results in the nar-
row valleys of the phantom becoming deeper and the smaller
hot regions becoming higher, i.e., increasing the contrast
for small features. The ratio of hot to cold ROIs of Fig.
la) is 4.32 for the 55M FBP results, 4.50 for the SR and
4.74 for the PF results. This number fluctuates in all the
reconstructions with 1M counts between a low of 4.0 for the
FMAPE reconstructions and a high of 5.17 for the sieve re-
sults. Similar effects are obtained by comparisons within
the set of MLE results obtained with the MC matrix or with
the FMAPE results converging to Jjust feasibility or past
feasibility and post-filtering.

Comparison Between MLE.PF and Bayesian FMAPE Results

Figure 2a) shows the difference between MLE and FMAPE
results, both with post-filtering, and the Shepp-Vardi ma-
trix. Only  a few hot spots appear, indicating that the
FMAPE has reduced the size of some of the "unstable" points
of the MLE reconstruction. Figure 2b) shows the FMAPE -
MLE difference which shows a bias in the complete low ac-
tivity part of the phantom, with the FMAPE yielding an
estimate which 'is higher than the MLE by approximately 3%
of the maximum activity. In spite of misregistration prob-
lems, it is possible to compare the FMAPE and MLE results
with the FBP reference:. The suspected bias of the FMAPE is
confirmed by that comparison.  However, comparing MLE.PF
results with FMAPE with the parameter Aa chosen so that the
method converges substantially past feasibility (Aa =800,
instead of 400) and postfiltering yields an almost complete
correction of the observed bias.

Comparison Between MLE and SIEVE Results

A comparison between MLE.SR or MLE.PF and sieve re-
sults indicates that the sieve results are too low in the
regions of low activity by approximately 2% with respect to
the MLE, making the ratio of high to low activity ROIs of
Fig. la) the highest measured in the present experiments.
In addition, it appears that the sieve results are too high
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Fig. 2 - Differences magnified X 10, betwéen MLE with post
filtering (MLE.PF) and Bayesian reconstruction with the
FMAPE algorithm (FMAPE.PF). a) MLE-FMAPE and b) FMAPE-MLE.
In both cases negative values have been set to zero.

in regions of small hot features, or at edges, and toc low
in narrow valleys, i.e., it appears to suffer from ringing.
This effects are seen in the X 10 difference images of
Figs. 3a) and b). The ringing effect ‘has already been ob-
served by Snyder et al. and they have proposed the use of a
"rescolution kernel™ in . the reconstruction. ~We have imple-
mented it approximately by a Gaussian post-filtering oper-
ation with the same kernel that we have used for the MLE
results (0 = 0.8 pixels). The differences between post-=
filtered images are almost featureless and we conclude that
the two ‘images are essentially equivalent, although the
ratio of ROIs for the sieve image is still too high.

We have also measured the ratio o0f RQOIs in the FBP.SL
reconstruction for the 1M count data set used in the above
reconstructions and we have found it to be 4.31, essential-
ly the same as with 55M counts.

CONCLUSIONS

The work described above confirms our early visual
cbservation that not all feasible images are equivalent in
terms of their possible medical content. We could rank the
three main methods of reconstruction investigated in . order
of the range of values that they exhibit:
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1) FMAPE reconstructions, with average wvalues in large
ROIs that are too compressed, by ~ 3% of the maximum,
except when parameter Aa is chosen for convergence
substantially past feasibility

2) MLE reccnstructions, that have ROI values that are
somewhat expanded, within 1 - 2% of the correct range

3) Sieve methods that show a range of ROI values that is
expanded by approximately 3%, although this effect has
to be checked after incorporating the resolution ker-
nel intc the algorithm

We realize that these conclusions are based on an
analysis of reconstructions from only one set of data and
that it 1is necessary to verify them by reconstructing more
sets of data. We have just initiated that process.

2 ,, P
XBB 896-4836 , XBB 896-4837

Fig. 3 - Differences magnified X 10 between MLE reconstruc-
tions with post-filtering {(MLE.PF) and sieve results, un-
filtered.

211 the feasible images that we have obtained are
visually good, with the sieve images (without post-filter-
ing) being the most pleasing ones (smoother, higher con-
trast).

The work that we have reported is preliminary to the
selection of one or two main reconstruction methods for an
extensive ROC analysis of the possible benefits of statis-
tically based algorithms in PET in collaboration with the
Nuclear Medicine Group at UCLA.
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