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XNDM: ANEXPERIMENTAL NETWORK DATA MANAGER

Stephen R. Kimbleton
Pearl S.-C. Wang
and
Elizabeth N. Fong

National Bureau of Standards
Washington, D.C. 20234

ABSTRACT

Data base access is increasingly important in a networking
environment. Two alternative approaches can be identified: i)
implementation of distributed databases presenting the user with
one logical database implemented across a collection of computers
or, alternatively, i) development of network data managers
providing a uniform wuser and program viewpoint -across
heterogenous DBMSs. While the first approach is the most
natural extension of the concept of an individual DBMS, its
utilization imposes certain requirements including the necessity
for converting existing DBMSs if their data is to be supported in
eliminates conversion problems; however, it has not yet Leen
shown feasible. This paper describes an ongoing research project
concerned with establishing the feasibility, issues, alternatives,
and a technical approach for supporting a network data manager.
Although implementation has not been completed, the initial
evidence is positive and suggests that network data managers
may well prove either an acceptable alternative or useful
intermediate stage to a distributed database.

1. INTRODUCTION

Computer networks support the sharing of remote programs and data. The gradual
maturation of networking technology, as measured by the increasingly sophisticated
protocols and applications being implemented [ARPAN 76}, [INWG 77], has resulted in
increasing demands for supporting remote access to data.

This work Is a contribution - of the National Bureau of Standards and is not subject to copyright. Partial
funding for the preparation of this paper was provided by the U.S. Air Force Rome Air Development Center
(RADC) under Contract No. F 30602-77-0068. Certain commercial products are identified in this paper in
order to adequately specify the procedures being described. In no case does such identification imply
recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material
identified is necessarily the best for the purpose.



An individual user, interacting with a remote database management system (DBMS),
issues queries and updates in the data manipulation language (DML) used by the system
and receives data in response. Because of differences in: i) the data model used in
constructing DBMS supported data structures, ii) the functionality provided by the
software even if the underlying data models are the same, iii) data structure, e.g. data
base semantic differences which are also likely even if the same underlying data model is
employed, iv) DML differences, and v) computer system differences, the user wishing to
access multiple remote databases is faced with a substantial learning burden.

This paper argues that this learning burden can be substantially offloaded from the
user. Accomplishing this requires a network data manager. providing a uniform user
viewpoint across multiple remote heterogeneous DBMSs. The feasibility of this approach
is being explored through constructing an Experimental Network Data Manager (XNDM)
at the National Bureau of Standards.

The basic assumption underlying the design of XNDM is heterogeneity of data
models, data structures, DBMSs, DMLs and computer systems on which these DBMSs
reside. Superimposing a uniform user viewpoint in such an environment clearly
requires a substantial amount of software and may be a significant source of
delay in processing user requests.

To explore this issue, recall that information processing requirements can be divided
into  three categories [ANTHR 65]. operational control, managerial control and
strategic planning. As one passes from operational control to strategic planning, the
bandwidth of the application decreases as does its predictability.. Intuitively, we
believe that network data managers are inappropriate for operational control, highly
appropriate for strategic planning, and may be of help in managerial control. For
example, handling inventory out-of-stock conditions could be simplified through a means
for querying remote DBMSs to determine an alternative source of supply when
an out-of-stock: is indicated by the local DBMS.

The preceding suggests that strategic planning and exception reporting constitute two
likely applications for a network data manager. Moreover, the nature of these applications
suggests that the additional overhead of supporting a network data manager is likely to
prove very acceptable in comparison with the burden of manually performing the
necessary translation processes in response to unpredictable and non-recurrent demands.

The remainder of this paper provides a more - detailed discussion of XNDM. To
provide context, section 2 establishes some comparisons between a network data
manager and a distributed database. Section 3 describes the user’'s view provided by
XNDM. Section 4 discusses translation technology required to support this view and
observes that it differs substantially from that currently discussed in the data translation
literature. Section 5 describes the current XNDM implementation status and presents
some concluding remarks.

2. NETWORK DATA SUPPORT OPTIONS

A distributed DBMS (DDBMS) is usually viewed as one logical DBMS implemented across
several host computers. Thus, excluding performance differences, there is . no
apparent difference to the user in accessing a DDBMS and accessing a DBMS resident on
a single host using the same data structures and data manipulation language.
Moreover, through redundancy, the DDBMS potentially permits increased reliability and
decreased access times to frequently used portions of the database. Redundancy does
require care in ensuring consistency of muitiple data copies and in synchronizing
updates [ROTHJ 77], [STONM 77].



Using a DDBMS poses the need for conversion of existing DBMSs. The current state
of database conversion suggests that non-trivial costs are associated with this process
[NAVAS 76]. Moreover, even if these costs were insignificant, the resulting
organizational dislocation in adapting to the new DDBMS is likely to be extensive.
Consequently, the DDBMS approach may prove infeasible given the environment in which it
is to be implemented.

A network data manager is intended to provide an alternative to the DDBMS through
providing an easy means for simplifying network access to multiple, heterogeneous DBMSs.
The basic relationship = between a network data manager and the individual DBMSs is
illustrated in Figure 2-1 in the context of the NBS Experimental Network Data Manager
(XNDM). Thus, a process represented as a circle within one computer (PHOST) interacts in
a uniform way with multiple independent DBMSs located in one or more computer systems.

Our working hypothesns is that the network data manager approach is likely to prove
very acceptable in handling unpredlctable and non-recurrent requests. Moregver, given
the cost of database conversion, it is also likely to be the only feasible way of easily
adapting to the opportunities for sharing information which are provided by networking.
Thus, we are motivated to consider its design and development in greater detail.

3. THE NETWORK USER ENVIRONMENT

The two essential functions of a Network Data Manager are provision of a uniform user
environment across individual (heterogeneous) local DBMSs (LDBMSs), and translating
between - this user environment and the LDBMSs. The remainder of this section structures
the basic components of the XNDM supported user envrronment while the following
section addresses translatlon technology

3.1 Data Model/Data Language Selection

Developing a data language and data model for XNDM ' can be approached either as a
problem of developing a 'best’ data model and data language and then considering the
issues in translating to existing data models and languages or through selecting one of the
existing data models and languages. The former is a problem of independent interest.
Requiring its solution as the prerequisite to analyzmg network data managers seems
undesirable. Instead, we have chosen to examine the existing alternatives, select a
reasonable candidate, and place primary emphasis on the data manager specific aspects
of the problem. This has expedited our consideration of the basic nature of the
problem. It will be interesting to see if future data model/data language research can
be easily accommodated as we expect or, instead, will require substantial revision.

Selection of a data model for XNDM has been driven by three basic assumptions. The
first is that the network user is naive vis-a-vis the access requirements of local DBMSs. The
second is that the network user should be assisted to ensure that queries and updates are
meaningful. The third is that the local DBMS should be provided with relatively tight
guarantees that the network user will not be able to adversely alfect its operations
through ignorance or intent. Note that the second and third assumptions are closely
interrelated.

The first assumption motivates selection of a data model and data language minimizing the
knowledge and effort requnred to support access. That is, the data model should present
data in a way which is easy for the user to understand. Further, the Data’ Manipulation
Language (DML) should minimize procedural (extent to which the user must specify how
rather than what is to be retrieved or updated) and navigational (need for explicitly
specifying interrelationships between data elements) requirements.
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Of the three basic data models: relational, hierarchical, and network, it is our opinion that
the relational model is the simplest to understand. Accordingly, we have chosen tables
as the basic mechanism for representing data. Although a properly chosen user schema
can result in an appropriately simple user viewpoint regardless of the particular global
schema employed, the static nature of such a schema conflicts with the random and
unpredicatable nature of arriving requests.

The requirements for our second assumption are met through a semantic integrity
system that ensures meaningful queries and updates as discussed below. Moreover, an
access control mechanism is also being implemented to ensure that the network user
is only permitted to access data appropriate to his/her access rights. This is the
basic tool for meeting the third requirement. '

3.2 Global Schema Specification

Central to the specification of an XNDM global schema is the balancing of the conflicting
requirements of the network users so as to provide a design that can satisfy the need of the
"community” of users - as opposed to the need of any individual user.

As discussed above, a basic XNDM assumption is that a uniform user environment is to
be superimposed on a highly heterogeneous collection of existing local DBMSs. This
requires: i) a common view of data to be presented to the network user, and ii) a means
for mapping from this common view to the target systems. Note that this common view
need not contain all of the data in the local DBMSs. Rather, it will probably comprise
only that data thought to be of common interest. This, in turn, is likely to be a subset
of the data which local DBMS management is willing to make available to the network user.
Since both of these selection processes are judgmental, we assume that the selection of
data and its attributes is performed by a team (of database administrators?) responsible
~ for the overall utilization-of the network data manager.

Given this selection, and the resuiting structuring using the described data model, the
need arises for a suitable translation process. This translation process proves to be
substantially different from that currently discussed in the data translation literature. It is
discussed in some detail in the following section.

3.3 Experimental Network Data Language

The Experimental Network Data Language consists of three major components: i)
Experimental Network Data Manipulation Language (XNDML), ii) Experimental Network
Data Control Language (XNDCL), and iii) Experimental Network Data Definition Language
(XNDDL).

Since the basic XNDM objective was to explore the feasibility of providing a uniform
environment for the network user, we decided to adopt an existing DML and add any
extensions which proved necessary. After some consideration, we have chosen SEQUEL
[CHAMD 76] to provide the basic framework for XNDL since: i) it is a table based DML, and
ii) it has been subjected to human factors oriented investigations which have improved -
the quality of its user interface [REISP 75].

Currently, the design of both the query and update portions of XNDML has been completed
and implementation of the query portion is underway. Implementation of update
capabilities is being deferred pending completion of the design of XNDCL and XNDDL.



XNDML is both a subset and extension of SEQUEL. XNDML is a subset since it does
not contain the SEQUEL sorting facilities and certain alternative ways of stating
predicates. Sorting was eliminated because it adds little to demonstrating the feasibility of
a network data manager and can be an expensive consumer of processing time on the
host containing the LDBMS. XNDML is invoked via subroutine CALLs. Thus it does not
have a host language interface corresponding to that provided by SEQUEL. Table 3-1 lists
the six major categories of XNDML query commands

XNDML extends its SEQUEL subset to meet the need for specifying the target database.
Three major alternatives can be identified: explicit specification, implicit specification,
and specification of location as a virtual attribute.

The. target database can be explicitly specified by using the statement DATABASE IS
'DATABASENAME'. The effect of this statement is to make all subsequent XNDML
statements refer to this DATABASE until another target specification is encountered.

Implicit specification of the target database occurs when the user issues an XNDML
statement without any target database specification. In this case, XNDM maintained
information is used to identify the relevant databases (those containing information about
the entities and relationships identified in the XNDML statement). The statement is
then applied against each such database and the results aggregated.

The third and most. sophisticated specification is through treatment of location as a
virtual attribute. This logically attaches a location column to each relation seen by the user.
This permits one to construct queries in which the predicate applies to location as well as
to entities and their attributes. Thus, assuming that the distance between sites is known,
one can specify the site of the location to replenish an out-of-stock condition as
a function of conditions prevailing at each relevant location. For instance, an out-of-
stock replenishment rule might be to replenish in an amount inversely proportional to
distance and directly proportional to stock on hand. Distance proportionality can be used
to lower shipping cost overhead while stock on hand proportionality could be used to avoid
unduly impacting a site with a low stock level.

Two required XNDM support functions are data location and access path determination.
Data location uses the Network Wide Directory System contained within the NBS
Experimental Network Operating System [KIMB 78]. Access path information is provided by
the XNDDL processor.

TABLE 3-1. XNDML Query Categories,

C1 SELECT (columns)

C2 SELECT...WHERE (rows)
C3 PARTITION

C4 SET OPERATIONS

C5 AGGREGATION

C6 COMPOSITION



3.4 Semantic Integrity

Semantic integrity is a significant issue in the context of an individual DBMS since . it
provides a means of assuring that the database is a valid representation of the
application environment. Two major reports [MCLED 76] and [BRODM 78] have appeared
on this subject as well as a variety of papers. The general objective is ensuring that if
one starts with a valid DBMS configuration, subsequent updates will not impair this
validity.

Semantic integrity is of greater importance in the context of a network data manager
since local DBMS management is likely to want strong assurances that remote, and
therefore presumably less knowledgeable users, will not affect DBMS integrity. This problem
varies somewhat from that for an individual DBMS. XNDM cannot assure that the
database is, initially, in a consistent state. Thus, the major concern is that updates are
semantically correct. A lesser concern is facilitating the correct structuring of queries
through supporting strong domain typing.

XNDM semantic integrity concerns also differ from the corresponding problem for an
individual DBMS because the network user's view of data is virtual. Thus, there is a
premium on performing all non-data dependent integrity checking before proceeding
with the data dependent checks. This may ultimately result in a partitioning of integrity
checking functions between XNDM and the LDBMS. In any event, the major issues
can be divided into two major categories: i) assurance of integrity at the network level,
and ii) assurance of integrity at the local DBMS level.

Although work on the XNDM Semantic Integrity System is in its preliminary stages
[FONGE 79], some initial observations can be made. Semantic integrity can be expressed
at the global schema level through the (virtual) tabular data model. Assuring integrity
within an individual table can be subdivided into assurance of attribute integrity, row
integrity, column integrity, and predicate integrity.

Assurance of semantic integrity is provided via two facilities: strong domain typing
and predicate-based assertions. Strong domain typing facilities of XNDM permit the user
to define: i) the format of the data, ii) the acceptable range of values, iii) the collection
of legal (arithmetic, logical and string) operations, and iv) the interrelationships among
data elements in terms of the collection of legally acceptable operations.

Predicate-based assertions specify validity criteria which are to hold in the application
environment. The facility provided in XNDM will permit: i) specification of rules for
consistency and correctness of data bases, ii) the time at which the assertion is to be
enforced, and iii) the actions to be taken when the assertions are not satisfied.

Assuring predicate-based integrity for either an individual relation or for a collection of
relations can imply significant overhead depending on the amount of data involved
and the types of checks which must be performed.

3.5 Access Controls

A second major support function required for acceptance of XNDM is provision of an
appropriate access control mechanism. Currently, many DBMSs provide access controls
via passwords on files [DATEC 77]. This is clearly insufficient for the level of
functionality intended to be provided by XNDM. The issue is whether a significantly
better system can be implemented. This issue has been discussed in [WOODH 79};
the following summary considerations are based on the discussion contained therein.
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Access control mechanisms can be divided into two major categories [KARGP 77]: i)
non-discretionary access control mechanisms which support organizational constraints on
the sharing of information, and ii) discretionary access control mechanisms which permit
user directed controlled sharing of information.

Security levels and compartments constitute a major example of non-discretionary
access control - mechanisms. Conceptually, a user is labelled with security level(s) and
compartments, e.g. level is SECRET, compartment is NATO, and is entitled to access all
information having the same, or lower levels, e.g. level is SECRET or CONFIDENTIAL,
compartment is NATO., ’ '

System-R provides an example of a sophisticated DBMS discretionary access control
mechanism [GRIFP 76]. Through its use, an individual user is permitted to grant a subset
of his/her access rights to another user. The supported functionality permits
READing, INSERTing, DELETEing, UPDATEing, and DROPing (of an entire table).
Moreover, a GRANT command permits one user to provide another user with the ability to
GRANT rights. These mechanisms are supported for both an entire table and for individual
columns of a table.

XNDM provides both discretionary and non-discretionary access controls. Their
combined support requires a mechanism for checking that discretionary grants do not
conflict with non-discretionary controls. This checking process has been implemented
using the lattice security model [DENND 76].

4. TRANSLATION TECHNOLOGY

This section: i) establishes the differences between data transiation required to support
XNDM and that currently considered in the data translation literature, ii) discusses the two
major alternatives in implementing a translation capability, and iii) describes the translation
process which we have selected. Currently, translation has only been implemented for
the query portion of XNDML which, for simplicity, we refer to as the Experimental
Network Query Language (XNQL).

4.1 The Nature of the Translation Process

Data translation can. be characterized in two different dimensions: i) online vs.
offline, and ii) constraints on source and target data structures. XNDM translation
requirements differ from those usually discussed in the data translation literature since: i) it
is a real-time, online process, and ii) it is dependent upon both source and target data
structures. :

The requirement that the translation process be real-time and online forces a substantially
different translation process than that usually considered in the context of database
transiation [NAVAS 76]. Specifically, the need for explicit consideration of physical
representations of data is eliminated while the need for an online and realtime level of
functionality cannot be avoided. '

XNDM translation also differs from that usually associated with database front ends
and database terminals. (A database front end presents the user with data structures
differing from those actually employed by the DBMS being accessed and often based on
a different data model. Thus, there is substantial interest in relational front ends to
DBTG DBMSs. For a front end, the data structures presented to the user are 'fixed' and
the data structures employed by the target DBMS are derived from the user presented
data structures. Database terminals, in contrast, provide the user with a constant data
model and DML across heterogeneous DBMSs. The target data structures are fixed and
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the data structures presented to the user are derived from these target data structures
[KLUGA 78].)

In both of these cases only one set of data structures is fixed while the other is derived
from this fixed set. This allows substantial freedom in tailoring data structures to simplify
the translation process. Such freedom is not available in constructing a network data
manager in which the data structures presented to the network user are fixed (recall that
they were chosen by a committee) and the data structures of the target systems are also
fixed. ' '

4.2 XNDM Translation Alternatives

An XNQL statement specifies the sequence of operations to be performed on the underlying
information structures. It is a high-level language, and by its very nature;, does not
specify the step-by-step, system-specific actions needed to evaluate the query by a given
target DBMS. 1t is the function of the translator to supply these details.

Since XNQL is a query language, the primitive information structures of the language are
aggregated, not simple, data. That is, the basic 'atoms’ of data expressed in an XNQL
statement are relations rather than individual data elements. The translator interprets
these data objects in terms of the primitive data constructs provided by the particular
target DBMS and its data structuring rules.

Construction of the XNQL translator is further complicated by the fact that different target
systems support different primitive operations and data structures; therefore we need not a
single translator but a family of translators. Two approaches to their realization can
be identified: construction of a collection of source-target specific translators or,
alternatively, construction of a single translator for the bulk of the translation process
common to all translators together with custom tailored front ends handling the source
specific portion of the translation process and custom tailored back ends handling the
target specific portion of the translation process.

Construction of independent translators has the advantage that design unity and run-time

efficiency is more achievable with a single translator for each target DBMS. However, an

entire translator is needed to support each additional target, whereas in the family

approach all the translators share a core design which defines the common (source

and target-independent) - part of the translator. Each new translator in the family is
obtained by building sourceé and target-oriented specialities on top of the basic design.

Therefore the bulk of the implementation effort is available across different target systems

and new developments need not start from scratch.

An important side-effect of the family approach is the insight it provides for DBMS
data manipulation and structuring facilities. That is, a simple, coherent design for a
translator family is impossible without abstracting the essential properties of target systems
and recognizing their commonalities and differences. Thus, we have chosen the
approach of designing a good general framework, ie. a consistent, efficiently
implementable translator aliowing effective use of target system facilities. The insighis
provided by this framework are augmented by those developed in preparing the mappings
to and from specific tzrget systems.
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4.3 XNQL Translation

The complex semantic manipulations required for translation are achieved by means of step-
by-step transformations of an appropriately chosen internal representation of the input
text. We have chosen a tree as the intermediate representation because of the requirement
for flexibility in handling a wide range of target DML’s and data structures.

Each transformation takes us somewhat closer to the target query by either changing the
original form of the input text to uncover the underlying "basic structure" of the query tree
which characterizes the system-independent organization of queries, or reshaping the basic
tree to incorporate the surface structure of the target language. The value of this
transformational approach is that it reduces the overall translator complexity and also
supports a simple, consistent, modular design [DEREF 76]).

The translation process is (vertically) scgmented into five phases as illustrated in Figure 4-
1. A more exiensive discussion is contained in [WANGP 79].

Lexical and Syntactic Analysis

The tasks of the lexical and syntactic analysis modules are conventional [GRIED
69]. They produce a source(XNQL)-specific syntax tree representation of the input
query. This tree contains all the information originally present in the source text as
well as all the information that is inherent in the XNQL grammatical description. The
source syntax tree is the first of a sequence of trees used in the translator as
intermodular data structures. Each later module takes as input the tree produced by
the previous module and leaves a tree that is closer to the target query by
reshaping the tree, pruning source-specific information. from the tree and/or
incorporating target-specific information into the tree. The basic task facing the
translator writer is disentangling those aspects of the source and target queries
that reflect "essential" (language-independent) logical structures frem those that
characterize "incidental" (language-specific) representational details.

Standardization

Processing beyond the syntactic level can be made simpler if the source syntax iree
is transformed into a standard form where each WHERE clause is represented as a binary
tree of predicates connected by AND and OR nodes arranged in conjunctive normal form
[STONM 76].

Static Semantic Processing

Since each XNQL query interacts with a data space which is the Cartesian product of
several relations subject to the restriction of the WHERE clause, and frequently these
restrictions are such that the Cartesian product becomes an equi-join (merging of fwo
relations based on a common column), differences in source and target structures at
the record level imply different join conditions in the queries.

The static semantic level of the translator does the processing needed to account for data
structure differences at and below the record level by first resolving data item name
differences and then the differences in the joins.

The "data item renaming" module traverses the source syntax tree from the top down,
replacing all leaf references to source(user) data items with corresponding references to
target data items and depositing their attribute information at these nodes. The "record
structure mapping" module then deletes all predicate nodes representing joins between
different source relations and inserts the appropriate join predicates for target records.
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Dynamic Semantic Processing

The transformations happening at this level account for the differences in the logical
structures of the source and target query languages. Since the unit of data structure for
each target query may be smailer than for XNQL (e.g. each Codasyl DML statement can
only involve a singie record (or set) type, whereas there is no limitation to the number of
different tuple types (relations) an XNQL statement can manipulate), we first decompose
the query tree into sub-irees, each of which involves a single unit of data structure
that a target query can handle. The "sequence" module then chains the sub-trees
together in the order that the corresponding queries should be sequenced for the target
DBMS and selects the execution sequence of these chains that minimizes the amount of
intermediate records needed to be processed.

Code Generation

This is the final phase of the translator and outputs the desired target DML statements
that can be executed by the local DBMSs. The first module interprets each of the sub-
trees along the chains produced by the Sequencer and generates CALL statements to
primitive target database operations. The second (code generation) module then expands
these CALLs into sequences of actual target DML statements.

The exact form of the primitives depend upon the particular target system we are
considering. Their behavior characteristics fall, in general, into the following categories:
search or return the first/next instance of a specified record type, test the truth value
of some predicate expression of the record type, partition all instances of a record
type on the basis of some data item values and evaluate aggregate functions for the
specified record type. (These correspond roughly to the information algebra operations
[CODAS 62] of searching/returning the first/next point of a line, bundling, glumping and
evaluating functions oflines.)

This extra level of indirection before the actual code generation allows us to separate
out the representational details of the target DMLs and makes it possible to have a standard
set of primitives for each general class of target = systems, that is, Codasyl, relational
calculus and relational algebra systems.

The decision to set the primitives at a fairly procedural level (namely, one record
instance at a time) was driven by the flexibility it provides for expressing a variety of
access strategies. This allows easy incorporation of optimization modules which
selects the "best" access paths for the input query based upon knowledge of how the
records are stored (keys, inversion indices, etc.). This is particularly important since the
value and usefulness of XNDM in a real environment depends critically upon its performance
and experiences with current relational DBMSs indicate that some form of optlmlzatlon is
essential in bringing the performance to an acceptable level [SMITJ 75].

5. IMPLEMENTATION STATUS AND CONCLUDING REMARKS

This paper has described the design and ongoing imp'ementation of a collection of
functions for providing a uniform network view of data across a heterogeneous
coliection of network accessible DBMSs. Our experience to date suggests that XNDM
is a realistic and pragmatic approach for achieving the advantages of networking given
a significant, in place, collection of DBMSs.
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Perhaps the three key issues in ensuring user acceptance of a network data
manager are: i) access controls and semantic integrity, ii) developing more sophisticated
translation capabilities optimizing the allocation of the translation process among NDM
and LDBMS, and iii) performance. We believe the basic issues and a reasonable
approach for (i) have been discussed in this paper. Developing a more sophisticated
translation capability is of obvious importance and closely relates to the performance
issue. Implementation of translators should be paralleled with research directed toward
a better understanding of the nature of the translation process. Some work is
beginning to appear in this area [KLUGA 78] establishing the theoretical limits of
translation feasibility. '

5.1 Implementation Status

XNDM translation is performed on a PDP-11/45 attached to the Arpanet as are the
other host computers. The operating system for the PDP-11/45 is UNIX [THOMK 74]
and the translator is programmed in C. To provide a more uniform interface to the
translator, small support modules termed envelopes are implemented on the system on
which each LDBMS resides. Basic communications support between systems and the
ability to preserve meaning in transporting structured records between heterogeneous
systems is provided by an Experimental Network Operating System (XNOS) [KIiMBS
78]. Work on the XNQL. translator is still in progress. The current version handles two
out of the six XNQL constructs (selections of columns and rows), for the following target
systems:. the Multics Relational Data Store (MRDS) [HONEY 77], a relational calculus
system, and the Honeywell 600/6000 Integrated Data Store (IDS) [HONEY 71], a
Codasyl-like system. For MRDS, the translator can handle all target data structures in
general, but for IDS, target records with multiple owners and multiple members are
excluded. '

5.2 implementation Apb roach

Two different approaches to implementing XNDM can be considered. The first distributes
the implementation across the supported host systems while the second, which we have
adopted, offloads the implementation, to the extent possible, onto a separate satellite
computer. '

The tradeoffs between these two approaches are essentially those of evaluating the
cost of supporting an additional computer versus the cost of implementing common
modules on several different systems. Given the opportunity for centralized design,
implementation and support afforded by offloading and the increasingly high  cost of
software, we believe that offloading is the natural approach in an evolving technology.
The alternative might be appropriate for an exiremely static environment,
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AN ARCHITECTURE FOR SUPPORT OF NETWORK OPERATING SYSTEM SERVICES

Richard W. Watson
John G. Fletcher

Lawrence Llvermore Laboratory
Livermore, Callfornla

This paper argues that network archltectures should be deslgned
with the expliclt purpose of creating a céherent network operating
system (NOS). The resulting NOS must be capable of efficlent
Implementatlion as the base (natlve) operating system on a glven machine
or machines, or of belng layered on top of exlsting operating systems
as a guest system.

The goals and elements of a network archlitecture to support a NOS
are outltned. This architecture conslists of a NOS model and three
layers of protocol: an Interprocess communication (IFPC) layer, with an
end-end protoco! and lower sub—layer protocols as needed to support
reliable uninteipreted loglcal-message communicatlon; a service support
layer (SSL), abstracting logical structures and needs common to most
services, Including naming, protectlon, request/reply structure,
data—type translatlon, and sesslon support; and a layer of standard
services, (flle, directory, terminal, process, clock, etc.).
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0. INTRODUCTION

Most current network architectures consist of one or more
function-orlented protocols, such as virtual terminal or flle transfer
protocols, bullt on top of an Interprocess communicatlon (IPC) protocol
layer [6,7,19,02,26,35,411.  The potential of computer networking for
resource sharing and distributed computing cannot be reallzed with such
archltectures because [17,24,44,49]:

No basts 1s provided for easlly creating, In a Iayéred
fashlon, new resources or services out of exlsting ones.,

Each programmer desiring to provide or use a new network
sharable resource must face anew all the lssues of data-type
translatton, command and reply formatting and parsing,
‘naming, protectlon, and Interfacing to the IPC protocol
layer.

The terminal user or programmer must know the different
naming and other access mechanlsms required by the network,
gach host, and each service.

The setting up of accounts and other administrative
procedures are awhkward,

These problems can be ellmirated If a network archlitecture Is
expllcitly designed to support the evolution of a network operating
system (NOS). Three important NOS design goals are the following.

The prime désign goal Is that a process (program), terminal user,
or programmer have a uniform coherent view of distributed resources.
Processes, programmers, and terminal users should not have to be
expllcltly aware of whether a needed resource Is local or remote. This
does not mean that programs or users have no control over where a
process Is to be run or other resource Is to be located or that they
cannot learn the locatlons of resources. 1t means that a user need not
(although he may) program differently or use different terminal
procedures depending on resource locatlon and that network operations
and the Idlosyncrasles of local hosts can be largely or completely
hidden. There may however, depending on resource locatlon, be
performance differences. One consequence of thls goal Is that If a
~resource or Its controlling service Is relocated for economic,
performance, or other reasons to another system In the network, then at
most a new name (address) Is requlred, but no changes are requlired In
the program loeglic or resource access mechanisms.

A second goal Is that the NOS structure be efficiently
Implementable and usable as the base (natlve) operating system on a
single system of common current architecture, as well as be
fmplementable as a "guest" layer on exlsting operating systems that
support approprlate Interprocess communicatlon [21]1. By the former
condition we mean that, when tmplemented as the natlve operating
system, access by local user processes to local services should be as
efficlent and no more fInvolved In terms of the number and kind of
messages or system calls exchanged than Is common on exlsting single



-20-

systems OS's. Infttally NOS's will Ilkely be Implemented, as guest
systems, on top of existing OS's, but over time, as part of the
evolution toward distributed computing, we expect that the structure of
base U5 design to evolve toward that required for a NOS.

A third Important goal Is extenslIblllty, Implying:

That users can easlly add new services bullt on existing services
without requiring system programmers to add new reslident or

privileged code. (Some services may be made resldent or
privileged for performance enhancement, but that Is a separate
Issue.)

Fhat the basic NOS structure not require the NOS to spring full
blown Into exlstence with all possible services to be useful; In
other words that Tt can start with a few services and evolve.

That systems desiring to participatge In the NOS as users of or
providers of a single service be able to do so with minimal
Implementation.

A NOS must perform the same basic functions as an operating system
on a single host:

Turn a collection of hardware/software resources Into a coherent
set of abstract objects or resources (such as processes, fliles,
directorles, clocks, accounts, etc.) and support thelr naming,
access, sharling, protectlion, synchronizatlon, and
Intercommunication (Including error recovery).

Multiplex and allocate these resources among many computatlons.

An NOS must solve the problems that exist for single host 0S's and
must deal with the problems arlsing from Itts distributed nature and the
heterogeneous systems on which It is based: translatlon problems due
to different encodings and data representatlons, distributed service
and resource structures, potentially more complex error recovery,
multiple copy file or database update problems, multiple controlling
administratlions, and speclal effliclency problems arlsing from distance
and bandwldth between components. Creating an extensible, coherent set
of services or resources In an environment of distributed and
heterogeneous systems requires a NOS model and supporting structure to
handle the above problems. Thls paper Is focused on such a NOS
framework and the areas where we see codling, communicatlon, and other
standard conventions to be required or useful to support the services
that will reside within an NOS. [t Is beyond the scope of this paper
to dlscuss design of specific NOS services, or many of the critlical
implementatlion Tssues of an NOS.

The Lawrence Livermore Laboratory’s high performance local network
(Octopus) [13,14]1 1s currently undergoing a change In Its hardware
Interconnectlion to Increase performance and be more modular, Is belng
extended to Interconnect hundreds of local micro/mint/mld!l computers
with each other and the high performance central facilltles, and
Interconnect with other networks [46). The network architecture under
development described here will provide the new software base for this
evolutlon, A prototype operating system for a single machine using
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mény of the features of the NOS structure to be described Is also
presently belng Implemented.
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1. NETWORK OPERATING SYSTEM MODEL

Model Structure

We believe that the first step In creating a network architecture
Is to choose an NOS model [10,17.24,441. One approach Is to use an
ex!sting operating system as the NOS model and extend 1t Into a
distributed environment. The RSEXEC work at BBN Is a ploneering
example that extended some of the facllltles of an exlIsting 0OS (TENEXD
to distributed homogeneous systems and was fater layered on 05°s of
other systems as well [43]. We do not belleve this to be the preferred
approach, because most exlsting 0S's have monollthic structures and
weaknesses In thelr Inteprorcess communicatlon mechanfsms [21] that
Inhtblt thelr easy extenslon Intoc a distributed environment. The
National Software Works (NSW) [28,3971 and the later BBN works on the
"ELAN system represent documented approaches to designing NOS's from
scratch for expliclt distributlon [17,447.

The NOS framework we have chosen Is based on the obJect or
resource mode! of an operating system [23,381. All communication among
processes Is by message passing. The model Is shown In Fiqgure 1.

Distributed NOS kernel

Distributed
message
exchange
IPC layer

e ——— e e

Rﬂw*ﬁ

Arbitrary length messages

\
Servers (file,
directory, clock,

account, process,
database, etc.)

ustomers

Distributed
customer and server processes

Figure 1 NOS Structure
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ObJects or resources are entlties such as processes, flles,
directorles, virtual 1/0 devices, databases, etc. Resources can be
accessed or manlpulated only In terms of well-defined functlons or
operatlons. FEach type of resource Is specified by 1) a loglcal set of
data structures, and 2) a set of operatlons that can be performed on
these data structures. Two resources are of the same type If they have
the same speciflicatlon. The abstract representatlon of a resource and
the operatlons on the representatlion are Implemented by one or more
modules called servers.

The Tmplementatlon detalls of a resource representatlion are of
concern only to the server. Two different servers of a resource of
type, say flle, might Internally represent the files they manage qulte
differently, while presenting externally the same representatlon and
operations. This characteristic Is Important as we want to bulld the
NOS on top of existing operating systems or Implement It as the base
operatling system on many vendors’ hardware. The system can be extended
by creating new resources, using exIsting ones as components,

A glven process can operate In elther or both server and customer
roles at different times. A customer process accesses a resource by
sending requests contalng operatlon specification and parameters to the
appropriate server. The server may then satisfy the request by
accessing data structures local to Tt or by sending addltlonal requests
to other servers to ald It Tn carrying out the orlginal request. MWhen
a request 1s satlisfied, the server sends replles containing an
Indicatton of success or fallure and results (If any).

Requests and replles consist of control and data parts. Besldes
the customer and server processes belng dlstinct, the handler of
replies may be a different process from.the requester, or a different
address port on the requester than that used to send the request.
Further, the sources and sinks for data may be at different locatlons
or addresses from the above as shown In Flgure 2. The baslc NOS
request/reply model supports the following distributed roles for
processes communicating by messages.

Requester — The requester Is the customer process desiring some
service, such as the copying of Informatlion from a source to a
sink. The requester controls the data source/sink C.

Server — The server Is the process providing a service In terms of
abstract resources. The server controls the data source/sink E.

Source — There are a varlety of possible sources: a flle, an
Input device, the memory of a process, etc.

Sink ~ there are a varlety of possible sinks: a file, an output
device, the memory of a process, etc.

Reply—-handler — The reply-handler 1s where control Information
assoclated with the transfer 1s to be sent. Nonmally this would
be a port of the requester, but In a distributed system this may

"~ not be the case. Replles may be desired at difflerent times: only
when the request Ts completed, or also when the legality of the
request and parameters has been ver!fled, or also when some
Intermediate polnt In the processing of the méquest has been
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reached, etc. A parameter of data movement requests, the

reply—-optlon, indlicates when replles are to be sent and another
the reply-capablllty, Indlicates where.

Reply
handler

Requester ¢

Data
source or
sink

c Data movement

Figure @ Request/Reply Data Movement Model

Another feature of the data movement model desired is that data
not move untll source and sink are both ready. Besldes normal

end—to-end flow control, each end may be unwllling to allocate needed
resources untl| the other end has reached some state of "readlness".
For example, a sink may be unwilling to allocate dlisk space untll Just

before a transfer can take place. If the source Is a tape In a vault
which must first be fetched and then assigned a tape drive, thls could
take some time. A readiness negotlatlon abllTty and other higher level
conventfons necessary to support the request/reply, data movement model
are presented In Sectlon Y.

The NOS structure above has the followling desirable propertles
needed for a distributed system.

It places no a prior! restrictlions on which processes can
communicate with which others. Knowlng a process’s address Is
sufficient to communicate.
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It allows all components, Including data sources and sinks, to be
distributed.

It provides for user extensiblllty, locatlon Independence, and a
unlform user view, because communication among all processes use
the same mechanism and form, whether local or remote, user or
system provided. Logical addressing, as the other aspect of
locatTon Independence, 's dlscussed later.

It allows a system to partlicipate in the NOS by minlmally
supporting the baslic NOS message passing service defined below.

Interprocess Communicatlon and Syncronlzatlon Services

The structure shown [n Flgure 1 supports an Interprocess
communlcatton (IPC) service of loglica!l messages (letters). Loglcal
messages, or Just messages, can be of arbltrary length. The IPC
provides for transmission of beginning—of-message (BOM) and
end-of-message (EOM) marks (as part of Its “"headers”) between.source
and destinatlon processes. These marks allow the source and
destlination processes to use different buffer slizes and management
strategles, allow messages to be fragmented in transmisslion, provide
data resynchronization after a fallure and provide well defined points
in the data stream for startling parsing or other operations. Messages
are rellably dellvered (not lost, misaddressed, missequenced, damaged,
or duplicated). Messages are exchanged between network addresses,
viewed at thls level as ports on processes. (All communicating
entitles are loosely thought of as processes.) At the Interface to the
IPC Tayer there Is no concept of establishing connectlons or virtual
clrcults, only that of sending and recelving messages, posslbly In
pleces, bounded by BOM and EOM marks where approprlate.

The Information at source and destlination transmitted across the
Interface to the IPC layer 'n the Send and Recelve primitives Includes:

Destlinatlon and source address,
BOM,EOM marks,

Security level of the message,
Uninterpreted message content.

Walt and Abort are also primitives. MWalt Is the basic process
synchronization mechanism In the system. A process can Walt or not, at
Its optlon, for any of Tts pending Sends or Recelves to complete.
Servers to support semaphores or other higher level synchronlzation
mechanisms can be constructed on top of this primitive service [25,36].
Abort allows any pending or actlive Sends or Recelves to be cancelled or
stopped.

The following subsections discuss general NOS model Tssues above
the IPC layer.

Resource Namlng

Two kinds of resource names are needed In a NS, one cqnvenlent
for people and one convenient for machines [381. The latter should
have the same form across all resources, be machine-orlented, contaln
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communication level. Rather, each service may need none at all, a
quite simple one [19,221 or one that Is quite complex [20,331. This
Issue Is dliscussed further In reference [471, In the context of a flle
service. The conventlons outllined below, we bellieve, should allow a
range of error recovery strategles to be supported. 1In particular,
within certaln assumptlons, conventlons for crash detection and
separation of data and control are provided.

Resource Locatlon or Placement

. One of the NOS archlitecture goals Is that user or user processes
should not have to be explliclitly aware of where a resource Is located.
For example, In a distributed file system, the locatlon or level of
storage that Informatlon resides on can be made Invisible for many
applications, and flles can migrate as approprlate. Reasonable file
copylng/caching and control strategles can also be envislioned as
outlined In references [44,471. (There are many difflicult problems
associated with updating multipfe coples [2].) Global resource
placement strategles across different types of servers may enventually
prove needed, but the fssues here are not well understood [17,37,441.
Our Inltlal assumptions are that each host computer system will
multiplex Tts own local hardware resources, and, that In early verslons
of the NOS, users can expllcitly select where resources reside or
execute. Later, when these Issues are better understood, automatlc
allocation or locatfon on a global basls can be added to the framework
presented here. The National Software Works represents ploneering work
In this area [28,391. The difflcult problems assoclated with automatic
handling of distributed directory structures Is discussed in reference
(447,

Resource‘Alloca%lon Limitation and Accountling:

These Issues are not necessar!ly related. Even on single systems,
they are confused by organtzatlon polltics. The deslres for autonomy
of remote systems under local control, while yet allowling particlipattion
within the larger NOS, further complicate these !ssues. The NOW
represents Inftial work on this problem [28]. What Is required here Is
a clean separatlon between baslc mechanism and pollicy declslion and
Implementation. The use of account capabllitles, In addlition to
principal capabllitles to represent users, and provislion of account and
authentlcatton servers. using the baslc capabl!lty mechanism outllined
above should allow a vartety of pollicles to be supported.
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NOS PROTOCOL STRUCTURE OVERVIEW

The protocol structure, to support the NOS model above, Is bullt

on five principles:

Layered design — A layered deslgn 1s used to achleve
understanding, ease of evolutlon, and Implementatlion modularity
[10,26,35]. The Interfaces between each layer are kept as simple
as possible. , A

Transactlon orlentation — Most operating system services are
transactlon orlented: a customer process Issues a request, and
the server process replies and no additlonal conversatlon need
ever take place, and the protocol structure should not require the
overhead of additlonal messages. The structure permits, however,
the creatlon of extended conversations, called sesslons, where
they are useful. The IPC transaction orlented service that we
wish to support Is different than that of conventlonal datagrams
(841 In that we want a rellable service, which Is not usually
guaranteed for datagrams, and we want the messages to be of
arbltrary length, also not usually supported for datagrams.

Symmetry — Processes can operate both In customer and server roles
during a conversatlon. The protocol structure must allow for this
sh1ft in roles [49]. ,

Abstractton of commonallty — Common aspects of servers and
resources, such as thelr loglcal structure, naming, protectlon,
and the common operations applicable to them should be abstracted
and standardized.

Provislon of a complete set of primitive services — It must
include those services necessary In single host systems to form a
complete set of bullding blocks. . The primitive operatlons must
facilitate, but not demand, thelr distribution.

For the purposes of thls paper a protocol Is loosely defined as

any agreed set of conventlions assoclated with the exchange of
information by peer entlitles durlng communicatton. DefInltlons of data
and message formats are Included, as well as rules for control and data
Interchanges to achieve some defined service.

The protocol hierarchy, described bottom up, conslists of three

layers:

Interprocess communicatlon layer supplying the IPC service
mentloned earlier.

Service Support Layer — Deflnes standard server and resource
loglcal structures, resource naming, protection, data formats,
request/reply functlions and form, and sesslons.

Service Layer — supports baslc resources and services,
authentlcatlon, logglng, flles, directorles, processes, clocks,
accountling, terminals, etc.
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In Figure 3.
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Basic servers (file, directory, process, clock, etc.)
SL/SSL interface

Resource structure, resource and resource name operations/replies
Server state mode! (coservers), and.operations/replies

Request/reply, data movement conventions, and operations/replies

Sessions

Genera! request/reply form

Data types and encodings, including capabitity form
Data and control message mode forms

General logical message

SSL/IPC interface
End-end (procéss-process) protoco! (Delta-t)

Link protocols

Other

Filgure 3 Structure of Protocols and Conventlons

Each of the following sectlons
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3. INTERPROCESS COMMUNICATION LAYER

Introductlon

The baslic Interprocess communicatlon service was deflined In
Sectlon 1. To support this service In a distributed environment
requires a layered set of protocols. The maln protocol relevant here,
which rests on ITnk-level protocols, Is a transport or end-end protocol
providing, addressing from a source (origin) to a sink (destination)
process, delivery assurance (informatlon Is not lost, damaged,
dupllicated, missequenced, or misdellvered), and flow contro! to the
sink’s rate of acceptance. A (source, slink) address palr 1s called an
assoclatlon. This layer supports transport of uninterpreted arblitrary
length loglcal messages delimited by BOM and EOM marks. The BOM, EOM
marks are carrled out—of-band In packet headers. The two major areas
of addressing and assurance are now dlscussed briefly, as these are
where our approach may differ somewhat from that used In other
transport protocols.

Addressing

Each source and sink 1s Tdentifled by a unique hlerarchical
address that routing modules parse from left to right. The further
away the sink Ts, In terms of the chosen hlerarchy, the sooner the
parse is stopped. That Ts, the address of a process reflects the
hlerarchical geometry of the network (network, cluster, host, process
etc.), which means that every node need not store Information about
every potentlal sink Indlvidully. FEach branch down the tree could
contain a different number of levels and a different fan—out at each
level. The network address space Is large enough that every process
can have several addresses (allowlng 1t to have ports), and none of the
addresses has to be reused, even after the process Is destroyed
(assuming reasonable |1fetime for the network). This feature Is
Important as one element In achlieving the transactlon orlentation of
the architecture, because a process does not first have to go to a well
known logger or connectlon establishment port, present a higher level
name, and then be allocated a logical channel, socket or other reusable
network address before entering a data transfer phase.

Within this framework, we also provide for loglcal, generic, or
functional addressing [27,31,4%1. A portion of the network—address
space, characterized by a standard value for the leftmost bits, Is set
astde for this purpose. The routing tables In each node of the network
then polnt to the nearest "representative" of a generlic servlice.
Communtcatlon and, 1f necessary, synchronlzatlon among the
representatives of a generlc service uses non—generlc (physical)
addresses and Is a higher—level problem.

Logfcal addressing can also be handled at higher levels, with
transtatlon from logical to physfcal address taking place above the
end—end protocol level at the source. In some cases, the network
address of a service appearing In a capablility may actually be to a
higher level loglcal—-address server whose only Job 1s to forward
messages to the actual server, which It locates by means of records
("yellow pages") that It maintalns. Malntalning the distributed or
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centralized logical to physical address maps when processes move wil|
require forwarding protocols, not currently defined. We expect loglcal
addressing to be Important In certaln NOS servicees [47). 1t has
already proved useful within the NSW [28,311.

Assurance and Flow Control

To achleve assurance and flow control, whiie maintalning a
transactlfon or single message orlentation, we have had to design our
own process—to—process (end-to—end) protocol. Publlshed work on
message systems have generally not deait with reltabtlity [1,12,31,45].
Well—-known exlisting and proposed protocols such as INWG, and TCP
[4,22,33]1, and X.25 all requlre overhead messages to be sent between
source and sink In order to rellably set up and tear down a connectlon
or virtual clrcult, even If only one request and one reply are to be
exchanged [18,42]1. In some network archltectures this overhead has to
be borne at each of several levels. This overhead, we belleve, Is
unacceptable, not primarlly because of the raw bandwlidth consumed, but
because of the cost and delay Involved In generating messages, forming
them into packets, placing them onto the transmisslon medla, and
buffering and handling them along the way. Qur experlence and that of
others {501 show that general 0S overhead for packet handlling may
require several times the time requlred for actual protocol processing.

It has been demonstrated by Belsnes [3] that for rellable single
message transmission, the rellable connectlon set up overhead Is
unavoldable unless the state Information kept by the two ends of a
conversatlon Is under timer control. Accordlingly our protocol depends
on the use of tlmers and !s called Delta-t. Delta—t Ts based on the
fact that the total time of existence of a packet, Including the
Interval between Tts flirst and last transmission, Tts maximum I1fetime
within the routing network, and the delay before It Is acknowliedged by
the sink, can be bounded. This bound !s expressed In terms of an
Interval &t, hence the name of the protocol.

Briefly, Delta—t works as follows. The state Informatlon used for
generatlng sequence numbers at the source, packet acceptance at the
sink, acknowledgement, and flow contro!l (normal window flow control)
are kept In connectlon records at each end, as for any non—tlmer
protocol. These records have a I1fetime under control of a Send—timer
at the source, and a Recelve—timer at the sink. MWhen elther of these
timers go to zero, the corresponding record can be destroyed. These
timers do not have to be synchronized, but are expected to run at the
same rate. MWhen Inlttiallized or refreshed, these timers are set to
multiples of &t. The rules for timer tntervals, control of the timers,
setting of header control flags, sequence number Sselectlion, and packet
acceptance are glven in references [16,481. The protocol header for
the Delta—t protocol 1Is shown In Flgure Y.

Simplifled, the I1fetime of a packet [s strictly controlled by
including a field In the packet header that 1s Inltlallzed by the
source and counted down by Intermedlate nodes. Each node, Including
the end protocol module, must count at feast once, more If 1t holds the
packet longer than one time unit (tick). Retransmlsslons start partly

“counted down. The packet 1s discarded and nacked If the count reaches
zero before dellvery. Our link protocols, on Ilnks that have Internal
buffering that could hold a packet for an Indefinite perlod of time,
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have been augmented by a feature that guarantees knowledge of the

transit time.

ldea Ts that
transit time
clocks, send
the recelver
assures that

An entire network could be such a loglcal link. The
each [Ink frame Is time-stamped by the sender so that the
can be computed by the recelfver. The two logtcal [1Ink

and recelve, are simply synchronlzed whenever necessary by
sending Its clock value to the sender. Thls mechanism
the transit tlmes are always overestimated, never

underestimated; the detalls are presented In references [40,487.
Routling nodes also destroy all packets on recovery from a crash.

Routing header 1

Assurance, flow"
control header 3

0 7 15 23 31
-
Total header |Security Att) Lifetime®? Routing(3’
length level |Exponent flags
Reserved for future Total packet length

Destination address

Destination address

Source address

Source address

Header checksum Data Checksum

Data sequence number {DSN)

Acknowledge sequence number (ASN)

Assurance!¥) )
flow control Window
flags

Options {variable)

| T . Data T

Lengths and window are in octets. Sequence numbers are for octets.

(1) At-exponent allows the receiver to calculate senders At. At = K X 2 Atexponent
) Lifetime equals number of “ticks’ remaining for oldest data octet in this packet.

Tick = 2—% secs
Q3 Routing flags: F/R fragmentation allowed, BOM, EOM, NAK

{4 assurance flow control flags: DRF (all previous DSN’s acted), ARF {ASN field
valid), WOF {window overflow) ’

Filgure & Delta-t Protocol Header
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4.  SERVICE SUPPORT LAYER

Introduction

The service support layer (SSL) deflines a hlerarchy of conventlons
consisting of two main groupings shown In Flgure 3. The first of these
(lower grouping) contalns conventlons to establish data and control
message separatlon, provide for data and control parameter translatlion,
establlsh the general syntax of request/reply messages, and provlide
crash detectlon. The second of these (higher grouping) supports the
request/reply, data movement mode! of Flgure 2, and abstracts common
server and resource structures and requests/reply semantlics,

The purposes of the service support layer are the followling:

Each new service should not have to be designed from scratch,
dealing with the above Issues anew. This facllltates the
Introductlon of a new service. A run—tlme environment can be
created embodyling the common service support features In terms of
library routines, utlllty processes, or other building block
mechanlsms [49].

A uniform user view Is created that eases the learning time and
other difficuities of a customer trying to use a new service., As
seen by processes, an operating system or protocol interface Is a
language and shouid meet good Ianguage deslgn criterla such as
unTformity and compactness.

We now present the S5 Issues and conventlons In the order shown
in Flgure 3.

Separatlon of Data and Control

The lowest conventlon of the SSL Identifles each message as belng
in one of at least two modes: control or data. Control messages, In
general, are requests or replies In a standard encoding that contaln
the semantics of the customer—server dlalog. Data messages are, In
effect, parameters that are too large to be convenlently or efficlently
enclosed within-a control message; an obvious example Is the contents
of a flle being transmitted. We want to be able to support data or
control messages on the same or different assoclations. For example,
in Flgure 2, assoclation (C,E) may be as shown, or I'n fact be the same
as assoclations (B,D) or (A,D).

Knowlng the mode enables a process to quickly and unambliguously
separate what 1t must Interpret from what It must simply store, print
or pass on. It greatly reduces the danger that after a loss of state
Information (e.q., at deadstart) Tt will treat raw data as a command.
It permlits control Informatlon, such as a statement of an error
conditlon, multistream synchronizatlion mark, or checkpolnt number to
occur In contexts where data Is expected, without causing confuston or
data scanning. Finally, 1t cleanly separates control translatlon
Issues from data translation Issues. Control needs to adhene to a
standard format so that all processes may understand one another, whlle
It 1s often desirable that data be shipped In Its raw form or be
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translated In an appl!ication—-dependent way, the latter belng a

higher—level

Issue.

The mode Indlcatlon could be elther an “out—of—-band" slgnal
IPC protocol headling (as, for example, the qualifler blt of X.25) or It

could be the first few blits of the message.

In the

We have chosen to make 1t

the first byte (the mode byte) of the message so that the SSL can we

used with transport protocols other than Delta-t.
structuring of loglical messages Is shown In Flgure D.

The SSL hterarchical

BOM EOM
Uninterpreted bits or octets
IPC level logical message
a)
Mode ’
octet Data or control message
NOS message form
b)
Data
mode Data
octet
Data message
c)
Control - -
mode Token, Token, Token,
octet
Control messages
d)
Cr:ntdrol Function Parameter Parameter o - Parameter
oade token token token token
octet
General request/reply form
e)
Header Body Body = ~p|t string, text. §tnng,
integer, capability, etc.
Token form
f)
Length = length of token
Length Usage Type Usage = purpose of token
i

. Type = date type of body

Token header form

g)

Flgure 5 Loglcal Message Structure
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Translation and Control Mode Message Structure

In order for transiation to be performed, expllictt or Impliclt
data type informatlion must exT’st. For the parameters In requests and
replys, expliclt typlng of each parameter !'s provided as described
below. It would be Inefficlent for each data Ttem In a data message to
be typed. For data messages, the data type Informatton can be known In
- three ways: Impllcitiy by the nature of the service or address,
conveyed In control messages, or expllclitly encoded In the message mode
code.

Let us now conslder the structure of control messges. Deslrable
goals are to allow parameters In functltons to be omltted and defaulted
(achieving data compression), appear In any order (allowing services to
evolve by adding new parameters to functlions), to be varlable fength,
and to be automatically.translated to and from a servers Internal
representation from and to standard network encodings. To achleve
these goals control messages are consldered a string of tokens. A
token conslists of two maln parts: a header followed by a body. The
header descrlibes the body, while the body represents the actual value
conveyed by the token. The header In turn consists of three parts:

The length defines the number of bytes Included in the entire
token.

The usage defines the purpose of the token, such as functlon code,
source (resource) Ident!fler, source label (first-blt-address, for
example), count, etc,

The type Indlicates the data type of the body, such as Integer, bilt
string, character string, capabillty, etc.

Type has been separated from usage because there are examples of
usages that may be of varlous types; It permlits a simpler commen
translator to be designed for each programming language or system that
translates tokens to and from thelr Internal representatlions to and
from the standard. The translator’s decisions are based only on the
type. The token encoding that we are developling Is expected to make
the most commoniy-occurring, token headers only one byte long, with an
escape to two bytes for most of the remalning cases.

The tokens of a message are grouped Into statements. FEach
statement begins with a token of usage "functlon code” and ends Just
before the next token of that usage or at the end of message. (The
first token of a message should be of usage "functlon code.") The
tokens of a statement followlng the functlon code are parameter tokens.
The functlon code token defines an operatlion to be performed or
Indicates a reply; the parameter tokens supply arguments or results:
Allowing (not demanding) multiple statements per message helps reduce
message traffic. '

Fach function, In general, expects parameters of several different
kinds of usage. If a needed usage Is omltted, then a default value Is
assumed; for example, the default for usage "count” Is one. The
concept of usage thus permits a form of Information compression. More
Importantly, It permlts new optlons to be added to a functlon,
expressed by new parameters, without Impacting exlsting customers.
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When a parameter of a function actully occurs In a preceding or
followlng data message (possibly on a separate assoclatlfon), a
parameter Is placed In the control message, In effect an "Indirecting
polnter,” Indicating this fact.

Standard Data Types, Capabllity Form

Among the standard data types defined by the SSL Is a standard
capablllity as shown In Flgure 6. Human-orlented names are handled at a
higher level by namling graphs as mentloned earller. A standard
capabllity s a token body that identifles a resource and confers rlight

of access to a partlicular resource. It consists of the followling
flelds. :

The address Is the network address (loglcal or physical) of the
server that manages the resource. This would be D of Figure 2.
Often the customer uses the address of one of the capabllities In
a request message to determine where to send the request.

The propertles are a set of standard blts and flelds that Indlicate
to the customer the nature of the capablllty, such as
controlled/uncontrolled, resource type, access mode, resource
[Tfettme, securlty level, etc.

The unique Identifler Is used by the server to Identify and locate
the specl!flic resource named, and possibly for other
server—dependent purposes.

The password, If present, guards the unlque Identiflier part of the
capab!llty agalnst forgery. The Idea Is that, 'f any process or
user trled to5 forge a capablitty, 1t would not be accepted by the
server unless the password were correct. Encryptlon can also be
used for this purpose [5,291.

. . ipe . Network address
Password : Unique identifier Properties " of server
[ v I\ - J\. v J
Variable up to 32 bits 64 bits
152 bits

Filgure 6 Standard Capab!llty Form

Other standard data types to be supported Include at least
Integer, blt string, and character string.
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Sesslons

All servers malntaln state Information for an assoclatlon for some
length of time, dependling on the nature of the server: durlng a single
operatlon, multiple operations (statements) In a single loglcal
message, or across multiple messages. In addltlon some servers may
want to support parallellism such as parallel operatlons, parallel
streams, etc. on a single assoclfation. While actlve state Information
Is belng malntalned for an assoclatlion a sesslon Is In exlstence.

The 1PC layer end-end protocol with Tts BOM, EOM marks allows
customer or server processes to detect crashes with loss of memory
during a logical message, but cannot ald detectlion of crashes between
messages, although 1ts rules protect agalnst lost, damaged, duplicate,
missequenced packets across crashes. Detectlion Is achleved because
after deadstart the server expects a BOM, and -a customer generates a
BOM when the server Is expecting a EOM first. If state Information Is
being malntalned across messages, tled to an assoclatlon, there 1s a
need to provide a mechanism for customer or server crash detectlon
between messages. This Is the purpose of a sesslon. Sesslons are
delimited explicitly or ITmplicitly with beginning—of-session (BOS) and
end-of-sesslon (EOS) functlon tokens, depending on whether or not a
service supports multiple message sesslons. This allows crash
detection, as now described.

When a server crashes, It deadstarts with Inactlive sesslions
loglcally on all assoclatlons, which expect a BOS as the first token
recelved. [If the customer thought a sesslon was In progress It wil!l
not Tnclude a BOS In the message sent the server, and the server will
generate an error reply, forcing the customer to enter an error
recovery procedure. SImllarly when a customer process deadstarts It
sends a BOS as part of [ts recovery procedure and will be Informed by
the server If a sesslon was In progress. Then the cutomer can take
whatever recovery actlon Ts approprlate.

Request/Reply, Data Movement Model support

To support the request/reply, data movement model of Figure 2,
conventlons are requlired so that all communlicating entitles can know
each others address, authentlcate the right of a partner to send them a
message, and detect a partner crash. These needs are met as follows:

The requester obtalns the server address D from a capablllty or
some a prlor! way. The requester can detect a server crash by the
sesslon mechanlsm above.

The server obtalns the address A of the reply-handler from a
capabllity passed as a parameter In the request. Thls address
defaults to that of the requester B, always provided by the IPC
layer Interface. The server may requlre a capablilty passed as a
parameter In the request to authentlcate the requester’'s right to
make the request. Address B can be used by the server to protect
controlled capabiiltlies as mentloned In Sectlion 1.

The reply—handler and requester are working together and. the
reply—handler can be sent the address D of the server If needed.
The reply—-handler recelves the reply—handler capablllty In replles
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from the server, authenticating the server as the process with the
right to send It messages. Fallure to recelve a reply could
result from a server or reply-handler crash. A duplicate request
could then be sent with an attendent risk of a duplicate operation
not detectable by lower level IPC layer mechanlsm., Therefore,
duplicate requests are not recommended unless requests are
formulated such that duplicates can not cause harm. Instead, when
areply falls to arrlve within some timeout perlod or the
reply—handler detects It has crashed, the state of the approprlate
coserver—state—record (see next subsectlon) can be Interrogated
for status to determine whether or not to relssue a request.

For servers supporting or requiring data movement In data mode
messages (normally only those fnvolved In bulk data movement such
as the flle server), a mechanlism Is required to exchange data
source/slInk addresses C and E. Because these addresses cannot, In
general, be known ahead of time, a simple "open"” protocol Is
required to be used before data movement can begin. The requester
sends the server an appropriate resource capabllity (such as to a
file), address C, and other parameters to Intlallze state.

Address C could also be provided in data movement primitives also
so that several cooperating customer processes could serve as
sources or sinks at different times. The server returns a
capablllty to the "open—resource" with E In 1ts address fleld.
Addresses E and C will only accept messages from each other. Note
that therefore operations Involving bulk data movement are not of
the single request/reply form. Thls seems acceptable because the
"open” exchange Is small overhead relatlve to the expected large
data movement. Information in control messages can be sent on the
assoclatlon (C,E) for checkpoint restart or higher—level checksums
If desired for egrror detectlon and recovery mechanisms. A crash
at elther end would be detected by the IPC layer falling to get a
message through or fallure to recelve the expected amount (count)
of data.

Data Is actually moved with standard "read"” or "write" operatlons
defined for sequential and random open-resources. These operatlions are
sent to address D. (We are consldering whether or not to extend the
model to allow a different control address for the read and wrilte
operatlons so that the module serving actual data movement could be
distributed without Indirectlon through address D.) Besldes the normal
parameters for reads and writes (open-resource capabliilty, first
element address, count etc.), there Is an additional parameter for
"readlness" negotlation. Normally the customer process Is ready and so
no negotlatlon takes place. 1If the customer desires to begln a
readliness negotlation Tt sends a read or write with the readiness
parameter Indlcating Its current state of readiness. The server sends
a reply Indicating Its readlness when It reaches a state "more"” ready
“than the requester. This cycle continues unti! the customer sends a
request Indlicating fully ready. .

There 1$ also a standard "copy" operation expliclitly specifyling
two resources as source and sink to be used for "third party" data
movement requests. This allows transfers directly from one file to
another or speclal servers to support copying from one arbltrary.
resource to another without having to Involve the orlginal requester.
The "copy" server would Issue "opens" and successlve reads or writes to
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the source and sink, or If the source or sink supported "copy", then a
“copy" could be forwarded to one of them, which would In turn "open”
the other, and then perform the reads or writes.

Coservers

As part of the goal of providing users (customer processes) as
uniform a view of servers as posslible, the coserver concept has been
developed. The Tdea of a coserver Is quite paralle!l with the
conventional Tdea of a process and Is motlvated by the deslre to:

Support ‘server state I[nformatlon across many types of servers In a
conslistent manner. :

Support state Information across messages for data compression.

Allow state Informatlon after one operatlon to be defaulted as
Input parameters for succeeding operatlons.

Share state Information across two or more assoclatlions.

Be able fo operate on state records even when an assoclatlion Is
blocked by lower level flow control.

Support parallel services on a single assoclatlon.

Be able to Interrogate the state of an operatloh while Tt Is In
progress from the same or a different assocfatlion.

Be able to distinguish and specify when and where replies for an
operatlion arexto be sent and from which parallel entlty the reply
Is coming from,

Be able to abort, suspend, restart an operation.

Provide for the above services In general, but only require a
minimal Implementatlon when, as Is expected to be common, a server
only supports sequenttal operatlions, and does not require state to
be saved across messages.

The coserver mechanism or protocol brlefly ts the following. For
a glven assoclatton, a server may In some cases be viewed by the
customer process as loglcally providing Independent parallel servers.
It seems useful to make thls notion explliclt and to talk about server
processes that multiplex themselves to run abstract servers called
coservers (which are lfke coroutines), each represented by a
coserver—state—record (CSR). The CSR conslists of two parts, a set of
parameter—reglisters (PR) readable and writable, and a set of
executlon—state—reglsters (ESR), read only. The way a coserver Is
viewed as working I's as follows:

It recelves Its operatlon stream from loglcal messages. The
-operations allowed are any accepted by a server and permlitted by
capabiilty access rights.

The parameters In the message are loaded Into the PRs named by
usage. MWhen end~of-message (EOM) or the next operatlon token Is
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reached, executlon begins, the parameters In the PRs needed by the
operatlon are used. Parameters are thus defaulted from values In
these registers If they are not Included In the message.

As the operation proceeds Tts state evolves and is recorded In the
ESR as advertised by the server.

Replies are sent when specifled In the reply-optlon parameter.

Repliles are sent to the reply—handler represented In the
capabllity In the reply—handler usage parameter.

A glven coserver Is sequentlal, that Is, It can perform only one
operatlon at a time.

At any glven time one and only one CSR 1s selected as attached to
an assoclatlon. The CSR Is In one of two states actlve or
Inactive. A sesslon Is In progress If the selected CSR Is actlve.

At time O on an assoclatlon a default CSR, contalning Initlal
default values for the PRs, Is loglcally-tled to Tt and Ts marked
Inactive. The only acceptable operatlon on an Inactlve CSR Is the
BOS token. Any other token will cause an error return. The BOS
operatlon makes the CSR active and now any advertlsed server
operatfon Is acceptable. There Is a corresponding EOS token which
detaches the current CSR from the assoctatlon (but does not
destroy Tt——therefore It can continue executing Its current
operatlon) and attaches an Inactlive default CSR to the
assoclatlion.

A BOS will not be accepted on an active CSR and an error message
will be returned.

. All coservers are named by capabliltles elther explicitly returned
~on CSR creatlon or left Tn the CSR for return If iInterrogated.

[f two or more assoclatlons are sharing a CSR (which Is
permitted), then they are assumed to be synchronlzing themselves
at a higher level.

There are a set of conventlons for deallng with replies from
detached coservers. Requlrements are to provide optlons that
would elther 1) send such replles Into a "block hole" not
requiring the coserver to block, 2) require the coserver to block,
If a reply Is generated, untll It Is reattached to an assoclatlon,
3) allow all replys but the last to enter the blatk hole, but
allow the last reply to be obtalned by an Interrogation.

Coservers can also be explicitly created, destroyed, Interrogated,
reattached, suspended restarted, aborted by a standard set of
operatlons.

Conventions are required to allow a command affecting the CSR
currently attached to an assoclatlon not to be blocked by flow
control on that assoclation or the fact that the attached coserver
s executing a norma! resource operatlon. A number of mechanlsms
to meet this need are under constderatlon.
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Uniform Resource View

We want to provide a un!form and compact language for mantpulating
resources. Thls requlres a uniform view of resource structure. The
following uniform resource mode! Ts under conslideration.

A typlcal resource can be viewed as a data structure (posstbly
distributed) conslsting of two ma)Jor parts:

The headlng or resource state record contalns named flxed flelds
of Informatlon of varying length and type, such as creatlion time,
last access tlme, account capablilty, securlty level, ‘access
rights, Tdentlty verificatlon, mnemonics or other commentary, etc.

The body Is the resource proper. [Its structure varles depending
on the nature of a resource.

For example, a file could be an array of blts or records labelled
by consecutive natural integers, while a directory Is a ilst of
capabllitles labelled by character strings. For some resources, such
as most printers, only one Ttem of the body Is accessible at a time,
and a labe! 1s not needed. We beileve all possibllities can be treated
as spectal cases of one or a few general forms. A resource usually Is
named by a token of type capab!lity, while the Ttems In Tts body are
labelled by tokens of varlous types.

Only a few functlons are requlired to cover the vast bulk of
operatlons performed on resources. All operatlons Involving queryling
or mod!fy'ng coserver state records and resource headlngs, or reading
or writing resource bodles are actually speclal cases of generic read
and write functlons. Functlons are needed to "create” and "destroy”
entire resources and to "enter" and "delete" ltems of a resource (as,
for example, In a dlirectory where the Items are nelther fixed In number
nor strictly consecutive). Another group of functions Is needed for
valldating or Invalldating controlled capablilties and creating a new
capablllty with different access privileges. Some Important functions
apply to only certaln kinds of resources; actlve resources, such as
coservers or processes, need to be "started," and "stopped," while
synchronizers, such as semaphores, have thelr own speclallzed
operatlons. Standard operatlions for coserver state record handling
were mentloned earller,

Spec!fying an essentlally complete small set of functlons seems a
language goa! well worth pursuing, provided that we exclude servers
that perform primarltly a processing functlon, such as edltors,
compllers, and applications In general, although we would expect server
designers to use the standard operatlons where approprlate.

One more standard functlion needs mentlon, It Is the one that
usually appears as the only functlon In a reply. The parameters
following 1t define the results or the status to be conveyed including,
1f approprlate, resldual count and address. The most Important of
these parameters Is one that Indicates elther no error or the nature of
an error, such as lnvalld capablltty, access denled, Improper label,
Insufflctent funds, Inadequate securlty level, excesslve count, server
fault, resource destroyed, etc.
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Other aspects of a uniform resource model that need speciflcatlon
Include the following: (1) standard access rights, as Indlicated ‘In the
propertles fleld of a capablllty or the headling of a resource, such as
read, wrlte, execute; (2) standard token usages that categorlze the
parameters of functlons; and (3) standard token types.
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5. SERVICE LEVEL

The service level (SL) defines standard kinds of servers, the
structure of the resources they manage, and those formats and protocols
that do not seem widely appllicable to many servers. Examples of Issues
we belleve to be server dependent are. error handling and recovery;
optimal resource locatlon or placement strategles and protocols, such
as automat!c flle caching; and Internal server structure, centralilzed
or distrtbuted [17,44,471.

The malin goal of the service level Is to try to assure a complete
set of baslc standard servers 1s defined, and that, for example, all
servers of a glven resource type are compat!ble with one another and
present the same external appearance no matter where In the network
they are located or from where they are accessed. A dlscussion of
Issues and our current plans assoclated with a standard file server.ls
contalned In reference [471].

We are InTtlally planning the follow!ng standard servers: flle,
directory, process, terminal, authenticatlon, clock, account,
synchronlizatlion. Most of the operatlons for these servers wlll be the
standard ones mentloned In the last sectlon.
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6. CONCLUSION

We have outllined our goals for a NOS, a NOS model, and a protocol
structure to support this model. Our curent status Is that the
transport level of the protocol structure 1s designed [481; the message
format sublayers of the service support layer are complete except for
minor detalls; the coserver and data movement models are still belng
reflned; and we are beginning specification of the standard servers.

We believe strongly that an Integrated approach to NOS and
protocol design Is required If true resource sharing, multiprocessing,
and distributed computing are to evolve. We have further argued that
protocol structures must be bullt on a message or transactlon base. We
have shown the maln elements required to provide the transactlon base,
adequate address space so that addresses do not have to be reused and
can be permanently assligned, timer based IPC layer assurance mechanlsm,
expliclt data typing, capabllity based naming, and a request/reply
dlalog structure. On top of this, single or multiple message sesslons
can be bullt.

The elements of a uniform customer/server model were presented;
which Included a distributed request/reply data movement model, server
state model (coservers), and resource model. Using such an approach
should; 1) provide a firm basis for distributed application or service
design, and 2) allow a simpler, more conslstent, easler to learn
operating system language, which we belleve will be Important for a
extensible NOS with many services. The Ideas presented here also seem
useful for development of portable as well as distributed operating
systems. Increasedzintegration of protocol, OS5, and language deslign
concepts should be encouraged.

We do not belleve that a NOS must spring fully grown Into
exlstence. Even If ones Inttial need Is for a single service such as
virtual terminal service or file transfer, If protocols for providing
these services are desligned on the type of structure outlined In this
paper, then a foundatlion will exlst for smooth evolutlion toward a
fuller NOS as additional services are required.

There 1s a large amount of work yet to be done to fully specify
the protocols outlined above, create Implementatlions both as a base 0S
and layered on existing 0S’s, and write new distributed applicatlons
and servers. Only when these tasks are completed will we belleve we
really have a handle on all the NOS Tssues.
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ABSTRACT

The ADAPT (A DAta Parsing and Transformation) sys-
tem provides an efficient generalized language
driven approach towards data translation. Its
high-level languages are easily learned and under-
stood. The data descriptions and transformations
can be easily modified as the conversion require-
ments evolve. It provides transformations on an
inter-record level as well as the power of stan-
dard text editors for intra-record transforma-
tions,

ADAPT has other uses besides that of a one-
time data translation. Since the process of data
conversion may cover a long time frame, logically
consistent copies of the source and target data
bases must be maintained. The ADAPT system can be
used as a tool to insure consistency of the source
and target data bases, even if they exist on dif-
ferent machines. Another use of the ADAPT system
is in a distributed data base context. Logical
records which are distributed to different nodes
of the data base can be "collected" by ADAPT and
presented as a single physical record to a user at
one node. This paper presents a functional over-
view of the ADAPT system and discusses applica-
tions of the ADAPT system to computer network
problems.

1. Introduction

The traditional approach to data conversion requires
development of independent hard-coded conversion systems for
every conversion process. Such systems consume valuable
resources in development and maintenance. The need for gen-
eralized high-level data translation systems has been well
documented over the last few years. Such systems can make
the conversion process much simpler, as the conversion code
is easier to develop, easier to understand, easier to main-
tain, and easier to modify. Unfortunately, the appearance
of generalized translation systems in a production
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environment has lagged far behind research into the concep-
tual problems surrounding data conversion.

Significant work in the area of data conversion has
been done at the University of Michigan [3-9]. But the
emphasis in that work was to provide a foundation for future
research and development in data translation. Other signi-
ficant work in the area has been done by Smith [10-11],
Ramirez [12-13], Sibley and Taylor [l], Shoshani [14], and
Bakkom and Behymer [15]. Work by Housel, Shu, and Lum [16-
20) at IBM is based on two descriptive languages which drive
their translation system, The IBM work 1is principally
geared towards logical restructuring of hierarchical data
structures, but it is one of the only generalized transla-
tion systems being used in a production environment.

The ADAPT ( A DAta Parsing and Transformation) system
provides an efficient generalized language-driven approach
towards data translation. ADAPT provides the user with a
language for describing the source and target data formats
and structures, and a language for specifying the mappings
between the source and target data structures., ADAPT allows
transformations involving multiple record types, follows a
generative approach towards data conversion, provides logi-
cal restructuring and reformatting operations including
those performed by the UNIX* text weditor, and provides a
neat modular scheme for crossing over machine boundaries.
Further, ADAPT was designed to be a production environment
translation tool. As such, efficiency and functional com-
pleteness for handling production translation requirements
were prime design criteria.

The ADAPT system lends itself to quick and simple
modifications of the data descriptions and transformations,
as the source data and conversion requirements become better
understood by the user. ADAPT can be used for other appli-
cations besides a one-time translation system. It can be
used for consistency control between the source and target
data bases during the conversion period. It can also be
used to control access to a distributed data base system.
In short, it can be used dynamically by any application
requiring transformation of a data stream from one format to
another. This paper presents a functional overview of the
ADAPT system and discusses applications of the ADAPT system
to data base network problems.

2, System Configuration

All components of ADAPT are written (or generated) in
the C 1language [23]. ADAPT was originally designed to run

* UNIX is a Trademark of Bell Laboratories.
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on the PDP 11/7¢ computer under the MERT/UNIX operating sys-
tem [24]., ADAPT runs as a single process in that environ-
ment; communication with other (UNIX) processes is a natural
extension of this environment. ADAPT is also portable to
any machine/operating system which supports a C compiler.
If ADAPT is wused as a sub-module of a larger process in
those environments, the appropriate inter-process communica-
tion protocols must be followed. Currently, ADAPT is port-
able to the IBM 370 and UNIVAC 1100 series computers, and it
will soon be ported to the VAX 11/78¢ computer.

The ADAPT system consists of two compilers, and a run-
time system consisting primarily of code generated by the
two compilers. The user describes the format and structure
of the source and target data using the Description Language
for Data Parsing and Generation (DDPG). The Transformation
Programming Language (TPL) is then used to describe the map-
pings between the source and target data. Subsequent sec-
tions of this paper will present the DDPG and TPL languages
in more detail.

Based on the user data descriptions, the DDPG compiler
generates two data parsers - corresponding to the source and
target data descriptions. The target data parser is called
the Resrap module. The TPL compiler is then run on the
user's TPL specification and, using the user data descrip-
tions, generates +the Transformer module. As can be seen,
with this generative approach, each executable ADAPT system
is automatically tailored to the particular application's
conversion requirements, thus optimizing the performance of
the conversion system for each application environment.

The run-time data flow through the ADAPT system |is
shown in Figure 1. The Translation Controller acts as the
main ~routine, controlling the execution of the other
modules, collecting statistics and performing error han-
dling. The Reader prepares the input data for the rest of
the system. After the data has been read, the Data Parser
parses the source data, matching it to the wuser source
description. The Data Parser also performs hardware-
dependent data conversions. The Transformer then applies
the wuser-specified transformations to the source data and
produces the target data. The Resrap module does a
"reverse" parse of the target data, formatting it according
to the target description, and then sends the target data to
the Writer for target hardware-dependent conversions and
final output.

3. DDPG Compiler and Data Parser

As mentioned above, the DDPG language is a high level
language used to describe the format and structure of the
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source and target data bases. The user-supplied DDPG
description contains separate sections for the source and
target data. Each section is further subdivided into an
environment section, a cluster definition section, a data
filtering section, a table definition section, and a data
section. The environment section specifies such information
as the application machine and character code set. The data
filtering section allows the user to specify certain condi-
tions under which data should not be translated. This is
described further in the discussion below on the DUMP and
DISCARD commands. The table definition section contains the
descriptions of user supplied tables. Since these tables
can also be used by the TPL, their description will be given
in the section on TPL operators. The cluster section and
the data section contain the complete logical description of
the user data.

An item is the elementary data unit. A group is a
named ordered collection of items and/or other groups. The
named set of multi-level hierarchical structures formed by
nesting and concatenating groups and items is a record type.
A record is a collection of data conforming to a record
type. The complete DDPG data section consists of multiple
record types. The records described in the data section can
occur in different run-time combinations, called clusters.
The cluster section specifies the run-time conditions wunder
which records occur, as well as the number of times they
occur. The ADAPT system processes clusters of records
sequentially.

Some of the major data attributes which can be
described in the DDPG language are the following:

- specification of a variety of data types (e.g. charac-
ter, integer, packed decimal).

- fixed or variable length data fields, where the field
length can be expressed as an arithmetic expression or
can be determined by a character terminator,

- character justification, pads, null values, and string
terminators which can be expressed globally in the
record header or overridden at the item level. The
record header can also contain blocking information and
a record type indicator.

- specification of self-defining data wusing the MATCH
function. Match provides the user with the ability to
"look ahead™ at data, returning "true" if a pattern is
matched, "false” otherwise.

Match takes the form
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MATCH(offl,0ff2,pattern)

where offl and off2 are the byte offsets relative to
the current position of the Data Parser within the
record, and pattern is a character string expression to
be used as the pattern matching criteria. The charac-
ter string expressions used in patterns are -equivalent
to those used in the UNIX text editor.

For example, the boolean expression
MATCH(2,4,"[ABC] [8-9]1{2}"™)

instructs the Data Parser to look ahead to byte posi-
tion 2 through 4 relative to the current position in
the record. If the characters in those bytes consist
of an A or B or C followed by any two numeric digits,
then the match is true; otherwise it is false.

optional data (at the GROUP or ITEM 1level) specified
with a conditional expression via the EXISTS clause,
For example,

GROUP gname EXISTS (boolean expression)

means that the group identified by gname exists in the
data stream if the boolean expression evaluates to
true.

mutually-exclusive descriptions of the same data using
the VIEW construct. Views can be used at the group or
item level, and they can be nested.

eog‘
GROUP gname
VIEW vnamel (a == "“YES")

[

]
VIEW vname2 (a == "NO")

{
]
VIEW vname3 (a == "MAYBE")
(

]

other DDPG constructs

other DDPG constructs

other DDPG constructs
H

In this example, for any instance of the gname group,
one and only one of the three views apply depending on
whether item a (previously parsed) is "YES", "NO", or
YMAYBE® , The "other" DDPG constructs associated with
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the view describe the data for that particular instance
of gname. If no views apply, a run-time error results.

nmutually-exclusive descriptions of data using the SET-
ELEMENT construct,

e.g. .
SET listing until ( match( @, 3, "EOF") )
ELEMENT name ( match{ @, 2, "NA") )
{

]
ELEMENT address ( match( @, 2, "AD") )

{

] |

ELEMENT phone_num ( match( @, 2, "PN") )
(

]

other DDPG constructs

other DDPG constructs

other DDPG constructs
;

Syntactically, this is similar to views within repeat-

ing groups. Semantically, however, elements in a set

have a closer relationship to each other than views;

elements are later referenced in the TPL independent of

the order they were parsed, whereas views must be
referenced via subscripting. '~ The set will be parsed

until its match expression ("EOF") is true, Elements

name, address and phone_num apply when their respective

match expressions are true.

specification of repeating items or groups via the
OCCURS clause., This specification can be fixed or
variable.

specification of characters which must be stripped from
the middle of data fields, via composite items. For
example, an ADAPT application requires that a number of
physical 1lines, each of 1length 8@ characters, be
treated as a single logical line. But the blank char-
acters at the beginning of each physical line must be
omitted. The DDPG specification for this application
is

composite item logi line until ( ! (match(g,1," ") )
physi_line char (8¢) just right pad " ";
end logi line;

The Parser parses 8@ character fields, stripping off
the 1left-most blanks, until it encounters a 1line
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starting with a non-blank character. The concatenation
of the physical 1lines is treated as a single logical
line,

- record filtering criteria expressed via the DUMP and
DISCARD commands,

DUMP rname to fname (boolean expression)

The boolean expression is evaluated at data parse time.
iIf true, the associated record or cluster is dumped to
the named file, an associated logging message is writ-
ten out, and processing continues with the parsing of
the next record or cluster. DISCARD performs a similar
function as DUMP except, in this case, the record or
cluster is thrown away rather than dumped to a file.
Thus, DUMP can be used to control the order in which
records get translated (since the files built wvia the
DUMP commands could be translated at a later point in
time) without separately pre-processing the source data
and applying pre~determined translation selection cri-
teria.

- data validation criteria via the FORMAT clause.
iname CHAR(arithmetic expression) FORMAT (pattern)

Here, as a record is being parsed, a character string
item whose 1length 1is given via an arithmetic expres-
sion, is validated according to the user-supplied pat-
tern. If the wvalidation test fails, the user can
filter the record or cluster to appropriate files,

- special constant data generation for the target data
through use of the ATTACHL, ATTACHR, and VALUE clauses.
The ATTACHL and ATTACHR clauses can be used to attach
special user-supplied field identifiers to the left or
right of the actual target field value. The VALUE
clause can be wused to specify a fixed value to be
assigned to a target field.

The Data Parser and Resrap modules can perform more
extensive validation than the FORMAT clause allows by means
of the elegant table handler provided by ADAPT (see next
section) .
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4, TPL Compiler and Transformer

The Transformation Programming Language (TPL) is a high
-level 1language wused to perform the actual translation of
data from the source data base to the target data base. The
TPL compiler generates the Transformer module based on the
DDPG descriptions and the user-specified TPL transforma-
tions.

The user's TPL code is divided into several translation
blocks. Each block consists of a set of many-to-one
transformations. That is, each block contains all of the
transformations 1involving one and only one target record
type regardless of how many source record types map into it.
Thus, the user has the ability to combine fields from dif-
ferent record types to produce fields in the target record

type.
e.g. TRANSLATE RECORDS a,b,c TO d;

tpl code

END_BLOCK;

would take source records a, b, and ¢ and produce target
record d. If the target record is only produced under cer-
tain conditions, the translation block header would have the
following form:

TRANSLATE RECORDS a,b,c TO d WHEN (boolean condition);

The operators currently supported by the TPL compiler
include assignment, selection, concatenation, extraction,
control flow, explicit type conversion, table handling, user
specified termination, looping mechanisms, and user supplied
functions. These operators interact among themselves and
with the usual Boolean and arithmetic operators to form the
.expressions referred to below. A brief description of each
operator follows.

- ASSIGN. The assignment operator correlates the
transformed data with the appropriate target field(s).

ASSIGN TO field name (expression);

ASSIGN is designed to work 1in conjunction with the
other operators, 1in that these operators form TPL
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expressions which are evaluated at run time and
assigned to the target field(s).

- SELECT. The selection operators retrieve source data
entities: that is, they retrieve either source items or
groups of items., There are three variations of the
SELECT operator:

a., retrieval of subtrees from the source data struc-
tures.

SELECT subtree

b. retrieval of subtrees satisfying certain condi-
tions using the WHERE clause.

SELECT subtree WHERE (boolean expression)

c. retrieval of entire data entities without nesting
other operators, 1i.e. retrieval where no further
transformations are to be performed other than
ASSIGN.

SELECT AS IS field_name
This is a more efficient form of
ASSIGN TO field_name2 (SELECT field namel)

- CONCAT. The concatenation operator is used to concaten-
ate any number of data fields, constant values, or
other expressions. -

CONCAT (expl, exp2, ... , €expn)

- EXTRACT. The field extraction operator is used to match
a pattern in a character data field.

EXTRACT FROM (exp) pattern

The class of patterns which can be extracted is
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equivalent to that of the UNIX text editor. For exam-
ple,

EXTRACT FROM (field a) "([A-Z}{2}[@-9]*"

returns the string in field a which has two uppér case
alphabetic characters followed by any number of numeric
characters.

The fixed field extraction operator SPLIT is used
to extract that portion of a data field lying between
specified byte offsets.

SPLIT (offsetl, offset2, exp)

IF-ELSE. The control flow operator allows blocks of TPL
statements to be executed dependent upon the evaluation
of a boolean expression.

IF (boolean expression) tpl statement list;

ELSE tpl statement list; (optional)

Explicit Type Conversion. These operators allow the
user to specifically convert data from one type to a
second type. ' ‘ ‘

type (expression)

For instance, if line_num were defined as a character
field, then

INT (line_num) , ' ‘ ’

converts line_num to its integer representation.

- Table Handler. In the table definition section of the

DDPG, the user specifies the structure of a table, sort
keys,'and the file containing the table data in the
following manner:



-62~

TABLE t {KEY type fieldl;...;type field n;}
FILE file name,

where "type" is the data type such as "character".

ADAPT reads the table into the system and generates a
function to access it. The user references the table
by indicating the field whose value is to be returned,
qualified by values of the key fields.

t.return field SUCH THAT (boolean condition on key
fields of table t)

For instance, if the user had a file "directory" con-
taining a table "listings" with field names "name",
"address", and "phone" sorted by "name", then it would
be defined by

TABLE listings (KEY char(l16) name;
char(4@) address;
char(7) phone;
} FILE directory;

An expression such as
listings.phone SUCH THAT (name == 'kaplan')

retrieves the phone number of someone named 'kaplan'.
This facility can be used to return data values, or it
can be used by the Data Parser and Resrap modules to
perform data validation,

User Specified Termination, This will cause an immedi-
ate return from the Transformer, presumably when some
error condition has been discovered.

IF (error condition) ABORT;

Run-time Variables. Special run-time variables can be
assigned values in the TPL code. These improve effi-
ciency since repetitive calculations need only be per-
formed once, then assigned to the variables. In addi-
tion, run-time variables can be assigned from the
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*command" line which starts execution of the ADAPT sys-
tem. These variables can participate in all arithmetic
and boolean expressions. Execution of entire blocks of
code may depend on their values. This gives the user
greater flexibility in running ADAPT from a uniform set
of descriptions and transformations without rewriting
and recompiling ADAPT code.

Looping Mechanisms. The TPL allows two kinds of "for"
loops. The first kind uses explicit user indices, as
in

FOR (i = @; i < LIM;  i++)
{

}

loop body

Here, the variable i is initialized to @ and incre-
mented by 1 (i++) after each execution of the body of
the loop until it is no longer less than LIM. The user
must explicitly subscript field names in this scheme.
The second kind of "for" loop uses implicit indices, as
in

FOR each gname

{
}

loop body

Here, gname was subject to an occurs clause in the DDPG
description. For each occurrence of gname, the loop
body is executed; the appropriate indices are supplied
automatically to all field names in the loop body which
are in the scope of the gname structure.

User Functions. The user may supply a set of special-
ized routines which perform operations particular to.
the given application but not supported by ADAPT. They
are called from the TPL code by the CALL operator.

CALL function name(expl,exp2,...,expn)

The source code of the function can be written in any
language supported by the translation machine. It is
compiled on the translation machine, then 1linked with
the other modules of the ADAPT system.
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5. Clustering

As mentioned above, ADAPT processes clusters of records
sequentially. Applications frequently require that more
than one source record be utilized to produce target
records, and that several target records be produced from a
single set of source records. The specification of source
records appearing in a cluster and the target records output
in a cluster is given in the cluster section of the source
and target data descriptions.

Records can be described as conditionally existing and
occurring a multiple number of times per cluster using the
same EXISTS and OCCURS constructs described in the data sec-
tion of the DDPG. EXISTS and OCCURS expressions in the
source cluster may depend on the values of fields in records
which were already parsed, or they may depend solely on
their existence in the data stream. The existence of
records in the data stream is determined by examining the
record type indicator as specified in the record header.
For instance, records named "BEE" may have an indicator "B"
in its third character position. When a record is read, the
reader checks if it is a "BEE" reccrd, and if so, calls the
correct parse routine.

The target cluster is constructed by the Transformer
module. Conditional translation blocks control the creation
of target records. The target cluster section is then wused
to wvalidate the integrity of the records produced by the
Transformer,

Records in a cluster bear an implicit relationship to
other records in the same cluster, but for purposes of the
data translation process, they are considered unrelated to
records in other clusters. Assignment of run-time vari-
ables, however, allows information to be "remembered"
between clusters. When translating between arbitrary source
and target data bases, the record structures must be
"linearized" into the <cluster format before entering the
ADAPT system,

Records in a cluster can be in different physical files
as specified in the DDPG description. ADAPT accesses the
correct file when reading (writing) records of particular
types. The only restriction is that all records of a par-
ticular type must be in the same physical file, and they
must appear in the order in which they are to be read. The
"logical" record stream input to (output from) the ADAPT
system is thus identical to the sorted physical record
stream input from (output to) the files.
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6. Applications of ADAPT-

Data base translation is a relatively infrequent opera-
tion, and hence, data base translators are usually only
thought of in terms of performing this one-time translation.
However, they could have much wider use in applications
involving transformations of data streams. ADAPT, in par-
ticular, can be used as a dynamic translation module in a
larger software system. Two such applications will be dis-
cussed in this section.

Data conversion takes a long period of time even when
an efficient data translation program is wused. The
translated data must be examined and tested against 1live
data before the original source system is replaced. During
this time, the source data base cannot always be frozen
since it must be constantly updated to reflect the real-
world situation. If source data which was already converted
is wupdated, the <corresponding target data must also be
updated. For any significant volume of update activity,
manuvally wupdating both data bases is difficult and subject
to error.

The ADAPT system can be utilized to overcome many of
these transition problems. ADAPT accepts the update request
to one data base and outputs two update requests: one for
each data base. The input data to the ADAPT system consists
of the update command to the first data base. ADAPT outputs
a cluster consisting of two target records. The first tar-
get record is identical to ADAPT's input record and is
passed directly to the update facility of the first data
base. The second target record is the semantic equivalent
of the input (update) record, but is reformatted to conform
to the syntax and semantics of the update facility of the
second data base. Note that even though the input and out-
put records are really command lines, ADAPT treats them as
streams of data.

~Since ADAPT can convert data from one machine format to
another, this scheme can also be used when converting across
machine boundaries. An application requiring conversion of
directory assistance products uses ADAPT in this fashion.
Communication between the machines 1is provided by an
independent computer network facility called BANCS [26],
which handles all of the physical machine interfaces, and
has its own independent queuing facility.

For example, suppose the wuser made the following
request to the data base:

SET PHONE NUMBER EQUAL TO '4769' IN DIRECTORY
SUCH THAT NAME IS 'KAPLAN'
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Two configurations exist depending on which machine the
ADAPT program resides, If it resides on the same machine
where the user request is made, then ADAPT accepts this
.request as an input record. It outputs the exact record to
the first data base, whose update facility accepts this
stream of data as a command, and performs the appropriate
operation on the data base. ADAPT's second output record
may have the following form:

UPDATE PHONE_NUMBER '4769' (DIRECTORY.NAME = 'KAPLAN

This record is sent to the BANCS communication facility
which transmits the record to the second data base. The
update facility of the second data base then treats this

data stream as a command and performs the appropriate opera-

tion on the data base,

Alternatively, if ADAPT does not reside on the machine
where the user request originates, then that request is
immediately transmitted via BANCS to the second machine and
input to ADAPT. ADAPT produces the two target records in
the manner described above but sends the original request
back to the first machine via BANCS.

The extension of this idea to distributed data bases is
straightforward. The data in a distributed data base exists
at all nodes of the hetwork, but a user at any node of the
distributed data base has no knowledge of the underlying
structure of the data base. For security reasons, the data
base administrator may not want particular users to access
certain fields of data so these data fields are invisible to
them. Using ADAPT, the data base administrator has an effi-
cient, easy way to accomplish these aims.

The data base administrator writes an ADAPT program for
each set of users, specifically geared to the users' appli-
cation requirements. The source description for the ADAPT
program accepts all allowable user queries to the distri-
buted data base. Based on the type of user command, the
associated data values supplied by the user, and the known
location of data types in the distributed data base network,
the ADAPT program outputs a cluster of records which are
really commands to be sent to different nodes of the data
base network. User requests which differ with regard to
command type or associated data values are automatically
routed by ADAPT to the proper nodes of the network. When
the nodes return the data to the user node, another ADAPT
program accepts all of these records as an input cluster.
From these records, a single output record is built and
returned to the user.

Since ADAPT can convert data across machine boundaries,
the distributed data base can exist on different machines,
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providing a true computer-data base network. As opposed to
"standard" distributed data base systems, individual data
bases at different nodes of the network can be of different
types. Synchronization of data transfer is handled by an
inter-machine communication facility such as BANCS, men-
tioned above. The user interfaces with the distributed data
base through individualized ADAPT systems. This has the
added security advantage that the user is totally unaware of
other data in the data base.

An example of the use of ADAPT in a distributed data
base environment is depicted in Figure 2.

USER RESPONSE’
REQUEST TO USER
[} |
ADAPT 1 ADAPT 2

ri N\ )/ ‘\

NODE 1

NODE 2 NODE 3

USE OF ADAPT IN DISTRIBUTED DATA BASES
FIGURE 2

Suppose a user enters a request at node 1 of a computer net-
work. The request is sent to the ADAPT 1 module which for-
mulates. the request as (possibly different) queries to nodes
2 and 3 of the network. The two queries represent two
record types of an ADAPT target cluster. The ADAPT 1 module
directs the queries to the correct "channels" of the commun-
ications link, from where they are sent to the appropriate
nodes. When the responses from nodes 2 and 3 are received
at node 1, they are treated as records in the input cluster
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to the ADAPT 2 module. The output from the ADAPT 2 module
is the response to the original user query.

7. Conclusions

The need for an efficient high-level language approach
to data conversion has been proven historically by the large
and expensive conversion effort experienced by almost every
data processing application. The ADAPT system provides a
generalized, efficient approach towards meeting the needs of
many of these applications. The functional capabilities pro-
vided by the ADAPT system are those that appear to be most
often required by applications. These facilities have been
tuned over a period of time and now operate in a manner that
provides a system throughput rate which is well within the
operational requirements of most applications.

ADAPT's first major application was to translate a data
base comprising a set of directory assistance products. The
source data base resided on an IBM 370/168, and the target
data base was to reside on a PDP 11/78. The source records
had an average size of 340 bytes and the target records had
an average size of 165 bytes. For this application, ADAPT
was able to achieve a throughput rate of 30 records per
second running on a PDP 11/70, and a throughput rate of 75
records per second running on an IBM 378/168. :

The ADAPT system can also be used in a computer network
environment where a data translation step is required for
inter-node communication. For instance, concurrent copies
of source and target data bases can be synchronized during
the conversion process, using ADAPT. On a larger scale,
ADAPT can be 1linked with an inter-machine communication
facility to support many of the concepts of distributed data
base systems,
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ABSTRACT

Simulatien models for four concurrency contrel algo-
rithms were used to study the effects on a distributed data-
base. In a distributed database, the data and transactions
are distributed over several c¢omputer sites connected
through seme. type of network. Some transactions access data
at only one site, while others access data at several of the

computer sites.

The eoneuréency coentrol algorithms simulated can be
divided inte two general classes: primary site contrel and
decentralized contrel. In the primary site contrel models,
all of the. lecking takes place at one of the nodes desig-
nated the primary site. Note that even "local transactions"
(transactions that just access data at their originating

sites) must send leck requests te the primary site.

In the decentralized'eantrol models, the locking of the
data items takes place at the site where the data being

accessed is stered. In these models, then, lecal transac-
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tiens need not send any messages over the computer netwerk.

1. INTRODUCTION

Recently, considerable attention has been deveted to
the development and use of distributed databases. A distri-
buted database is a database which is stered at multiple
computer sites connected by some type of computer network.
In this environﬁent, a transaction originates at one of the
computer sites and potentially accesses data at other sites

as well as at the eriginating site.

One ef the primary advantages of a distributed database
over a centralized database is that increased parallelism is
pessible because multiple sites can be simultaneously pro-
cessing transactions. However, the distributed coencurrency
contrel mechanism may have te expand additienal everhead to
guarantee database consistency [ESWA76, GRAY76] during this
simultaneous precessing. This additional overhead is due to
the costs required to set locks at remete sites and/or the
costs which may be required to resolve deadleock between

transactions at different sites.

Several selutions to the concurrency control problems
for distributed databases have been proposed ([BERN77],
[ROSET7], [GRAY78], [MENA78], [STON781 and [THOM781).
Often, cone perfermance goal of such propesals is te minimize

the number of concurrency contrel messages which have to be
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sent across a computer network. In [BERN77], it is shewn
that if the transactions are known in advance, different
types of cencurrency control can be used feor different types
of transactions and thereby reduce even.further the overhead

network traffic.

Unfortunately, the count of overhead message traffic
does not, by itself, determine the effects of the con-
gurrency contf@l on the overall performance of a distributed
database system. Other factoers such as the processing load
at each site, the overall network load and the types and

sizes of the transactions must alse be considered.

Thus, simulation models were develeped to mere ade-
quately  invesigate the perfbrmanee trade offs between
increased parallelism and increased overheads of a distri-
Buted database. These models simulated four concurrency
contrel algerithms and were used to study the effects of
locking granularity ([GRAY75], [RIES77], [RIES79]1), the
effects of the propertien of transactiens requiring non-
local or remote rescurces, and the effects of different net-
work throughputs and bandwidths on the overall performance

of a distributed management system.

In the next section, the basic medel of a distributed
database that was simulated is described. 1In section 3, the
four different concurrency contreol algorithms are discussed.
In section 4, the simulation results for each of the four

algorithms are reported. In the final section, the wmajor
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conclusions are reiterated.

2. The Simulation Model

The. model of a distributed database system that was
simulated closely follows the basiec model being implemented
in distributed INGRES [STONT7T7]. In the simulation model,
the database was assumed te be distributed among a number eof
different computer sites or nodes. connected by some type of

network.

Transactiens were submitted tc the database management
system at each site. Some ef the transactions, called
'local' transactions, only accessed data at the site where
they originated. Other transactiens, c¢alled 'non-lecal’
transactions, required seme datébase access at eother than

the originating sites.

Such a non-lecal transaction was realized by a 'MASTER'
transaction at the originating site and 'SLAVE' transactions
at the other sites where processing was'required. The MAS-
TER transaction initiated all of its SLAVES and waited for
these slaves to complete. In the simulation, transactions
were cycled around a élosed loop model (shown in Figure 1)
for each node or site in the distributed database. Each of
these site models was very similar te the simulatien medels
in [RIES771, [RIES79]. At each site, the transactions ini-

tially arrived one simulatien time unit apart and went
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through the following steps: 1) left the pending queue, 2)

I1/0 processing, 3) CPU processing, U4) data transmission, 5)

local processing completion, and 6) distributed processing

synchronization. Each of these steps is described in more

detail below.

1)

2)

3)

4)

5)

When a transaction left the pending queue it was placed
en the I/0 queue. If the transactioen was a MASTER, it

sent SLAVE create messages to the appropriate nedes.

The 1I/0 Server was multiplexed ameng the transactions
on the I/0 queue. When a transaction had received its

share of I1/0 rescurces, it was placed en the CPU queue.

The CPU server was multiplexed ameng the transacticns
in the CPU queue. When a transactien had received its
share of CPU reseurces, its next actien depended on

whether or not the transaction was lecal.

Lecal transactions were considered complete at this
peint and were recycled toe the pending queue. Non -
lecal transactions (both SLAVES and MASTERS) were
placed en the data transmission queues. If any data
was toe be transmitted to aﬁother node, a data transmis-

sion message was sent.

When the data transmission message had been delivered

(or if ne data was to be transmitted), the non-local
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transactien proceeded to the Netwerk done queue. At
this time, SLAVE transactions sent a SLAVE ocomplete

message back te the MASTER transaction.

6) Depending on the c¢oncurrency contrel strategy, a SLAVE
either waited on the Network dene queue or was sihply
released. The release of a slave is discussed in mere
detail in section 3. The MASTER transaction waited on
the Network done queue until it had received "slave
complete” messages from all iﬁs slaves. At that peint,

the transaction was reeyeled back te the pending queue.

Several simplifying assumptions shoeuld be noeted about
the model. First, all ef the SLAVEs were identical te the
eriginating MASTER in terms of the prepertion eof database
accessed and whether or not data needed to be transferred.
In distributed database applications, the actual charac-
teristics of the SLAVEs could be quite different from the
MASTER and freom each ether. Second, the only synchroniza-
tion between the SLAVEs and their MASTER transaction
eccurred at the beginning and end of the transaction. Some
applications would require additional synchronizationg on

the data being transmitted [WONGT77, EPSTT78].

Alse nete that a transaction is on each of the 1/0, CPU
and data transmission queues once in the indicated serial
order. The tetal processing required is the same as if the

transactien c¢yelically accessed the 1I/0, CPU and data
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transmission queues. To send a message, a transacter would
place the message on the message- cut queue together with a
message destination and length. Messages were taken from
the message-out queue and given to the Network Manager as
shown in Figure 2. When a message had received the needed
ameunt of netwerk service, it was placed on the destinatien

message-in queue.

Beth a speed and a bandwidth are asseciated with the
Network Manager. The network speed was represented by the
minimum time a message of any type spent in the network
where time was measured in the time units of the simﬁlation.
The bandwidth was represented by the maximum number of mes-

sages which could be serviced in ene of these time units.

The flow of a message in the Network Manager cén be

deseribed as follows:

1) When a message entered the netwerk manager, the time
remaining fer that message was initialized to the mes-
sage length in the time units of the simulatien. The
message 1length c¢an vary depending -on whether or not
data is being sent but is at least equal te the minimum

length mentioned above.

2) If MESSBDWH was the bandwidth of the Netwerk Manager,
the times remaining of the first MESSBDWH messages in

the Netwerk queue were reduced by one time unit.
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3) If the time remaining for any message was zero, it was
delivered to the message-in queue of the destinatien

noede.,

In several of the concurrency controel schemes, a site
was allowed to send messages to itself. In these cases, the
network manager was bypassed and the message wenit directly

from the message-out queue te the message—in queue.

3. Cencurrency Centrol Algerithms

Feur c¢oncurrency contrel algoerithms were simulated.
All eof the algerithms required that transactioens 'leck' the
parts_of the database they access and obey a 'twe-~ phased'
locking protocol [ESWAT76]. A 'lock' on a certain pertion or
granule of the database was granted to one transactien and
prevented any other transactions froem accessing that portion
of the database until the given transactien released the
leck. Nete that in the simulation moedels, each lock was
assumed to be exclusive in that it coeuld only be held by one
transaction at a time. Thus, in the simulation models, nho
distinction was made between read and write access to the

database.

The 'two-phased' proteccel required that a transaction
first acquired all of the needed locks (called a 'growing'
phase) before releasing any lecks (during a ‘'shrinking'

phase). This pretocel, tegether with the requirement that
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all accessed parts of the database be locked, insured that
the effect of the transactiens woeuld be equivalent te the
effects of running the transactions one at a time in some
serial disorders. This 'serializability' [ESWA76] of the
transaections insures a certain level of database conéisteney

[GRAYT6].

The four coencurrency conrol algerithms simulated can be
divided into two general classes: primary site cencurrency
control ([ALSB76], [MENA78]) and decentralized oeontrel
([ELLIT7T7], [GRAY781, [ROSE771, [STON77]). In twe primary
site moedels, one site was chesen toc manage the lecking fer
the entire database. In both ef these models, when any
transactien (local or MASTER) left the pending queue (see
Figure 1), a glebal lock request was sent te the 'primary'
site. The transaction then waited until it received an 'all
locks granted' message and proceeded to the I/0, CPU, and
data transmissien queues. Alse at this point, a MASTER

“translatien, which was smart eneugh te request locks for all
its slaves, sent the 'SLAVE c¢create' messages to the

appropriate nodes.

Thus, when a 'SLAVE c¢reate' message was received at a
site, the SLAVE transaction went directly te the I/0 queue.
When the SLAVE transaction was threugh with the I1/0, CPU and
data transmission queues, it sent an 'all done' message back
te the MASTER transaction and did net wait on the Network

Done Queue. When a lecal transaction completed, it sent a
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'release locks' message to the PRIMARY site. When a MASTER
had completed, however, it had to wait fer all of the SLAVES
to complete before sending the 'release locks' message to

the primary site.

The two primary site models differed by the activities
at the primary site. 1In the primary site one moedel (denoted
PS1), a fixed ordering was placed on all of the sites and
locks, for a transaction was acquired one site at a time in
that order. In other werds, a transaction weuld be granted
locks for the first site, then the Second site, ete. If the
required lecks for a given site were already held by a
second transaction, the first transactien would wait fer the
second transaction to eomplete and re-request the lecks for
the given site. When the 1lecks fer all ef the sites had
been acquired, the primary site sent a 'locks granted' mes-
sage back te the requesting transaction. Nete that the
fixed ordering of sites is used to prevent deadleck. Also
note that for 'local' transactiens locks were only requested

at one site.

The primary site two medel (PS2) differs from the PS1
medel in only one respect. In the P32 moedel, if the locks
needed by a given transactien for a given site were already
held, all of the locks a lower numbered sites (in the fixed
ordering) that were granted to the given transaction were
released. When the 1locks in contentien were. eventually

released, the acquisition of the givén transaction locks for
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all of these nodes had to be re-requested. Note that in the
PS2 model, ne transactions could held lecks fer one nede
while waiting for other lecks for anether nede. Alse nete
that the PS2 model would faver those transactiens which
required locks at a fewer number of nodes. Thus the differ-
ence in the twe primary site models is essentially one of

transactioen scheduling.

The oether twe concurrency control algerithms simulated
vwere decentralized in that a coencurrency contrel meohaniém
at each site managed the locks for ﬁhe pertion ef the data-
base at that site. In these models, a MASTER transactien
sent the lock requirements for the SLAVE along with the
'SLAVE create’ messages. A transaction requested its lecks
for a site when it 1left thé pending queue (see Figure 1).
If the lscks were granted, the transactien could proceed.
If the locks were denied, the requesting transaction waited
for the blocking transaction te release its locks. Ngte
that at a site, the locks for a transactien were either all

granted or all denied.

When a lecal transactien had completed, it weuld simply
release its locks and be recycled back to the pending queue.
A nen-lecal transaotion; hewever, had to wait until its pro-
cessing had completed at all ef the nodes. Thus, in the
decentralized. coneurrency centrel medels, the SLAVE transac-
tions had te wait on the Netwerk dene queue (again, see Fig-

ure 1) until they had received a 'release locks' message
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from their MASTER. At that peint, the SLAVES could release
their lecdks. The MASTER transaction waited for the ‘'all
done' messages from each of the SLAVES before it ceuld send

those 'release locks' messages.

Unfertunately, in the above decentralized concurrency
control models, deadleck is possible. Two transactions
could each be waiting (directly or indirectly) at different
sites f@r the other te complete. The twe concurrency con-
trol models simulated differed in the way they solved the

deadlock preblem.

A wound-wait model (denoted WW),‘based en the algerithm
presented in [ROSE77]; prevented deadleock by using a unique
timestamp for each transaction to reselve conflicts between
distributed transactiens (nete that SLAVES had the same
timestamp as their MASTER). In the WW simulation implemen-
tatioen, the follewing actions tosk place if one distributed
transaction, say T1 was bloeoecked by another distributed tran-
gsactien, say T2: if T1 was elder than T2, T2 was "weunded".
When a transaction was woeunded, the MASTER and all ef the
SLAVES were notified. If T1 is younger than T2, T1 simply

waited for T2 te release its locks.

When a woeunded transactien (a SLAVE or MASTER) was
itself blecked by an eolder distributed transactioen, the
wounded transactien "killed" itself. The killing of a tran-
saction invelved the release of all lecks by beth SLAVES and

MASTERS and the reincarnation of the MASTER transaction back
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on the pending queue.

The second decentralized eontrel algerithm is based on
the SNOOP [STONT8] eor the glebal detector [GRAY78] algo-
rithms., In the SNOOP simulation implementation, a conflict

between distributed transaectiens were‘reperted te a "SNOOP"

site which checked for deadlock. If deadleck was detected,
a transaction was "killed" and reincarnated as in the

wound-wait model.

4, Simulation Results

The simulation Vmodels wefe ‘highly. parameterized in
order to provide insights into the effects of coencurrency
contrel on the performance of a wide variety of distributed
‘databases. Simulatien experiments were condudted varying
the locking granularity, the number of noedes in the network,
the number of SLAVES for each distributed transaction, and
the number of distributed transactions. Different netwérks
evirnenments were‘represented by varying the netwerk speed,
the netwerk bandwidth, the messages hankdling overhead at
the nodes and the percentage and rates for data transfer.
The details of these experiments for all four concurrency
controel algorithms and two c¢lasses of transactions are

presented in -[RIES79].

In this paper, the discussion is limited to the parame-

ters of greatest significance including the locking granu-
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larity, the percentage ef distributed transactiens, the net-
work bandwidth, the types (or classes) of transactions and

the concurrency control algerithms.

Fer all ef the experimeﬁts reported, the other parame—.
ters were set to simulate the following scenario. Ten tran-
sactions were acti§e at each of the six nodes in the distri-
buted database. Each node c¢ontained 10,000 entities ef the
database where an entity can be th@ugh£ ef 'as the unit of
data moved between the operating system and the database
management system. It toeck a transéction 30 milliseconds on
both the I/0 and CPU queueé te process one entity and 3 mil-
liseconds of CPU time to set one 1lock. It toeek 15 mil=-
liseconds of CPU time to check for a deadleck cenditien.
The number of entities and lecks required by a_transaetion

depended on the transaction c¢lass and is discussed below.

Each distributed transactien had 5 SLAVES and was thus
aétive at all nodes in the netwerk. Forty percent of these
transactioens transferred 25%- of their entities acress a
megahertz data transfer network. To transfer a simple mes-

sage across the netwoerk teck 90 millisecends.

Under the above scenarie, the parameters shown in Table
1 were varied. Lecking granularity, the LGRAN parameter,
refers to the number of locks at each nede. A value of 1
would imply that there were 6 locks -~ one feor - each node in
the database. . A value ef 10,000, on the ether hand, implies

that each entity has its own leck and allows for the maximum
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potential parallelism.

The transactien c¢lass parameter, TCLASS, actually
represénts a set of parameters governing the transaction
sizes and leck placement assumptiens. With "Class 1" tran-
sactions, a hyperexponential distributien ef the number of
entities accessed by the transactiens was used. Ninety per-
cent of the transactions accessed on the average 5 entities
of the databgsé while the ether 10% accessed on the average
250 entitieé; With "Class 1" transactions, the locks were
considered to be well-placed, in that a tranasactien
requifed the minimum number of locks that c¢could eever the
entities accessed by the transaction. This c¢lass ef tran-
sactions implies that the transactien access paths are all
sequential, most of the transactiens are small, but a few
are relatively large in terms ef the proepoertion of the data-

base they access.

With "Class 2" transactions, all of the transactions
are accessed, on the average, only 5 entities in the data-
base and a randem placement of locks was assumed. The Class
2 transaction envirenment implies that the data access pat-
terns are primarily randem and that all of the transactioens

are small.

The PREDIST parameter c¢ontrols how many transactions
were non-local. A value of zero, for example, would imply
that all of the transactiens were local. A value of 100

percent implied that each of the 10 transactions at each
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node was a MASTER transaction and would spawn 5 SLAVE tran-

sactions at the other 5 nedes.

The message bandwidth parameter, MESBDNT, represents the
" number of messages which can be simultaneously processed by
the nétwork manager. The four c¢oncurrency contrel algo-

rithms have already been discussed.

The results of varying the lecking granularity, the
percentage of distributed transactioens, and the message
bandwidth fer the four cenourreney contrel algorithms and

the twe transaction classes is discussed below.

1.1. Locking Granularity

Figure 3 shoews the effects of varying ﬁhe 1eéking
granularity on the "Useful I/0" utilizatien for each of the
four concurrency control algerithms when 10% of the transac-

tioens were distributed and Class 1 transactions were

Table 1
Parameter Description
LGRAN Ne. of locks at each node
TCLASS Transaction class
PREDIST Percentage of the Transactions

which are distributed
MESBDWT Message Bandwidth

CCALGORITH Concurrency Contrel Algorithm
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assumed. The "Useful I/0" refers te the net utilizatien of
the I/0 resources for processing transactiens. The curves
for "Useful CPU" wutilization were similar and net shown.
Fer all four concurrency control algerithms, the maximum
useful I/0 eccurred with 500 to 1000 granules. Fer the pri-
mary site 2 (PS2), the primary site 1 (PS1), and the global
deadloek detector (SNOOP) models, the peak occurred at 500
granules. For the wound-wait KWW) models, 1,000 granuleé
were optimal. In either case, 99% of the maximum I/0 utili-

zation was reached with 500 er_1000‘granules.

Several observations about figure 3 sheuld be noted.
First, the primary site twe medel (PS2) achieved 98% of the
maximum I/0 utilizatien with 100 granules and 90% of that
maximum with as few as 50 granules. Each of the other three
medels required at least 250 granules te reach 90% of its
respective maximum. In the primary site 2 model, ne tran-
sactiens held loecks at one node while waiting for locks at
anether nede. In each of the other moedels this condition
was net true. Also neote thaﬁ the differences in the perfor-
mances ef the differenot'oeneurrenoy contrel models was very

small at the optimum granulaties.

The computer utilizatien fer each of the four cen-
ecurrency centrel algerithms for c¢lass 2 transactions are
shown in Figure 4. Under the randemly placed locks with
enly small transactiens, the finest granularity, 10,000

locks in this case, was optimal. With this eptimal granu-
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larity, as with c¢lass 1 transactiens, only slight differ-
ences in computer utilizatiens were due to the c®nourreney

contrel algorithms.

However, the wound-wait and glebal deadleck detector
algorithms did censistently produce somewhat better results
than the primary site algorithms over a wide variety of
granularities. In fact, enly with.fewef than 50 locks at

each nede, were the primary site models advantageocus.

No difference in computer utilization was ebserved
between the twe primary site models ence the granularity
became fine enough. This result was ﬁrue for class 2 tran-
sactions, since the prdbability of success en a lock request
was extremely high. Thus, very few of these traﬁsaetiens
waited for locks at one nede, while helding lecks at anether

nede.

Similarly, once the granularity was less eoarse (abeout
50 granules), little difference in cempﬁter utilization is
realized between the two decentralized algorithms. This
result was alse realized because of the high proebability of

success on a lock request.

1.2. Percentage of Distributed Transactions

Changes in the percentage of distributedv01ass 1 tran-
sactions affected the optimum granularitics and the cheice

of a "best" algoerithm. In general, finer granularity was
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required te achieve the best computer utilization and
respoense times for the PS1, WW and SNOOP medels. Hewever,

with the PS2 moedel 500 granules was always clese te optimal.

Figure 5 shews the effects on the useful I/O and the
average respenée time of the percent of distributed transaoc-
tions for each of the four concurrency controel algerithms.
(Fer each percentage, and for each algorithm, the best use-
ful I/0 and average response time regardless of granularity

was ploetted.)

The 'dish' shaped ourves for I/0 utilization were
surprising. As the percentage of distributed transactions
was increased up to 50%, all four models showed decreases in
useful cemputer utilization due to the additienal overhead
(message handling and lecking) required te run distributed
transactions. However, as the percentage increased beyend
75%, the useful cemputer utilizatien significantly

increased.

That increase was due to tws facters. First, the
number of transactiens running at eaoﬁ noede was greatly
incereased. For example, when all of the transactions were
distributed, parts of transactiens were active at éaeh nede.
Second, the average transaction size at each node was

smaller as more and mere transactions were distributed.

The simulation parameters were medified to keep the
number and sizes of active transactions at each node con-

stant as the percentage of distributed transactiens
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increased. Only when both parameters were held fixed did
the 'dish' shaped curves disappear. When o¢nly one of the
parameters were held constant, having all transactioens dis-
tributed produced mere useful I/0 (and CPU) than when eonly

50% of the transactions were distributed.

The average response time curves alsc demenstrated dish
shaped curves. In almest all cases, the second primary site
medel (PS2), produced the best average response time of the
four models. The holding of locks. at one nede while waiting
for locks at another was quite detrimental te the threughput
of the system and ocourred with incfeasing frequency in the
other three models as the percentage of distributed transac-

tions increased,

With class 2 transactions, the finest granularity was
optimal, regardless of the percentage of distributed tran-
sactioens. Furthermere, the performance of the concurrency
gentrol algorithms alse changed consistently as the percen-

tage of distributed transactioens increased.

Figure 6(a) shoews the I/0 utilization for the four
algorithms as that percentage increased. The utilization
with the decentralized algorithms was affected very little
by the increase in non-lecal transactions. Again, a slight
increase in useful computer utilization was realized due to

the increased distribution of transaction precessing.

In the primary site algorithms, en the other hand, the

overall computer utilization decreased as the percentage of
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non=-lecal transactisesns increased. The decrease was most

dramatic between 25 and 75 percent.

The same advantage for the decentralized algorithms
over the primary site algorithm appeared in the average
response time, as shown in figure 6(b). Fer all four algo-
rithms the response times increase as the percentage of dis-
tributed transactions increased. However, the increase was
much less feor the deeentralized cencurrency coentrel alge-
rithms than fer the primary site cencurrency centrel algo-

rithms.

Twe factors caused the dramatic difference between the
primary site and decentralized medels for class 2 transac-
tiens: the transactiens were all small and the primary site

created a bettleneck.

The transactions of c¢lass 2 were all small and the
results in Figure 6 were for the finest granularity. Under
these oconditiens, the prebability of success en a lock
request was extremely high, which coensiderably reduced the
advantage that the primary site 2 m@del'exhibited fer class

1 type transactiens.

The second factor whiech affected the performance of the
concurrency contrel algorithms was the bottleneck at the
primary site. Over 7,000 time units out of a possible
20,000 were used for lecking at thé primary site when all ef
the transactions were nen-lecal. Mereover, all transactions

required some database processing at that primary site and
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were thus all delayed by the lecking overhead. This
bottleneck became increasingly worse as the percentage of

distributed transactiens increased.

One solutien to the bottleneck preblem would be to
offlead the primary site concﬁrrency contrel te a separate
processer. The primary site 2 simulation was medified to
test this strategy and in fact then proeduced results very

similar te the decentralized moedels.

1.3. Message Bandwidth

The above observatioens changed when a lower nétwerk
bandwidth was assumed. MESBDWT settings ef 100, 50, 10, 6
and 1 were tested for each of the foeur coencurrency contrel

algoerithms and each class of transactiens.

Fer Class 1 transactiens, 10% of which were distri-
buted, MESBDWT settings of 100 and 50 produced useful com-
puter utilizatiens and average respense time identieallto
the infinite setting previeusly used. Slight drops in the
useful I/0 and CPU utilizatiens were realized with message
bandwidths of 10 and 6. The drops with a message bandwidth
of 10, however, were less than 1% and not considered signi-

ficant.

A message bandwidth of 6 did preduce more neoticeable
reductions in the useful I/0 and CPU utilizatiens. The

dreps in useful utilizatien were only about 2-3% with the
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primary site and SNOOP models. The wound-wait model, on the
other hand, realized a drop of almest 7%. Althocugh the pri-
mary site models sent more lock messages, they were mainly
sent one message at a time, A wound or kill, however,
resulted in 5 messages being sent, or broadcast over the
network. Thesev”bursts" of messages were effected more by
the lower bandwidth than the greater number of individual
messages in the primary site models. In the SNOOP model, on
| tﬂe other hand, a conflict only requifed 1 message. A kill

still required 5 messages, but occurred very rarely.

Figufe 7 shows the effects of the PREDIST parameter on
Class 1 transactions on a reduced bandwidth network. With
fewer than 40% of the transactions being non-local, the glo-
bal deadlock detector algorithm produced more useful I/0
utilization than the other algorithms. When 45% or more of
the transactions were distributed, the primary site 2 model
agéin produced better results. In these cases, the extra
twe messages for locking were not that significant; a dis-
tributed transaction required at least 2 * 5(no. of SLAVES)

messages anyway.

Note élso that the 'dish' shape curves for Useful I/0
have practically disappeared with a limited bandwidth net-
work. In these cases the extra network delay overhead
'caused by an increased PREDIST parameter more than offset

the increases in transaction parallelism.
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Fer Class 1 transactions, oenly the message bandwidth

parameter - significantly affected the performance of the
database under the four cencurrency contrel algerithms. Fer
Class 2 tranéactiens, hewevér, some of the other network
parameters} did effect the choice of

gonourrency control

algoerithms. The results are thus repeated for the message
speed or time te send a simple message, MESRATE; the CPU
message a

time to process (send or receive) a site,

MESCPURATE; as well as the netwerk bandwidth, MESBDWT.

The I/0 utilizatien and the average respense time (in
parenthesis) is given in Table 2 for each of the four con-
cufrenoy ¢ontrel algerithms{ In the first set, the MESRATE
parameter was varied'while the MESCPURATE and MESBDWT were
fixed at .01 and

1000 respectively. As thé message rate

increases, the gap between the primary site and decentral=-

Table 2: Effects of Netwerk Parameters

PS1

PS2 Wi SNOOP
MESRATE
1 9U994(63) 94720(63) 96839(61) 97037(62)
3 93996(64) 93319(64) 97134(61) 96204(62)
10 87998(67) 88078(67) 96037(63) 96875(62)
MESCPURATE |
.01 193996(64) 93319(64) 97145(65) 96204(62)
.05  88953(67) 88767(68)  95048(63) 9UT710(64)
.1 83273(72) 83086(73) 92394(65) 91860(65)
.3 58676(102)  58372(102) 83313(72) 82690(73)
MESBDWT
1000-50 93996(64) 93319(64) 97145(61) 96204(62)
10 82804(72) 83234(72)  96827(62) 96979(62)
6 55200(108)  55692(108) 95948(63) 96242(62)
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ized contrel medels widened. A MESRATE of 1 can be inter-

preted as requiring 30 millisecends te send a message.

A more dramatic change eccurred when the message CPU
rate was varied. During these experiments, the MESRATE and
MESBDWT were fixed at 3 and 1000 respectively. With a 3
millisecend cost (MESCPURATE = .1) for sending a message,
the primary site medels preduced only 89% of the useful com-
puter utilization that was realized with the decentralized
cencurrency control algerithms. With a 9 msec message rate

(MESCPURATE = .3) this percentage droeps te T72%.

A dramatic change in computer utilization and response
time for the primary‘site models and Class 2 transactions
was realized as the message bandwidth was restricted. While
the performance of the primary site models was heavily
affected by the restricted bandwidth, the decentralized
models were hardly affected at all. This result is due to
the fact that with the primary site models,’almest 40,000
mere messages were sent than with the decentralized algeo-

rithms.

The PREDIST simulatien experiments for c¢lass 2 transac-
tions were repeated with a limited bandwidth network. In
these experiments, the.primary site models were best if mere
than 50% of the transactiens were distributed. In those
cases, the primary site models actually sent fewer 1loecking
messages than the decentralized algerithms. However, 1if

fewer slaves were used, the decentralized algerithms would
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send fewer messages even in 100% ef the transadtions were

distributed.

5. Summary

Foeur concurrency contrel algerithms thus were simulated
in erder to study their effects on the performance eof a dis-
tributed database management system under a variety of data-
base and netwerk conditions. Which medel was best in terms
of the overall database system performance is application
dependent as shown in Table 3. Class 1 transactiens refer
ﬁ@ a worklead envirenment where the locks are assumed te be
dell-placed with respéct te the accessing transactiens and
that those transactiens are of mixed sizes. 'Class 2 tran-
sactions refer to werkloads where all of the transactiens

are small and random placement of locks is assumed.

In some cases, it appears that the cencurrency o@ntroi
mechanism is net a.signifioant facter in the database system
performance. For class 2 transactiens, additional simula-
tien runs showed that the preference for decentralized con-
currency control could be offset by reducing the database
lead at the primary site. Thus in these cases, the cheice
of concurrency contrel algorithm may again not be signifi-

¢gant.

For eclass 1 transactiens, when mest of the transactiens

only required local processing and a slower, lower bandwidth
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Table 3: Concurrency Control Medels

Classi Class?

Transactions Transactions
Fast Net. Primary Site or Primary Site or
Most trans. Decentralized Decentralized
local '
Slow Net. SNOOP Decentralized
Most trans.
lecal
Fast Net. Primary Site 2 Decentralized
Mest trans.
nen=local
Slow Net. Primary Site 2 Primary Site
Mest trans.
nen-local
network is assumed, the SNOOP algerithm is preferred. In

this case, the SNOOP medel was favered because of the leower

number of messages required.
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*
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Abstract

In this paper we present a new efficient concurrency control
mechanism -for distributed databases. This general concurrency control
mechanism is based on the idea of having a centralized locking controller
for each replicated fragment of data. The 1independent centralized
controllers operate without explicit backup controllers. A simplified
two phase commit protocol is used to perform updates. In this protocol,
only a majority of acknowledgments from the copies of a fragment for the
"prepare" (first phase) messages 1is required before committing new data.
The major protocols required for the concurrency mechanism are outlined.
These include the transaction cancelling protocol and the new controller
election protocol.

1. THE MODEL.

In order to discuss transaction processing and concurrency control,
we first define a simple model of a distributed database [5]. We view
the database as a ¢ollection of named items. Each item has a name and
some values associated with it; each value is stored at a different node
in the system. In addition, each item i has associated with it a set
S(i). Set S(i) is the set of nodes which have a value for item i stored
in them. We assume that all sets S(i) are not empty. We represent the
values -associated with item i by d[i,x], where x is a node in S(i). (For
nodes y not in S(i), d[i,y] is undefined.) The values for a given item i
at different nodes should be the same (i.e., d[i,x] should equal d[i,z]
for all nodes x, z in S(i)). However, due to the updating activity, the
values may be temporarily different.

We can group items that have identical storage characteristics into
"fragments"., A fragment F is a set of items that have the same S sets.
We use the notation S(F) for the set of nodes where F is stored. (That
is, S(F) = S(i) for all items i in F).

* Author's current address: Department of Electrical Engineering and
Computer Science, Princeton University, Princeton, N. J. 08540
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Operations on the data are grouped into transactions [2]. A
transaction T first specifies a subset of items it wants to read. The
transaction does not indicate where the items are to be read; it is up to
the system to select one of the available values for each item specified
by T. Based on the values read, transaction T performs some computations
and proceeds to update some items. In this final step, T produces a set
of new values for a subset of items. For each item i updated by T, the
system must make sure that the new value for i produced by T is stored at
all nodes in S(i). Notice that the data reading and computing phases of
T may be interleaved. Also notice that transactions do not necessarily
update data. However, to simplify the discussion, we assume that all
transactions are update transactions. The concurrency control mechanism
of the system must guarantee that the effect of running transactions
concurrently is as if the transactions were run one at a time.

In this paper we concentrate on the concurrency control issues of
transaction processing. We avoid two other important issues: directory
management and transaction optimization. That is, we assume that the S
set for each item (which is part of the directory) ‘is known at all nodes.
We  also assume that a transaction can read the items it needs in any

order and  at any node that has the values available. The directory
information, which constitutes a distributed database in itself, can be
updated (e.g., a new node can be added to an S set). However, the

concurrency control mechanism for this directory information is different
from the concurrency control mechanism we discuss in this paper because
more safeguards must be taken when modifying the directory. We will not
discuss directory updating here.

2. A _CONCURRENCY CONTROL MECHANISM,

In this section we will illustrate a common concurrency control
mechanism for transaction processing [7] through an example. (The
description is simplified and we omit many details.) Suppose that item i
is duplicated at nodes x1 and x2, while item j is replicated at nodes x2,
x3 and x4. That is, S(i) = {x1,x2} and S(j) = {x2,x3,x4}. A transaction
T wishes to read item i and then update item j. The way T is processed
is by having T "visit" nodes x1, x2, x3 and x4 requesting locks for the
referenced items. Each node in the system has locks associated with each
value stored at the site. When a node grants a lock to a transaction, it
gives the transaction exclusive access to the value (until the lock is
released). Thus, after T obtains locks for d[i,x1], d[i,x2], d[j,x2],
d(j,x3] and d[j,x4], it can compute the new values for item j without any
interference from other transactions.

When transaction T has computed the new value for item j, the system
updates j and releases the locks through a two phase commit protocol. 1In
the first phase of this protocol, a "master" node (which can be any node)
sends out "prepare" messages with the value for j and the lock release
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information to all the nodes that participated in T (i.e., x1, x2, x3 and
x4). When these sites receive the information, they save it but do not
update j or release any locks. Instead, they acknowledge receipt of the
information to the master. After having received acknowledgments for all
participating nodes, the master starts the second phase of the protocol
by sending out "commit" messages to all sites involved. (The time when T
obtains all the necessary acknowledgments is called the commit point.)
When a node receives a "commit" message for T, it actually releases the
locks held by T and stores the new value for item j (except node x1 which
does not have a value of j). The two phase commit protocol guarantees
that T terminates correctly at all nodes.

3. A NEW CONCURRENCY CONTROL MECHANISM.

We propose a variation of this transaction processing mechanism which
we believe has several important advantages over the mechanism we have
just described. The main difference is in the way we propose to handle
replicated data in the system. The motivation for such a mechanism comes
from a performance analysis [6] which indicates that a centralized
control -strategy for managing replicated data is superior to a
distributed control strategy. Notice that in the mechanism of section 2,
the control of an item i is distributed among the nodes in S(i). That
is, each node in S(i) has ' a lock for the value of item i stored at the
node, and in order to access the item, a transaction must secure all
locks for the item. We will replace this control structure by creating a
central "controller" for item i which can grant exclusive access to the
values of item i at all nodes.

The idea of centralized control is not new. Alsberg and Day [1]
suggested having a primary site for executing all update transactions.
In the mechanism we are proposing, only the control of the data (i.e.,
the 1locks) is centralized; reading the data needed and performing the
computations for a transaction can be done at other nodes in the system.
This reduces the load at the central site. In turn, this can improve
performance because the central site is usually a "bottleneck". Menasce
et al [8] have also suggested the wuse of a central controller. Their
lock controller is a unified control structure for the entire system;
here we propose a collection of independent controllers. The 1lock
controller in [8] has "local" controllers which act as backups for the
main controller. In our system, we do not have backup controllers. When
one of the controllers fails, we do not reconstruct its lock information.
Instead, we either cancel or successfully terminate all pending
transactions that 1involve the failed controller. This strategy
eliminates the overhead associated with backups.
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4, AN EXAMPLE.

Before we proceed, we 1illustrate how Wwe propose to process
transactions with the example we used in section 2. Recall that item i
is replicated at two nodes ( S(i) = {x1,x2} ), while item j is replicated
at three nodes ( S(j) = {x2,x3,x4} ). We select a controller for item i,
C(i). Controller C(i) is a "module" which can be located anywhere in the
system, but for convenience we will assume that it is located at a node
in S(i). Suppose that C(i) is 1located at node =x2. Similarly, assume
that the controller for item j, C(j), is located at node x4.

Transaction T reads item i and updates item j. To process T, we make
T "visit" controllers C(i) (at node x2) and C(j) (at node x4) and request
locks for those items. After obtaining locks at both controllers, T has
exclusive access to the two items and can proceed. (Notice that
controllers C(i) and C(j) grant their locks without sending any messages
to backup nodes.)

Once T has computed the new value for item j, the system performs the
update and releases the locks using a modified two phase commit protocol.
In this protocol, the master (which can again be any node) sends out
prepare messages informing all nodes involved in T (i.e., x1, x2, x3, xi)
that T has completed. But now, the master only has to wait for a
majority of acknowledgments from each S(i) set involved. For example, if
the master gets acknowledgments from nodes x1, x2 and x3, then it can
send out the commit messages because a majority of nodes in each set
S(i), S(Jj) have responded. When a node receives a commit message, it
updates item j if it has a copy of the item. If the node has a
controller involved in T, then the commit message also causes the locks
to be released. Notice that no acknowledgment is necessary for the
commit message.

Due to failures, some nodes that participated in T may not find out
about T's completion (e.g., node xU), These nodes will eventually
discover that they missed this information because of a sequence number
mechanism. (See section 6.3.) When a node discovers this, it obtains the
missing information from other nodes. If the information cannot be
found, the node attempts to cancel T. (See section 6.6.)

5. ADVANTAGES OF THE PROPOSED CONCURRENCY MECHANISM,

The main advantages of the concurrency control mechanism we propose
are: (1) There is no need to lock an item at all nodes where a copy of
its value exists, (2) In the two phase commit protocol, only a majority
of acknowledgments (for each item referenced) are required, (3) No
explicit backup of the controllers and their lock information has to be
maintained, and (4) Operation with missing nodes is straightforward
because a transaction that references item i can complete even if a
minority of the nodes in S(i) are unavailable.
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The main disadvantages of our concurrency mechanism are: (1) When a
central controller fails, transactions involving the controller are
temporarily halted until a new controller is elected. In the process,
some transactions may be cancelled or aborted, and (2) The mechanism is
more complex than the one described in section 2. Thus, we are not
proposing our solution as the best for all cases. Our solution is an
interesting alternative which may be well suited for some cases. In
particular, our mechanism seems to be attractive for cases where
performance is important, where data replication is common, and where we
expect failures to be rare.

6. AN OUTLINE OF THE MECHANTSM.

~Up to this point, we have only given a very informal description of
the concurrency control mechanism, omitting most of the details. In the
rest of this paper, we will attempt to convince the reader that such a
mechanism can operate correctly even in the face of (detectable)
failures. In the limited space available, we will give an extremely
brief outline of the major concepts and protocols that are required in
our mechanism. In [4] we discuss these ideas in detail. In that report
we also give a fairly detailed description of the concurrency mechanism
for the case of a single controller. The mechanism we present here is
simply an extension of the one controller case given in [4].

6.1 Controllers.

The basic idea in our concurrency control mechanism is that each item
i in the database has associated with it a controller C(i). Several
items can have the same controller. In other words, each controller J
resides at a node N(J) and manages the locks for the items in the set
I(J). For simplicity, we assume that all items that share a controller
(i.e., the items in I(J)) are replicated at the same set of nodes. That
is, a controller is always in charge of a fragment of the data. (See
section 1.) We use the notation C(F) for the controller of fragment F
(i.e., C(F) = C(i) for all i in F).

Each node in S(F) must know where the (current) controller C(F) is
located. (This location amy change in the controller node crashes. See
section 6.7.) The 1location of C(F) may also be placed in the system
directory so that nodes not in S(F) may find C(F). However, this
directory information need not be current because if the controller is
not found, any node in S(F) can be interrogated to discover the true
location of the controller.
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6.2 The majority of nodes requirement.

In order to avoid the serious problems that arise when a network is
partitioned, we will require that a majority of nodes in S(F) be active
and able to communicate with each other before any transactions involving
F are processed. This restriction is embedded in the commit protocol
because a transaction needs a majority of acknowledgments from nodes in F
before any update involving F can be committed. This restriction is also
embedded in the new controller election protocol (section 6.7) because
only a majority of nodes in S(F) can elect a new controller C(F) in case
the old one fails. No controller C(F) can be in operation if it cannot
communicate with a majority of the nodes in S(F).

6.3 Sequence and version numbers.

Another important concept in the concurrency control mechanism is the
use of sequence and version numbers. Each transaction T that requests
locks from C(F) receives a sequence number. This number must be appended
to all messages generated by T:. This sequence number plays an important
role because it is used to order the operations of T with respect to the
operations of other transactions. For example, if T received sequence
number 15 from C(F), T must wait until all transactions with a sequence
number less than 15 are processed at node x before T can read data from F
at node =x. To eliminate unnecessary delays, additional sequencing
information can be assigned to T by C(F). For example, C(F) can give T a
"wait for"™ 1list which includes the sequence number of all previous
transactions that conflicted with T. This way, nodes that perform
operations of T only have to wait until they finish processing
transactions in this list [3]. (Sequence numbers also play an important
role in crash recovery. See sections 6.4 and 6.7.)

Since a fragment F may have several different controllers over time,
it 1is necessary to distinguish between these controllers and the
transactions that they authorized. (Of course, at any given instant,
there can only be one controller for F.) Version numbers are used to
differentiate controllers of F. A unique version number is associated to
each controller of F, and this number is appended to each sequence number
generated by the controller. All active nodes in S(F) are aware of the
current version number, and are thus able to detect any transactions
whose locks were not granted by the current controller. (See section

6.7.)

When a transaction T spans several controllers, all the version and
sequence numbers obtained by T at the controllers are included in the
messages generated by T. Each sequence, version number pair carries with
it an indication of what fragment it corresponds to.
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6.4 Update logs,

Any distributed database system needs a mechanism for recording
completed transactions. To see this, consider what happens when a node
in S(F) crashes. (Assume that the controller C(F) was not at that node.)
Since this node will be out of operation, it will miss a set of updates.
This means that somehow the rest of the system will have to save these
updates for +the crashed node. There are many alternatives for doing
this.

One solution is to use update logs. An update log is a collection of
performed updates that is kept safely at a node. Each log entry contains
the database values that were modified by a transaction, plus the
sequence and version numbers of the transaction. For simplicity, in our
system we assume that a log is kept at each node. Each such log keeps
track of all the updates processed at that node. (It is also possible to
operate with fewer 1logs but we do not consider this case here.) When a
node x recovers from a failure, it brings each fragment F stored in x up
to date by requesting the missed updates from the logs at other nodes in
S(F). Sequence and version numbers are very helpful here because the
recovering node knows exactly what updates it missed.

6.5 The two phase commit protocol.

When a transaction T is ready to store values into the database, it
uses the modified two phase commit protocol described in section 4. This
guarantees that either no values are stored at all or that all values
produced by T are eventually stored at all nodes involved. When a node
in S(F) acknowledges receipt of the prepare message for T, it makes a
commitment to remember T (and the values it produced) and to do
everything 1in its power to see that T completes correctly. The node
remembers T by placing the information in -the prepare message in a
"prepare" 1list. We assume that the information in this 1list cannot be
lost. (Log entries can be made to make the prepare list safe. In [7] we
discuss what happens when this and other state information is destroyed.)

When the master node for T receives a majority of acknowledgments
from the nodes in S(F), it knows that the update to F cannot be lost. 1In
the case of failures, we know that at least one member of any working
ma jority of nodes in S(F) will have a record of T and will "speak up" for
T. Thus, after receiving a majority of acknowledgments from the nodes in
each S set involved in T, the master node can send out the commit
messages. When a node in S(F) receives a commit message, it adds T's
sequence and version numbers to its list of performed transactions (which
is kept by all nodes); it writes out a log entry; it performs the update
on F indicated by T; and finally it removes T from the prepare list.

Due to failures, a transaction may be unable to get the majority of
acknowledgments needed for committing. In such a case, the transaction
"times out"™ and the system attempts to cancel the transaction. This
cancelling protocol is described in the next section.



-120-

6.6 The transaction cancelling protocol.

In many cases a btransaction will have to be cancelled. One such
instance is when a deadlock occurs and a transaction must be backed out.
Another case occurs when a transaction which holds locks fails to release
its locks. For example, a transaction may have been computing at a node
which crashed. In this case, the transaction must be cancelled and its
locks reclaimed.

A transaction will only be cancelled if no data has been committed by
the transaction. Thus, the first step in the cancelling protocol is to
verify that the transaction had not reached the commit point. Notice
that if a transaction T has reached the commit point, then a majority of
nodes in each S(F) set, for each fragment F referenced, have a record of
T. Hence, if a single fragment F can be found where a majority of nodes
in S(F) have no record of T, then T can be cancelled.

To cancel a transaction T we proceed as follows. First, a node w is
selected to be the master node for the cancellation. Any node can be the
master, and several such nodes may be attempting to cancel T
concurrently. We assume that node w knows that T referenced fragments F1,
F2, ..., Fk. (The protocol can easily be modified to handle the case
where only one fragment is known initially.) Node w sends out messages
to controllers C(F1), C(F2), ..., C(Fk) asking them if they can cancel T.
Each controller responds either that T can be cancelled or that it does
not know if T can be cancelled. Controllers do not take any action on T
at this point. However, if a controller says that T can be cancelled, it
makes sure that T can not reach the commit point in the future.

When node w receives answers from all controllers, it decides if T
will be cancelled. If at least one controller said that T could be
cancelled, then T has not committed and is cancelled. If all controllers
say that they do not know if T can be cancelled, then T may have
committed and node w attempts to complete T. (Notice that in this case
all controllers found a record of T. Thus, all the update values
produced by T are known and T can be completed.) The decision of node w
is broadcast to all controllers, which then carry out the decision.

When a controller C(F) wishes to know if T can be cancelled (in
response to node w's first message), C(F) sends out "propose to cancel T"
messages to all nodes in S(F). When a node y in S(F) receives the
"propose to cancel T" message, it checks to see if it has a record for T.
That is, node y checks if it has previously received a prepare or a
commit message for T. If y has such a record, it informs the controller.
If y has no record of T, then it sends a "have seen proposal to cancel T"
message to C(F). With that message, node y makes a commitment not to
acknowledge any prepare messages for T it might receive later. Thus,
node y remembers the "propose to cancel T" message until it hears from
the controller again. (We assume that node y cannot forget its
commitment.)
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If C(F) receives a majority of "have seen proposal to cancel T"
messages, then C(F) knows that T has not committed and that T will not
commit in the future. Thus, C(F) can answer node w that T can be
cancelled. On the other hand, if C(F) -discovered a record of T among the
nodes in S(F), then it must answer that it does not know if T can be
cancelled because as far as it knows, T could have committed. In this
case, T's record (including its update values) is sent to w.

When controller C(F) receives a command from node w to actually
cancel T, it does this using a two phase commit protocol similar to .the
one used by transactions to commit. This guarantees either that T is
cancelled at all nodes in S(F) (as far as F is concerned) or that T is
not cancelled at all. A node in S(F) finally cancels T by recording a
null or dummy update. That is, T is processed as if T has committed,
except that no values are stored in the database. Similarly, a command
from w to complete T because it could not be cancelled causes C(F) to
distribute the wupdate values for T to nodes in S(F) and to commit them
using a two phase commit protocol (with a majority of acknowledgments
only).

A nice feature of the cancelling protocol we have described is that
it can be interrupted and restarted anywhere without undesirable
consequences. Thus, if the cancellation master node w or any of the
controllers crashes in the middle of the cancellation, the procedure can
simply be abandoned and then restarted by any node that notices that T is
still pending. '

6.7 The election protocol.

When a controller C(F) fails, a majority of nodes in S(F) elect a new
controller. As nodes in S(F) detect that the controller is not active,
they go into a special state where all normal processing is halted. (If
a node x later finds out that C(F) did not really fail, then node x
recovers as if it was the one that failed.) When a halted node discovers
a majority of other halted nodes, it attempts to become the node with the
new controller. One way to do this is to try to "lock out" all other
nodes. If a node succeeds, it creates the new controller. If it fails
in 1locking out the other nodes, then it must release all nodes it was
able to lock out and must try again later.

A new controller is assigned a new version number different from all
previous version numbers. Every node that participated in the election
is given and records the new version number. Before the new controller
starts operating, it must deal with the unfinished transactions left by
the o01d controller. Since the o0ld controller did not 1leave any backup
information behind, it 1is impossible . for the new controller to
reconstruct the locking information that existed before. Hence, the new
controller has to force the release of all locks by either cancelling or
completing all outstanding transactions involving fragment F.
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To do this, the new controller requests copies of all pending prepare
messages in nodes in S(F), as well as the list of the committed
transactions at these nodes.

Let s be the largest sequence number from the old version observed in
this process by the new controller. If the new controller discovers that
a commit message has been received somewhere in S(F) for a transaction T,
then T has committed and must be completed using a two phase commit
protocol (with a majority of acknowledgments only). The new controller
attempts to cancel all other transactions with sequence numbers between 1
and s issued by the old controller. This is done with the cancelling
protocol of section 6.6. Finally, notice that transactions with sequence
numbers s+1, s+2, ... may have been authorized by the old controller, but
no nodes in S(F) knew about these transactions before the crash of the
old controller. Thus the new controller mnmust also cancel all
transactions with sequence numbers s+1, s+2, ... since they have
definitely not committed. This is done through the version number
mechanism. Since the new controller and all the nodes in S(F) now have
the new version number, all uncommitted transactions (if any) with the
old version number will be unable to commit because they can no longer
get acknowledgments from the nodes in S(F). When these transactions time
out because they cannot commit, they will be cancelled entirely.

As a last step, a new central controller makes an entry into the logs
indicating what the largest sequence number of the old version was. This
information is used by recovering nodes in order to know what updates
they missed from older versions. After this, C(F) and the nodes in S(F)
can go back to normal operation.

Like the cancelling protocol, the election protocol can be safely
interrupted by failures (like the crash of a newly elected controller
node). Another working majority of nodes can then restart the protocol at
a later time.

6.8 Deadlock detection.

Deadlocks are possible with our concurrency control mechanism.
Deadlocks may be avoided by forcing all transactions to request locks
from the controllers in the same predefined order. In some systems, this
may not be feasible, so deadlocks must be detected and eliminated. Gray
[7] (among others) discusses several deadlock detection strategies that
may be used. Once we choose a transaction that must be backed out, it can
be cancelled with the protocol of section 6.6. Also notice that a
transaction may make several lock requests to the same controller, but
this should not cause any problems,
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7. CONCLUSION,

We have proposed a new concurrency control mechanism for distributed
databases. We believe that this control strategy has some advantages
over the other well known strategies. Work is currently underway to
evaluate the performance of this proposed mechanism, as well as to verify
its correctness.
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ON EFFICIENT MONITORING OF DATABASE ASSERTIONS IN DISTRIBUTED

DATABASES
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Abstract

A principal problem with the use of database 1integrity
assertions for monitoring the integrity of dynamically
changing database is the high cost due to the evaluation of
such assertions. In this paper we analyze and compare the
cost and performance of several integrity validation methods
in - distributed database environment where the communication
cost and delay are principal factors.

INTRODUCTION

It is often argued that the users of databases should
be able to specify semantic integrity (SI) assertions about
their data. Such assertions delimit values in the database
in terms of other database values or constants. Although
considerable work has been done on the specification
methodology for such assertions /McL 76, STO 74, BOY 75, ZLO
T4, GRA 75, MAC 76, FLO 74, MIN T4, WEB 76/, there seems to
be much 1ess concern with 1mplementatlon issues /STO 75, ESW
75, ESW 76, STO 76, HAM 78/.

A major problem in validating transactions with respect
to a set of SI assertions is the high overhead ( or cost)
caused by the dependency of transactions and SI assertions
on values stored in the database. Such dependencies prevent
a priori proofs of transaction correctness with respect to a
set of SI assertions. An example of such a database data
dependent transaction T and SI assertion A could be as
follows:

T: 1increase the salary of employee J. Johnson by 10
percent

A: salary of employee < MAX (salary of manager,
.5%average salary)
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Transactions whose SI correctness cannot be proven must
be dynamically monitored to determine whether their final
values violate 31 assertions. The subsystem which monitors
such SI assertion violations is properly a part of database
management and in this paper we analyze the cost and the
performance of several methods of semantic integrity (SI)
validation of transactions.

SI VALIDATION METHODS

The validation of +transactions with respect to SI
assertions can - occur at compile time (i.e. Dbefore
transaction execution), during transaction execution (i.e.
at run time), after transaction execution; or partially
during each of these phases. Each method of SI wvalidation
has advantages and drawbacks, and each method introduces
overhead. The cost of SI validation consists of three
factors:

(1) Accessing database data in order to evaluate SI
assertions,

(2) Computation to evaluate SI assertions, and

(3) The communication cost if SI assertion arguments
are stored at several sites of a distributed
database system.

We assume here that the computaticnal cost for SI
‘assertion evaluation 1s the same for - any SI validation
method. Therefore, the major components of SI enforcement
cost result from accessing database data for SI assertion
evaluation and from communication cost due to SI validation
‘that requires access to several sites of a distributed
database system.

Compile Time SI Validation

Compile time SI validation means that a transaction 1is
allowed to execute only after 1its SI assertions are
evaluated and all assertions are found ¢true. Hammer and
Sirin /HAM 78/ suggest compile time SI validation based on
SI tests. The purpose of these tests 1is to obtain those
values which database data would have had if the transaction
had been executed. The values are then used for SI
validation of the transaction, i.e. for evaluation of all SI
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assertions which interact with the transaction. Compile time
31 wvalidation has one obvious advantage - it does not
require transaction rollback when SI assertions are
violated. However, compile time SI validation has the
following disadvantages:

(1) Validation and execution are sequential, slowing
response. . ‘

(2) The database objects on which compile time SI
tests are run cannot be modified by any other
transaction until the transaction being validated
is executed. Effectively, such database data
objects have to remain write-locked from SI
validation through transaction execution, since
compile time SI validation tests must execute on
the same database data values as the transaction
will during its execution. Otherwise revalidation
is required.

Run Time SI Validation

. Run time SI validation means that SI validation of
transactions is concurrent with transaction execution, where
the result of transaction execution is not committed, e.g.
the actual update is not performed, i.e. is not transferred
to the transaction write site and executed, until
transaction validation has been terminated without
violations of SI assertions /BAD 79/. Thus, if transaction
execution 1is seen ( and implemented) as a sequence of read-
compute and write events, then all SI assertions can be
evaluated as part of transaction execution. After the
transaction executed its read-compute events SI assertions
can ~ be evaluated because the result of transaction is known
at that time. Then depending on the outcome of SI validation
the write events of the transaction can be executed, i.e.
the update messages are transferred to the transaction write
sites and performed there. The major advantages of this
approach result from concurrent execution; there is no need
for transaction rollback, the time interval during which the
database data must be locked for SI validation is reduced to
transaction execution time, and duplicate reads are avoided.

Another proposal based on run time SI validation
appears in INGRES /STO 74, STO 75/ where single variable
aggregate-free integrity assertions can be efficiently
evaluated during transaction run time by appending such
assertions to the query. However, the evaluation of
integrity assertions involving aggregates occurs after
transaction execution, i.e. the resulting (updated) relation
is tested for the integrity assertions and then the update
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is undone if the assertions are not satisfied. The strategy
is therefore mixed - partialy run time and partially
postexecution time.

Post Execution SI Validation

The conventional method of SI validation is to execute
the transaction first and then to validate the results. The
proposal by Eswaran et al. /ESW 76/ employs postexecution
time SI validation where the violation of SI assertions by
the transaction triggers corrective action. Transaction
rollback or some other compensating action, depending on the
semantics of the SI assertions and the transaction, may take
‘place. One advantage of postexecution time SI validation is
its conceptual simplicity. The obvious disadvantage is the
need for transaction rollback and the longer time interval
during which the database objects modified by the
transaction may Dbe locked. If the objects are not locked,
then any other transactions which access the database data
which were undone would have to be rolled back too.

COST AND PERFORMANCE ANALYSIS OF SI VALIDATION METHODS 1IN
DISTRIBUTED DBS

In centralized database systems the only significant
factor of SI wvalidation cost 1is the number of database
accesses due to SI validation.It has been shown /BAD 79,BAD
79a/ that in terms of the cost of database accesses

a) the run time SI validation is superior to any of
the other methods for realistic database
operations, 1i.e. for systems without high
‘transaction rejection rates;

b) compile time ST validation yields better
performance than run time SI validation when the
compile time SI tests are very efficient, i.e.
require substantially fewer database accesses
compared to the transaction reads and if DBS has a
relatively high rejection rate;

¢) postexecution time SI validatién has consistently
worse performance than other SI wvalidation
methods;

d) the use of fast access memory to store data for
evaluation of some SI assertions results in
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increased performance that differs for each SI
validation method.

However, the principal cost and performance criterion
for SI validation in nonlocal ( or 1loosely coupled )
distributed database systems is the communication cost and
communication delay, and the number of database accesses is
of secondary importance.Therefore,in our analysis we neglect
the cost overhead due to database accesses required for SI
validation at each site of distributed database system and
we consider the communication cost only.

We derive the cost of SI wvalidation in distributed
databases without considering transaction processing
strategy. We consider here only the number of messages
needed either to access sites or to set local locks there.
We assume that there is one control site which either does
evaluation of SI assertions (i.e. SI validation 1is
centralized) or it receives the results of distributed SI
validation. However, in both cases such site . controls
subsequent transaction execution steps. Assuming a two-phase
locking /GRA 76, GRA 78, ESW 76a/ we analyze SI validation
methods in distributed database in terms of lock and unlock
‘messages.

Let

P be the average number of sites at which the
transaction during its execution reads and writes
or reads only.

Q be the average number of sites at which the
transaction during its execution writes only.

S be the average number of sites counted in P above at
which the transaction reads and that are also
accessed for SI validation. Clearly, S <= P.

V be the average number of sites counted in P above
at which the transaction writes. Clearly , V <= P

R be the average number of sites not accessed by the
transaction but accessed for SI validation only.

The cost of compile time SI validation in distributed
database environment can be derived as follows. Since from n
transactions only m (m <= n) transactions will be accepted,
i.e. n = m transactions are rejected because they violated
SI assertions, then the communication cost of executing
those m transactions can be derived from the following



-~130~-

compile time SI validation algorithm:

Algorithm C1:

1) lock at R and S sites

2) R and S sites either -evaluate SI assertions and
send the result to a control site or they send
data to the_control site which does SI validation

3) if SI validation results in SI violation, then
reject transaction and terminate, else do 4)

4) lock at Q + P - S sites and execute transaction

5) unlock at Q + P + R sites and terminate
The number of messages génerated at each step of algorithm
C1 is

1) n(R + S)

2) n(R + 8)

3) (n - m(R + 3)

4y m(Pp + Q - 3)

5) m(P + Q + R)

Thus the total communication cost of the compile time

SI validation (i.e. the cost of n transactions employing
compile time SI validation) is

Cl1 =2n(R + S) + (n - m)(R + S) + m(2P + 2Q + R - S) = 3n(R
+ S) + 2m(P + Q - 3) '
(1)
where
n 1is the number of transactions
m 1is the number of accepted transactions,

i.e. the number of transactions which
did not cause any SI violations; m <= n
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| The -communication cost of postexecution time SI
| validation can be derived from the following algorithm C2.

i Algorithm gg:

1) lock at P and Q sites and execute‘transaction

2) lock at R sites, send the SI assertion argument
values or SI validation results to the control
site and release locks after sending the above
message to the control site

3) control site requests and receives SI messages from
S sites '

4) if SI validation results in SI violation, then send
reject messages to all sites at which transaction
writes, i.e. to Q and V sites, else do 5)

5) wunlock at P + Q sites and terminate

The number of messages generated at each step of algorithm

C2 is:
1) n(P + Q)
2) 2nR
3) 2nS

4y (n - m)(Q + V)
5) n(P + Q)

Thus the communication cost of postexecution time SI
validation is:

(2)
C2 =2n( P + Q) + 2n(R + S) + (n - m)(Q + V)

The communication cost of run time SI validation can be
derived from the following algorithm C3.

Algorithm C3:

1) lock at P and R sites
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2) execute read-compute (i.e. generate final wupdate
messages at P sites) and read SI values at R sites

3) send SI assertion argument values or the results of
SI validation from R and S sites to the control
site

4) if SI validation results in SI violation , then
reject transaction via unlock messages to R and P
sites and terminate, else do 5)

5) 1lock at Q sites and execute updates

6) unlock at P + Q + R sites and terminate

The number of messages generated by the algorithm C3 is:
1) n(P + R) |
2) none
3) n(R + 8)
4y (n - m)(P + R)
5) mQ
6) m(P + Q + R)

Thus the communication cost of postexecution time ST
validation is:

C3 =n(P + R) + m(R +S) + (n = m)(P +R) + mQ + m(P + Q +
R) ’

(3)
C3 =2n(P + R + 3S) + 2mQ

The communication cost of mixed run time and
postexecution time SI validation can be obtained by adapting
formulae (2) and (3)

Cdh = (2n[11(P + R + S) + 2m[11Q) + (2n[2]J(P + Q) + 2n[23(R +
()
S) + (n[2] - m[2](Q + V))

where

n{1] is the number of transactions validated
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at run time; n[1)] <= n

n[2] is the number of transactions validated
at postexecution time; n{2] <= n and
n(1] + nf2] = n

m[1] is the number of transactions rejected
due to run time SI validation; m[1] <= m

m[{2] is the number of transactions rejected
(rolled back) due to postexecution time
SI validation; m[2] <= m and m{1] + m[2]
= m

Now that 'a consistent, straightforward method of
expressing the communication cost of  the various SI
validation methods has been provided, it 1is wuseful to
compare them. :

Lemma 1:

The communication cost of run time SI validation C3 1is
greater than the communication cost of compile time SI
validation C1 only if the accesses for SI validation at
transaction read sites or read and write sites are more
numerous than the accesses for SI validation at sites not
accessed by the transaction, i.e. C3 > C1 only if 0 <= R <=
S.

Proof:

Assume C1 > C3. Then substituting from (1) and (3) we
obtain

_ (4a)
3n(R + S) + 2m(P + Q@ - S) < 2n(P + R + S) + 2mQ

(4a) reduces to the following condition
(5)
m/n > 1/2(1 + (P - R)/(P - 3))
Since m <= n we observe the following:

case 1: if R = 0, then (5) is not satisfied, i.e. C1 <
C3

case 2: if R = P, then (5) is satisfied, i.e. C3 < C1
if m > .5n
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case 3: 1if R < P, then
if R<S <P, then (5) is not satisfied, i.e. C1 < C3
if P >R > 8, then (5) is satisfied ,i.e. C3 < C1

if R = S,then (5) is not satisfied, i.e. C1 < C3

case U4: if R > P, then (5) is satisfied, i.e. C3 < C1

Therefore, C3 > C1 if 0 <= R <= S and C3 < C1 if S < R. This
concludes the proof.
Lemma 2:
 The communication cost of compile time SI validation C1
is less than the communication cost of postexecution time SI
validation C2, i.e. C1 < C2 only if 0 <= R <= S,
Proof:
~Assume C1 > C2., Substitution from (1) and (2) leads to
3n(R + S) + 2m(P + Q - 8) > 2n(P + Q) + 2n(R + S) + (n
(5a)
- m)(Q + V)

(5a) reduces to

_ (6)
m/n > (2P + 3Q + V - R - 3) / (2P + 3Q + V - 23)

Since m <= n we observe that if R = 0 or R = S or R <
S, then (6) is not satisfied, i.e. C1 < C2, otherwise (i.e.
if R > S ) C1 > C2. This concludes the proof.
Lemma 3:

The communication cost of run time SI validation C3 is
always less or equal to ( if m=n ) the communication cost of
postexecution time SI validation C2, i.e. C3 <= C2.

Proof:
Assume C3 <= C2.Substituting from (2) and (3) leads to

2n(P + R + S) + 2mQ <= 2n(P + Q) + 2n(R + 8)
(1)
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+ (n - m)(Q + V)
(7) reduces to

(8)
(n - m)(V + 3Q) =>0

Since all terms are positive, and n => m then (8) is
satisfied (for any transaction which affects database
consistency i.e.,which updates the database). This concludes
the proof. '

Lemma 4:

The communication cost of mixed run time and
postexecution time SI validation is at best equal to run
time SI validation and at worst as costly as  postexecution
time SI validation.

Proof:
We want to show that C3 <= Cld <= C2,.

If in (4) n{1] = n,i.e. nl[2] = 0, then Cl4 = C3. If in
(4) nf[2] = n, i.e. n[1] =0 ,then C4 = C2. Since C2 > C3
(Lemma 3 ),then the lower bound for C4 is C3 and the wupper
bound for Cl4 is C2. This concludes the proof.

CONGCLUSION.

In this paper we have shown that in the distributed
database when there is an extensive global SI validation,
i.e. when R > S, then in terms of communication cost the run
time SI validation is the least costly and the compile time
SI validation has the highest communication overhead, 1i.e.
C3 <= C2 < C1. However, if there is not an extensive global
SI validation, i.e. when 0 <= S <= R, then the compile time
SI validation has the lowest communication overhead and the
postexecution time SI validation has the highest
communication overhead, 1i.e. C1 < C3 <= C2. We would like
to point out that the conclusions reached here apply to any
type of distributed database, i.e. they apply to fully
replicated, partially replicated or nonredundant distributed
databases., This 1is so because the obtained results do not
depend on the number of sites at which transaction writes
only, i.e. on Q.
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Abstract

A consequence of bursty traffic in computer communications is that
among a large population of network users, at any one time only a small
number of them have data to send (ready users). In this environment,
the performance of an access protocol for a broadcast network depends
mainly upon how quickly one of the ready users can be identified and
given sole access. to the shared channel. The relative merits of the
access protocols of polling, probing and carrier sense multiple access
(CSMA) with respect to this channel assignment delay in local networks
are considered. A central controller is needed for polling and probing
while CSMA employs distributed control. A specific CSMA protocol is
defined which requires that "collisions" in the channel be detected and
that the users involved in a collision abort their transmissions quickly.
In addition, it is assumed that the contention algorithm is adaptive
and gives rise to a stable channel. An analytic model is developed.
Our main result is the moment generating function of the distributed
queue size (number of ready users). Mean value formulas for message
delay and channel assignment delay are also derived. These results on
queue size and delay are the major contribution of this paper, since
they are not available in prior CSMA models in closed analytical form.
Numerical results are given to illustrate the performance of the CSMA
protocol. When the channel utilization is light to moderate, the mean
channel assignment delay of the CSMA protocol is significantly less than
that of both polling and probing; consequently, the mean message delay
is much smaller. It is also shown that when queueing of messages is
permitted at individual users, the maximum channel throughput of CSMA
approaches unity in the limit of very long queues.

1. INTRODUCTION

Multipoint networks have been widely used in local networking for
the interconnection of terminals to a central site: either a central
computing facility or a gateway to a resource sharing computer network.
The terminals are typically unintelltgent and access to the shared data
path (channel) is managed by the central site using a polling protocol
[1]. With increasing interest in local networking and the availability

* This work was supported by the National Science Foundation under
Grant No. ENG78-01803.
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of inexpensive microprocessors, other interconnection topologies,
transmission media and access protocols have been proposed and investi-
gated. . They include loop networks with centralized control [2] or
distributed control [3], a digital cable network using time-division
multiple access [4], the ALOHANET [5] and Packet Radio Network [6],
which pioneered the use of radio channels and contention protocols for
multiple access. Recently, considerable interest has been revived in
multipoint cable networks (based upon CATV technology) employing a
variety of multiple access protocols [7-10].

The multiple access problem in multipoint networks is addressed in
this paper. A multipoint cable network such as those in [8,9] can be
viewed upon as a broadcast channel shared by a population of distributed
users. Two major categories of multiple access protocols may be used:
polling and contention protocols [11]. Polling protocols require a
central controller. On the other hand, with contention protocols each
network user makes his own decision according to an algorithm which
is driven by observable outcomes in the broadcast channel. We shall
consider multipoint networks that have short propagation delays between
users relative to the transmission time of a message. In a short
propagation delay environment, carrier sense multiple access (CSMA)
protocols have been found to be the most efficient among contention
protocols [12-15].

Consider a broadcast channel (the multipoint network) shared by:-a
population of N users (terminals, computers, etc.). There are two
problems to be addressed by an access protocol: (1) among the N users,
identify those with data who desire access to the channel, the ready
users, and (2) assign channel access to exactly one of the ready users
if at least one exists.

The ready users can be considered as forming a "distributed queue"
waiting to use the broadcast channel. We assume that each user
generates and holds for transmission at most one message of arbitrary
length at a time. (The effect of queuing -messages at individual users
is discussed in the last section of this paper.) A consequence of the
conservation law in queuing theory [12] is that the average message
delay performance of an access protocol is independent of the order of
service but depends mainly upon the amount of overhead needed for
assigning channel access. Thus, when access protocols are compared
solely on the basis of average message delay performance for a given
channel throughput level, the above two problems reduce to just the
following: whenever the channel is free and there are one or more ready
users, how quickly can channel access be assigned to a ready user?

In conventional polling protocols [1l], the above problem is solved
by a_central controller that queries the N users one after the other.
Let w be the average overhead associated with querying one user; w
includes propagation delay, polling message transmission time etc. To
find out who the ready users are, the overhead per polling cycle
(querying all N users) is Nw, regardless of the number of ready users
present. This overhead is an indirect measure of the responsiveness of
the access protocol; Konheim and Meister [16] showed that the mean
delay of a polled network is directly proportional to Nw.

Hayes [17] recently proposed and studied the method of probing:
polling a group of users all at one. The key idea is as follows. If a
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group of users is probed and none responds, the whole group can be elim-
inated. If probing a group produces a positive response, it is subdiv-
ided into two groups which are then probed separately. Thus when the
network is lightly loaded, with few ready users, significant overhead
reduction results through eliminating groups of non-ready users all at
once. In the extreme case of only one out of the N users being ready,
the number of queries required by probing is 2(1og2N) + 1 instead of N
required by polling. However, if_all N users are fYeady, the number of
queries required by probing is (N“-1). (See [17] and [11].) . Thus
probing is penalized when the channel is heavily utilized. Hayes
proposed an adaptive algorithm which optimizes the performance of
probing and also avoids the above penalty by reverting to pure polling
beyond a certain level of channel utilization.

Unlike polling and probing, which require a central controller and
are designed for "passive" users, contention protocols require that
each ready user actively seek channel access and make his own decisions
in the process. We define below a CSMA protocol and show that the time
required by it to assign channel access to a ready user is independent
of N. TUnder this protocol, when there is exactly one ready user and
the channel is free, the ready user gets channel access immediately.
Thus the average "channel assignment delay" is near zero when the
channel is lightly utilized. On -the other hand, when the channel is
heavily utilized the average channel assignment delay is bounded above
by a small constant (see below).

CSMA protocols have been studied extensively in the past within a
packet radio network environment by Kleinrock and Tobagi [13, 14] and
later by Hansen and Schwartz [15]. Analytic results in these references
are mainly concerned with the maximum channel "throughput'" achievable
by various protocols. Characterization of the number of ready users
and message delay is limited to approximate numerical solutions or
simulation results.

The main contribution of this paper is an analytic model of a CSMA
protocol. The protocol is defined and our assumptions stated in Section
2. In Section 3, the moment generating function of the number of ready
users is obtained. Formulas for the average message delay and average
channel assignment delay are also derived. In Section 4, numerical
results are plotted to illustrate the performance of the CSMA protocol,
which is also compared with polling. We conclude by discussing possible
extensions of this work in Section 5.

2. THE PROTOCOL AND ASSUMPTIONS

The main difference between the CSMA protocol studied in this paper
and the p-persistent CSMA protocol of Kleinrock and Tobagi [13, 14] is
as follows. We assume here that collisions in the channel are detected
and that users involved in a collision abort their transmissions immedi-
ately upon detecting the collision. Mechanisms for detecting collisions
and aborting collided transmissions have been implemented in at least
two multipoint cable networks [8,9]. However, it appears to be much
more difficult to implement a "collision abort" capability in the radio
environment of interest in [13, 141.
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Like the p-persistent protocol in [13,14] network users are
assumed to be time synchronized so that following each successful
transmission, the channel is slotted in time. (See Fig. 1.) Users
can start transmissions only at the beginning of a time slot. Let T be
the amount of time from the start of transmission by one user to when
all users sense the presence of this transmission., It is equal to the
maximum propagation delay between two users in the network plus carrier
detection time. (The latter depends upon the modulation technique and
channel bandwidth. It was considered to be negligible relative to the
propagation delay in [14].) 1In order to implement the collision abort
capability described above, the minimum duration of a time slot is

= 27, so that within a time slot if a collision is detected and the
collided transmissions are aborted immediately, the channel will be
free of any transmissions at the beginning of the next time slot.

The slotted channel assumption is made to simplify our analysis.
(The practical problem of time synchronizing all users in the network
is a classical one and .beyond the scope of this paper.) In a real
system, either a slotted or unslotted channel may be implemented. We
discuss in Section 5 that the performance of an unslotted chanmnel is
likely to be approximated by that of the slotted model in this paper.

The CSMA protocol in this paper is defined by the following two
possible courses of action for ready users:

(P1) TFollowing a successful transmission, each ready user transmits
with probability 1 into the next time slot.

(P2) Upon detection of a collision, each ready user uses an adaptive
algorithm for selecting its transmission probability (<1) in the
next time slot.

It should be clear at this point that we have effectively reduced
the contention problem in CSMA to a slotted ALOHA problem. Slotted
ALOHA has been studied extensively in the past [18-25}, from which we
learned that to prevent channel saturation (with zero probability of
a successful transmission), the transmission probability of each ready
‘user must be adaptively adjusted. Various control strategies have been
proposed and studied. Experimental results have shown that a slotted
ALOBA channel can be adaptively controlled to yield an equilibrium
throughput rate S close to the theoretical limit of -1/e (=0.368) for a
large population of users [21-24]. With an asymmetric strategy, the
achievable S will be even higher [25].

For our analysis in the next section, we shall assume that in (PZ)
a suitable adaptive algorithm is used so that the probability of a
successful transmission (slotted ALOHA throughput) in the next time slot
is equal to a constant S. This assumption is an approximation but has
been found to be a very good one in simulation studies [21-24].

We shall further assume that errors due to random noise are insig-
nificant relative to errors due to collisions and can be neglected.

The source of traffic to the broadcast channel consists of an infinite
population of users who collectively form an independent Poisson process
with an aggregate mean message generation rate of A messages per second.
This approximates a large but finite population in which each user
generates messages infrequently; each message can be transmitted in an
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interval much less than the average time between successive messages
generated by a given user. Each user is allowed to store and attempt
to transmit at most one message at a time. Thus the generation of a new
message is equivalent to increasing the number of ready users by one.
The effect of queuing messages at individual users is discussed later.
Finally, the transmission time of each message is an independent
identically distributed (i.i.d.) random variable with the probability
distribution function (PDF) B(x), mean value b,, second moment b, and
Laplace transform B*(s). ! 2
p

3. THE ANALYSIS

The ready users can be considered to form a distributed queue with
random order of service for the broadcast channel. We are interested
in obtaining the equilibrium moment generating function of the distrib-
uted queue size. We shall use an imbedded Markov chain analysis.

Under the assumptions of Poisson arrivals and that messages arrive and
depart one at a time, the moment generating function of queue size
obtained for the imbedded points is valid for all points in time.

A snapshot of the channel is illustrated in Fig. 1. We define the
following random variables: ' '

q, = number of ready users -left behind by the departure of the

t P
n transmission, Cn

Yot = time from the departure of Cn to the beginning of the next
successful transmission

U1 T number of new (Poisson) arrivals during Yo+l

xn+l = transmission time of Cn+l | |

Vo T number of new (Poissor) arrivals during X1 + T.

We assumed earlier that X 41 has the PDF B(x). We shall let B(x)

be the PDF of X 41 + 1. The corresponding Laplace transform is thus

B*(s) = B¥(s)e o'
The random variable Yo+l is the sum of two independent random time

intervals’

= + '
Ykl (In+l rn+l)T !

where T is the duration of a slot, is the number of slbts in an

In+l
idle period immediately following the departure of Cn’ and L is the

number of slots in the contention period following a collision until
the next successful transmission. The slot containing the initial

collision is included in r We note that In+ is nonzero only if

n+l’ 1
q, = 0. Also, if there has been no collision when Cn+1 begins, T4l = 0.

Let pj be the probability of j new arrivals (ready users) in a time

slot.
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_onde™M
K| j!
At the start of the next time slot, each new arrival executes (Pl) or

(P2) in exactly the same manner as all other ready users.
Given our earlier assumptions, we have

k-1 '
Prob[1 = k/qn = 0] = (1—p0)p0 k=1,2,...
Also, :

Prob[r

i=0,1,2,...

o1

o1 = k/collision occurred] = S(l«-S)k_l k=1 325000
From this last result, the Laplace transform of the probability den51ty

function (pdf) of a contention period (given a collision occurred) is

a.-8T
C (8) = Se —
which has a mean of T/S and a second moment of T 1+ 5 ——),
S
The following important relationship is evident from Fig. 1.
G "% e T Ve L
where A is an independent random variable with the z-transform
% .
B (A~Az), while un+l-depends upon q in the following manner as a
consequence of (P1l) and (P2). Given
(1) qn = 0, Pl
1 with prob. ——
1-p
u = 0
nt1l P;
j + number of arrivals during . with prob. T
_ a contention period ' P
(3) qﬁ > 2, U number of arrivals during a contention period.

(2)
Given the occurrence of a collision, the number of new arrivale during
a contention period is an independent random variable with the z-trans-
form C (A-Az). ‘
The equilibrium queue length probabilities
Qk = 1im Prob[q‘n = k] k=0,1,2,...
>0

exist if.A(bl + 1+ T/S) <1 (see below). Define the z-transform

° k
Q(z) = ¥ Q =z
k=0 k
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By considering Egs. (1) and (2) and taking the n»» limit, we obtain
after some algebraic manipulations the following important result:

Q

B*<A-XZ>{Q1z[1—c*(x—xz>]+;%5—[plz<1-c*(x-xz>)—c*<x-xz)<1-e‘AT‘1'z>>]}
Qz)=— 0~
z = B (x-2z) C ()-2z)
(3)
where v
1-x (b * v +1/8) ‘
Y - (%)
0 1 1
AT[l-po BRI
and
_ 1 Py
Y- Gy - 1-p0) Q (5)

Using Egs. (3) - (5), we can obtain the mean queue size. Application of
Little's result [12] yields the mean message delay (time of arrival to
time of departure) to be '

1—p0
© 2[B*()S-(1-py)

B T 2 -
D=x+ S + 5 i (A + ST - 3T)

|

A[xz + 2 %L+ T2(l + 2 l%—s—)]

N 5 s (6)
- T
2[1 ~ )\(x-l-'é')]
where
X=b1+1;
and
x2 = b2 + 2bl T+ T2

We next consider the channel assignment delay, that is, given that
the channel is free and that there is at least one ready user, we want
the pdf of the time from when the above conditions are satisfied to the start
of the next successful transmission. Let d_ be a random variable repre-
senting the channel assignment delay immedigtely prior to the nth trans-
mission and

d =1im d
n

1100
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It can be readily shown that

P1

| Q0 1“P0 + Ql k=0
Prob {d = k] =
' p *® - =

Q)+ = qlsas<t KT DEe

P i=2 (N
The mean channel assignment delay is thus
p

i=i1-0 —1_
3=5 -0 o2--0) (8

Po
P
Note that Q0 o L + Ql is the fraction of transmissions that incur zero

delay in gaining channel access (given that the channel is free)
4. - PERFORMANCE OBSERVATIONS

An important performance parameter is the ratio of the carrier
sense time 1 to the mean message transmission time bl:
o=t
by
The throughput of the CSMA channel is defined to be the fraction of
" channel time utilized by data messages, which is

p = Abl
under equilibrium conditiouns.

In Fig. 2, we show the delay performance of the. CSMA channel as a
function of « and p. The normalized delay D/bj is plotted and it is
assumed that messages are of constant length. Observe that the delay
performance of CSMA improves significantly as o becomes small. A small
o may come about either by decreasing the carrier sense time T or by
increasing the duration by of each user transmission.

In these numerical calculations, the probability S of a successful
transmission during contention periods is assumed to be 1/e which is the
slotted ALOHA throughput rate in an infinite population model. Experi- .
ence with experimental results [21-25] indicates that S = 1/e is
pessimistic when the number of contending ready users is small (small p)
and optimistic when the number of contending ready users is large
(large p). Thus the same comments will apply to the CSMA delay results
in Fig. 2.

The delay-throughput performance of roll=-call polling is also shown
using the delay formula in [16]. The delay results shown for polling
also assume Poisson message arrivals and constant message length. The
ratio of propagation delay to message transmission time is o= 0.05.

The ratio of data to polling message length is 10. Queuing of messages
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at individual users is assumed; hence the maximum channel throughput is
one. Delay-throughput curves for both 10 users and 100 users are shown.
Note that the corresponding delay-throughput performance of CSMA at
= 0,05 is independent of the number of users. It also permits no
queuing of messages at individual users; hence the maximum throughput
is less than 1. We observe that CSMA is superior to polling when the
channel throughput is low but becomes inferior when the channel through-
put is increased to one. However, if queuing of messages is possible at
individual users for CSMA, more than one message may be transmitted
every time a user gains channel access. Hence, as the network load p
is increased from 0 to 1, the delay performance of CSMA is first given
by the o = 0.05 curve at a small channel throughput but switches to the
= (.01 curve and then the a = 0.001l curve and so.on as the channel
throughput increases and queues become long. The channel throughput of
CSMA is one in the limit of infinitely long queues at individual users.
In Fig. 3, we show_the mean channel assignment delay d as a function
of o and p. Note that d decreases to zero when p is small. This is
because (P1l) in the CSMA protocol permits a ready user to access the
channel immediately. In Fig. 4 we plot the fraction of transmissions
that incur zero delay in gaining channel access given that the channel
is free. For comparison, recall that when only one ready user 1s present,
the polling cycle overhead is Nw for conventional polling and
[2(log2 N)+1]% for probing. '
Referring again to Fig. 3, observe that as p is increased, d/T
increases to the maximum value of 1/S. This desirable property is a
consequence of the presence of an adaptive algorithm that we assumed in
(P2) which guarantees channel stability during contention periods.
Another advantage that CSMA has over polling protocels is that the
time slot duration T is typically much smaller than its counterpart W
in polling protocols since W must include the transmission time of a
polling message.

5. CONCLUSIONS

We considered a CSMA protocol as a distributed control technique
for a population of users sharing a multipoint network. The capability
of abortlng collided transmissions is the main difference between our
model and previous models of CSMA. It is also assumed that the channel
is stable during contention periods (presence of an adaptive control
algorithm). Our main results include the moment generating function of
the number of ready users, as well as mean value formulas for message:
delay and channel’assignment delay. These results are new. The
modeling of the queue size and message delay has previously been limited
to numerical solutions or simulations.

We found that the CSMA protocol as defined in this paper has the
desirable property that when the channel is lightly utilized, the channel
assignment delay is extremely short. The performance of CSMA when the
channel is heavily utilized depends upon the ratio o. We make the
following observation. If the number of users is finite and queuing of
messages is permitted at individual users,thenas p+l, we must have at0,
since the transmission time of each user increases as a result of long
queuves. In this case, the maximum channel throughput of CSMA is one
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(the same as polling with queueing permitted at individual users).
Lastly, we discuss the issue of channel slotting. A slotted
channel was assumed in our analysis. In practice, either a slotted ot
unslotted channel may be implemented. The analysis of an unslotted
protocol will be more involved.  However, the following observation

indicates that the performance of an unslotted protocol should be
approximated by our slotted model in this paper. In the analysis of

- slotted and pure ALOHA [12,18] it was found that the probability of

success of a transmission depends mainly upon the duration of its
"vulnerable period" to another transmission. . The vulnerable period in
our slotted CSMA channel is the duration of a time slot T. On the
other hand, the vulnerable period in an unslotted version of our CSMA
protocol would be 2t (after a little thought) which is the sames as T.
Thus the probability that an attempted transmission is successful
during a contention period is approximately the same in both cases.
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Abstract

Two models for the specification of distributed systems are presented;
they are named global and local models. The global model can be used
to specify the system requirements without suggesting any specific
~design to achieve these requirements. The Tocal model can be used to
specify some particular system designs which satisfy the given
requirements., Some general verification techniques are proposed to
prove theorems about the specifications in both models. We use the
two models to specify a number of well-known distributed systems such
as shared resource systems, schedulers, readers and writers, and the
five dining philosophers. The proposed verification techniques are
also applied to some of these systems.
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1. INTRODUCTION

There has been a great interest in distributed systems in recent
years (Gouda 76), (Brinch Hansen 78), (Hoare 78), and (Lamport 78).
Part of this interest is due to the belief that these systems can
offer high degrees of extensibility, performance, and fault tolerance
(Jensen 78). However, there are still many problems concerning these
systems which need to be solved before distributed systems can be
realized and exploited in a practical way. One of these problems
is the specification of distributed systems (Greif:75), (Gouda 76),
(Boebert 79), (Laventhal 79), and (Riddle 79). In this paper, we
address this problem by introducing formal models to specify distributed
systems.
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A distributed system consists of entities called processes wh1ch
communicate only by exchanging messages. Each process has
a number of local data objects which cannot be directly accessed by
other processes. Howeyer, any process P can send messages to any other
process Q requesting to read or to update the local variables of Q.
Then, according to the internal state of process (, these requests can
be denied or honored. Thus, a process performs two kinds of operations,
external operations and 1nterna1 operations. The external operations
consist of sending (or receiving) messages to (or from) other processes
in the system. Tiie internal operations consist of testing and updating
the local variables in the process.

There are abstract machines associated with each process in the
system. The abstract machines define the data types which can be used
inside the process. They also define the appropriate operations which
can be performed on each data types in the machine. Two (or more)
processes can share the same abstract machine if the processes use the
same data types which are declared by the machine. Any of the known
techniques to specify abstract machines (Parnas 72), (Liskov 75),
(Guttag 77), (Robinson 77), (Boyd 78a), and (Boyd 78b) can be used in
conjunction with our models of a process to:specify distributed systems.

In this paper, we present two models for the specification of
communicating processes in distributed systems; they are called
global and local models. - In the global model, we assume the existence
of a global controller which can read and update the internal states of
all the processes in the system. This assumption leads to concise
and compact specifications. . However, since the global controller is
not an acceptable notion in a distributed system, a global specification
does not specify a solution, (i.e.;a system design),it merely specifies
the problem (i.e., the system requirements). In order to solve such a
problem, the global controlier should be replaced by subcontrollers
at the system processes such that the total system behavior is preserved.
The result of this replacement is a local model specification.
Therefore, the global specification for a system defines the system
requirements whereas a local specification for the same system defines
a .system design.

The global model is presented in section 2. Then verification
techniques for global model specifications are discussed in section 3.
Some examples of global model specifications are given in section 4.

The local model is presented in section 5; and some examp1es of local
model specifications are given in section 6.

2. THE GLOBAL MODEL

In the global model, a distributed system with K processes is
specified as follows:
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system system name;
process  process name 1;

var 1ist of local variables in process 1;

Data Specification
3 Section

process  process name K;

var list of local variables in process K;

rules
Control Specification
1ist of system transition rules Section

end system name.

Reserved words such as system, process, rules, and end are underlined.
The specification consists of two sections, a data specification section
and a control specification section. In the data specification section,
the local variables in each process are defined using a PASCAL-1ike
notation. :

In the control specification section, a set of transition rules
are defined. A transition rule has the following syntax:

condition :> result
where both the "condition" and the "result" have the following syntax:
Simple Bool. Expr. and . . . and Simple Bool. Expr.
A simple Boolean expression is as follows:
Expression 1 'relation' Expression 2

Both "Expression 1" and "Expression 2" are based on the local variables
of the system processes, and the 'relation' is any one of the following
=, #, <, <. After specifying the syntax of transition rules, we
discuss their semantic next.

In the global model, the global state of a distributed system is
specified by the values (at that state) of all the variables in the
system. Thus, the initial global state is specified by the initial
values of the system variables. At the beginning, the system is at
its initial global state; then its global state changes due to the
*"firing" of its transition rules. For a transition rule to fire at
some global state, its condition must be true at that state. The
firing of a transition rule consists of changing the global state such
that the result of the transition rule is true at the new state.
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We assume that the firing of different transition rules is mutually
exclusive; i.e.,at most one transition rule can fire at a time.

There are a number of similarities between the global model and
other proposed models (Keller 76) and (Bochmann 78); but there are also
some differences. In particular, the global model does not have an
explicit control structure for each process in the system. Instead,
the transition rules in the global model describe the control structure
of a "global controller"; hence, the name global model. It is assumed-
that the global controller can read and update the internal states of
all the processes in the system.

The global controller is a virtual entity; it is not a process
in the system. However, its existence makes the system specification
more concise and compact. On the other hand, since the global
controller is not an acceptable notion in a distributed system, a
global specification does not specify a solution (i.e.,a system design);

it merely specifies the problem (i.e.,the system requirements). In
order to solve such a problem, we should get rid of the global
controller; i.e., replace its transition rules by sets of transition
rules and assign each set to some process in the system. The result
is a new system model ,called the local model. The local model is -
discussed in detail in section 5.

' Now we give some examp]es of global spec1f1cat10ns.

Bounded Buffer

The bounded buffer consists of three processes "producer",
“consumer", and "bufprs". The “producer" has two variables, "st"
(for state), and "indata" to hold the data which is to be sent to the
"consumer” via the buffering process ."bufprs". The producer state,
referred to as "producer.st", can have one of two values "null" or
- "ready". If "producer.st" is "null", it means that the producer has
no new data to store in the buffer. Whenever "producer.st" is "ready",
it means that the content of the variable "indata" has a new value
which can be copied in the buffer (provided there is an available space
in it). Similarly, the "consumer" has the two variables "st" and
"outdata". The buffer process "bufprs" has an array of size N to
store the received data. It has also two integer variables "in" and
"out" ,where "in" is the total number of received data items from the
“"producer", and "out" is the total number of data items sent to the
"consumer". The global specification is as follows:
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system bounded buffer (N);
process producer;

var st: (null,ready) init null; fndata : real;

process consumer;

var st: (null,ready) init null; outdata : real;

process bufprs:

var buffer: array 0..N-1 of real;
in, out: integer init o;

rules

producer.st = null —— producer.st'=ready and indata'= input;
null s—— consumer.st'=ready and output = outdata;
in< out + N and producer.st = ready ’

—————> in' = in+1 and buffer'(in mod N) = indata and

producer.st' = null;

consumer.st

out < in and consumer.st = ready
————\ out'sout+l and outdata's buffer (out mod N) and
consumer.st'=null: “

end bounded buffer.

Notes: (i) Because both "producer" and "consumer" have a variable
named "st", we concatenate the process name and the variable name to
distinguish between the two variables. (i1) There are four transition
rules in this system. The first rule refers to "producer.st" in its
condition, and to "producer.st'" in its result to distinguish between
the value of this variable before and after the transition rule firing.
(i11) The two reserved words input and output are used to imply
reading from and writing into the outside world.

Shared Resource

100 users share a common resource which can be accessed by at most
one user at a time. The 100 users are defined as a process array of
size 100. Each of them can be in any one of three states:
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"mull"... means the user does not need (nor use) the resource,
"need"... means the user does need the resource,
"busy"... means the user does use the resource.

system shared resource;

processarray user (0..99);

var st: (null, need, busy) int null;

rules

NUTT ey User(i).st'=need;

user(i).st

user(i).st = need and (forall j:0..99)(user(j).st # busy)

————d user(i).st'=busy;

user(i).st=busy we————a user(i).st'=null
end shared resource.

Notes: Each transition rule in this specification is written in
terms of a free parameter "i", Since "i" is used as an index of the
. process array "user", its value ranges from 0 to 99. Therefore,
each transition rule is equivalent to 100 different rules, For example,

the first rule is equivalent to: ,

user(0).st = null USer(Og.st' need;
user(1).st = null : user(1).st"' = need;
user(99).st = null user(99).st' = need.

But instead of writing all these rules, we adopt the above short-hand
notation. '
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3.  VERIFICATION TECHNIQUES

In general, there are two classes of theorems which we may want to
prove about a distributed system. A theorem in the first class has the
form: ' :

At any instant P
or P (for short)

where P is a first order predicate which contains some variables from
the system specification. P is called an invariant; and the theorem

is called an invariance theorem. The theorem implies that P is true in
all the system states which can be reached from the initial state by
any possible sequence of transition rule firing. A two-step algorithm
to prove an invariant theorem (Keller 76) is as follows:

Algorithm

step 1: Prove that the invariant is true in the system initial
state'
step 2: for all the transition rules in the system specification
a_"Prove that if the invariant is true before the rule fires
then it is also true after the rule fires od;

From these two steps, the invariant is true at all reachable
states by induction on the length of the firing sequence. An example
is given later on.

Another class of theorems which may be of interest has the

following form:
Pt 30

where P and Q are first order predicates which contain some variables
from the system specification. This theorem means that if the system
ever reaches a state Sy where P is true, then in a finite period of
time (starting from Sy ) the system will reach a state Sy where Q is
true. More spec1f1ca}1y, there is an upper bound on the number of
transitions which can fire after Sy before state S, is reached. The
proof of such a theorem consists o} finding this upper bound. These
theorems are called non-starvation theorems since as we will see most
non-starvation theorems can be written using this form.

Now we give some examples. Consiaer the shared resource system
in the previous section. There are two theorems which we want to
prove about this system: :
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Mutual Exclusion

if user(x).st = busy then (forall y:0..99)(if y # x then user(y).st#busy)

Non-Starvation
. *
user(x).st = need —————3 user(x).st = busy

The first theorem states that at any instant at most one user is
busy using the resource. The second theorem states that if a user
needs the resource, then it will get it in a finite period of time.
The first theorem is from the class of invariant theorems, whereas
the second one is from the class of non-starvaticn theorems.

To prove the invariant of the first theorem, we first show that
it is true at the initial state. Then, we show that if it is true
before the firing of each transition rule, then it will also be true
after the rule firing.

Define S(n) to be the system state in which exact]y n users are
busy. Then, the initial state of the system is S(0); and the three
transition rules of the system can be defined in terms of S(n) as
follows:

(1) S(n) ;
(2) s(0) ;
(3) n> ) —>S(n-1);

The mutual exclusion theorem can now be restated (then proved) as

follows:

S(n);
S(1);
1 and S(n

Mutual Exclusion Theorem

After the firing of any sequence of transition rules (the empty
sequence is included), the system can either be in state S(0) or in
state S(1). .
Proof: The proof is by induction on the length of the firing sequence.
First the tneorem is true after tne enpty firing sequence since the
initial state is S(0). Assume that the theorem is true after a firing
sequenﬁe of length n, we w%nt to show that it will be true after the

(n+1)XN firing.” The (n+1)X1 firing can be of rule (1), rule (2), or rule
(3). If rule (1) is fired, then S{0)—=>S(0), or S(1)—>S(1). If
rule (2) is fired, it means that the system was in state S(0), and it will
become in state S(1). If rule (3) is fired, it means that the system
was in state S(1), and it will become in state S(0). In all cases, the
theorem is true after the (n+1)th firing. Thus, the theorem is true
after any firing sequence.
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To prove the non-starvation theorem, we need to show that if some
user, user (x) say, is in a "need" state, then in a finite period of
time his state will become "busy". Specifically, we want to show that
there is an upper bound K such that at most K transition rules will
fire, then the state of user(x) becomes "busy".

Actually, we’ cannot prove this theorem because the system
specification in the previous section does permit starvation. To
show this, consider the system when user (x).st = need and user
(y).st = null. Starting from this state, if the transition rules in
the infinite sequence (1), (2), (3), (1), (2), (3), (1)... continue
to fire for user (y), then user (x) will continue to ‘be in a
"need" state forever.

To prevent starvation from the system, we add an integer "count"
to each user. Initially, a user "count" has the value zero, and it is
incremented each time the user state is changed from "need" to "busy".
Thus, at each instant, the "count" value is the total number of times
the user had an access to the shared resource. Whenever a number of
users are in "need" states competing for the resource, the one with
the smallest "count" will win. If there are more than one, one of
them chosen arbitrarily will win. The system, after these modifications,
is as follows:

system shared resource without starvation;

processarray user (0..99);

var st : (null, need, busy) init null;

count : integer init 0;

rules

users(i).st = null ———3 user(i).st' = need;

user(i).st = need and
{forall j:0..99)(user(j).st # busy) and
(forall j:0..99)(if user(j).st = need then user(i).count <

user(j).count)
> user(i).st'=busy and user(i).count'=user(i).count+1;

user(i).st = busy 3. user(i).st'=null;

end shared resource without starvation.
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Now we can prove the non-starvation theorem for this system.

Non-Starvation Theorem

user (x).st = need % "~§?user (x).st = busy.
Proof: Assume user (x).st = need, we Want to show that there is an
upper bound K such that at most K transition rules will fire before
user (x).st = busy. The worst case is when the "states" of every
other user is "null", and its "count" is zero. Starting from this
state, each other user can compete for the resource, get it, and
prevent user (x) from becoming "busy". This can continue until the
"counts" of all other users exceeds the "count" of user (x) by one.
Therefore,

K=99 x 3 x (user(x).count+1) + 99

“where 99 is the number of other users in the system, and 3 is the
number of rules that each user can fire to compete, get, and release
the resource.

In this section, the verification of a "simple" shared resource
system has been discussed. Our intent was to demonstrate the use of
some general techniques for the verification of distributed systems
using our global model. Next, we extend the discussion to more
"elaborate" examples of distributed systems. In each example, we
specify some distributed system using the global model, and discuss the
theorems which need to be proven in the order to verify the
specification.

4. EXAMPLES OF GLOBAL MODEL SPECIFICATIONS

Three examples of global specifications are presented in this
section. The first example is intended to demonstrate how to use
abstract data types in conjunction with the global model to specify
distributed systems in terms of abstract data structures. The next
two examples are intended to express the model power in specifying a
variety of distributed systems.

Bounded Buffer with Abstract Data Types

A bounded buffer system is specified in section 2. Here, we
specify the same system except that the buffer is declared to be of
type "queue" (instead of an "array"). The data type "queue" can be
defined using any technique to specify data types such as (Guttag 77)
or (Boyd 78b?. Assume that the following four operations are defined
for the data type "queue":

length: queue -> integer
add: queue x element —> queue
remove: queue —3» queue

top: queue : > element
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Since the exact definitions of these operations are of little
value to the discussion in this paper, we skip these definitions
assuming that the reader has a reasonable idea about the meaning of
these operations. These four operations can be used to specify the
bounded buffer system as follows:

system bounded buffer (N);
process producer;
var st:  (null, ready) init null; indata: real;

process consumer;
var st: (null, ready) init null; outdata: real;

process bufprs;
- var buffer: queue init 1length (buffer) = 0;

rules
producer.st = null——> producer.st' = ready and indata' = input;
consumer.st = null——» consumer.st' = ready and output = outdata;

length (buffer)Z N and producer.st = ready
———> buffer' = add (buffer, indata) and producer.st' = null;

Tength (buffer)d 0 and consumer.st = réady
———> outdata' = top (buffer) and
buffer' = remove (buffer) and consumer.st' = null;

end bounded buffer.

In order to verify this system, we need to prove the following two theorems:

Invariant Theorem: 0 L length (buffer) £ N
Non-Starvation Theorem: indata = X-—=%-—>outdata = X

The non-starvation theorem states that if the producer ever produces a value
X then in a finite period of time the consumer will get it.
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Readers and Writers

100 users share a common resource. A user can read or write the
resource such that any number of users can read the resource simulta-
neously, whereas a writer needs a sole access to the resource.

system readers writers;
process array user (0..,99)
.var st = (null, need, busy) init null; rgst = (read, write);

rules

user(i).st
input;

nulle———>user(i).st' = need and user(i).rgst' =

user(i).st = need and wuser(i).rgst = read and

(forall j: 0..99) (if user(j).rgst = write then user(j).st = null)
——>suser(i).st' = busy;

user(i).st = need and user(i). rqst = write and

(forall j: 0..99) (user(j).st #busy)

——>user(i).st' = busy;

wser(i).st = busy-~=puser(i).st' = null;

end readers writers.

To verify this system, we need to prove the following theorems:

Mutual Exclusion: There are two theorems to prove:
Theorem 1: If a user is reading, no user is writing; i.e.,
if user(x).st = busy and user(x).rgst = read
then (forall y: 0..99) (if user(y).rgst = write then
user(x).stlﬁ busy)
Theorem 2: if a user is writing, no other user is busy;:i:.e.,
if user(x).st = busy and user(x).rgqst = write

.then (forall y: 0..99) (if y #x then user(y).st # busy)
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Non-Starvation
user(x).st = need and user(x).rgst = write
—*__muser(y).st = busy and user(y).rgst = write

This theorem states that if a user needs to write, then in a
finite period of time a user (may be another one) will write. This is
a weak non-starvation theorem. To make it stronger, we need to modify
the specification as discussed in section 3. _

Five Dining Philosophers

Five philosophers spend their Tives thinking and eating, The
~philosophers sit at a circular table with a bowl of spaghetti in its
center. The table is laid with five forks. On feeling hungry, a
philosopher picks up the fork on his left and the fork on his right,
eats, then puts down both forks. The system specification is as follows:

system dining philosophers;
process array fork (0..4);
var st = (putdown, pickup) init putdown;
process array ph (0..4); _
var st: (think, hungry, eat) init think;

rules
ph(i).st = thinke———>ph(i).st' = hungry;
ph(i).st = hungry and fork(i).st = putdown and

fork(i+1).st = putdown———>ph(i).st' = eat and
fork(i).st'= pickup and fork (i+1).st' = pickup;

ph(i).st = eat———>ph(i).st' = think and
fork(i).st' = putdown and fork(i+1).st' = putdown;

end dining philosophers.
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5. THE LOCAL MODEL

As. demonstrated by the above examples, the global model is a useful
tool to specify and "“easily" verify distributed system specifications.
However, one of the model's problems is the Tack of mechanisms to specify
potential parallelism within these systems (since transition rules can
only fire one at a time). On the other hand, it is this "non-parellel
behavior" which simplifies the verification of distributed system
specifications. In general, one needs a compromise between these two
seemingly conflicting needs; 1i.e., introduce a scheme to specify
parallelism into the model while retaining most of the features which
ease verification. In this section, such a compromise is discussed.

First, we present a scheme to specify parallelism into the global
model. The resulting model is called the local model. Then we show
that in a "large" number of cases, proving a theorem for the local
model specification (i.e., with para11e1lsm) is equivalent to proving
the same theorem for a global model specification (i.e., without
parallelism).

- In the local mode], each transition rule belongs to one process in
the system; and each process has one or more transition rules. The
transition rules in one process can only fire one at a time. Parallel-
1ism is achieved when transition rules in different processes fire
simultaneously. Therefore, the maximum number of transition rules
which can fire simultaneously equals the number of processes in the
system.

As an example, a local model specification for the bounded buffer
system defined in section 2 is as follows:

system bounded buffer (N);

process  producer;
var st: (null, ready) init null; indata: real;
rules
pro@ucer.st nu]l,__,__,_%> producer. st'= ready and
indata' = input;

end producer;
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process bufprs;
var buffer: array o .. N.1 of real; in , out = integer init o;
rules
in< out + N and
readymm———3pin'= in +1 and
buffer' (in mod N ) = indata and
producer.st' = null

producer.st

i

out < in and

consumer.st = readym————yout'= out +1 and
outdata' = buffer (out mod N ) and
consumer.st' = null

gﬁg_ bufprs;

process consumer;

var st: (null, ready) init ready; outdata: real;
rules
consumer.st = NUllem————3consumer.st' = ready and output =
outdata;

end consumer;
- end bounded buffer.

For the sake of the local model, we assume a "discrete" view of time.
-The system state can be only observed at discrete instants of time ty, t2,.:.
At any instant, say ty, the system state S, remains fixed, and no
activity (i.e., transition rule firing) takes place. However, at the
next instant, tjyy, the system state Si41, may be different from Sj,

implying that some transition rules had fired in the unobserved time
period between t; and tj47. As in the global model, a transition rule

in the Tocal model fires between a pair of observed time instants ti and
ti41, only if its condition is true at tj. If the rule does fire between
ti and tj41 then its result is true at tj;q.

Because of this discrete view of time, the local model allows only
an "ideal" type of parallelism. Two transition rules in different
processes can either fire simultaneously (i.e., between the same pair of
successive time instants), or in sequence (i.e., they fire between
different pairs of successive time instants). If the two transition
rules have disjoint variables then whether the two rules fire simul-
taneously or in sequence, the system still reaches the same global state.
This means that the introduced parallelism does not introduce "new"
reachable states to the system. The parallelism merely "speeds-up"
the reaching to the "old" reachable states.
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This property can be used to simplify theorem proving for the local
model. As an example, assume it is required to prove an invariant P
for some system S specified in the local model. One needs to show that
P is true for all the reachable states of S. To do so, one can ignore
the parallelism (implied by the local model) assuming that all the
transition rules in the system only fire one at a time (i.e., global
model). Then, the techniques outlined in section 3 can be used to
prove P. Hence, P is true if the transition rules are fired one at a
time. But, because the parallelism does not introduce new system states,
P is also true in the Tocal model, Now that we have established
the importance of preventing paralielism from introducinag new system
states, we need some way to achieve this property. In particular, we
need a set of restrictions (i.e., a discipline) to write transition rules
such that this property is achieved. A discipline to write transition
rules in the local model is discussed next.
‘ In the Tocal model, the transition rules in a process can only
test (in their condition parts) and update (in their result parts) two
classes of variables, namely, the process local variables and sequencers.
A sequencer is a variable local to some process but it can be tested
and updated by transition rules in other processes in the system.
There is no Timit on the number of sequencers which are defined in a
_process. A sequencer should satisfy the following conditions concerning
its declaration, testing, updating, and its associated variables.

Sequencer Declaration

A sequencer is a variable of an enumerative type. It is declared
using the reserved word seq. For example, the following statement
declares a sequencer "x" wnich has five values:

seq x : (x1, x2, X3, x4, x5);

Sequencer Testing

A sequencer can be tested in the condition part of any transition
rule in the system. The test can only be of the form: seq name = seq
value. Moreover, if a transition rule in one process tests for one
value of a sequencer then no transition rule in any other process can
test for this same value. This does not exclude the case when two
(or more) transition rules in the same process test for the same value.
As an example, assume that the following three transition rules
(which test sequencer x) belong #o the same process P:

x = x] ~3V"' = input and x = x2;
X =x2and z = 2e———w' =v'+ 20 and z' =z + 23
X =x2 and z = 4y X' = x4
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Then the following rule cannot belong to-.any process in the system
other than P:
x = Xl

>XI.= x2;

since it tests for value x] which is tested by some rule in P.

Sequencer Updating

A sequencer can be updated by the result part of any transition
rule in the system if the rule tests the sequencer in its condition
part. Because of this condition, each sequencer should have an
initial value.

A sequencer update can only be of the form: seq name' = seq value.
For example, the following transition rule correctly updates the above
sequencer "x":

X = x2 and z = 4 —meemex = %53
On the other hand, the next two rules are wrong:
4 x"

A —

The first rule updates sequencer x in the result part without testing
its value in the condition part. The second rule updates sequencer x
using an inappropriate form,

x53

Y
X z;

1 on
N
o3
=
N
o

Sequencer Associated Variables

Let x be a sequencer local to some process P. A variable v local
to P is said to be associated with x if each transition rule in P
which reads or updates v in its result part also tests x in its cond1t1on
part. If v is associated with sequencer x, then any transition rule
in the system which tests x in its condition part can test read, or
update v in its result part.

After stating the sequencer conditions, it is useful to discuss
the motivations behind these conditions. As mentioned earlier, the
basic motivation is to prevent the parallelism from introducing new
reachable states to the system specification. Specifically, the
following theorem is true:

Theorem 1

Let S be a distributed system specified in the local model. If S
is at state Sy where some transition rules (in different processes) can
fire simultaneously causing S to become in state Sp, then if these rules
fire in any sequence starting from Sy, S will become in Sj.

Proof: Let rys rpse..y 1 be the transition rules which can fire
s1mu1taneous1y caas1ng s %o change its state from Sy to S To show that
these rules can fire in any sequence cuasing the same sta%e change, it is
sufficient to show that no two of these rules share any variables.
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In other words, it is sufficient to show that any two rules r; and

do not test (in their condition parts), read or update (1n their
r%su]t parts) any common variables. The condition parts of r. and
rs contain local variables and sequencers. But since they can fire
simultaneously, they belong to different processes; and their local
variables are different. Moreover, they can only test the same
sequencer for different values; but since they can fire simultaneously
and a sequencer (like any variable) can only have one value at a time,
ri and rj must have different sequencers, if any, in their condition
parts.

The result parts of ry and rj can have local variables, sequencers,
and sequencer associated var1ab1es. Since they don't test the same
sequencers in their condition parts, they can neither update the same
sequencers nor read nor update the same sequencer associated variables
in their result parts. Thus rj and r; do not have any common

‘variables; and the final state will b& the same if they fire simultas
neously or if they fire in sequence.

From the above theorem, it can be shown that proving invariants
for a local model specification is equ1va1ent to proving these invar-
fants for the same specification assuming that transition rules in the
system fire one at a time.

Theorem 2

Let P be an invariant for some distributed system specified in the
local model. If P is true when the transition rules in the system fire
one at a time, then P is true for the local model.

Proof: 1In the local model, transition rules in different processes can
fire simultaneously. But from theorem 1 this parallelism does not
introduce "new" reachable states. Since P is true at all the “"old"

" reachable states, then it is also true for the local model.

Another 1mportant motivation for defining sequencer conditions
as they are defined in this section is to ease the checking of whether
or not a given local specification satisfies these conditions.

Actually these conditions can be verified purely on the basis of the
specification syntax. Thus, the checking can occur at compile time,
and it can be easily automated.

Now, a word of caution. The concept of sequencers is intended to
specify synchronization in the local model specification. So it is a
specification tool. It is not intended to be an implementation tool.

It should not be viewed as a hint on how synchronization between-
communicating processes should be implemented. OQur only criterion for
selecting sequencers in the local model is ease of proofs.

6. EXAMPLES OF LOCAL MODEL SPECIFICATIONS

- In this section, we present some examples of distributed system
specifications using the local model. To compare between local and
global specifications, some examples in this section are for
distributed systems whose global specifications are introduced earlier.
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Shared Resource:

The shared resource problem is discussed in section 2. A local model
specification for the problem is as follows:

system shared resource using semaphore;

process array user {0..99);

seq st: (null, need, busy) init null;
rules |
user(i).st = null————>user(i).st' = need;
user(i).st = busy and sem(i) = one
3> yser(i).st' = null and sem(i) = zero;
end user;

process semprs; ,
seq sem: array 0..99 of (zero, one) init zero;
rules
user(i).st = need and (forall j:0..99) (sem(j) = zero)
——— >user(i).st' = busy and sem(i) = one;

‘end semprs;

end shared resource

Notes: (i) If this specification is compared with the global
specification in section 2, we note that a new process "semprs" is
added to the system to provide the required synchronization. (ii) The
new process contains 100 semaphores (defined as a sequencer array)
so that each user process can test and update its own semaphore; thus,
the sequencer conditions are satisfied. (iii) The new process ,
represents a "central" controller for the system. To show that is not
a characteristic of the model but it is a characteristic of our chosen
solution, we present another specification for the same problem.

In this specification, there is a token which is being passed from one
user process to another (Lelann 77). If a user process needs the
resource, it waits until it receives the token, keeps it, then
accesses the resource. When it is done, it gives the token to the
next user process:
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system shared resource using token;

process array user (0..99);
seq token: (act, inact) init user(0). token = act and
: (forall j:1..99) (user(j).token=inact);

var st : (null, need, busy) init null;

rules
user(i).st = null

3 User(i) .st' = need;

user(i).st = null and user(i). token = act and
' user(i+1).token=inact

3 user(i). token' = inact and user (i+1). token' = act;

user(i).st = need and user(i). token = act
3> yser(i).st' = busy;

user(i).st = busy

—p user(i).st' = null;
end user;

end shared resource

Note: Each of the above local specifications specifies a possible
solution for the same shared resource problem. The global specification
of the same problem (in section 2) specifies only the solution require-
ments without suggesting any specific way to solve it. '

Minimum Holding Scheduler

Consider a system with 100 users who share a common resource which
can be accessed by, at most, one user at a time. The system has a
scheduler to assign the resource to the user who will hold the resource
the shortest time.. Each user has a local variable called "hldtim" of
type positive integer. When a user needs the resource, the value of
its "h1dtim" equals the expected holding time of the resource by the
user. "Hldtim" is chosen to be of type positive integer so that it has
? Tjnimum value namely one time unit. The system specification is as
ollows: :
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system min hold scheduler;

process array user (0..99);

seq st: (null, need, busy) init null;
var hldtim: positiveinteger;
rules

user(i).st = null
e User(i) .st' = need and user(i) .hldtim' = input;

user(i).st = busy and state(i) = inuse
e———3>user(i).st' = null and state'(i) = free;
end user;

process scheduler;
seq state: array 0..92 of (free, inuse) init free;
rules
user(i).st = need and
(forall j: 0..99) (state (j) = free) and
(forall j: 0..99; (if wuser(j).st = need then
user(i). hldtim 4 user(j).h1dtim)
———>user(i).st' = busy and state'(i) = inuse;
end scheduler;

end min. hold.

Note: The scheduler has an array of 100 binary sequencers; one
sequencer for each user process. This array is introduced (instead of
a single binary variable) to satisfy the sequencer condition that each
process can only test a sequencer for some specific value for which no
other process can test the same sequencer. Local specifications tend
to increase the number of variables in the system.

7.  CONCLUSIONS

We presented two formal models to specify distributed systems, a
global model and a local model. The two models differ only in their
abilities to specify parallelism and in their needs to specify
synchronization explicitly.
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In the global model, events are assumed to be effected i
one at a time by some global controller. Therefore, potential parallel-
ism cannot be specified. Moreover, synchronization between conflicting
events is achieved automatically; thus, no explicit synchronization
mechanism or policy is needed. These characteristics make global
specifications simple and straight- forward. In particular, the
mechanisms and/or policies which will be introduced to the system
(during the design phase) to achieve synchronization need not to be
present in the system global specification. For this reason, the
global model can be used to specify the system requirements without
suggesting how the system should be designed or implemented.

In the local model, non-conflicting events can occur in parallel,
and potentially conflicting events are serialized by the aid of
"sequencers". Therefore, potential parallelism can be specified and
explicit synchronization policy is required. Notice that "sequencers"
can be regarded as an explicit synchronization mechanism which is
built into the local model. For this reason, the local model can be
used to specify different system designs which achieve the system
requirements.

The two models have very similar syntax to ease the use of both
models during the requirement analysis phase and during the system
design phase. From our experience, both models seem to provide
concise specifications for otherwise hard systems.

In the paper, we also discuss some general techniques to wr1te and
prove theorems about specifications in both models. So far, these
techniques have proven very convenient to reason about distributed
systems.
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PROTOCOLS FOR DATING COORDINATION

Danny Cohen and Yechiam Yemini
UsSc/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, California 90291

Abstract

This paper is about the process of specifying protocols for computer
communication. It uses a dating coordination protocol as an example for
an interprocess communication., Since this problem has some timing
constraints built into it, the resulting discussion is different than
most of the more familiar protocols which do not have requirements
associated with timing. Several protocols are discussed here in order to
illustrate different aspects of the specification issue.

1. BACKGROUND

In the rural area of Oceanview, Kansas, people are too busy to arrange
their own dates. In order to alleviate this problem a dating center
(hereafter "C") was founded by the local church.

The dating center operation is generally simple. When a person
(hereafter "X") is interested in a date, he writes a letter to the
center, requesting a date with his sweetheart (hereafter "Y"). It is a
pity that there are not many phones in this area, isn't it?

Typically a requested date is blessed unless it is found to be in
conflict with the center's policy, due for example to the lack of common
approach to the arts. In the lucky event that the date is blessed a
time is assigned for X and Y to meet at the center. Letters are then
sent to both, notifying them about the particulars of the upcoming
event. Needless to say, church tradition strictly forbids X and Y from
being in direct communication before their supervised meeting at the
center,

Sections 2 through 7 of this note discuss a protocol for this
coordination.
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Most of the population of Oceanview is quite happy with this dating
service. However, the Japanese community of Oceanview found it hard to
take advantage of this dating service. Due to different cultural
background it is very hard to find a common approach to the arts with
the rest of the town people.

Therefore the local Buddhist -temple decided to sponsor another dating
center operating with different rules.

Section 7 discusses a different dating coordination protocol, geared to
the needs of the local Japanese community.

2. THE SPECIFICATION OF THE OBJECTIVES

The objective of this protocol is to allow X to cause C to dispense the
-same time and place assignment for blessed dates, both to himself (X)
and to the other party (Y). This operation should succeed in spite of
the postal communication which in that part of the country (unlike
others) may lose letters, delay them for an arbitrary amount of time
(hence causing occasional "out of order" delivery) and, believe it or
not, deliver several duplicates of the same letter, It is assumed that
no Y ever declines to accept a blessed date.

3. THE SPECIFICATION OF THE PROTOCOL
The protocol employs the following letters:

[1] X=>C: <DATE-REQUEST>, X, Y, RX

This letter is used by X to request C to issue the time and place
assignment to both X and Y. This issuance will have the effect of
notifying Y that X is interested in dating her. The RX in this letter
is a reference number that X assigns to this expected date.

[2] C=>X: <HEARD-YOU>, RX

This letter is sent by the center to acknowledge the reception of X's
letter, It constitutes neither an approval nor a denial of the date.

[3] C=>X,Y: <BLESSED>, X, Y, T&P, RX, RC

This is an official notification of the blessed date which is sent to
both parties. T&P is the specification of the time and place assigned
for this date, and RC is the reference number assigned to it by C.

(4] C=>X: <DENIED>, RX, RC

This is the official denial of the date, which is sent only to X.
[5] X,Y=>C: <TNX>, RC

This is the letter that X and Y send to the center upon receiving either
a <BLESSED> or a <DENIED> letter. :
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4, THE OPERATION OF THE X AND Y PROCESSES

State Condition Action Next
———— coecccoe— s m e m State
1 IDLE: wants to date send <DATE-REQUEST>
set timers T1 and T2 2
rec'd <BLESSED> send <TNX> y

2 WAIT-FOR-ACK: T1 goes off send <DATE-REQUEST>
set timer T1 2
T2 goes off ——— 1
rec'd <HEARD-YOU> set timer T3 3
rec'd <BLESSED> send <TNX> 4
rec'd <DENIED> send <TNX>, expunge RA 1
3 WAIT-APPROVAL: T3 goes 6ff e 1
rec'd <BLESSED> send <TNX> )
rec'd <DENIED> send <TNX>, expunge RA 1
4 HAPPY: date termination  —=—- 1

Any other event is ignored. T1 is presumably very much smaller than T2.
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State

1 IDLE

2 CHECKING

3 WAITXY

4 WAITX

Condition

-182-

rec'd <DATE-REQUEST>

date approved

date denied

rec'd <TNX>
rec'd <TNX>

T4 goes off

T5 goes off

rec'd <TNX>

T4 goes off

5 WAITY

6 WAITXX

TS5 goes off
rec'd <TNX>

T4 goes off

T5 goes off
rec'd <TNX>

T4 goes off

T5 goes off

from X

from Y

from X

from Y

from X

THE OPERATION OF THE C PROCESS

Action Next
e State
send <HEARD-YOU> 2

send <BLESSED> to X and Y

set timers TU and T5 3
send <DENIED> to X

set timers T4 and T5 6
. 5
e y
send <BLESSED> to X and Y
set timer TU 3
— 1
B 1
send <BLESSED> to X

set timer TY 4
————— 1
— 1
send <BLESSED> to Y

set timer TH 5
—— 1
—— 1
send <DENIED> to X

set timer TU 6

—— 1

Any other event is ignored. T4 is presumably very much smaller than T5.
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The above is, obviously, the description of a single instance of C,
dedicated to handle a specific DATE-REQUEST. It is assumed that C has a
central process which identifies new requests, and creates new instances
to handle them.

6. DISCUSSION
We believe that this protocol is capable of performing a good job.

However, it is obvious that the specifications of the objectives, as
given in section 2, do not cover all the issues which are covered by the
design and by the implementation specification of this protocol.

We suggest that the reason is that the real objectives are not fully
specified. Therefore, the above protocol is an "overkill" for the

specification, and simpler protocols which meet the same given
specifications may be devised.

- 6.1 Simpler Protocols

For example, in order to meet the objectives, as specified above, only
the <DATE~REQUEST> and the <BLESSED> messages are needed. Neither the
<HEARD-YOU>, nor the <DENIED>, nor the <TNX> are needed. Similarly,
neither the timeouts nor the retransmission are needed.

Hence, a possible simpler protocol has only the <DATE-REQUEST> and the
<{BLESSED> messages, without the <HEARD-YOU>, the <DENIED>, the <TNX> and
- any of the timeouts.

It is not hard to verify that this protocol meets the objectives as
specified in section 2., Obviously it is 1less robust in respect to
communication imperfections, but this was not specified there.

It is obvious that what we meant is to make sure that the transactions
are successfully conducted, in spite of the unreliability of the
supporting communication medium.

However, the term "sure" above has to be taken with a grain of salt.
Obviously it is impossible to have a perfectly reliable communication on
top of an unreliable medium. What if the Oceanview post office goes
suddenly on strike ?!! Even though federal employees are not expected
to strike, this is still a possibility.
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In more precise terms, what is meant is that the success probability, of
the entire transaction, should be above a certain threshold, in spite of
a lower (positive) communication success probability.

The above protocol is probably a pretty good answer for this
interpretation of the objectives. S

We suggest that in general the problem specification should include,
quantitatively, the reliability parameters and other relevant
information about the environment in which the problem is embedded, like
the performance of the supporting communication system, for example,

If only the increased success probability is added to the objectives,
then there is even a simpler protocol which still meets the objectives.

This protocol, as the previous one, has only the <DATE-REQUEST> and the
<BLESSED> messages. It does not have the {HEARD-YOU>, the <DENIED>, the
{TNX> messages and any of the timeouts. It achieved the desired increase
of reliability by flooding the communication system with multiple copies
of each message, ad infinitum. One can prove that if the probability of
a successful delivery of a message is arbitrarily small, but greater
than zero, then the probability of a successful conclusion of a
transaction is arbitrarily close to 100%. '

6.2 Efficiency and Cost Considerations

However this protocol 1is not considered acceptable since some cost is
associated with the transmission of messages. It results from both the
communication cost, and/or processing 1limitations. In our story the
transmission cost is paid in postal stamps, and processing limitation
are reflected by the understanding that if too many copies of the first
<DATE-REQUEST> reach the center, the center may never have the chance to
notice another request.

Therefore, we suggest that in addition to specifying the desired
performance, the cost parameters must be specified, too. One should be
able to specify that he is very much interested in having a date, but
that he is not willing to pay more than so many stamps for it.

However, there is an even simpler protocol which is based on the center
continuously telling everyone to be always at the center, just in case
someone wants to date them, This can guarantee (i.e., with probability
arbitrarily close to 100%) that if your requested date is blessed (or
even if it is not) then when you go to the center, your date is there.
It is conceivable that some people may have some objections to this
procedure, Camping on the front lawn of the center for several weeks
before the data commences, is not that much fun.
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The problem of missing knowledge in the protocol objectives
specification causes major difficulties not only to the Protocol
designer community, but also to the protocol verification community.

6.3 Complete Specification

There are probably several other possible protocols which meet these
objectives, and have similar flavor. All of them result from the lack
of complete specification.

The missing specification includes typically the "obvious" details,
which do not require explicit mention, but are implied from our general
experience in dealing with communication protocols. They include the
performance parameters, the cost parameters both for the communication
and the processing resources, the cost associated with omission and
commission errors, and the like.

One may argue that this type of specification does not belong to the
particular problem at hand, but to the general domain of message
communication, and separate the specifications into two parts, the
particulars of the given problem and the generalities of the domain.

We suggest that in message communication the domain has to be
parameterized, where the assignment of the parameters is a part of the
specification of a particular problem, The model of probabilistic
delivery, communication and processing costs, omission and commission
errors and the like belong to the domain, but the value of these
probabilities and the various costs are parameters which depends on each
specific problem.

It is unfortunate that we still do not know how to completely specify
the objectives of a protocols. These objectives must include the
parameters of the environment, such as the supporting communication
medium (below) and the expected traffic (above), the various costs
associated with usage of resources such as message transmission,
processing and storage, and with delays, communication errors, and the
like.

It is amazing that even though we do not yet possess the ability to
accurately specify protocol objectives, we have enough "engineering"
experience to guide us in implementing protocols which do a remarkably
good job of message communication.

The nature of these performance and cost related parameters introduce
the notion of approximations. Protocols are not either correct or
incorrect, but are more like many numeric problems which have a
continuous spectrum of accuracy.
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For some problems the objectives are such that the cOﬁrectness of
message delivery is more important than its efficiency. File transfer
requires that each bit is reliably received, even if this implies
delays. Speech communication requires efficiency and low delays, more
than perfect accuracy, For speech a certain amount of errors is
tolerated if this is necessary for delay considerations. Obviously, this
cannot be carried to the extreme in which a zero delay is achieved by
compromising (totally?) the accuracy of the signal.

7. THE JAPANESE DATING COORDINATION PROTOCOL

The Japanese community in Oceanview is much more permissive than their
neighbors downtown. Direct communication between the parties is not
only allowed before the date, it is even encouraged. The center role is
limited to providing consultation, addresses and other matters of
importance, ’

After choosing his sweetheart, a person writes her directly and invites
her to meet him, in the temple gardens, at a certain time. Typically
the recipient responds rather anxiously, and sends a letter of
confirmation,

Due to old Japanese tradition one loses face if stood up for a date.
Losing face, in this community, results always in the tragic act of
harakiri.

When the number of these tragic acts soared, the temple leaders were
able to correlate it with the low quality of the local postal service,

Without delay they set out to design a protocol which would assure the
safety of all dates, thus eliminating the recurrence of these tragic
consequences,

Unfortunately this task proved to be more difficult than first expected.

The reason for this difficulty is that since losing face is a serious
matter, in fact a matter of life and death, the required level of safety
must be 100%, not a bit less. '

It turned out that no protocol could guarantee that absolute
reliability, even with any finite delay. When a young mathematician
managed to prove that such a protocol could not exist, the wise men at
the temple were very disappointed.

For the benefit of the interested reader the proof is 'sketched below,

Suppose that P(N) is a protocol which under the existing conditions
could guarantee a safe date, where the probability of a message to be
successfully delivered is less than 100%.
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The last message, the Nth one, could not carry information which is
essential for the safety of the date, since its sender cannot be sure
that it was received by the other party. Since it carries no essential
information, it could be eliminated, and a stamp can be saved. Si?ce
P(N) is a safe protocol, so is P(N-1), which is the protocol consisting
of the first N-1 messages of P(N).

Therefore a P(N-2) exists, too. So does P(N-3) and so on. Therefore,
P(0) exists. This means that a safe date can be arranged without any
exchange of messages.

Since the dating process is essential for the well being of the
community, other communication alternatives are under study now.

8. CONCLUSIONS

Complete  specification of protocols are needed for optimal
implementation and for verification.

Even though we, as a community, have gathered an impressive experience
in implementing protocols, our ability to specify accurately and
precisely the objectives of protocols still leaves a lot to be desired.

We suggest that the specifications of message communication protocols
should include the parameters of the environment, the parameters of the
performance and cost constraints. The cost should include the effects
of errors,. of both- kinds. It should be kept in mind that absolute
reliability cannot be guaranteed in environments which are less than
perfect.

It is probably possible to divide the specifications into (i) the
particulars of the specific problem at hand, and (ii) the generalities
of the message communication domain. However, due to the diversity of
this domain, (ii) may be specified only as a parameterized domain, where
the specific values of its parameters are part of (i).

*9. AN IMPORTANT NOTICE

Throughout the paper pursuers are referred to as belonging to the male
gender, whereas females are considered always as lovely sweethearts who
are always anxious to be approached. We would like to emphasize that by
no means do we intend to suggest that this is a correct reflection of
the roles of human beings. We are well aware that in real 1life the
division between "pursuers" and "pursuees" does not follow the sex lines
as closely as we used to pretend,

As a matter of fact, the authors of this paper are quite aware that in
this day and age liberated women may play the "aggressive" role more
often than their counterparts.

We are well aware of it, and regret having been born too early to enjoy
it.
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DISTRIBUTED CONTROL OF UPDATES IN MULTIPLE-COPY DATABASES:
‘A TIME CPTIMAL ALGORITHM

R. J. Ramirez and N. Santoro¥*
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jaterloo, Ontario
Canada N2L 3G1

Abstract

In this paper, the problem of updating a database with
multiple copies under distributed contreol is addressed.

An update synchronization algorithm for databases,
whose copies are distributed on a store-and-forward synchro-
ncus network is presented and its complexity 1is analyzed.
The propesed algorithm is shown to be time optimal within an
additive constant for networks of arbitrary topeclogy. The
algorithm incorporates a simple priority scheme to resoclve
concurrent updates. :

I. INTRODUCTION

When a single database is accessed by several users
through a communication network, it may be advantageous to
store the same data at more than one center in the network.
For example, consider a database for which the expected
number of "read" accesses is very large as compared to the
expected number of "update" accesses. If a copy of the data
is stored at each center of. the network, then "read"
requests can  be serviced locally, reducing the operational
cost and the response time of the database.

The advantage of a multiple copy distributed database
are essentially based on the aveilability of duplicate data.
Namely, this redundancy offers an increased reliability, a
quicker query response, and a potential for upward scal ing
of database capacity [11]. :

The d1sadvantages rest on the facts that updates, ori-
ginated at varicus centers, must be reflected in every copy,
and that transmision delays, as well as the order in which
updates are applied, must be taken into account te maintain
internal consistency in the database.

It could be desirable to centralize the contrel func-
tion, i.e. to make a single center responsible to maintain
the consistency and integrity of the database. In such a
scheme, all other centers will request permission from the

* On leave from Institutce Scienze Informazione, Univer-
sity of Pisa, Corso Italia 40, 56100 Pisa, Italy.



-192-

control center to update the database and the control center
will deny or grant the request on the basis of current
locks. If the request 1is granted, then each copy 1is
updated, and acknowledegement is sent to the control center
that will then release the associated lock. For a more com-
plete discussion and some examples of centralized control
see [1, 4, 12].

An interesting alternative is represented by the dis-
tributed contrel scheme. In this model, the control func-
tion is distributed among all centers in the network. To
make the control possible, it is necessary for each center
to communicate (exchange messages) with other centers (its
neighbours); and, in order to maintain the internal con-
sistency in the database, a synchronization technique Iis
needed. In the literature several algorithms for distri-
buted control have been presented; they are designed to work
with networks of a given topelogy. Namely, the centers of
the network must form a sequential chain 1[5, 7], a daisy
chain [3, 13, 14], or a star [2]; and each center must have
knowledge of the network topology.

In this paper we continue the analysis of multlple copy
databases with distributed control, and present a general
and efficient update synchronization algorithm for networks
of arbitrary topology. 1In order for the algorithm to work,
each center needs only to know who are its neighbhours, and
no additional knowledge of the network topology is required.
Concurrent updates are resolved by a priority mechanism that
guarantees proper sequencing and avoids race conditiens. In
the next section, the problem is stated formally. In sec-
tion 1III, a restricted environment is considered, a naive
algorithm is described, and an improved algorithm is
presented and proved to be optimal in the restricted con-
text. In section IV we show how to modify the algorithm to
work in-a general environment increasing the time complexity
only by a small censtant, and we describe the proposed algo-
rithm formally.

IT. DEFINITIONS

Let us formally describe the framework and define some
terms that will be used throughout the paper. The network
is composed of n centers, each mantaining a copy of the
database. Each center replies to query and update requests
which are originated locally or received from some other
center, At each center, messages are sent to and received
from 1its neighbour centers. This situation can be
represented using a linear graph G=(N,A), where N is a set
of nodes and A a set of arcs: each node n(i) € N represents
a center where a copy of the database resides, and.each arc
a(i,j) € A represents a direct communication 1link between
n(i) and n(j) (in our application a(i,j)=a(j,i)). If a(i,]j)
€ A then n(i) and n(j) are said to be neighbours. Each
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center mantains a list D(i) of its neighbours,
D(i) = { n(j) € N | a(i,j) € A}.
At any given time, each node can be in one of the following
states . : .
S = {Available, Prepared, Counting, Update}.

The model is based on the following basic assumptions:
i) Synchronization. ’

The clocks at each center are synchronized. Imper fect

synchrenization could be included in ocur model by using

a quantity d(i,t) defined as the difference between the

clock at center i and the "time" t (see [5]).

ii) Partial Reliability. .

: During an update, the topology of the network will not
change. Partial reliability does not imply any other
assumption, neither on the topelogy ner on the general
reliability of the network,

iii) Consénsus.
An update will be performed only if all centers agree
on the update (see [91]). '

In the next section we will analyze a "naive" algerithm
for update synchronization. We will then show how to modify
it in order to speed up the synchronizaticn time, and we
will prove that the resulting algorithm is time optimal.

ITI. RESTRICTED CONTEXT

In this section we will consider a restricted environ-
ment to simplify the presentation. In section IV we will
show how te extend the result to the general case. The res-

tricted context is as follows:

i) the database is on an acyclic network, i.e. G 1is a
tree,

ii) at any given time there is at most one active update
request.

iii) to transmit a mescsage across any link takes a single
unit of time,

The naive algorithm.

In a "naive" algorithm for the above environment, a
node n(0) receives an update request originated locally. It
enters state "Prepared", sends a "request" message to all’
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its neighbers, and waits for replies from them all. Node
n(0) at this time, does not have any information on the
topology of the network, except which centers are its neigh-
bors. In fact, the network topology might have changed
since the last update, due to breakdown or to the reactiva-
tion of a communication link., Therefore, it 1is necessary
for n(0) to obtain from all centers not only the consensus
to update, but also some information on the topelogy of the
network. Namely, it needs to know the radius, i.e. the time
required for a message from n(0) to reach the farthermost
center in the network. _ _

Let us now continue the description of the algorithm,
In a recursive fashion, node n(i), upon receipt of a
"request" message from n(j), enters state "Prepared"; sets
sender(i)=n(j); sends a "request" message toc all its neigh-
bors except n(j); and waits for acknowledgement from them
all.

If n(i) 1is a 1leaf then, after entering state
"Prepared", it sends to n(j) an "Ackowledgement" message
containing a counter T(i) (in the restricted environment
T(i) will be a variable initially set to zero) and waits for
the "Update" signal. -

In a recursive manner, node n(j) waits for "Acknowledg-
ment" messages containing the counter T from all its neigh-
bours (except sender(i)). Then, it sends to sender(i) an
"Acknowledgement" message containing the counter T(J)
defined as the last received counter T(k) incremented by
one,

When n(0) has received "Acknowledgement" messages from
all its neighbours, it can start the update. .

In fact T(0) = max{T(i) | n(i) eD(0)} is exactly the
radius. . '

The synchronization of the update proceeds as follows:

i) node n(0) enters state "Counting" and sends to all its
neighbours an "update" message containing the "update
vector" [5] and a new counter TP(0)=T(0)+1.

ii) in a recursive fashion, node n(i), upon receipt of an
"Update" message from n(j), enters state "Counting”;
saves the "update vector"; sets TP(i)=TP(j)-1; sends
the update vector and TP(i) to all its neighbours
except n(j), and starts the count down of TP(i). When
the counter reaches zero, then node n(i) will change
its state to "Update".

iii) when in state "Update", node n(i) perferms the update
and, when completed, it enters state "Available". :

A state transition diagram is shown in Figure 1,
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AVAILABLE || PREPARED

f !

UPDATE |« COUNTING

Figure 1. State transition diagram for the restricted context.

It is easy to show that all centers will count =zero
simul taneously, and that the time required by the naive
ralgorithm to synchronize the network is 3*T(0). In fact,
it takes T(0) steps for a "request" to reach the farthermost
node; the "acknowledgement" message from that node to n(0)
will also take T(0) steps to arrive; and, finally, it takes
T(0) steps for all nodes to enter state "Update" simultane-
ocusly.

The improved algorithm.

We will now show how to modify the previous algorithm
to reduce the synchrenization time. The previous algorithm
performs basically two cperations: it finds the radius, and
then 1t sends the update signal. In order to speed up the
process, the above operations must be performed as simul-
taneously as possible. We will now describe the algorithm
for the restricted environment with an example, and analyze
its complexity. 1In section IV we will formally present the
general algorithm,. '

Consider the graph in Figure 2(a) where index i
represents node n(i).

Figure 2(a).

Initially, the algerithm works as the naive method. At time
t=0, n(0) receives an update request generated locally. It
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then enters state "Prepared" and sends a "request" message
to all its neighbours, which in turn enter state "Prepared”
and send a "request" message to their neighbours.. This pro-
cess continues recursively. Eventually, a message reaches a
leaf node. 1In our example, at time t=2. (i.e. after two
steps), both n(3) and n(4) receive the "request" message.
They enter state "Prepared" and send back an "Acknowledge-
ment" message with counter set to zerc, (see Figure 2(b)).

g/

Figure 2(b).

At a bifurcation node, e.g. node n(2) in Figure 2(b), all
"Acknowledgement" messages, except the last one to arrive,
are destroyed. That is, only the last "Acknowledgement" and
counter are considered. When. the last "Acknowledgement"
arrives to a node, for example n(l) at time t=3, this node
sends to its "father", n(0), an "Acknowledgement" message
and the counter T(1)=T(3)+1=1. At time  t=4, the "Ack-
nowledgement" message has reached n(0). 1In cur example, the
synchronization process can now start. In general, n(0)
waits until the message before the last one has arrived.
Upon receipt of such "Acknowledgement", n(0) sends to the
only unacknowledged neighbour an "Update" message containing
the "update vector" and the counter
TP(0)=received counter+l1=T(1)+1=2. This situation is shown
in Figure 2(c)~.



-197~-

Figure 2(c).

At time t=5, node n(2) sends the "update vector" and the
counter TP(2)=TP(0)+1=3 to the unacknowledged neighbour
n(5). If there is more than one unacknowledged neighbour,
then the node waits until all neighbours except the last
have sent an acknowledgment. This process is repeated in a
recursive fashion until the "Acknowledgement" message from
the farthermost node and the incoming "Update" message meet
in a node, as shown in figure 2(d) (actually, the two mes-
sages may "jump" over each other; this case is easily solved
with a single test).

Figure 2(d).

Node n(6) now knows how distant is the farthermost node. 1In
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fact, this quantity is precisely TP(5)+1. Node n(6) enters
state "Counting", sends the synchronization message and
TP(6) to its neighbours, and starts the count down of TP(6).
Analogously, when a node n(i) receives an update message and
the counter TP(j), it will set TP(i)=TP(j)-1, send the
update message to all its neighbours, enter state "Count-
ing", and start the count down of TP(i). When the counter
reaches zero, the' node changes its state to "Update" and
performs the required update. When the update has been com-
pleted, the node enters state "Available".

Analysis of the algorithm.

Let us now analyze the complexity of the above algo-
rithm, We are 1interested in evaluating the delay between
the time an applicable request* is originated and the time
the update is actually performed, This delay can be
.expressed in terms of the number of steps needed for the
orlglnatlng node to reach state "Update".

In order to analyze the complexity of the algorithm,
let us introduce some terminology. Given a rooted tree T,

the radius r is the maximum distance from a node in T to the

root, and the diameter d is the maximum distance between any
two nedes in T.

When a node originates an update request, this node can
"be regarded as the "root" of the tree. In Fiqure 8§, only
the longest and the second longest path from the root, of
length a and b respectively, are shown. Obviously r=a; it
can be proved that d=at+b [10].

Figure 3. Radial path (a) and second longest path (b)
" from the root.

~* An applicable request is a request that is not going
to be  preempted by a higher priority request. In the
resticted environment every request is applicable,



~199-

In our algorithm, after the root generates the update
request, it will take b steps for the "request" signal to
reach the leaf in the second longest path; and it will take
b steps for the "acknowledgement" signal from that nede to
reach the root. The "synchronization" signal (i.e. the
update message in our algorithm) will then be sent along the
radial path, and it will eventually meet the acknowledgement
signal «coming from the leaf of that path. The two signals
will meet (or jump over each other) after a-b steps. At
this peint, the "Counting" signal is originated. Before the
update can be performed, this signal must reach all nodes,
including the farthermost ones. It can be shown that the
farthermest nodes are not more distant from the "meeting
noede"” than a bottom leaf in the second lengest path. That
is, we need other (a-b)+b steps before we can perform the
update. In total, we need 2b+a-b+ (a-b)+b=a+ (a+b)=r+d steps.
That is, the algorithm requires d + r steps to synchronize
an arbitrary tree network of radius r and diameter d. - We
can now show that:

Proposition. .
The proposed algorithm is time optimal for
tree networks,

The above result follows from the fact that at least d + r
steps are needed to synchronize a tree. This lower-bound
has been proved for a tree of cellular automata [10]. The
proocf relies only on the tree-structure of the network and
not on the computational power of the nodes. Therefore, it
holds for our model and proves the above proposition.

IV. GENERAL ENVIRONMENT

In the above sections, we have presented a time optimal
algorithm for the restricted envircnment. *Namely, the fol-
lowing restrictions were made: (i) the network has a tree
structure; (ii) there are no concurrent updates; and (iii)
the time to transmit any message from a node to its neigh-
bours 1is unitary. These assumptions were made only to sim-
plify the description and analysis of the algorithm. In
fact, a concurrent update resolution mechanism can be easily
incorporated in the algorithm without increasing its com-
plexity; more operations will be performed at each step, but
the number of steps will be the same. Analogously, the
algerithm can be easily modified to work on general graphs,
and with different transmissions times, increasing the time
complexity only by a small constant.

In next sections we will informally show how to modify
the algeorithm to work on the general environment and for-
mally describe the resulting algorithm.
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Collision resclution.,

" In this section we show how to incorperate in the algo-
rithm a collision resolution mechanism based on priorities
without increasing its time complexity.

" The proposed priority scheme is as follows:

- each node is assigned a unique index (e.g. an integer);

nodes do not need to know everyone else's index, but only

that the indices are unique.

- the priority function @ is available to all nodes.

- when a node is in state "Prepared", it will accept an

update request with higher priority, preempting the

current one; the preempted request will be saved by its
"originator in a queue for future processing.

- when a node is in state "Counting" or "Update", it will

ignore any update request.

The priority function can be formally described as a
mapping
@ : Z x R ~->1Z
where Z is the set of positive integers, and R is the set of
reals; (i,t) denotes the pricrity of an update request ori-
ginated at node n(i) at time t, and is such that:

_(i) ¥ t' > t &(i,t) > &(i,t")
(ii) ¥ j < i a&(i,t) > &(j,t)

that is, @ is a decreasing function of the time and an
increasing function of the indices. In other words, if two
(or more) update requests originate at the same node, the
second request can proceed only after the completion of the
first update (this guarantees proper sequencing); if several.
update ‘requests are originating at the same time in dif-
ferent nodes, the request originating at the node with
highest index will be processed first (this avoids race con-
ditions and the consequent undeterministic behaviour of the
system). Let us note that because the requirement for con-
sensus, the transmission of negative acknowledgements is not
needed; the arrival of a higher-priority request will per-
form the same function.

General graphs.

Throughout the above discussion, we have been dealing
with tree networks. However, the propesed algorithm can be
used for a general network. In fact, given a network of
arbitrary topology and given a starting node (i.e. a node
originating an update request), we can construct a spanning
"tree rooted iIn that node and apply the algorithm to the
obtained tree. Let us note that to construct a spanning
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tree T of a graph G is equivalent to determine for each node
n{(i) €N the list L(i) of its neighbours in T. Obviously
L(i) ¢ D(i). 1In order not to greatly increase the time com-
plexity, this "tree reconstruction"” must be done while exe-
cuting the algorithm, and the resulting tree must be of
minimum radius. This can be easily achieved in the follow~
ing manner: If a node n(0) is originating the update, then
it will send a "reconstruction" message to all 1its neigh-
bours in the graph and wait for acknowledgment. The set
L(0) will be formed by all the neighbours sending an ack-
nowl edgment. In general, a node n(i) will ignore all
"reconstruction" signals, except the first, for a given
update, Let n(j) be the sender of the first received recon-
struction signal for an update. Then, node n(i) will send
an acknowledgment to  n(Jj); simultaneously send a "recon-
struction” signal to all its neighbours in the graph, except
n(j); and wait for acknowledgment. The set L(i) for the
given update will be formed by n(Jj) and by all nodes n(k) €
D (i) that have replied (always within twe time steps). It
can be shown that this technique constructs the tree of
minimum radius [8] and increases the total time complexity
by only two steps; i.e. the modified algorithm works 1in
d+r+2 steps. '

The last assumption made in the restricted ‘environment
was on the time required to transmit a message across a
link. In general, the time te transmit a message x from
node n(i) to node n(j) is t(i, j, x) # 1. To make the algo-
rithm work for this general case, where ¥ n(j) € L (i) ¥ X
t(i, j, x) is known at node n(i), we need only to modify the
counters and to take into account what kind o¢f message we
are sending or receiving. All these modifications de not
involve any major change, and for simplicity are not expli-
citly included in the algorithm.

The algorithm.

In order to describe the algorithm including the colli-
sion resolution mechanism formally, let us review the four
possible messages:

<"R" ,sender, originator, time>

<"A" ,sender, priority, counter>

<"U",sender,update vector,priority,
counter>

4) counting ., = <"C",sender, update vector,counter>

1) update request
2) acknowl edgment
3) synchronization

where the counter is analogous to a time stamp, and sender
and originator are the indices of the sender node and of the
originator node of the request, respectively. The algorithm
is expressed in terms of which operations a node must per-
form, depending on its state and on the received message.
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We assume that each node n(i) already knows the set L(i).

node(i) is in state "Available".

<"R", n(k), n(j), time>
begin
if n(i) = n(j) then {locally generated update request}
begin
cogpute priority P, L(i) and update vector V
send <"R", n(i), n(i), time> to all n(p) € L (i)
vector (i) = V; prepared(i) = n(1i)

sender(i) = n(i); priority(i) = P
if IL(i)] = 1 then {it is also a leaf}
send <"U",n(1i) ,vector (i) ,priority(i),0>to n(p)€ L (i)
end
else
begin

compute priority P, L(1i)
prepared(i) = n(j); sender(i) =n(k); priority(i) = P
if L(i) - n(k) = ¢ then { n(i) is a leaf}
" send <"A", n(i), pricrity(i), 0> to n(k)
el se

send <"R", n(i), n(j), time> to all n(p) € L(i)-n(k)

end
state(i) = "Prepared"
Copy(i) = L (i) - sender(i)
end

Ignore other messages

node n(i) is in state "Prepared".

— c—

<"A", n(k), P, C>

begin
if P < priority(i) then {ignore message}
el se
begin
Copy (i) =Copy(i) - n(k)
if prepared(i) = n(i)then {this node isthe coriginator}
if |Copy(i)l = 1 then {start synchronization}

send <"U",n(i) ,vector (i) ,priority(i),C+l>
to n(p) € Copy(i) ,
if holding (i) then {holding synchronization message}
begin
if |Copy(i)] = 1 then {forward synchronization}
send <"U",n(1i) ,vector(i) ,priority(i),C+l>
to n(p) € Copy(i)
end

el se
if |Copy(i)|l = 0 then { send ack to sender (i)}
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send <"A", n(i), priority(i), C+1> to sender(i)
end '
end

<*y", n(k), vector, P, C>

begin
if P # priority(i) then {ignore message}
else
begin
if JCopy(i)| = 1 then {forward synchronization}
send <"U", n(i), vector, priority(i), C+l1>
to n(p) € Copy(i)
el se
begin
if |Copy(i)] > 1 then {holding synchronization}
holding (i) = true
el se
begin : '
send <"C", n(i), vector, C+1l> to n(p) € L (i)
vector(i) = vector; counter(i) = C+l '
state(i) = "Counting"
while counter(i) # 0 decrement counter(i)
state(i) = "Update"
Perform update as described by vector (i)
hoelding (i) = false
state(i) = "Available"
end
end
end
end

<"C", n(k), vector, C>

begin ‘

Copy(i) = L (i) - n(k)

vector (i) = vector A

send <"C", n(i), vector(i), C=1> to n(p) €& Copy(i)
state(1i) = "Counting" )
while counter(i) # 0 decrement counter (i)

state(i) = "Update"

Perform update as described by vector (i)
holding (i) = false

state(i) = "Available"

end '

<"R", n(k), n(j), time>
begin
Compute pricority P
if P < priority(i) then
if n(j) = n(i) then {new locally generated
: update temporarily rejected}
save vector and retry later
{priority is higher than previous request}
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el se

begin

if prepared(i) = n(i) then {org. of old request
0ld update temporarily rejected}
save vector(i) and retry later

begin

if n(i) = n(j) then {locally generated update request}
begin ,
cogpute priority P, L(i) and update vector V
send <"R", n(i), n(i), time> to all n(p) € L (i)

vector (i) = V; prepared(i) = n(i)
sender(i) = n(i); priority(i) =P
if |IL(i)} = 1 then {it is also a leaf}

send <"U", n(i), vector(i), priority(i), 0)
to n(p) € L (i)
: end
el se
begin
compute priority P and L (i)
prepared(i) = n(j); sender(i)=n(k); priority(i)=P
if L(i) - n(k) = % then { n(i) is a leaf}
send <"A", n(i), priority(i), 0> to n(k)
el se
send <"R", n(i), n(j), time>
to all n(p) € L (i)=-n(k)
end
Copy(i) = L(i) - sender(i)
end
end
end

node n(i) is in state "Counting”.

Ignore all messages

node n(i) is i

state "Update".

'Ignore all messages

V. CONCLUSIONS

In this paper, an update synchronization algorithm for
databases, whose copies are distributed on a store-and-
forward synchronous network, has been presented and its com-
plexity analyzed. It has been shown that the algorithm is.
time optimal within a small additive constant, for networks
of arbitrary topology. :

There are some obvious 1limitations in the proposed
method, for example knowledge of the message transmission
delays is required, and ne provision for retransmission of
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messages 1s included.

On the other hand, the algorithm does not require any
knowledge of the general topology of the network; therefore
changes in topology can occur ~when there are no active
update requests on the network. '
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CONCURRENCY CONTROL IN A MULTIPLE COPY
DISTRIBUTED DATABASE SYSTEM

Wen-Te K. Lin

Sperry Research Center

Abstract

The concurrency control mechanism employed by the System for
Distributed Databases, SDD-1, avoids both central site control and
global data 1locking. This paper proposes modifications to the
~ concurrency control mechanism of SDD-1 which eliminate the need for
timestamps on data items and weaken the constraints of some of the
read-write protocols. These modifications reduce the amount of
storage required and allow accommodation of existing databases which
may make no provision for stored data item timestamps. A new protocol
W is introduced which requires that write actions which participate in
certain cycles in the class conflict graph be synchronized at certain
sites. This protocol may reduce the degree of concurrency supported
by the system, Existing SDD-1 protocols are augmented with weaker
forms of these protocols which allow more flexibility in scheduling
read and write actions under certain conditions. Timestamps of some
actions are allowed to be changed in order to reduce the
synchronization delay experienced by other actions, thereby increasing
concurrency. A proof of correctness is given.

1, INTRODUCTION

Several solutions for concurrent transaction control in a
multiple-copy distributed data base system have appeared in the
literature (1) - (4). Most of these solutions involve various degrees
of global locking, which requires a large number of intersite messages
ard reduces system concurrency. Some require primary sites as control
centers, which may create bottlenecks in the system. One solution,
presented in (4), employed by the System for Distributed Databases,
SDD-1, avoids global locking and primary sites, but requires stored
timestamps on all data items of the data base (or at least on all
recently updated data items). This paper proposes modifications to
the concurrency control mechanism of SDD-1'which eliminate the need
for timestamps on data items and ease some of the synchronization
protocols between read and write actions. A proof of correctness is
given,

2, SUMMARY OF SDD-1 CONCURRENCY CONTROL

A transaction T is the unit of consistency and is modeled as a
series of read actions followed by write actions
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T = R(T,ul) .. .R(T,un)W(T,v1) .0 W(T,vm)
where ul,...,un are distinct sites at which these actions are to be
executed. Similarly for vi,...,vm, Associated with each read action,
say R(T,ul), is a set of data to be retrieved, called the read set of
transaction T at site ul, which is also denoted by R(T,ul). Similarly
W(T,ul) denotes the write set of transaction T at site ul, Each
transaction T belongs to a transaction class T* which has a
pre-determined set of data to be read from and written into the
database at each site. These are called the read sets and write sets
of the transaction class (These read—sets and write-sets are physical
sets, For the purpose of this paper the concept of 1logical sets is
not needed). The read sets and write sets of each transaction are
contained in the read sets and write sets of its class respectively.
We denote the read set and write set of class T* at site u by R(T*,u)
and W(T*,u) respectively. R(T*,u) and W(T*,u) also denote the class
- of read and write actions of transaction.class T* sent to site u. A
class conflict graph is used to show the intersections among read sets
and write sets for all transaction classes in the system. For
example, in Figure 1, a transaction class is represented by nodes, one
for each read and write set connected by a central node. In the
figure the read set of transaction class T* intersects the write set
of class S* at site u, and write sets of T* and S¥* intersect at site
u. We draw an edge for every such intersection. We call such an edge
a heterogeneous edge.. An edge is also drawn between the central
point, and each read set and each write set of the same class; these
edges are called homogeneous edges. A path is a sequence of read
nodes and write nodes (S1, S2,...,5n) where (Si,Sitl) is either a
heterogeneous edge or an adjacent pair of homogeneous edges, and no
edge appears twice. If S1=Sn then the path is called a cycle. A

R(T*,v) R(T*,x) R(T*,u) R(S*,u) R(S*IY> R(T*,u)

T*

W(T*,v) W(T*,u) W(S*,u) W(T*,v) W(S*,u)

Figure 1 , Figure 2

path, or a cycle, is called non-redundant if each class appears in at
most two heterogeneous edges in the path. By analyzing such conflict
graphs, protocols are devised that make the system run correctly in
the sense of serializability and convergence of multiple~copy data
(4). Serializability means that if the system ceases to take any new
transactions and 1lets existing ones run to completion, the final
database state (which includes all external output) is the same as if
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all transactions were run serially in some order. Convergence of
multiple~copy data means that if the system ceases to take any new
transactions and lets existing ones run to completion, all copies of
the database will be the same.

The following assumptions are made in SDD-1:

1. There is a unique timestamp associated with each transaction. One
way to ensure uniqueness is to take the originating site number as
the low order digits and the 1local clock time as the high order
digits of the timestamp.

2. Transactions are grouped into classes characterized by read sets,
write sets and originating site.

3. Transactions from the same class are pipelined, i.e., actions from
the same class designated for the same site are sent, received and
processed in timestamp order. (This constraint can be relaxed so
that if the read set and write set of a transaction class do not
overlap at some site, then actions from the class designated for
the site can be processed with the following three rules: (1) all
read actions must be pipelined, (2) all write actions must be
pipelined, (3) each read action must precede the write action of
the same transaction).

4, There is a timestamp assoc1ated with each data item in the
database. (This assumption will be eliminated later).

- 5, Write actions of a transaction are sent out only after all its
read actions have been completed.

Protocols of SDD-1 as described in (4) are summarized in the
~ following:

Definition: ™ (S) denotes the timestamp of the transaction S.
M™(W(S,u)) denotes the timestamp of the action W(S,u) which is
initially equal to T™(S), but may be changed as discussed in later
sections.

Protocol R3: Whenever R(T#*,u) and W(S*,u) intersect, and there exists
a non-redundant path in the conflict graph between W(S*,u) and
some write set of class T* (see Figure 2), then for every pair of
transactions T,S in classes T*,S* respectively, W(S,u) runs after
R(T,u) (denoted by R(T,u)->W(S,u)), iff the timestamp ™(S) of S,
is larger than ™(T).

Protocol R2: If read sets of T* intersect write sets of S* and Q* (S*
and Q% are not necessarily distinct) at sites u and v
respectively, and there is a non-redundant path between these
write sets (Figure 3), then make sure that T* reads equally
up~to—-date data from S* and Q* at sites u and v. In other words

W(S,u)->R (T1,u) < R(T2,v)->W(Q,v) implies TM(S)<TM(Q)
where Tl and T2 are from transaction class T*, Tl and T2 are not
necessarily distinct, A->B means A runs before B, and A<B means
that the transaction containing action A has a timestamp which is
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less than or equal to the timestamp of the transaction containing
action B,

Protocol Rl: In R2, if uwev, S*Q%, then make sure that T* reads
equally up-to—date data from S* and Q* at site u (Figure 4). (In
fact this is a special case of R2). In other words

W(S,u)=>R (T1,u) R (P2,u)->W(Q,u) implies TM(S)<IM(Q)
wvhere Tl and T2 are from the class T* and are not necessarily
distinct,

R(T*,u) R(T*,v) R(T*,u)

W(S*,u) W(Q*,v) W(S*,u) W(Q*,u)

Figure 3 Figure 4

In implementing these protocols, SDD-1 uses a synchronization
primitive for coordinating an action A (always a read action in SDD-1)
with respect to a class of write actions W(S*,u) at a site u., This
synchronization primitive, called SYNCHl1 here, is defined as follows:

Definition: SYNCH1(A,W(S*,u),t) is a synchronization primitive which
is applied at site u to the action A with respect to the write
queue W(S*,u) and timestamp t. The primitive says that action A
be executed if and only if actions from the queue W(S¥,u) have
been executed up to but not beyond timestamp t.

When synchronization primitive SYNCH1 is wused, some read action
may wait indefinitely because transactions in the class S* with which
it synchronizes occur infrequently. In SDD-1, null-write messages are
used to minimize this kind of delay.

In SDD-1, timestamps on data items are used to ensure convergence
of multiple copies of data. Whenever a new data item is to overwrite
an existing data item, the timestamp of the existing data item is
retrieved and compared with the timestamp of the new data item,

Update is carried out only if the timestamp of the new data item is
larger.

For brevity, protocol p4 for handling unanticipated transactions
is not described here. The results of this paper remain correct if p4
is included, however the proof of correctness becomes more tedious.
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The execution symbol E is also eliminated from the transaction model,
because it serves no useful purpose as far as this analysis is
concerned, A more complete description may be found in (4). 1In the
next section we add a protocol to the system which makes data item
timestamps unnecessary.

3. THE WRITE PROTOCOL

The following protocol is added to the three protocols discussed
in Section 2. Together they make the system run correctly without
timestamps on data items. Of course a price must be paid for saving
storage space. This protocol requires some synchronization of write
actions at each site, which reduces concurrency among write actions.
However, it does not directly increase any inter—site synchronization.

Protocol W: If write sets of T* and S* -intersect at site u, i.e.
W(T*,u) AW(S*,u)70, and W(T*,u), W(S*,u) reside on a non-redundant
~cycle (including cycles involving only write actions) as shown in
figure 5, then for all transactions T,S in classes T¥,S*
respectively, W(T,u) runs after W(S,u) if and only if T™M(T)>TM(S).

T* S*

W(T*,u) W(S*,u)
Figure 5

Implementation: Apply SYNCHI (W(T,u) W(S*,u) ,T™(T)) at site u for every
transaction T from class T*, where ™(T) is timestamp of T.
(Similar procedure must be applied to every transaction S from
class S* against queue W(T*,u) at site u.)

4, PROOF OF CORRECTNESS

Correctness of a system here means the system is serializable and
all copies of redundant data converge to the same values. A local log
at site u is defined to be a linear sequence of all actions executed
at site u which represents the actual order in which they are
executed, if the system obeys the partial order constraints imposed by
the assumptions and protocols discussed in the last two sections. A
system log is any merge of all the local logs which preserves the the
order among actions in the local 1logs. To prove that the system is
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serializable it must be shown that all the local logs are serializable
and the serial orders are consistent among all the 1local logs. It is
equivalent to prove that any system log composed of these local logs
is serializable,

In the following, it will be shown that all system logs are
serializable in the sense that if the following adjacent interchange
rules are applied to any system log, the log can be transformed into a
serial log. A serial log is a log of serial execution of those
transactions in some order. The  following table shows when two
adjacent actions in a log cannot be switched.

R(T1,u), R(T2,u) Tl and T2 are from the same class (pipelining)
‘W(T,u), W(S,u) The write sets of T* and S* intersect at site u.
T* and S* may be the same transactions class.
R(T,u), W(S,u) The read set of T* intersects the write set of
‘ of S* at site u, where S* and T* may be the
W(S,u), R(T,u) same class.

T and S are the same transaction,

The rules in the table above are less restrictive than in (4) in
that E actions and augmented conflict rules are eliminated. But it is
more restrictive in that any two write actions cannot, in general, be
switched,

In serializing a system log, we would try to move two actions of
the same transaction adjacent to each other by moving actions between
them either to the left or to the right. But in doing so adjacent
action symbols which belong to the same transaction must not be split
up. The following lemma will be stated without proof. For a detailed.
proof of the lemma see [10].

Lemma T : Let L=,,..X(A,u),..¥(B,v)uos be a subsequence (not
necessarily contiquous) of a system log. Let us assume that at most
two consecutive action symbols between X(A,u) and Y(B,v) can belong to
the same transaction, Let us also assume that every action, (or
action with one of its neighbors, if this neighbor also belongs to the
same transaction), between X and Y is blocked by its (their) left and
right neighbors (the blocking can be due to protocol conflict or
pipelining rule). If there exists at least one action between X(A,u)
and Y(B,v) in the system log L, and one of the following conditions is
true, then TM(X(A,u))<TM(Y(B,v)).

(1) A*=B*

(2) A*#B*, both X(A,u) and Y(B,v) are write actions, and there exists
a non-redundant path between X(A,u) and Y(B,v) in the conflict graph
other than the. path shown in the log L.
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Theorem 1l: System logs which obey the protocols and conditions in
Sections 2 and 3 are serializable.

Proof: Suppose, to the contrary, that there exists a system log L
which cannot be serialized. Then there are two action symbols from
the same transaction, separated by one or more action symbols from
other transactions, which cannot be moved adjacent to each other, say
X and ¥ in the following fragment of L,

L= .c.X S1 52.,..5n Y..., where X=50, and Y=Gn+l

where each one of S1,S2,...,5n is a group of actions belonging to the
same transaction, and cannot be moved to the left of X or to the right
of Y. Then each Si, where 1<i<n, must be blocked from the left and
right by some Sj and Sk, j<i<k. Therefore there exists a subsequence
of the sequence (S1,S2,...,5n) (mot necessarily contiguous) which
forms a blocking path from X to Y in the sense that each Si on this
path is blocked by its left and right neighbors. Since for each Si on
this path at most two action symbols of Si are needed to have Si
blocked by its left and right neighbors, a blocking path from X to Y
can be derived which is composed of one or two action symbols from
each group Si. By lemma T (see Appendix) ™(X)<M(Y). But since X
and Y are of the same transaction, ™(X) = T™(Y), a contradiction.
Therefore, the assumption that there exists a system log which is not
serializable is false.

QED
5. FURTHER WEAKENING OF PROTOCOLS

Before we present the modified protocols we define a partition on
the set of all read nodes and write nodes of a transaction class.

Let P(s*)={Sl,S2,...,5n} be a set consisting of all the read
nodes and write nodes of the transaction class S*, We define an
equivalence relation ~ on the set P(S*) as follows:

1, Si"Si for all Si in the set P(S*%),

2, Si"Sj if there exists an external path between Si and Sj. By
external path, we mean a path that does not include a homogeneous
edge of the class S*,

The equivalence relation ~ defined above partitions the set P(S*)
into disjoint blocks. We denote the block containing W(S*,u) by
BLOCK (W(S#*,u)).

Definition: A write node W(S*,u) satisfies condition (a), |if
BLOCK (W(S*,u)) consists only of the node W(S*,u).

Definition: A write node W(S*,u) satisfies condition (b), if the read
node R(S*,u) exists, and BLOCK(W(S*,u)) does not include any read
node R(S*,v) where v is not equal to u.
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5.1 Protocol R3a and R3b

Under certain conditions, protocols R3, R2, Rl, and W are more
restrictive than necessary. The following protocols are relaxed
versions of protocol R3. Protocol R3a applies when W(S*,u) in figure
2 satisfies condition (a); protocol R3b applies when W(S*,u) in figure
2 satisfies condition (b).

Protocol R3a: If W(S*,u) in figure 2 satisfies condition (a), then the
two rules as defined below must be followed.

(1) For every transaction S from class S*, the timestamp
™(W(S,u)) can be changed, But for any pair of transactions S1,S2
from class S*, T™ (S2)>TM (S1) if and only if
™ (W(S2,u) )>™(W(S1,u)).

(2) For every paif of transactions T,S in classes T*%,S5*
 respectively, W(S,u) runs after R(T,u) if and only if
™ (W(S,u))>™(R(T,u)).

Implementation: Attach the read condition (S*,™(T)) to R(T,u). When
R(T,u) arrives at site u, apply synchronization primitive
SYNCH2 (R (T,u) ,W(S*,u) ,™(T)) or SYNCH3(R(T,u),W(S*,u),™(T)) as
described in the following two definitions.

Definition : SYNCH2(R(T,u) ,W(S*,u),t) is a synchronization primitive

which is applied at site u to the read action R(T,u) with respect
to the queue W(S*,u) and the timestamp t.
If the last write action executed from queue W(S*,u) is W(Sl,u)
with timestamp TM(S1l) when R(T,u) arrives at site u, and if
t>™M(S1), then instead of waiting for actions from queue W(S%,u)
to be processed up to but not beyond timestamp t as in SYNCHI,
site u can proceed to execute R(T,u) immediately. But site u must
also add (t-TM(S1l)) to the timestamp of every action from class
W(S*,u) not yet executed. Or site u can choose a time t' anywhere
between ™(S1) and t (inclusive) and execute R(T,u) only after
actions from class W(S*,u) have been executed up to timestamp t',
But site u must add (t-t') to the timestamp of every action from
class W(S*,u) not yet executed. Of course if ¢<TM(S1l), then
R(T,u) will be rejected, In adding time to the timestamps of
write actions, care should be taken to ensure that the new
timestamps are unique, and that the new timestamps will not become
larger and larger which may delay the execution of these write
actions indefinitely. The only purpose of adding (t~TM(S1)) to
the timestamp of every action from class W(S*,u) not yet executed
is to ensure that these write actions have timestamps larger than
t, and that their order 1is preserved. There are implementations
other than simply adding (t-T™M(S1)) to the timestamps, which
achieve these two effects. Synchronization primitive SYNCH3,
which follows, is one such implementation.
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Definition: SYNCH3(R(T,u) ,W(S*,u),t) is a synchronization primitive
vhich is applied at site u to the read action R(T,u) with respect
to the queue W(S%,u) and the timestamp t.

At site u, assoclate with the queue W(S*,u) two timestamp
varizbles LAST (W(S¥*,u)) and NEXT (W(S*,u)) which are initially set
equal to 0., The variable LAST(W(S%*,u)) stores the timestamp of
the last write action executed from the queue W(S*,u). The
variable NEXI(W(S®,u)) is used to compute the timestamp of the
next write action to be executed from the queue W(S*,u). Let
W(S,u) be the earliest pending write action, if one exists, from
the queue. Define its (modified) timestamp ™ (W(S,u)) as follows:

™(W(S,u)) = Max(T™M(S), NEXT (W(S*,u))+1) ,

where one should be added to the 1local clock portion of the
timestamp. Whenever a write action W(5,u) is executed,
LAST (W(S*,u)) and NEXT (W(S*,u)) are set equal to TM(W(S,u)). Wwhen
.the read action R(T,u) arrives at site u the following occurs. If
LAST W(S*,u) )<t then R(T,u) is executed immediately and
NEXT (W(S*,u)) is set equal to Max(t,NEXT (W(S*,u))). Otherwise
R(T,u) is rejected.

Alternatively, if [AST(W(S*,u))<t then site u chooses a
timestamp T1 such that LAST (W(S*,u))<Ti<t. Site u then delays
execution of R{T,u) until actions from class W(S*,u) have been
executed up to but not beyond timestamp Tl. On execution of
R(T,u), NEXT W(S*,u)) is set equal to Max(t,NEXT (W(S*,u))).

Protocol R3b: If W(S*,u) 1in figure 2 satisfies condition (b), then
protocol R3a, augmented with the following rule, must be followed.

(1) For every transaction S from class S%*, all the actions in
BLOCK (W(S,u)) must have the same time stamp.

Implementation: Attach the read condition (S*,™(T)) to R(T,u). When
R(T,u) arrives at site u, apply the synchronization rule
SYNCH4 (R (T,u) ,R(S*,u) ,W(S*,u) ,T™(T)), defined below.

Definition : SYNCH4 (R (T,u),R(S*,u) ,W(S*,u),t) is a synchronization

primitive which applies to the read action R(T,u) with respect to
the queues R(S*,u) and W(S*,u), and the timestamp t. '
At site u, associate with the queue R(S*,u) of actions from class
S*, two timestamp variables LAST(R(S*,u)) and NEXT(R(S*,u)), and
associate with the queue W(S*,u) one timestamp variable
[AST (W(S*,u)) all of which are initially set equal to 0. Let
R(S,u) be the earliest pending read action, if one exists, from
the R(S*,u) queue. Let us define the timestamp NEW(R(S,u)) as
follows:

NEW(R(S,u)) = Max{TM(S), NEXT (R(S*,u))+1) .

If R(S*,u) is a member of BLOCK(W(S*,u)) then M™(R(S,u)) must be
changed to NEW(R(S,u)). Otherwise T™(R(S,u)) stays unchanged,
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whenever the read action R(S,u) 18 executed, [ASTR(S®,u)) and
NEXT (R (S*,u)) are set equal to NEW(R(S,u)), no matter whether
TR (S,u)) is changed or not, and site u must send a
read-completion message together with the timestamp NEW(R(S,u)) to
the originating site of action R(S,u). The originating site must
use this timestamp to timestamp - all the write actions 1in
BLOCK(W(S,u)). When a write action W(S,u) is executed at site u,
LAST(W(S*,u)) is set equal to ™TM(W(S,u)). Notice that at all
times LAST (W(S*,u)) < LAST(R(S*,u)).

when a read action R(T',u) with read condition (S¥*,t) arrives

at site u the following occurs.

(1) If t<LAST(W(S*,u)) then R(T,u) would be rejected.

(2) If t<LAST(R(S*,u)) and LAST(W(S®*,u)) then R(T,u) must wait
until actions from the W(S%*,u) queue have been executed up to but
not beyond timestamp t.

(3a) if ©OLAST(R(S*,u)) and OLASTW(S*,u)), then site u must wait
~until actions from queue W(S%,u) have been executed up to but not
beyond timestamp LAST (R(S*,u)) before it executes R(T,u). After
execution of R(T,u), NEXT(R(S?*,u)) is set equal ¢o
MAX (t,NEXT R (S*,u))). Or,

(3b) Site u can choose a timestamp t°’, where LAST R(S*,u) )<t <t,
and wait until actions from both queues R(S¥*,u) and W(S*,u) have
been executed up to but not beyond timestamp t' before executing
R(T,u). After execution of R(T,u), NEXT(R(S*,u)) is set equal to
MAX (t,NEXT (R (S*,u))). :

5.2 Protocol R2a,R2ab and R2b

Similarly, under certain conditions protocol R2 can be relaxed.
The following protocols are the relaxed variations of protocol R2,

Protocol R2a: If W(S*,u) and W(Q*,v) in figure 3 both satisfy
condition (a) then the two rules as defined below must be
followed.

(1) Por every transaction S from class S%*, the timestamp
™(W(S,u)) can be modified. But for every pair of transactions
S1,52 from class S* TM(S2)>TM(S1) if and only if
™(W(S2,u))>™M(W(S1,u)). (Similarly for class Q%,)

(2) For every transaction S from class S*, Q from class Q%*, Tl and

T2 from class T#%, |if W(S,u) rung before R(Tl,u),

TM(R(T1,u) ) STM(R(T2,v)), and R(T2,v) runs before W(Q,v) then

T™M(W(S,u) )<TM(W(Q,v)). In other words '
W(S,u)=->R(T1,u) R (T2,v)=-X(Q,V)

implies ™ (W(S,u) ) <T™M(W(Q,v)) .

Implementation: Attach read condition (S%*,t) and (Q®,t) to R(l,u) and
R(T,v) respectively, where t can be arbitrarily chosen by the
originating site. Then apply SYMCH3(R(T,u) ,W(S%,u),t) and
SYNCH3 (R (T,v) ,W(Q%,v) ,t).
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Protocol R2ab: If W(S*,u) and W(Q*,v) of figure 3 satisfy condition
(a) and (b) respectively, then protocol R2a, augmented with the
following rule, must be followed.

(1) For every transaction Q from class Q%, all the actions in
BLOCK (W(Q,v)) must have the same timestamp.

Implementation: Attach read condition (S*,t) and (Q*,t) to R(T,u) and
R(T,v) respectively, where t can be arbitrarily chosen by the
originating site. Then apply SYNCH3(R(T,u),W(S*,u),t) and
SYNCH4 (R (T, V) ,R(Q*,v) ,W(Q*,v) ,t).

Protocol R2b: If both W(S*,u) and W(Q*,v) of figure 3 satisfy
condition (b), then protocol R2ab, augmented with the following
rule, must be followed.

(1) For every transaction S from class S*, all the actions in
BLOCK(W(S,u)) must have the same timestamp.

Implementation: Attach read condition (S*,t) and (Q*,t) to R(T,u) and
R(T,v) respectively, where t can be arbitrarily chosen by the
originating site. Then apply SYNCH4 (R (T,u),R(S*,u) ,W(S*,u),t) and
SYNCH4 (R (T, v) ,R(Q*,v) W(Q*,v),t).

5.3 Protocol Rla,Rlab, and Rlb

Similarly, 'protocol Rl can be relaxed under conditions as
discussed in the prevous section.

Protocol Rla: If W(S*,u) and W(Q*,u) in figure 4 satisfy condition
(a) , then the two rules as defined below must be followed.

(1) For every transaction S from class S*, the timestamp
™(W(S,u)) can be modified., But for every pair of transactions
s81,82 from class S* TM(S2)>IM(Sl) {f and only if
™(W(S2,u) )>™M(W(S1,u)). (Similarly for Class Q*.)

(2) For every transaction S from class S*, Q from class Q*, Tl and
T2 from class T*,

W(S,u)->R(T1,u) R (T2,u)->W(Q,u)
implies ™ (W(S,u) )<TM(W(Q,u)).

Implementation: Attach read conditions (S*,t) and (Q*,t) to R(T,u),

where t will be chosen at site u. Let the timestamp variables

- associated with W(S*,u) and W(Q*,u) as mentioned in

synchronization rule SYNCH3 be IAST(W(S*,u)) and LAST(W(Q*,u))

respectively. Site u then chooses a timestamp for t such that

t>Max (LAST (W(S*,u) ) ,LAST (W(Q*,u))), and applies
SYNCH3 (R (T',u) ,W(S*,u) ,t) and SYNCH3 (R (T,u) ,W(Q*,u),t).

Protocol Rlab: If W(S*,u) and W(Q*,u) satisfy condition (a) and (b)
respectively, then protocol Rla, augmented with the following
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rule, must be followed.

(1) For every transaction Q from class Q¥*, all the actions in
BLOCK (W(Q,Vv)) must have the same timestamp.

Implementation: Site u chooses a timestamp for t as discussed in the
prevous implementation. It then applies SYNCH3(R(T,u) ,W(S*,u),t),
and SYNCH4 (R (T,u) ,R(Q*,u) 'W(Q*ru) t).

Protocol Rlb: If W(S*,u) and W(Q*,u) both satisfy condition (b), then
protocol Rlab, augmented with the following rule, must be
followed.

(1) For every transaction S from class S*, all the actions in
BLOCK (W(S,u)) must have the same timestamp.

Implementation: Choose a timestamp for t as discussed in protocol Rla.
_Then apply SYNCH4 (R (T',u) ,R(S*,u) ,W(S*,u),t) and
SYNCH4 R (T,u) ,R(Q¥*,u) ,W(Q*,u),t).

5.4 Protocol Wa and Wb

Protocol W can be relaxed under certain conditions too.

protocol Wa: Assuming that W(T*,u) and W(S*,u) intersect and both
reside on a non-redundant cycle as shown in figure S5, and that
W(S*,u) satisfies condition (a), then the two rules as defined
below must be followed.

(1) Por every transaction S from class S¥*, the timestamp
™ (W(S,u)) can be changed. But for any pair of transactions S1,52
from class S*, ™(S2)>TM(S1) if and only if
™(W(S2,u) )>TM(W(S1,u)).

(2) For every transction T from class T* and S from S*, W(T,u)
runs after W(S,u) if and only if ™ (W(T,u))>M(W(S,u)).

Implementation: Apply SYNCH3 (W(T,u) ,W(S*,u) ,™(T)) to every
transaction T from class T¥,

Protocol Wbh: If W(T*,u) and W(S*,u) intersect and both reside on a
non-redundant cycle, and W(S*,u) satisfies condition (b), then
protocol Wa, augmented with the following rule, must be followed.

(1) For every . transaction S from class S¥*, all the actions in
BLOCK (W(S,u)) must have the same timestamp.

Implementation: Apply SYNCH4 (R(T,u),R(S*,u),W(S*,u),™M(T)) to every
transaction T from class T*%,

5.5 Summary of Protocols
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The following table summarizes all the protocols discussed in
this paper. An "x" in the table means that the protocol uses the
correspondlng synchronization pr1m1t1ve.

R3 R3a R3b R2 R2a R2ab R2b Rl Rla RlabRlb W Wa Wb

SYNCH1 x X X » X
SYNCH3 X X X X X X

SYNCHA4 X X X X X X

6. PROOF OF CORRECTNESS

In the implementations of the new protocols . described in
Section 5, timestamps of some read actions and write actions can be
changed. Therefore the assertion that any two actions from the same
transaction have the same timestamp as asserted in the proof of
theorem 1 and lemma T in section 4 is no longer true. But this
assertion is needed 1in the proof of theorem 1 and lemma T only when
two actions from the same transaction are involved in a cycle. But
for any two actions from the same transaction involved in a cycle,
either both of their timestamps have been changed to the same value
(if condition(b) is true), or both of their timestamps have not been
changed at all (if condition(b) is not true). Therefore, the proof of
theorem 1 and lemma T is still correct for these new protocols.

7. CONCLUSION

A new protocol is introduced to eliminate the need for.
timestamps on data items. This protocol reduces the concurrency of
write actions in each site. The degree of loss of concurrency depends
on the conflict graph structure of each application., For some
applications, for example, those in which changes to the data base do
not occur frequently or do not have to be processed immediately, the
saving of storage space may outweigh the loss of concurrency.

Existing read-write protocols are weakened under certain
conditions to allow some read and write actions to wait less. These
weaker protocols not only allow more flexible scheduling of some read
and write actions, but also reduce or even eliminate the requirement
for null-write messages, and yet improve system performance at the
same time, Preliminary results from a simulation study have confirmed
this. A proof of correctness is also given.
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ABSTRACT

A new concurrency control algorithm for distributed database
systemsg that spatially extends the idea of "exclusive/share locks"
is presented. The new algorithm, extended true-copy  token
algorithm, combines a locking mechanism and a "true-copy token"
mechanism. "True-copy tokens" handle partitioned data that cannot
be handled efficiently by locks alone.

1. INTRODUCTION

A distributed database system is one of the hottest issues
among many theorists and practitioners. The system must provide
an Integrated interface to 1its users by hiding partition and
duplication of scme data. Furthermore, although transactions are
processed concurrently, their effects on the system and the users
must be as if they were processed in sequence. Without reasonable
concurrency, most  distributed database systems will  be
impractical.

The concurrency control problem 1in a distributed database
system has been studied by many researchers [BADA-78, BERN-78,
ELLI-77, GARC-78, GELE-78, GRAP-76, LELA-78, ROSE-78, STON-79,
THOM-78]. However, a satisfactory solution is yet to come. In
this paper we present still another algorithm that we hope gives
some new insights.

In section 2 we ©Dbriefly dintroduce a formal model of a
distributed database system. Following [LAMP-78], an execution
history of transactions is defined as a partial ordering on action
events, so we do not assume the existence of the totally ordered
global time. Also two operational consistency conditions used so
far in the literature are discussed.

In section 3 an "extended true-copy token" algorithm is
presented. A "true-copy token" is used to designate a "true-copy"
that provides the current "logical component" value when a logical
component 1s represented by multiple "physical components'. The
" algorithm efficiently supports "multiple migrating localities". A
new concept "effective global time" is introduced in section 4,
and its usefulness is shown in the correctness proof of the
extended true-copy token algorithm.
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In section 5 we briefly discuss the new algorithm and some
related algorithms. Although no discussion about the concurrency
control problem for a distributed database system 1s complete
without discussing the resiliency problem, this is not addressed
in this paper.

2. DISTRIBUTED DATABASE SYSTEM MODEL

We assume that a distributed database sygtem
DDBS = {X, Y, Z, «++«} consists of a set of logical components,
each of which can be assigned a value independently. A logical
component X = {x1, x2, x3, ...} 18 represented by a set of one or
more duplicated physical components that are supposed to assume
the same value except for transitional periods during update
operations.

A site H of a distributed database system is a subset of the
set of all physical components in the system, 1i.e.,
H< (X+Y+7Z+.e. ). Every two sites must be disjoint, and the
union of all sites 18 the set of all physical components.

Here the terms "logical' and "physical" are used to indicate
only a relative degree of abstraction. "Physical" does not mean
direct implementation by hardware; a "physical component” may be
a "logical component” at another level of abstraction.

A transaction T = {A, B, ces} 1s a set of .actions. An
action 1is a group of operations that we find convenient to treat
as a single group. Operations in the action can be interpreted in
two ways: "logical" or 'physical." A 1logical operation is
considered to access logical components, and a physical operation
is considered to access physical components. More specifically, a
logical operation read(X) is equivalent to a physical operation
read(x1i), any 1, and a logical operation write(Y) is equivalent to
a set of physical operations { write(yl), write(y2), ... }. In
the sequel, we assume that operations are '"physical" unless we say
otherwise. A write operation to a physical component at a remote
site is informally called an update-

An action 1is executed on a single site. Actions belonging to
the same transaction, however, may be executed on different sites;
a transaction may migrate around different sites. A transaction
can even spawn multiple actions that operate concurrently. Thus
concurrent processing of actions belonging to the same transaction
as well as to different transactions may occur. What constitutes
a single action may vary according to the system designer’s
discretion as long as the previous constraints are observed. For
- example, update operations of the same content to duplicated
physical components at different sites must belong to different
actions, but different update operations to different components
at the same site can be grouped into a single action when these
operations belong to the same transaction.

"<"

Unusual notations used in this paper: "+" for set union; for

set inclusion; and "/" for negation.
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The execution of an action A 1{s characterized by the
occurrences of its initiation event "a" and termination event "a",
which we will call action events. We define the partial ordering
on the set of action events following [LAMP-78]:

Definition. An execution history "<<" of a set of transactions is
an irreflexive partial ordering on the set of action events caused
by the execution of these transactions. For two events a and b,
a<<b 1ff

1. Events a and b have taken place at the same site, and event a
preceded event b;

2. Event a is the sending of a message and event b 1s the receipt
of the same message at another site; and

3. The pair (a,b) is in the transitive closure of the ordering
obtained by the above two rules, i.e., a<<c and c<<b for some
action event c.

A write operation, especially an update to a duplicated
component, may be redundant because the value written by 4t is
overwritten by another write operation without being read by any
action. These redundant write operations can be omitted. By
properly dignoring redundant write operations, the inter-site
traffic can be reduced, thus efficiency of the system operation
can be enhanced.

A consistent execution history of transactions is one 1in
which the system and the users see the database state as if the
transactions were processed sequentially. A concurrency control
algorithm 1is consistent iff any executlon history realized by the
algorithm 1s consistent. [PAPA-77] has given the minimun
condition for - consistent transaction processing, which we call
consistency condition Cl, and has shown that the consistency test
of an execution history is NP-complete. Other authors [ESWA-76,
MINO~78, SCHL-78, STEA-76] have used a stricter condition that
allows a polynomial-time consistency test of an execution history.
The latter condition, which we call consistency condition C2, is
sufficient but not necessary under the same premise with [PAPA-77,
BERN-78].

In this paper we use 1informal arguments, but more formal
treatment can be found in [MINO-79]. We can prove the following
statements about consistency conditions Cl and C2:

l. For any execution history of transactions, if C2 is true, then
Cl is true; and

2. Cl is equivalent to C2 if the range of A is a subset of the
domain of A for all actions A.
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The fact that consistency condition C2 18 mnecessary and
sufficient when a "read-set" is a subset of a "write-set" for any
action, has been observed in [ESWA-76, STEA-76].

3. EXTENDED TRUE-COPY TOKEN ALGORITHM

In this section we present a concurrency control algorithm
that spatially extends the notion of exclusive/share 1locks.
"Primary sites" [STON-79, GRAP-76] and a "circulating token" have
been used as consistency control mechanisms for duplicated data.
In [LELA-78], a "circulating token" is used for issuing "tickets";
a similar technique can be wused to designate a "true copy", a
version of data contained in a physical component whose value 1is
current. An " "extended true-copy token" mechanism 1is a
generalization of these ideas; it uses '"exclusive-copy tokens"
and '"share-copy tokens' that designate "migrating primary sites".
Locking is performed over these migrating primary sites.

Two types of copies, namely "share" and "exclusive" copies,
are important in the following discussion. A true-copy indicator
Ix as well as lock Lx is associated with each physical component
X, and Ix can assume one of the three states, namely, "void",
"share-copy" and "exclusive-copy". ‘Although an wupdate operation

to a duplicated physical component is formally an action that’

belongs to some transaction, we may, in some sense, consider that
it is carried out by the system. A transaction needs to lock only
one copy of the duplicated physical components that it "directly"
accesses. A physical component whose true-copy indicator state is
either "share~copy" or "exclusive-copy" 1is informally called a
true copy, 1i.e., either an exclusive copy or a share copy. A
"void" copy is in a transient state and whose content cannot be
trusted. To visualize the transfer of access permission rights by
the mechanism described below, we assume that a true copy
possesses a true-copy token, l.e., either an exclusive-copy token
or a share-copy token. Also two types of locks, mnamely '"share"
and "exclusive" locks, are assumed in the following discussion.

We do not explicitly state the algorithm that implements
these mechanisms. However, it can be easily constructed observing
the following rules. We call such an algorithm an extended
true-copy token algorithm Al. Note that the following rules do
not assume the existence of global time.

Rules.

1. At the point of system creation there exists one exclusive
copy for each logical component. An exclusive-copy token can
be transferred to another physical component. When the token
transfer occurs, all updates made so far to the new physical
component should precede or accompany the token transfer.
Updates to the new physical component must follow the logical
execution order.

I3
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2. An exclusive copy can become a share copy. A share copy can
spawn multiple copies of itself.

3. When an exclusive dopy is required, all share copies must
shrink into a single share copy that may become an exclusive
COpYy . ! .

4. A transaction can’  set an exclusive lock of a physical
component x only when the state of Ix is "exclusive-copy". An
exclusive copy cannot be revoked until the exclusive lock is
released. :

5. A transaction can set a share’lock_qnly when the state of 1Ix
is '"share-copy". A share copy cannot be revoked until all
share locks on it are released.

6. Locking on true copies by a transaction must be "two-phase”.

In a sense, true-copy. tokens are used to realize logical
components, and locking is done over these logical components;
true~copy tokens handle duplicated copies that cannot be
efficiently handled by ‘a locking mechanism alone. Although
two-phase locking (refer to [ESWA-76] for two-phase locking) 1is
used, 1t is not a complete locking; mnot all accesses to physical
components are done with the physical components being locked.
Update operations to the physical components at remote sites are
performed without locking; true—-copy tokens are used to properly -
sequence these update operatioms.

Update operations can be performed in the right order either
by carrying the latest value of a logical component with the
true-copy token or by letting an exclusive copy token 1ssue
sequence numbers that are unique relative to the logical component
and performing updates according to these sequence numbers. Note
that updates originate only from an exclusive copy, and that they
can be uniquely ordered by these methods. Redundant updates can
be discarded to reduce the inter-site traffic as we mentioned in
section 2; 1if two write operations occur to the same physical
component at a remote site while an exclusive-copy token 1s held
at some site, the preceding write operation is redundant.

Fig. 2 diagramatically shows  which: combination of
transactions shown in Fig. 1 can be processed concurrently.
"Active" means that by using 1local data a transaction can be
executed except for remote updates.

In Fig. 2(a), transaction P can proceed because xl 1is an
exclusive copy, and yl 1is a share copy. Note that P makes
read/write accesses to logical component X and a read-only access
to logical component Y. The update to x2 by P can be discarded
because it is overwritten by the update by transaction Q; it is
redundant.



-226-

read (x1) read(y2)
read(yl)
write(xl)} |write(x2) write(jl) write(y2)

read(xl) read (x2)
read(y2)
|
write(xl) write(xiﬂ write(xl) write(x2)

read(yl)

logical components:

X = {x1, %2}
Y = {yl, y2}

sites:

H = {x1, yl}
I = {x2, y2}

Fig. 1. Transactions.
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(a) P . R
site H | site 1
*k * _ \
x1 yl x2 y2 \
S
(b) Q ” R
site H gite I
F% o, ok
x1 vyl [ x2 y2
() ‘;Sv ' R
\ site H site I
‘ ] ok - , %k
/ x1 -yl x2 y2 ,
(d) S - ‘ T
site H : gite T

%

: "k _—
x1 vyl . X2 S y2

** : exclusive COPY  www=iP active
* : share copy ~—=—gg= blocked

Fig. 2. Extended true-copy token algorithm.
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Also in Fig. 2(a), transaction R tries to make read/write
accesses to logical component Y; however, physical component y2
18 a share copy and not an exclusive copy, so R cannot exclusively
lock y2 and is blocked.

Once P is completed at site H and transaction Q starts its
execution using only an exclusive copy x1, a share copy token of
y1 can be released and y2 can become an exclusive copy; R can
proceed. . :In Fig. 2(b), both Q and R are running concurrently.
The update to x2 made by Q must be sent to site I before x2
becomes an exclusive copy and is accessed by T; 1in general, only
the last update made to an exclusive copy needs to be sent to the
other sites.

In Fig. 2(d) two share copies, yl and y2, exist in the system
at the same time, and both transactions S and T are active.

A transaction is two-phase locked iff no lock requests are
released before all lock requests become active. An immediate
consequence of . the two-phase locking is that all lock requests of
a transaction are active at some point during the execution of the
transaction. We define a binary relation "<<p" on a set of
transactions that use two-phase locking. R <<p S iff Rp << Sp,
where Rp and Sp are the times when all lock requests are active in
transactions R and S, respectively. Note that Rp and Sp are not
action events; we have extended the definition "<<" to cover
them. WNote that both "<<" and "<<p" are acyclic.

_ Now we shall prove the correctness of the extended true-copy
token algorithm by showing that any execution history realizable
by the algorithm satisfy consistency condition C2; see [ESWA-76,
MINO-78, MINO-79, SCHL-78] for consistency condition C2.

Theorem 3.1. Concurrency control algorithm Al is consistent.

Proof. We show that any execution history realizable by the
concurrency control algorithm Al satisfies consistency condition
c2. o

Assume that action A of transaction R and action B of
transaction S conflict over physical component xk. First, if xk
is locked by both transactions R and S, accesses to xk by actions
A and B are made in the same order with "<<p" on R and S. Second,
if xk is accessed by action A without Jlocking but by B with
locking, A‘s access must be an update operation. When an update
by A i1s completed before xk becomes lockable and i1s accessed by B,
i.e., A precedes B, R must have made a write access to some
exclusive copy xi (xi /= xk) performing the same write operation
with the update by A: Then S can exclusively or share lock xk
only after the exclusive lock on xi 18 released by R, hence
Rp<<Sp. When an update by A occurs after action B, R can make an
access to some exclusive copy xi (xi /= xk) only after the
true-copy token is released by xk; Sp<<Rp. In both cases, A and
B are executed in the same order as R and S are ordered by "<<p".
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Finally, if xk 1s accessed by both actions A and B without
locking, these accesses are update operatlons, and the ordering
mechanism of update operations guarantees that updates are done in
the same order with "<<p" on R and S.

We have shown that conflicting operations are performed in
the same order with "<<p" on the transactions to which they
belong; consistency condition C2 is satisfied because '"<<p" 1is
acyclic.

- Q.E.D.

4. EFFECTIVE GLOBAL TIME

In the previous section we have directly proved that
algorithm Al maintains consistency condition C2. TFrom a system
structuring standpoint; Thowever, it 1s more desirable to
.presuppose that a loglcal component itself can assume a value. We
define the value of a logical component as follows:

Definition. The value of a logical component is specified by the
value of ‘the physical component xi that is either an "exclusive
copy" or a "share copy".

- If we can globally pinpoint time, we can assert that  the
value of each logical component is uniquely defined; there is at
most one exclusive copy, and when there are multiple share copies,
their contents are the same. However, our formalism does not
allow the use of global time.

Fortunately, we can define "effective global time" that 1is
totally ordered 'as far as a realizable execution history of
. transactions is concerned.

Definition (effective global time). An effective global time for
a given execution history 1s defined as a "slice" of an execution
history of transactions.: A slice of the execution history 1is a
subset El of the set E of action events, such that for all action
event a in El and action event b in E - El, b << a ‘does not hold.

The above definition d1is not intuitive, so we informally
represent an effective global time as a dividing line in the graph
of an execution history as shown in Fig. 3, which gives a possible
execution  Thistory realizable by the algorithm Al for the
transactions shown in Fig. 1. For example, the effective global
time Tl is the set of events to the left of the line labeled Tl.
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site H:

site I:

*% ; exclusive copy
* : ghare copy

Fig. 3. Effective global times.

Definition (":<<"). We define the ordering ":<<" on the set of
effective global times as follows: For two effective global times
Tl and T2, Tl :<< T2 1iff Tl < T2, i.e., the effective global time
ordering is equivalent to the set inclusion relation.

In Fig. 3, we have Tl :<< T2. Some effective global times
are incomparable as Tl and T3 in Fig. 3. Fortunately, however, we
have the following lemma for a realizable execution history.

Lemma 4.1. A realizable set of effective global times 1s totally
ordered.

Proof. In a realizable execution history, an action event that
once took place cannot be revoked; the effective global time
monotonically increases.

Q.E.D.

For example, in Fig. 3 once the effective global time Tl 1is
reached there 1is no way to reach the effective global time T3;
the effective global time T2 can be reached after Tl.

Now we shall prove the correctness of the extended true-copy
token algorithm by showing that in effect logical components are
accessed under two-phase locking.

Lemma 4.2. In algorithm Al we can assume that logical components
are accessed, 1i.e., accesses are made only to the physical
components whose contents are equal to the wvalues of their
regpective logical components.
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Proof. Accesses are made only to an exclusive copy or a share
copy that defines the value of the logical component.
Q.E.D.

Lemma 4.3. A logical component value is uniquely defined at any
effective global time when it 1is accessed.

- Proof. We prove that at any given effective global time there
exists at most either one exclusive copy or multiple share copiles
of the same content for each 1logical component. TFirst, assume
that we have one exclusive copy xi. Another exclusive or share
copy xj can exists only after x1 ceases to be an exclusive copy or
before =xi becomes an exclusive copy.  In the first case xj can be
a true copy only after a true-copy token 1s transferred from xi to
xj, and in the second case x1 can be an exclusive copy only after
a true-copy token is transferred from xj to xi. Therefore 1in
either case time precedence can be established, and xi and xj

- cannot coexist at the same effective global time; if we have one
exclusive copy, we cannot have another exclusive copy or share

COpY e

Second, when a share copy creates another share copy their
contents are the same. Furthermore, the values of these share
copies will not change until all share coples are revoked and a
single exclusive copy is created. Therefore multiple share copies
for any logical component contain the same value at any effective
global time.

Consequently a logical component value is uniquely defined at
any given effective global time.
Q.E.D.

At global time T2 in Fig. 3, for example, yl accessed by
transaction S and y2 accessed by transaction T have the same
content. Also notice that at any realizable global time at most
one exclusive copy exists for each logical component.

Lemma 4.4. 1In algorithm Al, two-phase locking 1s realized over
logical components; more precisely, at any given effective global
time write-write and read-write mutual exclusions are realized
over logical components.

Proof. Assume that some logical component has been exclusively
locked by some transaction; - some physical component belonging to
the logical component must possess the exclusive~-copy token, and
it must have been locked by that transaction. Then there cannot
be any other true coples, and the only true copy is exclusively
locked; therefore, other transactions cannot access the logical
component, l.e., write-write and read-write mutual exclusions are
realized over the logical component.

Q.E.D.

The correct operation of algorithm Al can be concluded from
Lemmas 4.1 - 4.4.  Although two-phase locking was specified as
part of the rules for the algorithm 'Al, it is not mandatory;
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other types of consistent locking may be used.

In the extended true—-copy token algorithm, transactions are
blocked in two ways: trying to lock a physical component that has
a true-copy token and waiting for a physical component, which the
transaction wants to access, to get a true-copy token.

Theorem 4.5. If a locking mechanism over logical components does
not cause deadlocks, an extended true-copy token algorithm can be
designed so that it may not introduce deadlocks.

Proof. Although we do not describe the details, we can show that
the '"token transfer" mechanism for realizing logical components
can be designed so that it can not Introduce deadlocks. The fact
that the locking mechanism overllogical components does not cause
deadlocks means that there are no deadlocks as long as we can
establish 1logical components (true copiles). In establishing
logical components, special care must be taken so that the
different physical components belonging - to the same logical
component do not block each other by each getting a subset of the
share-copy tokens; this problem can be resolved by assigning a
priority to the physical components.

: Q.E.D.

5. DISCUSSIONS

v The merits of the extended true-copy token algorithm can be
summarized as follows:

l. It is intuitive and has a simple structure.

2. Multiple copiles of a file are supported while it is used for
read-only purposes; also it can be wupdated by revoking
multiple copiles.

3. An exclusive copy may migrate among different sites.

Multiple share coples are useful for a file that 18 mostly
used 1in a read-only mode at many sites but needs to be updated
occaslonally at some site, e.g., a directory, a timetable, etc.

A migrating exclusive copy of a file 1s useful when more than
one site actively use it, e.g., an airline seat reservation table
for a flight from San Francisco to Tokyo; the inter-site traffic
may be reduced by swapping the file at some interval.

One way to measure the capability of a concurrency control
algorithm is to see how various "localities" are supported. We do
not give a precise definition of the "localities", but it roughly
means a set of physical components that must be directly accessed
to execute a transaction. A smaller locality 1s preferable to
larger one. "Primary site" mechanism supports "multiple static
localities" of transaction processing, but fails to support
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"migrating localities". "Circulating token'" mechanism supports a
"single migrating 1locality", but £fails to support "multiple
localities™. Most of other mechanisms currently proposed do not
support small localities well. The extended true-copy token
algorithm is intended to support "multiple migrating localities".

The level of concurrency vrealized by the algorithms in
[BERN-78, LAMP-78] that use timestamps can be shown to be
equivalent to having only one exclusive-copy token in the system.
The similarity between a timestamp algorithm and a "single token"
algorithm can be understood 1if we assume that the site whose local
clock is the slowest has the token; a token transfer is made in a
disguised form by sending a message whose timestamp is ahead of a
local clock of some other site. This is further discussed in
[MINO-79].

6. SUMMARY

A distributed database system with possible partitioned and
duplicated data has been formalized with the consequence that the
gsame operational consistency conditions for a centralized system
were applicable for a distributed database system.

A new algorithm, extended true-copy token algorithm, was
presented. = The mnew algorithm supports either multiple read-only
copies or a single read/wfitg copy for each 1logical component
without violating the consistency condition. 1In its correctness
proof we introduced the new concept of effective global time.

We hope that the ideas developed in this paper will help in
the design and analysis of better algorithms. Making a
concurrency control algorithm resilient 1is essential in a
practical environment. We hope to report on the resilient
extended true-copy token algorithm later.

ACKNOWLEDGEMENTS

The author 1s much indebted to Hector Garcia-Molina for
carefully reading the manuscript and making many valuable
corrections and suggestions. The author wishes to thank Sandy
Briggs for painstakingly correcting his English. Clarence Ellis
and Gio Wiederhold also contributed many important suggestions.
Keith Marzullo and Tim Gonsalvez also helped the author much with
his English.

.This work was partially supported by the Air Force Office of
Scientific Research under contract No. F49620~77-C-0045.
REFERENCES

[BADA-78] Badal, D. and Popek, G. A proposal for distributed
concurrency control for partially redundant distributed data



- 2 34 -

base systems. Proc. 3rd Berkeley Workshop on Distributed Data
Management and Computer Networks, Aug. 1978, pp. 273-285.

[BERN~78] Bernstein, P., Rothnie, J., Goodman, N. and
Papadimitriou, C. The concurrency control mechanism of SDD-l:
A system for distributed databases (the fully redundant case).
IEEE Tr. on Software Engineering SE-4, 3 (May 1978), 154-168.

[BERN-79] Bernstein, P., Shipman, D., and Wong, W. Formal
aspects of serializability in database concurrency control.
IEEE Tr. on Software Engineering SE-5, 3 (May 1979), 203-216

{ELLI-77] Ellis, C+ A robust algorithm for updating duplicate
databases. Proc. 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, May 1977, pp. 146-158.

[ESWA-76] Eswaran, K., Gray, J., Lorie, R. and Traiger, I. The
notions of consistency and predicate locks in a database
system. CACM 19,11 (Nov. 1976), 624-633.

[GARC-78] Garcia-Molina, H. Performance comparison of update
algorithms for distributed databases. Computer Science
Department, Stanford University, Oct. 1978.

[GELE-78] Gelenbe, E. and Sevcik, K. Analysis of update
synchronization for multiple copy data-bases. Proc. 3rd
Berkeley Workshop on Distributed Data Management and Computer
Networks, Aug. 1978, pp. 69-90.

[GRAP-76] Grapa, E. Characterization of a distributed data base
system. UIUCDCS-R-76-831, Dept. of CS, U. of Ill., Oct. 1976.

[LAMP-78] Lamport, L. Time, clocks and the ordering of events in
a distributed system. CACM 21, 7 (July 1978), 558-565.

[LELA-78] Le Lann, G. Algorithms for distributed data-sharing
systems which use tickets. Proc. 3rd Berkeley Workshop on
Distributed Data Management and Computer Networks, Aug. 1978,
pp. 259-272.

[MINO~78] Minoura, T. Maximally concurrent transaction
processing. Proc. 3rd Berkeley Workshop on Distributed Data
Management and Computer Networks, Aug. 1978, pp. 206-214.

[MINO-79] Minoura, T. Analysis of concurrency control mechanisms
for distributed database systems. Unpublished. 1979.

[PAPA-77] Papadimitriou, C., Bernstein, P. and Rothnie, J. Some
computational problems related to database concurrency
control. Proc. Conf. Theoretical Comp. Sci., Waterloo, Canada,
Aug. 1977, pp. 275-282.

[ROSE-78] Rosenkrantz, D., Stearns, R. and Lewis, P. System level
concurrency control for distributed database systems. ACM Tr.
on Database Systems 3, 2 (June 1978), 178-198.

[SCHL-78] Schlageter, G. Process synchronization in database
systems. ACM Tr. on Database Systems 3 3 (Sept. 1978),
248-271.

[STEA-76] Stearns, R., Lewis, P. and Rosenkrantz, D. Concurrency
control for database systems. IEEE Symp. on Foundations of
Comp. Sci., Oct. 1976, pp. 19-32.

[STON-79] Stonebraker, M. Concurrency control and consistency of
multiple copies of data in distributed INGRES. IEEE Tr. on
Software Engineering SE-5, 3 (May 1979), 188- 194.

[THOM-78] Thomas, R. A solution to the concurrency control
problem for multiple copy data bases. IEEE COMPCON 78, Feb.
1978, pp. 56-62.




NETWORK RESOURCE ALLOCATION







-237-
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Abstract

Simulation, particularly of networks of queues,( is an
application with a high degree of inherent parallelism, and
is of considerable practical interest. We continue the
analysis of synchronization methods for distributed simul a-
tion, defined by the taxonomy in our previous paper.
Specifically, we develop algorithms for time-~-driven simula-
tion using a network of processors. For most of the syn-
chronization methods considered, each node k of an n-node
network simulation cannot proceed directly with its part of
a simulation. Rather, it must compute some function Bk(vl'
Vor eee o V), Where v; is some value which must be obtained
from node 1i. The value of v; at each node changes as the
simulation progresses, and must be broadcast to every other
node for the recomputation of the B-functions. 1In some
cases, it is advantageous to compute the B-function in a
distributed manner. Broadcast algorithms for such
distributed computation are presented. Since the perfor-
mance of a broadcast algorithm depends on the properties of
the inter-process communication facility, we characterize
some particular cases and give algorithms for each of them.
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INTRODUC TION

Simulation is a widely uséd technique for system
performance evaluation, The conventional approach to
simulation 1is to develop a simulation program for a model,
and then execute this program  in a centralized computer
system, This approach has 1led to the development of
packages such as CSMP (7) for continuous simulation, and
GPSS (10) and SIMSCRIPT (l11) for discrete simulation.

The recent development of low-cost microprocessors has
suggested an alternative approach to simulation. 1In this
approach the simulated system is decomposed into components,
and these components are simulated in a distributed manner
over a network of processors. This approach is particularly
attractive for the simulation of queueing network models
(17) because of the inherent parallelism typically found 'in
these models, and of their wide-spread application to com-
puter systems and communication networks, Such parallelism
can be exploited in the decomposition to give a potentially
more cost-effective method of simulation. The distributed
approach, however, requires the proper synchronization of
the components before the simulation can be carried out cor-
rectly,.

In our previous paper (16), a taxonomy which charac-
terizes the different simulation methods was described. A
slightly modified version of this taxonomy is shown in
Figure 1., At the first level, we distinguish whether there
is one or a network of processors available. With a netwdrk
of processors, the simulation is decomposed into components
and distributed over the processors. No such decomposition
is assumed in the case of one processor only. The next
level deals with the event-driven or time-driven nature of
simulation. In event-driven simulation, the changes in
system state are simulated when an event occurs, and the se-
quence of the simulation time (which corresponds to the se-
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SIMULATION

ONE : NETWORK OF
PROCESSOR PROCESSORS
EVENT TIME EVENT TIME

DRIVEN DRIVEN DRIVEN DRIVEN

TIGHT LOOSE TIGHT LOOSE

EXAMPLE: EVENT NUMERICAL VIRTUAL LINK
SCHEDULING METHODS  RING TIME

Figure 1. Taxonomy Tree
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quence of event times) is monotonically non-decreasing. In
time-driven simulation, the simulation time is incremented
by a fixed amount which defines a simulation interval., All
of the changes in system state in the present interval are
simulated before advancing the simulation time to the next
interval. .

For the case of a network of processors, we also have a
third level, depending on the value of simulation time at
each component. The method is tight if the value of simula-
tion time is the same for all components at each instant of
real time. On the other hand, a loose method allows dif-
ferent components to have different values of simulation
time at a given instant of real time. Loose simulation
methods thus allow more exploitation of parallelism.

~Algorithms for event-driven simulation with a network
of processors have been developed by the authors (16), by
Chandy et al. (2,3,4), and by Bryant (1). Examples are the
virtual ring algorithm for tight event-driven and the link-
time algorithm for loose event-driven simulation. In this
paper, we consider the time-driven methods and present al-
gorithms for the synchronization of the components. A
fundamental feature of these algorithms is that a component
(or a central controller) must broadcast a signal to every
other component to indicate the end of a simulation inter-
val. This broadcast feature is also observed in distributed
algorithms for event-driven simulation, as well as other ap-
plications, such as distributed data bases.

We thus consider a class of algorithms called broad-
cast algorithms which are suitable for distributed simula-
tion using a network of processors. A recent paper by Dalal
and Metcalfe . (8) has dealt with the broadcast of packets
throughout a packet-switching network, where the topology of

message passing is fixed according to the network structure.
(By message-passing topology, we mean the structure chosen

for messages to follow in a broadcast from a source to all
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other nodes of the network.,) We shall be more interested in
exploring cases in which our network allows any message-
passing topology, and we shall look for topologies which
give the minimum time to complete a broadcast.

For convenience, we will base our discussion on the
simulation of a queueing network model with n nodes, where
each node corresponds to a component in our decomposition.
The general form of our broadcast algorithms requires that
each node k must maintain some function Bk(vl,vz,.e.,vn)
where v; is a value obtained from node i. The values of the
vi's change as the simulation progresses, and must be broad-
cast to every other node for the recomputation of the
B-fuﬁctions. Of particular interest is the case that a node
k broadcast a request for the computation, in a distributed
manner, of Byp. Algorithms for such a distributed computa-
tion are presented. The performance of these algorithms
under three types of communication facilities are in-
vestigated.

LOOSE TIME-DRIVEN METHODS

In distributed simulation using the 1loose time-driven
approach, simulation time advances by a fixed quantum size
qg. Whenever conditions permit, a node simulates its compo-
nent over the time interval from s to s+q'(which we call a
tick), and then advances its simulation time to s+q. 1In the
case of a queueing network model, these conditions are met
when the node's immediate predecessors have all advanced
their simulation time to s, In this section, we outline two
algorithms for the loose time-driven method.

Centralized Algorithm

The centralized algorithm for loose time-driven simula-
tion makes use of the interconnection graph of the simulated
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- system, Each time a node finishes a tick, it sends an "ad-
vance” message to the synchronizer, which increments a clock
for that node. For each immediate successor of this node,
the algorithm checks if all of its immediate predecessors
have advanced at least as far as the new time., If so, the
synchronizer sends a messagé to the successor node telling
it to start the next tick, including the minimum of its
predecessors' times in the message, This node may then
simulate up to that time. This algorithm has the desirable
property that it takes the minimum number of messages to do
the synchronization, that is, a maximum of two messages per
tick per node.

Distributed Algorithm

The distributed algorithm for loose event-driven
simulation bears a very strong resemblance to the link time
algorithm for loose event-driven simulation (16). The main
difference is that the link time is defined as the simula-
tion time at the source node of an empty link, rather than
as a lower beund on the next arrival, and it gets in-
cremented by one quantum after each tick,

TIGHT TIME-DRIVEN METHODS

- Synchronization of tight time-~driven methods requires a
method of determining when all nedes have completed the tick
from s to s+q, and a means to inform all of the nodes thét
they should start simulating the next tick.

We expect that the cost-effectiveness of this method is
heavily dependent on the distribution of processing require-
ments among the components of the simulation. Let P; be the
processor time per tick required at component i. If there
is a k such that P >> P5 for all j # k then we would expect
this time to dominate the time required per quantum inter-
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val. If each processor contains only one component, then we
would also expect that all processors except the one con-
taining component k would be idle most of the time. If we
want to make maximum use of processors used or minimize the
number of processors required, we may want to assign more
than one component to each processor. If each p; is known
and constant, this is a bin packing problem with the
capacity of the bins set to the maximum p;. The solution to
this problem gives optimal performance at the lowest cost,
neglecting the overhead’required for synchronization.

Centralized Synchronization Algorithm

This synchronization algorithm consists of a ¢entral
process which keeps track of which components have finished
thebcurrent tick, and which tells the components when to
start the next tick. We note that with n components in the
simulation, we require n messages for all the COmponents to
signal when done, and n messages to notify them that the
next tick should be startéd, for a total of 2n messages per
tick. ;

In designing an algorithm to perform this synchroniza-
tion, we want to make the overhead per tick as low as
possible. Since the processing time required per tick |is
dominated by the component with the largest p;, we should
inform that éomponent first that time should be advanced.
Extending this, we adopt the approach that the components
are notified in the reverse order in which they signal ‘the
completion of the previohs tick. This approach is based on
the assumption that the p;'s are correlated, that is, pj for
time s+q to s+2q is likely to be approximately equal to p;
for time s to s+q.

We can analyze the performance of this algorithm rela-
tive to the pi's by considering rj, the number of nodes
which are seht timer-advance messages before node i. Then
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the time for a tick is going to be at 1least
max;(pj+ (rj+2)m) , vwhere m is the time for a messgage
transfer. This could be larger due to the fact that only
one message may be received at a time, so that messages ar-
riving at the same time will suffer additional queueing
delays.

Distributed Polling Algorithm

This algorithm performs a function similar to the cen-
tralized algorithm presented above, but does not keep track
of the order of completion for each tick. It works 1in two
phases: one phase for keeping track of which components have
finished the current tick, and the other for notifying all
components that the next tick may be started.

| In the first phase, a message containing an n-bit field
and a count of the number of nodes yet to complete the cur-
rent tick is passed from node to node. The i'th bit of the
n-bit field is 1 if the i'th component has finished the cur-
rent tick and 0 otherwise, When the message arrives at com-
ponent i, the component waits until processing of the cur-
rent tick is complete, and then turns on the i'th bit and
decrements the counter. If the counter is now zero, it is
changed to n and the second phase is enteredo Otherwise,
the message is sent to a component whose entry in the bit
vector is 0.

In the second phase, a message containing just a
counter is sent around a virtual ring. When a node receives
the message, the countér is decremented, and if it is not
now zero, the message is passed onto the next node in the
ring. Once a nede has passed on the message, it starts
processing the next tick. If the counter is 0, then it has
returned to the node which initiated phase two, and this
node starts off a phase one message with the bit vector set
to 0's and the counter set to N.
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Both this and the centralized algorithm are required to
broadcast a "start next tick™ message to all nodes. In the
centralized case, the central controller sends the message
to every node, whereas in the distributed case, the message
passes around a virtual ring. Also, the virtual ring al-
gorithm for the case of tight event-driven simulation given
in our previous paper (16) broadcasts a new next event time
to all nodes wusing a virtuai ring., Neither of these
message-passing topologies was chosen because of any virtue
other than simplicity. It seems 1likely that there exist
other ways of passing the messages to all the nodes which
would offer better performance, and so we have developed and
investigated some other algorithms for performing this
broadcast. These are presented in the next section, which

[

deals with broadcasting in-a more general way.
BROADCAST ALGORITHMS

We consider the general case that node k of an n-node
network simulator maintains some function Be(vis Vor eee
vn), where vy is some value which must be obtained from node
i. The value of this function is used to determine whether
node k may proceed. with its éortion of the simulation or
not. The value of v; at each node changes as the simulation
progresses, and hence so does the value of each function By .
If each node maintains a copy of each v;, then a change at
node j from v to vj' requires only that vj' be broadcast to
all other nodes in order for the new value B, ' to be com-
puted. On the other hand, if the nodes do not maintain
copies of the vi's, then a change in vy could in general re-
quire that every v; be broadcast, since the By functions
would have to be recomputed from scratch. So, there 1is a
classical time/space tradeoff to be made here.

Of special interest to this study are B-functions of

the form V] Op Vy OpP co. OP V,,, Where op is a commutative,
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associative operator, In this case, one could distribute
the computation of the B, among the entire set of nodes.
Instead of broadcasting changes in vy the node would broad-
cast a request to compute the function Byp. We thus have two
separate kinds of broadcast to consider: simple broadcast
where every node eventually gets a message  containing the
new vj', and broadcast with reply where each node receiving
a broadcast from node k computes some sub-expression of By
and replies with the result. The broadcast with reply has
the important property that it can be used to implement
broadcast with positive acknowledgment, where the B function
is simply the logical function "all nodes have received the
mesSage“o : :

There is no requirement that all of the Bmfunctibns be
the same, but this is an interesting sub-case., Tight event-
driven simulation uses the function M = By = mini(neti), and
net; is the next event time at node i. Besides having the
Same function at all nodes, the minimum is also a commuta-
tive and associative binary operator, so that we could let a
designated node initiate a broadcast with reply to compute'M
in a distributed fashion. Once that node received the reply
with the value of M, it would broadcast it to the others,
Nodes for which net; = M would then be able to proceed with
their parts of the simulation. |

Some Broadcast Algorithms

We now consider algorithms to accomplish a broadcast
and relate their performance to properties of the inter-
process communication facility. For the moment, we assume
that the inter-process communication is such that message
delays between any two processes are constant and identical.
We also consider the simple case in which only one broadcast
is active at a time,
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The particular algorithm which takes the minimum time
depends heavily on the amount of interference there is
between messages in the message transmission network. With
heavy interference, as when all processes are assigned to a
single processor, the minimum time to complete a broadcast
with reply is proportional te the number of messages. On
the other hand, with low interference, the number of mes-
sages is less important and the topology of the message
passing dominates the minimum time. We consider the fol-
lowing cases: 1) complete interference, where only one mes-
sage can be in transmission at a time; 2) interference at
each node, where any number of messages are in transmission,
but only one message per node can be sent or received at a
time; and 3) broadcast facility, where one node at a time is
allowed to send the same message to all others,

Complete Interference. An example of complete inter-

ference is the assignment of all processes to a single
processor. The minimum time solution to this problem is to
pass the request around a virtual ring. Upon reaching the
last node, it is sent back to the source.

To argue that this solution takes the minimum time, we
first note that the'time is proportional to the total number
of messages required to inform all nodes of the request and
to collect the replies. Hence, minimizing the number of
messages is equivalent to minimizing the time, Since each
node besides the source must receive at least one request,
and send at least one reply, and the source must send at
least one request, and receive at’leaét one reply, n is a
lower bound on the total number of messages required, which
the wvirtual ring meets. The essential feature of the ring
which makes this possible, is that the request to a node's
successor is also that node’s reply, so the two functions
are combined into one message. To see that this is the only
structure which achieves this 1lower bound, we consider a
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topoleogy in which one node sends the request and reply
separately. Since every other node sends at least one mes-
sage, the sum of messages sent is at least n+l. Therefore,
to use only n messages, each node must receive and send only
one message. The only topology for which this is possible
is a ring.

No Interference Between Nodes. An example of this type

of facility, where there is no interference between nodes to
send to different destinations is a fixed time-division mul-
tiplexed (TDM) bus. This case is treated by having every
node which has received the broadcast send messages to nodes
which haven't. For example, the source (say node 0) informs
node 1. Then nodes 0 and 1 inform nodes 2 and 3, giving 4
nodes which now have received the broadcast. Then nodes 0
through 3 inform ncdes 4 through 7, and so on. Thus we see
that at each stage, we double the number of nodes which have
received the broadcast. After p message-passing time units,
the structure of the tree produced outlines a subset of the‘
edges of a p-dimensional hypercube, This is illustrated in
Figure 2, which shows how a tree with 8 nodes can be mapped
onto a cube. This approach is optimal because no other ap-
proach can broadcast the message to more nodes at each
stage., |

If this is a broadcast with reply, then when all of the
nodes have received the message, the reply phase begins,
The replies are returned in the copposite direction to the
broadcast messages. A node does not reply until all of the
nodes to which it sent a ﬁessage have replied. Thus, leaves
in the tree reply immediately with the Vi requested. As
each reply is received at an intermediate node, the result
of the function for the subtree of that node is accumulated,
and when all replies have been received and processed, the
result is sent to the requestor of the node. The tree of
nodes which haVen't replied therefore halves in size at each
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Figure 2. Hypercube Broadcast Representation

stage, just as it doubled its size during the request phase,
until eventually only ncde 0 remains. We see that this
takes a total of 2n-2 messages, and a time of 2 ceil(logyn)

to complete the computétion of the function, where ceil(x)

denotes the smallest integer > X. Note that for n L6, 2
ceil(1092 n) > n, so that the virtual ring solution is at
least as good for these values, and we choose to use it

since its implementation is simpler.

This particular reply scheme falls into a class of so-
called "echo algorithms" studied by Chang (6). We notice
that this approach to the reply is not optimal since it does
not take advantage of the fact that sub-expressions of By
can be computed as the broadcast is propagated in the for-
ward direction., If this is done, the number of sub-
expressions 1left to be merged at the end of the broadcast
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phase 1is the number of leaves in the tree, rather than the
number of nodes. It should be possible in most cases to
combine the smaller number of sub-expressions in less time.
We have assumed thus far that sending and receiving are
synchronized, that 1is, node a in the process of sending a
message to node b cannot start to send another message until
the first has been received at node b. It will be useful to
define the characteristics of message passing more formally
as follows. Suppose that node a starts to send a message to
node b at t, and can start anothér send at ty, and that node
b starts to receive the message at t3 and finishes receiving
it at t4. We can now define S = t, ~ t; as the send time and

D =ty - t; as the delay time. Thus far, we have considered
only the case in which S = D = constant. We will next
generalize this to the case in which S # D, where. S and D
are still constants. For simplicity, we only consider the
broadcast without reply case in the remainder of this sec-
tion. . ,

It will be useful in the subsequent discussion to use
the broadcast tree, which we now define. An example of such

a tree for D = 8 1is shown in Figure 3. All nodes on a
horizontal line receive the broadcast from the same node,
and that node is connected vertically to the left ehd_of the
horizontal 1line. Also, the horizontal direction is
calibrated to represent the time at which a node receives
the broadcast.

We first consider the case for which D > S. An example
of this is the use of a non-blocking send primitive (15),
where the sender is free to startlanother message without
waiting for completion of those in transit. For ease of
analysis, we 1let D = kS, k a positive integer, and give an
example of a broadcast tree in Figure 4 for k = 3. Let N(i)
be the number of nodes which have received a broadcast at
time t = iS., With our optimal strategy, there will thus be
N (i) nodes'starting to send a message at iS. These messages



-251-

—t

—  —0
>
(o]

—Do .r

—— Nﬂ-

3 4
8 16 32 6
4 8 3

nNbHN L

e LEFTMOST NODES
o NON- LEFTMOST NODES

Figure 3. Broadcast Tree for D = S



~252~

are not received until time iS + D = (i + k)S. Since we
send to destinations that do not know of the broadcast, N(i)
new nodes are informed at time (i + k)S, and so we can
write, replacing i by i-k, N(i) = N(i-1) + N (i-k). Since
the first message from the originator of the broadcast is

received at time kS, we have the initial conditions, N{i) =
1 for 0 < i < k-1.
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Figure 4. Broadcast Tree for D = 3§

To find the time taken for a broadcast to n nodes, we
must find the minimum i such that n < N(i). We observe that
for k = 1, this gives the same result as we obtained from
our previous analysis of this case, namely that N(i) = 21
and hence the brcadcast time is ceil(logz n). Also, for k >

n-1, the originating node sends messages to all of the n-1
remaining nodes,
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The case D < S occurs when blocking primitives (15) are
used, where the sender is not re-activated until an acknow-
ledgment 1is obtained from the receiver. To ease the
analysis, we consider the sub-case in which S = kD, k a
positive integer. We define N(i) to be the maximum number
of nodes that can be informed of the broadcast at time iD.

In this case, N(i) is the number of nodes in the broad-
cast tree at time iD. It will be more convenient to study
the behaviour of AN(i) = N(i) - N(i-1) rather than N(i),
since AN(i) is the number of nodes which receiﬁe broadcast
messages at time 1iD. It will be helpful to visualize a
broadcast tree, as shown in Figure 5 for the case k = 3,
The messages received at time t = iD will be of two types:
those leftmost on a horizontai branéh of a 'broadcast tree,
and those not 1leftmost. The number of messages received
which are not leftmost is the same as the number received at
time t - 8 = (i - k)D. This follows from the fact that
every node which sends a message that is received at time ¢t
- S also sends a message which is received at time t. The
number of messages received which are leftmost is the same
as the number of nodes which received the broadcast at time
t = D because each of these nodes immediately sent a message
which 1is received- at time t, We can thus write AN(i) =
AN(i-1) + AN{(i-k). Here we have the 1initial conditions
AN(i) = 1 for 1 < i < k and N(0) = 1. We notice that the
recurrence for the AN(i)'s is the same recurrence as we
found for the case D > S. In this case, however, if k >
n-1, the optimum solution is a virtual ring for broadcast
reply, and a virtual ring without the last edge for the
simple broadcast.

We notice that we can also write the recurrence for the
case D > 8 in the form AN(i) = AN(i-1]) + AN(i-k), with
suitable initial conditions. This suggests that there may
be a general recurrence relation which covers both cases,
Let t = iq, where g is a quantum size and let D = jg and S =



~254~

e ()

(O

fele

>
o

iir

LEFTMOST NODES
NON— LEFTMOST NODES

Figure 5. Broadcast Tree for § =

| o} E— ——t— -»1 = iD
0 2 3 4 5 6 7T 8 9 i
1 3 4 6 9 13 19 28 41 N(i)
1 1 2 3 4 6 9 13 DELTA N{(i)

3D



-255-

kq. Then, by an argument similar to the one for D < 5, we
obtain the recurrence AN(i) = AN(i-j) + AN(i-k). Since
the first message sent arrives at time D, we have the ini-
tial conditions AN(i) = 0 for i < j, and AN(j) = N(0) = 1.

It is useful to consider the generating function for
the AN(i) sequence. Using a derivation similar to that in
Knuth (13) for the Fibonacci sequence, we obtain the
generating function G(z) = zj / (1 - zj - zk)e One could
obtain a c¢losed-form solution for AN(i) by finding the
roots of the denominator of G(z), obtaining the partial
fraction expansion, and inverting the result. (In order to
minimize the order of the denominator, it is best to choose
q so that the greatest common divisor of j and k is 1,) It
is rather interesting that the denominator of G(z) is sym-
metric in j and k, since this means that interchanging D and
S results in a AN(i) which is the same except for a shift
along the i-axis of j - k.,

Hardware Broadcast Facility. The final case is one in

which there is some broadcast facility available which al-
lows a nede to send the same message te all other nodes. An
example of a facility which has the potential to perform
this type of broadcast 1is Ethernet (14), even though it
could also be considered to fall in the class of total
interference. In this case, the source node sends its re-
quest to all nodes at once, but cannot receive their replies
all at once, so we could use the same tree structure as the
previous case, during the reply phase only. If the broad-
cast takes time T, then the total time to do a broadcast
with reply for the case S =D is T + ceil(1092 n)b.
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IMPLICATIONS AND FUTURE WORK

The results of the previous section have given us the
capability to generate a broadcast tree which provides
broadcasting in the minimum time, provided that the S and D
values can be determined. However, the analysis of these
broadcast trees assumes that only one request is active at a
time. If this is not the case, then queueing delays caused
by competing requests will tend to make the message
switching mechanism behave as one with higher interference,
so that the choice of optimum message passing topology
becomes unclear.

An approach to this problem which we intend to in-
vestigate is the inclusion of queueing delay into the value
of D. In general, the larger the number of broadcasts ac-
tive at any one time, the larger is the queueing delay, and
the larger will be the D value used. On the other hand, if
the simulation is processor-bound, it may be desirable to
restrict processor time for broadcasts, so that messages are
not sent at the maximum rate possible. This corresponds to
an effective increase in 8.

The analysis of the case with no interference 1is the
most general result of the previous section. We note that
the total interference case is approximated by S > D, and
that the hardware broadcast case is approximated by S << D.
It will be useful to explore the ways in which S and D can
be traded off against one another, and then look for the
best values.

The assumption of constant S and D between all node
pairs of a network may not be realistic for some systems,
Thus, the extension of these results to cases in which the D
and S values are not the same for all nodes, and in which
they are not constant is worthwhile.

Finally, the generating function for the general recur-
rence, G(z) = zk / (1 - zj - zk), requires further in-
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vestigation, The denominator of G(z) has one real root
between 0 and 1, as can be readily seen from the fact that
G(0) =1 and G(1) = -1. It is our conjecture that this root
dominates the asymptotic behaviour of AN(i), which, if
true, would allow us to write AN(i) approximately as Cri
for large i, Here, r = 1/r', where r' is the value of the
root between 0 and 1.
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Abstract

In May 1978 a new routing algorithm was installed in
the ARPANET. 1In this algorithm, each network node makes an
independent routing decision, based on information about
delays throughout the mnetwork. The delay on a particular
line is measured at the nodes attached to +that 1line, and
disseminated to +the rest of the network in the form of a
"routing update." This paper discusses one aspect of the
routing algorithm, viz. its wupdating protocol (i.e. the
protocol used to disseminate the updates). The problem of
devising a good updating protocol is shown to be a problem

in the management of a distributed data base. The
requirements which any such protocol must meet in order to
be satisfactory are presented and discussed. The protocol

is +then developed so as to meet these requirements. Other
possible protocols are discussed, and shown not to meet the
requirements.

1. INTRODUCTION

The design of distributed adaptive routing algorithms
for packet-switching computer networks gives rise +to many
and varied problems. In +this paper we discuss one such
problem, as well as the solution we devised as part of the
design of a new routing algorithm for the ARPANET. (This
new algorithm, described in [1], became operational in May
1979.) The problem arises from the fact that although each
packet switch (node) in the network must make an independent
decision on how to route packets, the data base it needs +to
make these decisions is a distributed data base. That is,
each node has direct access to only a small portion of the
data base; to gain access to the rest, the nodes must
communicate with each other. The messages used to transmit
the routing data base information are known as "routing
updates." Choosing a good routing update protocol is a
problem 1in distributed data base management; it is this
problem that will be discussed here.
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2. THE PROBLEM

In distributed routing, each node,runs an independent
"shortest-path computation" which maps certain state
information about the network into a set of routes from the
given node to each other node. A routing algorithm may be
said to be adaptive insofar as the chosen routes adapt
systematically to changes in this state information. If one
wants to have routing which adapts only to changes in the
network's topology, then the only state information which is
necessary is the up/down status of each network 1line. If,
on the other hand, one wants the routing to adapt to changes
in packet delay, then the necessary state information is the
delay over each network line; this is the approach adopted
in the ARPANET. This state information is gathered by a
measurement process which runs in each node. The state of a
particular line, however, can be directly measured only by
the node that transmits over that line; there is no way for
a node to directly measure the delay over a line to which it
is not connected. Nevertheless, if each node is to make an
independent routing decision, each node must know the delay
over each network 1line. This 1is what gives rise to the
distributed data base problem. In order for each node to
perform an independent shortest-path computation, each node
must have access to a data base which consists of the delay
over each network line. Since each node is able to measure
the delay on only a few lines, the data base is distributed
throughout the network.

There are +two ©possible approaches to solving the
problem of +the distributed data base. One way 1is to
distribute the shortest-path computation itself so that each
piece of +the .computation has direct access to the part of
the data base that it needs. This is the approach taken by
the ARPANET's old routing scheme. The alternative approach
is to develop a quick and religble wupdating protocol for
transmitting changes 1in +the data base to all nodes in the
network. This makes the entire distributed data Dbase
locally available to each node. This approach, adopted by
the ARPANET's new routing algorithm, is the one +that shall
be discussed here.

3. REQUIREMENTS OF THE UPDATING PROTOCOL

Protocols for handling process-process communication
abound in computer networks, and one might +think that
devising an updating protocol for routing offers no special
problems not found generally in the design of such
protocols. This 1is not the case. The role of routing in
the network places special requirements on the updating
protocol. If each node is to maintain its own copy of the
entire data base, and if each node's routing decisions are
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to be made entirely on the basis of its own copy of the data
base, then it is essential to ensure that identical copies
of the data base are kept at all nodes. If this constraint
is not met, +then +the nodes may make conflicting routing

decisions, causing a major network failure. For example,
suppose A and B are neighboring nodes, and D is a third node
elsewhere in the network. If A were ever to decide that

traffic destined for D should ©be routed via B, while B
decides that traffic for D should be routed via A, neither A
nor B would be capable of delivering traffic to D; traffic
would loop endlessly between A and B. For the shortest-path
computation used in the ARPANET's new routing scheme, this
situation can be shown to be impossible, if all the nodes
have identical copies of the data base. If they do not have
identical copies of the data base, however, then there is no
assurance that the routing scheme will be able to deliver
packets to their destinations. It must be understood though
that +the data base 1is constantly changing. Whenever the
average delay over a line changes, or when a line goes down
or comes up, there is a change in the value of one of the
entries in the distributed data base. This change must be
made known to all nodes quickly if the routing algorithm is
to continue to operate correctly. Our problem is to devise
a protocol which ensures, to the greatest degree possible,
that all nodes maintain an identical copy of the data base,
even though it is under continual change. The requirements
of such a protocol are the following:

1. Reliability. The protocol must ensure delivery of
all wupdates to all nodes. The ordinary data
transfer protocol of the ARPANET is not
sufficiently reliable. Data packets in the ARPANET
can be lost due to node crashes, network
partitions, or severe congestion. Loss of data
packets under these (admittedly low probability)
circumstances is unfortunate, but it does not have
any globally deleterious effect. Loss of a routing
update, on  the other hand, will result in
inconsistent copies of +the routing data base,
possibly crippling routing and bringing down the
network. A more reliable protocol must be found.

2. Quickness. Since updates cannot make their way
across ‘the network instantaneously, there will
always be some interval of time after a new update
is generated when +the copies of +the data base
throughout the network are not identical. Our goal
is to keep this interval as small as possible.
Note that when an ordinary data packet travels
slowly, the only bad effect is that some user sees
a long delay. When routing updates travel slowly,
however, all users can suffer.
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3. Priority. Whenever routing updates contend with
other packets for +the same resources (such as
buffer space, line bandwidth, or processor
bandwidth), the updates must be given priority. To
put this point another way, the flow of updates
must not be slowed down when the network is heavily
loaded.

4. Sequential delivery. If +two updates contain
information about the same line, then the updates
must be processed at all nodes in the order in
which they are generated. If different nodes
process these updates in different orders,
inconsistent copies of +the data base are sure to
result. Note, however, that as long as the updates
contain complete information, so that later updates
obsolete earlier ones, it is not necessary to have
guaranteed sequential delivery. When later updates
arrive before earlier ones, the later ones can be
processed immediately, and the earlier ones simply
discarded when they arrive. A policy of guaranteed
sequential delivery would delay the processing of
the later update until the earlier one arrives,
thereby defeating the requirement of quickness.

5. Efficiency. The routing updates should not place
such a great demand on network resources that the
routing scheme does more harm than good.

4. THE UPDATING PROTOCOL DEVELOPED

Some of these requirements were easy to handle within
the structure of +the ARPANET nodes. Others were more
difficult, and required the development of new protocols
unlike anything previously found in the ARPANET. One of the
easy ones was priority. The ARPANET already had a priority
queuveing structure which could be easily adapted +to allow
highest priority +to routing updates. To handle efficiency
considerations, we made the update messages small and

infrequently generated. Each update message from a given
node contains information on all the 1lines emanating from
that node, rather +than on just one line. The update

packets themselves are quite small, about 176 bits on the
average. Furthermore, each node is constrained to generate
updates only infrequently. Changes in delay on a 1line
cannot cause generation of updates more often than once
every 10 seconds. Additional updates can be generated if a
line goes down or comes up. However, when a line goes down
it cannot come back up for at least 60 seconds, so there is
no need to worry about excessive wupdating due to line
failures. An important consequence of these features of the
update generation process is that there is no need to exert
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flow control on the routing updates. They simply cannot be
generated frequently enough to give rise +to +the sort of
problems which flow control is needed to prevent.

For speed and reliability we decided to wuse a
transmission procedure known as flooding. Each update from
a given node carries a sequence number which identifies it
uniquely. When a node generates an update, it sends a copy
of the wupdate to each of its neighbors. Whenever a node
receives an update which it has not seen before, it sends a
copy to each neighbor, except tThe one from which it it was
received. When a node receives an update which it has seen
before (or which was generated prior to one it has seen
before), the update is discarded. The +two most salient
aspects of the transmission procedure are:

1. The transmission of routing update messages is in
no way dependent on the performance of the routing
algorithm. ZX¥ven if some problem arises with the
routing algorithm, transmission of routing updates
is not affected. This independence is an important
reliability measure. It is also important in
ensuring quick  transmission. In effect, it
establishes a fixed routing policy for transmission
of routing updates, allowing the updates to Dbypass
many of +the normal packet-forwarding procedures.
This means that the forwarding of wupdates can be
done at the highest priority level, with negligible
processing delay.

2. Fach node receives a copy of each update from each
of its neighbors. This ensures that updates cannot
be lost due to node failures or network partitions.

It must be understood, though, that transmission across the
network consists of a sequence of point-to-point
transmissions, or hops. Plooding assures speed and
reliability only insofar as +the individual point-to-point
transmissions are quick and reliable. Packets transmitted
from one node to another need to be protected against the
following problems:

1. Line errors. Bursts of noise on the telephone line
connecting +two nodes can result in a packet's
failing to be received correctly.

2. Buffer shortage at the receiving end. Exhaustion
of the receiver's buffer pool can cause it to miss
a packet.

3. Processor overload at the receiving end. On
occasion, the nodes have been observed to have such
a heavy processing 1load that they sometimes miss
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packets because they cannot process their
interrupts fast enough.

So we need some sort of reliable transmission protocol,
whereby updates get retransmitted until they are known to
have Dbeen correctly received at all nodes. One possibility
would be to have every node receiving an update send an
acknowledgement +to the source of the update. If the source
does not receive acknowledgements from all other nodes, it
retransmits the update, either flooding it again or sending
it directly to the node (or nodes) which did not receive it
the first time. However, reliable transmission protocols
based on retransmissons from the source tend to Dbe
cumbersome, slow, and inefficient. Such protocols may be
suitable for transmission of ordinary data, but not for
‘transmission of routing updates. The only alternative is to
have a protocol that requires each update to be acknowledged
over each line on which it is transmitted, and retransmitted
on a 1line-by-line basis whenever necessary. The network
does have such a reliable point-point transmission protocol,
known as the IMP-IMP protocol, which it wuses in the
‘transmission of ordinary data packets. This protocol
divides each line (in each direction) into eight 1logical
channels. Each logical channel can have only one packet in
flight at a time. Once a packet has been transmitted on a
logical channel, no further packets can be transmitted on
that channel until the first one has been acknowledged. A
packet which is not acknowledged within a certain period of
time is retransmitted, and the retransmissions will continue
periodically until an acknowledgement is finally received.
This protocol, whatever its merits for data packets, is
unsuitable for routing updates. It has reliability, but not
quickness. The problem is that +the IMP-IMP protocol can
block +transmission on a 1line, even if the line is idle.
This will happen if all eight logical channels are filled
with packets awaiting acknowledgement. While the
acknowledgements are being awaited, the line may be idle,
yet no additional +transmissions are possible, since there
are no empty logical channels. (A similar point could be
made against other 1link +transmission ' protocols, such as
HDLC.) We do not, however, want to delay the transmission
of a routing update merely because all eight logical
channels are in use by data packets.

One way to alleviate the problem is to add additional
logical channels to be used only for routing updates. For
instance, if there are NN nodes, one could add NN 1logical
channels. A routing wupdate would be sent on the channel
which corresponds to its source node. Then routing updates
would compete for 1logical channel space only with other
routing updates which originate from the same node. This
does not totally alleviate the problem of blocking
transmission on an idle line, since it is possible for
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several updates from +the same node +to arrive in rapid
succession, 1in which case their +transmission would be
unnecessarily slowed. However, +the routing updates have
three special properties -which distinguish them from
ordinary data packets and enable +the 1logical channel
protocol to be significantly simplified:

1. If a routing update from node A is transmitted from
node B to node C, and then a later update from node
A is received at node B before the prior update is
acknowledged, we no longer care whether the prior
update is correctly received at node C or not.
Since the 1later update obsoletes the prior one,
there is no reason to continue retransmitting the
prior one, and all resources can be devoted to the
transmission of the later one.

2. Each routing update carries a sequence number which
(together with the number of its source node) can
be wused to identify it uniquely on each link over
which it is +transmitted. (The assignment of
sequence numbers to routing updates will Dhe
discussed later.) Ordinarily, data packets do not
carry any identifier which the link transmission
protocol can use. Therefore, the link transmission
protocol must maintain its own set of identifiers
to assign to packets. If the set of identifiers is
small, +then only a small number of packets can be
in flight at once. The IMP-IMP protocol maintains
only eight identifiers (one for each logical
channel) for ordinary packets, which is why only
eight packets can be in flight at once. If,
however, the link transmission protocol for routing
updates identifies the updates by tTheir sequence
numbers, and if the sequence numbers are 6 bits
long (as in the ARPANET), up to 64 updates from
each node could be in flight on a link at any time.

3. Ordinary data packets must be kept Dbuffered while
awaiting acknowledgement. One reason why only a
few data packets can be in flight at once is +that
each in-flight packet uses a buffer, and the
ARPANET is short on buffer space. Routing updates,
however, need not be kept buffered while awaiting
acknowledgement. When a routing update is received
at a node, the information it contains is copied
into the node's copy of the data Dbase. If the
update has to be retransmitted, it can be
re-created from the information in the node's data
base tables. Hence there is no need to keep the
update packet buffered, and buffering shortage does
not constrain the number of updates in flight at
once.
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The second property eliminates the problem of blocking
transmission on an idle 1line. The 1link transmission
protocol for routing updates need never delay transmission
when the line is 1idle, since updates sent on the same
logical channel are not competing for sequence number space.
The first property implies that in some cases, it is not
even necessary to wait for an acknowledgement. The third
property implies that there is not a large buffering cost in
having many routing updates in flight at once on a single
line. Therefore, we have adopted the following protocol.
On (each direction) of each network line there is a separate
logical channel for each node which may be the source of a
routing update (i.e. for each node.) After an wupdate is
transmitted on a line, it is retransmitted periodically over
that line, until one of the following two events occurs:

a) It is acknowledged by the node at the other end of
that line.

b) A later update from the same source node is
received over any line.

This protocol meets the desiderata of quickness and
reliability.

We have now shown how to meet all the requirements
except one -- sequential delivery. One possible way to
ensure sequential delivery would be to refrain from
generating a new update until the previous update is known
to have been received by all nodes. While procedures for
doing +this do exist, they tend to be slow and unresponsive.
Therefore, we have chosen to ensure sequential delivery by
the use of sequence numbers. Every time a node generates a
new update, it assigns it a sequence number one greater than
that assigned to its previous update. The other nodes in
the network wuse this sequence number to determine which of
two updates (from the same source node) is the more recently
generated. However, the use of sequence numbers introduces
a new protocol problem, that of keeping sequence numbers
synchronized.

Suppose node A receives an update from node B with
sequence number 7. At some later time, node A receives an
update from node B with sequence number 6. Furthermore, no
update from B arrives at A in the interim. Ordinarily, this
would imply that node A has received the updates out of
order. Update number 6 has already been obsoleted by by
update number 7, and should just be discarded. However,
suppose that node B had crashed after sending update 7.
When it comes back up, it may not remember that its last
update was numbered 7; it may start its numbering over
again. In that case, update 6 may actually be more recent
than update 7, and node A will do +the wrong +thing. A
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similar problem can arise as a result of network partitions.
Suppose that a series of 1line failures partitions the
network, so that there is no path between node A and node B.
While the partition lasts, node B continues to generate
updates, giving each one a higher sequence number than the
last. Node A, however, cannot receive these updates. Since
the sequence numbers must be represented in a finite number
of bits, they will eventually wrap around. Suppose that
node B's sequence numbers wrap around several times during
the partition, and that when the partition ends, the next
update sent by B is numbered 6. Again, node A will make the
wrong decision.

It is clear that when communication is re-established
between two nodes +that have ©been +temporarily wunable to
communicate, some explicit procedure mnust be invoked to
enable those +two nodes to get their sequence numbers
re-synchronized, so that each knows what sequence number to
expect next from the other. Most protocols that depend on
sequence numbers use a handshake procedure to synchronize
their sequence numbers at the beginning of a communication.
However, this is not suitable for our purposes. Since every
node generates updates -which must go to all other nodes,
there would have to be a handshake between each pair of
nodes. In a 100-node network, this is 10,000 handshakes.
Clearly, it would be desirable to <find a synchronization
procedure which is more efficient.

It may Dbe thought that the routing data base itself
contains enough information +to enable all nodes to
re-synchronize - their update sequence numbers after a
partition, without any explicit handshake procedure. After
all, the routing computation enables each node to know
whether another node is reachable (i.e. whether a path to
the other node exists) or not. When a node Dbecomes
unreachable, all updates from it can be ignored. When it
Pecomes reachable again, the next update received from it
can be accepted, no matter what its sequence number is.
This automatically resynchronizes the sequence numbers.

Although this scheme 1is superficially attractive, it
has serious difficulties, as would any scheme which requires
the nodes to selectively ignore some updates. Recall that
if +there 1is any 1long-term discrepancy in the data bases
maintained by the nodes, the routing . calculation may result
in the formation of routing loops which can make the network
useless. The proposed scheme enables such discrepancies to
exist after a partition ends. Suppose (for concreteness)
that the network 1is partitioned ZEast-West. When the
partition ends, the Eastern nodes will initially appear
-unreachable to the Western nodes, and vice versa. Then
updates will begin to flow across the ZEast-West boundary.
Eventually, all nodes will have processed updates from all
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other nodes, and they will all see each other as reachable
again. The problem arises though because Western nodes
cannot begin to process updates from Eastern nodes as soon
as they become reachable. Rather, they must wait until the
Eastern nodes appear reachable, according to +the routing
computation. Nodes in +the East do not appear to Dbe
reachable to nodes in the West as soon as they actually
become reachable; the Eastern nodes appear to be reachable
when updates from the East get processed by the Western
nodes. The order in which nodes start to appear reachable
depends on the order in which updates are processed. But as
updates flow from East to West, different Western nodes will
process the updates in different orders, and at different
rates. An eastern node that appears reachable to one
Western node at time t may not appear reachable to another
Western node until some later time t', if various updates
from the east reach the Western nodes in different orders.
This means that if E is an Eastern node, and W1 and W2 are
Western nodes, there may be some time interval during which
W1 can accept updates from E, while W2 must ignore them. If
W2 ignores an update, it does not forward it. Therefore W2
(and all nodes beyond it) have no chance to get an update
from E until some 1later +time, when E generates another
update.

The result is that it may be a very 1long +time Dbefore
updates from E are able to reach all the Western nodes (even
though they are able to reach some Western nodes in a very
short time). During this time, The nodes' copies of the
data base are inconsistent.

It must be wunderstood that the problem is not merely
that it will take a 1long time +to re-integrate the two
segments after a partition. Rather, when a partition ends,
incorrect routing patterns may form which affect
communication even between nodes in the same segment. For
example, two Eastern nodes which are communicating with each
other may begin routing their traffic to each other via a
series of Western nodes. But 1if the Western nodes hold
inconsistent information about +the Eastern nodes, the
traffic may never get through. As a result, some nodes
which were able to communicate during the partition may not
be able to communicate after it ends.

The source of the problem with the proposed scheme is
that some nodes are forced to ignore certain updates while
others " are not. It is dangerous to ignore updates
selectively. Unless all nodes ignore the same updates at
the same time, their copies of the data base may not be
identical. One way to avoid this problem is to develop a
scheme which allows all nodes to process all updates they
receive, as soon as a partition ends:
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Let zero serve as a canonical lowest sequence number.
No update packet ever carres a sequence number of zero.
However, when a node A is determined by a node B to be
unreachable, B acts as if the sequence number of A's
most recent update were szero. Then when B next
receives an update from A, the new update is
automatically accepted as a recent update, and
processed normally.

The intent of this scheme is that when a partition ends and
updates begin to flow again between the segments, they can
be accepted and processed as soon as- they are received.
There is no need +to wait until a node appears reachable
before its updates can be accepted. However, +this scheme
has a different sort of problem which is just as serious.

Suppose again that the network is partitioned
East-West. Let M be an Eastern node which is on the border
of +the partition. Let A, B, and C be three other Eastern
nodes which are connected in a triangle, and let W Dbe a

Western node. Let m be an update from M which reports the
partition. That is, the other Eastern nodes detect the
partition as a result of processing m. (Presumably m

reports that the line between M and its Western neighbor WM'
has gone down.) Let w be an update from W which reached the
Eastern segment of +the network just before partition, and
let s(w) be its sequence number. Now it is certainly
possible that m gets to A before w does, and that w actually
follows m around the triangle. As update m travels around
the triangle, IMPs A, B, and C will determine that W 1is
unreachable; henceforth they will act as if W's last update
had = had sequence number zero. =~ Almost immediately
thereafter, update w will be received. Since gzero is the
canonical lowest sequence number, s(w) > 0, so even though w
was generated before the partition, it looks like a recent
update. It is accepted and forwarded. However, the next
time A, B, or C does a routing computation, they will again
determine that W is unreachable, and again begin to act as
if 1its most recent sequence number were zero. Once they do
this, they no 1longer '"remember" +that +they have seen w
before. When w comes around the loop again, it again looks
like a recent update (s{(w) > 0), and is again accepted and
forwarded. There is nothing to stop this process, which may
continue indefinitely. In fact, w may still be traveling
around when the partition ends. Once the partition is over,
W will eventually send out another wupdate, w'. This may
result in w and w' being in the network at the same time.
If the partition lasted long enough for the sequence numbers
to wrap around, then it is meaningless to compare s(w') with
s(w). As a result, the nodes may incorrectly believe w to
be more recent +than w', and routing will be based on very
0ld and out-of-date information. Depending on the exact
values of s(w) and s(w'), this problem may persist for a
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very long time, causing extremely bad performance throughout
the whole network (for instance, if w' reports that one of
W's 1lines has gone down, lots of traffic may be routed to a
non-existent line).

We see from this that it is not enough to allow all
updates to be processed as soon after a partition as they
are received. In addition, we must be able to ensure that
if +the partition has lasted long enough for sequence number
wrap—around to have occurred, then no pre-partition wupdates
are still extant. One way of ensuring that updates do not
stay around the system too long is simply to time them out.
When the last received update from a given node becomes "too
0ld", the next update from that node should be automatically
accepted as the more recent, no matter what sequence number
it has. This eliminates +the problem of an o0ld update
circulating in the network for an unlimited amount of time.
In the example above, by the time +the partition ended, w
would be "too 0ld", so w' would be automatically accepted as
more recent when it is received.

The most accurate way to determine the age of an update
would be to maintain a globally synchronized clock. ZEach
update packet would carry the time of its <creation at its
source, as well as a sequence number. Then each node would
know exactly how long ago an update was generated, subject
to the resolution of the clock and possible inaccuracies of
synchronization. Use of a globally synchronized clock has
several problems, however. One problem 1is simply the
difficulty of maintaining synchronization. But the most
serious problem is that of re-synchronizing after a
partition. When a partition forms, there is no way of
ensuring that the clocks 1in the +two segments stay
synchronized. If, when the partition ends, updates flow
between the two segments before re-synchronization is
established, the results are unpredictable. So not only
must there be a method of re-establishing sync, there must
also be some way for the nodes to determine whether or not
sync has been re-established, so they know whether or not it
is safe to pass on updates. While such methods can no doubt
be developed, +they would add a significant amount of
complexity to the scheme. It is worthwhile therefore to
develop a means of determining the age of an update which
does not require globally synchronized clocks.

Suppose node A transmits update a which is received at
node B. At any given time, the age of update a (from the
point of view of B) can be divided into two components -
transit +time and holding time. Transit time is the time it
took the update to travel from A to B. Holding time is the
time since it arrived at B. If we may assume that, within a
certain amount of time after an update is initially created,
itse holding time at any given node will be very much larger
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than its transit time to that node, then we may neglect the
transit time, and equate the update's age to its holding
time. But the holding time can be computed from a purely
local clock. No global synchronization is necessary at all.

In the ARPANET, cross-network +transit times are
generally on the order of 100 milliseconds. Within a
minute, say, after any update is created, its holding time
at any node would always dominate its transit time +to that
node by so much that the transit time could be neglected.
There is only one exceptional case. If an update has to be
retransmitted many times, it may wage significantly in
transit. If A has held an update for 59 seconds,
retransmitting many times before B finally acknowledges it,
we do not want B to have to wait yet another minute Dbefore
regarding +the wupdate as too o0ld. The time the update was
held at A must be figured in.

This problem is resolved by having the update packets
carry around some indication of their age. When an update
is first generated, its age is zero, and a zero is stored in
its age field. When an update is received, its age field is
stored, and periodically incremented. When a packet is
re-transmitted, the current stored value of the age field is
placed in the packet. ©Since we know how often any node can
generate updates, and we know how many bits the sequence
number 1is to be stored in, we can compute the minimum time
needed for the sequence numbers to wrap around. Once an
update has been held for so long that the sequence numbers
from its source node may have wrapped around, it is regarded
as "too old", and the next update received from that source
is considered to be the more recently generated, no matter
what its sequence number is. This will only work if the
minimum time to wrap around is much greater than the transit
time, but that is easy to ensure.

Similarly, if a node fails, it must be held off the
network for enough time to allow its last update to become
"too o0ld". Once that happens, its first new update will be
accepted as the most recent, independent of sequence
numbers.

5. THE UPDATING PROTOCOL SUMMARIZED

In this section, we summarize the updating protocol
developed in the previous section. Each update packet has a
header in which are stored its age, its sequence number, and
the identification number of its source node. The sequence
number is assigned by the source node at the time the update
packet 1is created, and 1is one greater than the sequence
number of the update packet previously generated by that
source node (modulo n, of course, where n is the maximum
~sequence number). In the case of the first update packet
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generated by a node, any sequence number may be assigned.
An update packet is given an age of zero at the time of 1its
creation. The source node then transmits the update packet
to each of its neighbors. The update packet is
retransmitted periodically to a given neighbor until that
neighbor acknowledges it, or until a new update packet is
created which obsoletes the first one.

When a node receives an update packet from one of its
neighbors (which may or may not be the original source of
the update), the node sends an acknowledgement to the
neighbor. The source node identifier and the update
sequence number are used to identify the acknowledged packet
uniquely. Then the receiving node must check to see whether
any update packet from +the same source node has been
previously received. If not, the age and sequence number of
the update are stored. (The stored value of the age will be
incremented periodically, wuntil it reaches some maximum
value after which the update will be considered to be "too
old".5 The update is sent to each neighbor except the one
from which it was received. It 1is retransmitted
periodically +to a given neighbor until it is either
acknowledged by that neighbor, or it becomes "too o0ld", or a
more recent update packet from the same source node is
received. When an update needs to be retransmitted, it is
re-created from tabled information; it is not kept in a
packet buffer. Note in particular that when the update is
re-created, 1its age <field 1is copied from the tabled age
field. Since the tabled age field is incremented
periodically, the age field carried by a retransmitted
update packet is not generally the same as +the age field
carried by the original copy of that update packet.

If a received update packet is not the first from a
particular source node, a determination must be made as to
whether it was generated more recently than the update
previously received from that source node. (Of course, the
neighbor which transmitted +the packet must be sent an
acknowledgement, whatever the outcome of this
determination.) If the stored value of the age field (which
corresponds to the previous update) is at its maximum value,
the previous update is too o0ld, and the current one is
considered to be the more recently generated one. If the
stored value of the age field is not at its maximum value,
the current update's sequence number is compared with the
sequence number of the previous update (i.e. with the tabled
sequence number) to see which update is the more recently
generated. If the current update was not more recently
generated than the one previously received (or if it is a
duplicate of it), it is simply discarded. Otherwise it is
forwarded +to all the neighbors except the one from which it
was received, as described in the previous paragraph. Its
sequence number and age are stored, replacing those of the
previous update.
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The parameters of this algorithm must be chosen so that
it is impossible for the sequence numbers to wrap around in
less time than it takes for an update to reach its maximum
age. This ensures that the most recently generated update
will always be correctly chosen, even in the case of network
partition.

When a node fails, it must not be allowed to restart
until enough time has elapsed so that any extant updates
that originated from that node will have reached maximum
age. This ensures that the first update generated by that
node after restart will always be considered more recent
than any previous updates, regardless of sequence numbers.

6. CONCLUSION

The problem of designing a protocol for transmission of
routing updates is an example of a problem in the management
of a distributed data Dbase. This sort of problem is
different from the problems for which communications
protocols have traditionally been designed, and it leads to
a protocol which is significantly different from any of the
ARPANET's internal protocols. How the issues and solutions
discussed here may be applied to the management of
distributed data bases in other applications is a question
still to be addressed.
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The NIC Name Server--A Datagram Based Information Utility
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Abstract

In this paper a new method for distributing and updating host
name/address information in large computer networks is described. The
technique uses datagrams to provide a simple transaction-based
query/response service. A provisional service is being provided by
the Arpanet Network Information Center (NIC) and is used by mobile
packet radio terminals, as well as by several Arpanet DEC-10 hosts.
Extensions to the service are suggested that would expand the query
functionality to allow more flexible query formats as well as queries
for service addresses. Several architectural approaches with
potential for expansion into a distributed internet environment are
proposed. This technique may be utilized in support of other
distributed applications such as user identification and group
distribution for computer based mail.

INTRODUCTION

In large computer networks, such as the Arpanet [1], network-wide
standard host-addressing information must be maintained and
distributed. To fulfill that need, the Arpanet Network Information
Center (NIC) at SRI International has maintained, administered, and
distributed the host addressing data base to Arpanet hosts since 1972

[21.

The most common method for maintaining an up-to-date copy on each
host is to bulk-transfer the entire data base to each host
individually. This technique satisfies most host addressing needs on
the Arpanet today. However, some hosts maintain neither a complete
nor a current copy of the data base because of limited memory capacity
and infrequent processing of updates. In addition, with the expansion
of the Arpanet into the internet environment [3, 4], a strong need has
arisen for new techniques to augment the distribution of name/address
information.

One method currently being investigated is the dynamic distribution
of host-address information via a transaction-based, inquiry-response
process called the Name Server [5, 6]. To support this investigation,
the NIC has developed a .provisional Name Server that is compatible
with a level of service specified in the Defense Advanced Research
Projects Agency (DARPA) Internet experiment [5]. The basic Name
Server is described in this paper and a set of additional functions
that such a service might be expected to support is proposed.

The discussion is structured as follows: Section 1 describes the
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NIC Name Server and how it is derived from the NIC data base service.
Section 2 describes extensions of the name server which allow a richer
syntax and queries for service addresses. Section 3 discusses
architectural issues, and presents some preliminary thoughts on how to
evolve from the current centralized, hierarchic service to a
distributed Name Server service.

THE NIC NAME SERVER

A Name Server service has been installed on SRI-KA, an Arpanet
DEC-10, Inquiry-response access is via the Internet Name Server
protocol [5], which in turn employs the DARPA Internet Protocol, IPY
[71.

To demonstrate the service a simple interactive facility is
provided to format user input into name server requests--e.g. a query
of the form !ARPANET!FQOO-TENEX returns an address such as "10 2 0 9"
(NET=10, HOST=2, LOGICALHOST=0, IMP=9; for details of host address
formats see [8]).

User access to the name server has been implemented on several
Arpanet DEC-10 TENEX and Packet Radio Network LSI-11 Terminal
Interface Unit (TIU) hosts [9, 10]. While the TENEX program serves
primarily as a demonstration vehicle, the LSI-11 program provides a
valuable augmentation of the TIU's host table. A typical scenario is
that when the packet radio TIU is initiated or initialized, it
contains only a minimal host table, with the addresses of a few
candidate name servers. The user queries the name server with a
simple manual query process, and then uses the address obtained to
open a TELNET connection to the desired host.

The information to support the name server originates from the
NIC's Arpanet host address data base. An optimized version of this
data base is presented to the name server upon program initiation as
an input file.

NAME SERVER ISSUES

The basic name server provides a simple address-binding service
[5]. In response to a datagram query [7, 11], the name server returns
either an address, a list of similar names if a unique match is not
found, or an error indication. Several useful additional functions
can be envisioned for the name server such as service queries and
broader access to host-related information.

Similar Names

An important issue to be resolved is that of the interpretation
given to the "similar names" response, A standard definition should
be given and not be left to implementors' whims.

If the "similar names" response is used primarily to provide
helpful information to a human-interface process, then it may be
useful to model the behavior of the name server on the behavior of
other known processes that present host name information on demand.
An example of this is a common implementation of virtual terminal
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access on the Arpanet, User TELNET [12], in which three different
functions occur:

1. Upon termination of host name input (e.g. <CR>), the user
is warned only with an audible alarm if the name used is not
unique. If the name is unique, the name is completed, and
the requested operation is initiated.

2. In response to <ESC>, either the name will be completed if
unique or the user will be warned with an audible alarm if
the name is not unique.

3. Only in response to "?" will a list of similar names be

printed. "Similar names", in this case, means all names
that begin with the same character string. The list is
alphabetized.

.In support of this style of user interface, it may be appropriate
to return the "similar names" response only when requested. Two ways
to achieve this might be either to set an option bit or to use "?" to
force the similar names response.

Query Syntax

A second issue in the provision of name server service is that of
query syntax. The basic level of service previously described allows
only a few query functions. With more intelligent name servers,
complex queries can be supported.

The current Internet name server requires two fields in the query
string--a network name field and a host name field. If the network
field is non-existent, a local network query is assumed.

Since network independent queries are desirable, an expanded query
functionality must be specified. One way this might be done is to add
to the notion of "missing field", which means "local", the notion of a
special character like "#" 6 yhich means "all",

The semantic range of queries afforded by adopting this convention
is listed below (Note: =~ is used to mean "“null". If both network and
host fields are null the representation is "~ ~". "N" means "network"
and "H" means "host"): a
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- local net, local host (validity check?)

- # local net, all hosts
~ H local net, named host
8 - all nets, local host (inverse search)

LI all nets, all hosts (probably prohibited)

# H all nets, named host

N ~ named net, local host (inverse search)
N # named net, all hosts

N H named net, named host

By combining the on-demand similar-names function, "all" and
"local', and by allowing "#" to be prefixed or appended to the query
string as a wild card character, one can query as follows:

~  SRI%*? All hosts named SRI* on local net
®# SRI*? All hosts named SRI* on all nets

¥ RUNIX#? All hosts named *UNIX* on all nets
Service Queries

It has been suggested that the name server be generalized into a
binding function {13, 14]. In this context, allowing service queries
is a very useful extension. One application of this service, that
exists within the Packet Radio Project at SRI, is the need to find the
addresses of Hosts that support the LoaderServer service--a service
that allows packet radio TIUs to receive executable programs via
downline loading.

Service querying, unlike host names querying, requires a multiple
response capability. The querying process would, upon receiving
multiple service descriptors, attempt to establish access to each
service, one at a time, until successful.

Service descriptors consist of an official name, a list of alias
names, and a network-dependent address. In the case of Arpanet
Internet services, this address field would consist of the host
address(32 bits), port(32 bits), and protocol number(8 bits). For
Arpanet NCP services, the address would consist of a host address(24
bits) and a socket(32 bits).

Syntactically, service queries can be derived from host queries bj
the addition of a service name field, as below:
NET HOST SERVICE
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A network-independent service query, for example, can be
represented as:
# # SERVICE

Name Server QOptions

The concept of options has been introduced in the discussion of the
"similar names" function. Another group of options may be used to
specify the format of the reply. At one extreme is the compact,
binary, style such as exists in the basic level of service. At the
other extreme is an expanded, textual, style such as is represented by
a NIC host table record with official and alias names included.
Options can be envisioned that specify:

- Binary versus text format

- Inclusion of each field in the reply

- Inclusion of official name, per field, in the reply
- Inclusion of alias names, per field, in the reply

- Inclusion of other miscellaneous information, such as
operating system, machine type, access restrictions, and so
on.
Other options can be envisioned that specify the scope of the search,
such as "find SERVER hosts only". An alternate form for specifying
formats might be to settle on several standard ones, and allow an
option to select among them,

‘Certainly, not all name servers can support all such options, and
not all options are equally useful. Thus, the proposed list will be
expanded or contracted to fit the actual needs of processes using the
name server service,

MORE DATA Protocol

It should be noted that some of the proposed name server extensions
have the potential for generating more than a single datagram's worth
of reply, since the current DARPA Internet Protocol limits the size
which all networks must support to 576 octets [15]. In spite of this,
the size of such replies need not require a full-blown stream
protocol. Several alternatives exist:

1. Disallow options that imply large replies.

2. Truncate the packet for large replies.

3. Ignore the recommended maximum datagram size.

y, Utilizé an alternate base protocol for such requests.

5. Develop a MORE DATA protocol.
If alternative 1 is chosen, the potential for overflow exists, even
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with the basic level of service. Alternative 2 implies unpredictable
behavior to the user of the name server service. Alternative 3
reduces the availability of the service. Alternative 4 is certainly
possible, but may be overkill.

Alternative 5 appears to be a reasonable solution and could be
implemented very simply. The name server could return, as part of the
reply, a code of the following form:

B ettt Fm—————— +

| MORE | ID NEXT |

tmm——— bm——————— +
where ID NEXT is a name-server-chosen quantity that allows the name
server to find the next block of reply, the next time it is queried.
This quantity may be an internal pointer, a block number, or whatever
the name server chooses. Follow-on queries may be implemented by
recomputing the entire original query and discarding output until the
ID_NEXT block is reached, or by efficiently storing the entire reply
in a cache, fragmented into blocks (with appropriate decay
algorithms). '

Dynamic Updates

In the previous discussion, the host name data base was assumed to
have been a static or slowly changing entity with an administrative
and manual update authority. This model reflects most of the network
needs in. the Arpanet and Internet communities. However, dynamic
automated updating of the host table may be needed in the future,
especially in mobile environments such as the Packet Radio Network.

In a closed.user group community (such as a local network of
mutually trusting hosts), dynamic updating becomes simply a technical
question concerning packet formats. In wider communities, a mechanism
to authenticate the change request must be developed; however, the
authentication issue is outside the scope of this paper.

ARCHITECTURE

The Name Server concept is invaluable for allowing hosts with
incomplete knowledge of the network address space to obtain full
access to network services. Whether for reasons of insufficient
kernel space or of dynamically changing environments, the need for the
service is little questioned. However, significant design issues
revolve around the methods for providing the service and for
administering and updating the data base.

In the current NIC Name Server, the service is centralized, and is
supported by a data base administered by a single authority. In the
long range, other architectures are possible that present more
flexible ways to distribute host information within and between
networks and administrative entities. These present opportunities for
dynamic, automated, approaches to the maintenance and sharing of
data--particularly host name data.

From an evolutionary point of view, initial Name Server services
will likely exist as a centralized service, possibly with one large
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Name Server that has knowledge of multiple networks. From this
beginning, an expansion in two orthogonal directions can be
envisioned.

- In the direction of internal distribution, the name server
can be partitioned into multiple, cooperating processes on
separate hosts. The data base can be replicated exactly or
managed as a distributed data base.

- In the direction of administrative distribution, multiple
autonomous name servers may exist that exchange data in an
appropriate fashion, on a per network or other
administrative basis.

For hosts with small host tables, caching might be used, whereby
local, temporary copies would be maintained of subsets of the
addressing data base. Such copies may be obtained either by
remembering previous queries made of name servers, or by receiving
automatic distributions of data from name servers. For mobile hosts,
in which even the home network is unknown, it would be possible to
maintain a very sparse table with the addresses of only a few name
servers.

For hosts lacking even the knowledge of name server addresses, a
very primitive name server function can be provided by all network
hosts that would allow real name servers to be located; e.g., a query
of the form "# # RealNameServer" addressed to an arbitrarily
selected host could elicit the address of a real Name Server.

Finally, the possibility exists for multiple name servers to
communicate dynamically in attempting to resolve queries. If, for
example, a name server on the Arpanet receives a query for a host on
the Packet Radio Network, then the Arpanet name server can conceivably
query the Packet Radio Network Name Server to resolve the reply.

FUTURE WORK

The techniques discussed in this paper for providing dynamic access
to and maintenance of host address information are generally
applicable to other information-providing services. Two possibilities
currently under investigation at SRI include user identification
servers [16] and time servers, which offer people/address and
time-stamp information, respectively, as datagram driven information
utilities.

Further work is needed to refine the implementation of the name
server and its using query processes. Two items in particular are
direct system calls into the NIC data base management system for
general access to host information and process-level query interfaces
for using processes. The design issues for efficient implementation
are complex and involve some trade-offs. The most obvious trade-off
is volume of network traffic versus "freshness" of information. The
local host table handler can either send a message to the name server
for every address request, or it can use some type of local cache to
remember frequently requested names. SRI is exploring both the
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process-level interface for the LSI-11 TIU and the problems of local
host table management in small machines operating in a dynamic
enviromment.

Information services such as the Name Server are integral
components of distributed systems and applications, However, the
effective utilization of such services is a relatively unstudied and
unexplored area. One area in which SRI plans to study their impact on
distributed architectures is in computer based mail applications.
Information utilities in this environment can range from the support
of simple mailbox address queries to complex address list management
needed for inter-organizational and group resolution.

CONCLUSION

A provisional Name Server service, based on the NIC host address
data base was described in this paper. 1In addition, a collection of
design ideas for an internet Name Server service has been presented.

Work is continuing on the refinement of the NIC name server
service. New requirements and opportunities for functional
distribution are being investigated. Many questions have been raised
in exploring an expansion of the existing service. Such an expansion
is expected to result in more useful support of internet (and
intranet) capability.
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Abstract

There are at least two ways to manage the buffer memory .of a
communications node. One technique views the buffer as a single
resource that is to be reserved and released as a unit for a particular
communication transaction. A more common approach treats the node’s
buffer space as a collection of resources (e.g., bytes, words, packet
slots) capable of being allocated among multiple concurrent
conversations. To achieve buffer space multiplexing, some sort of
‘negotiation for buffer space must take place between source and sink
nodes before a transaction can commence.

Results are presented which indicate that, for an application
involving a CSMA broadcast network, buffer space multiplexing offers
better performance than buffer reservation. To achieve this
improvement, a simple protocol is presented that features flow—control
information traveling both from source to sink as well as from sink to
source. It is argued that this bidireéctionality allows the sink to more
effectively allocate buffer space among its active communication paths.

INTRODUCTION

Imagine for a moment a bright young engineer who has been assigned
the task of designing a computer communications network. Being
conscientious as well as bright, this engineer first looks at the
current networking literature for some backround into computer
communications techniques. Almost immediately two philosophies of
computer network implementation present themselves. The first supports
a resource-reservation viewpoint whereby a network user requests the use
of various network facilities, is granted use of those facilities
(generally at some time later than when they were requested), and
finally, when they are no longer needed, releases those resources for
use by others. Opposed to this philosophy is the resource-multiplexing
school. [t supports the viewpoint that user requests for network
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resources should be managed in such a way that the user is not logically
aware that those resources are being used by anyone else. For example,
those supporting the resource-reservation approach would argue for
connection—oriented or virtual circuit communications primatives, which
give the user the responsibility for bringing up and tearing down
logical connections. On the other hand, those supporting the
resource—multiplexing philosophy would generally argue for
message—oriented communications primatives, which relieve the user from
such responsibilities [1, 2, 3. 4, 5]..

If our engineer is not only bright and conscientious, but also
something of an historian, this rivalry will call to mind earlier
confrontations. All during the late 1960°s a debate raged about whether
or not demand paging or prepaging (sometimes referred to as swapping)
provided the better performance in paged virtual memory systems. Even
earlier, there were debates about which CPU scheduling algorithm should
be used (e.g., First—In/First—-Out, Round-Robin, Prioritized Round-Robin,
Multilevel Priority) and about whether or not deadlocks could be
prevented if a job could demand its resources dynamically.

Unfortunately for this young engineer, the necessary analysis of
resource-reservation versus resource—multiplexing in computer networks
does not yet exist. This paper concentrates on one problem where either
resource-reservation or resource—multiplexing may be used, that of
message buffer management. It attempts to answer the question of
whether message buffer space should be reserved and released as-a single
resource or should be multiplexed over a number of concurrent
conversations.

The research reported here was motivated by an earlier simulation
study [6] that examined a networking facility in which meassage buffer
reservation was employed. Results of that study suggested that buffer
multiplexing could be utilized to enhance the facility’s performance.
Hence, a project was begun to compare the old simulation results with
results to be obtained from a new simulation of the facility, modified

to employ message buffer multiplexing. It soon became clear that there
were a number of decisions to be made concerning how the message buffer
was to be multiplexed. In particular, the handling of flow control and

the management of buffer space emerged as key issues. The first of
these became a topic of research in itself, and lead to the formulation
of a flow control protocol in which requests for remote buffer space are
negotiated. The second issue remains an area for future investigation.
This paper, therefore, not only reports the results obtained by
comparing buffer reservation with buffer multiplexing, but also
introduces a protocol for buffer space negotiation which, it will be
argued, possesses certain advantages over more traditional flow control
protocols.
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MESSAGE BUFFER MANAGEMENT

Consider the following situation. A set of computing systems are
connected together by a data switch. This data switch is constructed in
such a way that data is not lost while in transit between two connected
computer systems nor is it possible that data will be duplicated in
transit and the duplicates delivered as if they were independent.
Furthermore, data is guaranteed to arrive at a destination in the same
order in which it is sent. Such a facility will be called a lossless,
sequencing, nonduplicating data switch (Fig. 1). The switch is
implemented in such a way that a computer system connected to it is
capable of communicating with any other connected system. How these
logical connections are managed (i.e., by connection-oriented or
message—oriented techniques) is immaterial to the following discussion.

Each system possesses buffer space (which will be called the
message buffer) where data is staged before going out onto the switch
and after arriving from the switch. The question arises how message
buffer space should be managed. The remainder of this paper attempts to
answer that question.

MESSAGE BUFFER RESERVATION

One way to manage the message buffer is to reserve its use on a
conversation.by conversation basis. That is, when system a wishes to
deliver data to system 8, it first requests the use of the two message
buffers. Once the message buffers have been obtained (i.e., «

System 0

System ¢ |

Lossless,
sequencing,

nonduplicating
data switch

System §

System «

System f8 System vy

Fig. 1. Six computing systems connected by a lossless, sequencing,
nonduplicating data switch.
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successfully reserves them), no other system will be granted their use
until o releases. them. Such a management scheme views the message
buffer as a single resource incapable of being shared by many systems
concurrently.

As stated, in order for data to pass from o to f, the message
buffer of both a« and g must be reserved. To acheive this, a reservation
protocol must be provided so that a can request f to reserve its message
buffer. The details of this reservation protocol need not concern us
here. The major pertinent characteristic of this protocol is its
ability to (eventually) effect the reservation of two message
buffers——one on the source machine and one on the sink machine.

Such a management scheme has one obvious defect. During the time
when a system has reserved the two message buffers, those message
buffers cannot be used for any other purpose even though they are not
being totally utilized. For example, suppose both a and 6 wish to
transfer data to 8. Aliso suppose « is capable of delivering data to the
data switch 10 times faster than 6 (e.g., its connection runs at
50 Mbps, while the connection of § runs at 5 Mbps). Furthermore,
suppose f can aécept data from the switch as fast as « can supply it
(i.e., it also has a 50 Mbps connection). Under these circumstances,
whenever 8 and B are conversing, their effective connection runs at the
lower data rate (e.g., 5 Mbps). [If B can dispose of the data flowing
through its message buffer at a faster rate than 6 can supply it, the
message buffer of f will not . be in use 100% of the time. Even though
the message buffer of f is not in use, it is reseved and not available
for some other conversation (e.g., for an o to B transfer). This
results in the underutilization of f (which is forced for part of the
time to operate at computing system &§’s communication rates).

MESSAGE BUFFER MULTIPLEXING: WINDOWED FLOW CONTROL

One way to remedy the underutilization effect of the message buffer
reservation technique is to allow multiple conversations to use a single
message buffer concurrently. That is, each time a system wishes to
transfer data from itself to a destination system, some portion of both
participating message buffers are allocated for that data transfer.

This allows another system to also obtain space in the message buffer of
either system (Fig. 2).

As with the buffer reservation technique, some protocol must be
provided so that space in both message buffers can be allocated. A
common approach is to use windowed flow control [7]. In this scheme,
the source system obtains from the sink system a window specifying how
much data the sink is likely to accept. Each time data is sent from the
source to the sink, the sink returns an ack value informing the source
how much of that data was accepted. In addition a new window value is
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by a particular source. Second, it does not know how big this parcel
will be when it does arrive (although it does know that it should be
smaller than the window that it sent to that source). Confronted with
this lack of information, the sink must effectively guess what these two
items might be for each source and then allocate its buffer space
accordingly. Needless to say, if the sink is not good at guessing or if
the sources are in general unpredictable, this buffer allocation
technique can result in a great deal of inefficiency.

For example, suppose the sink guesses that source a will be soon
sending a large parcel of data and that source § will probably not be
sending any data soon. Furthermore, suppose the sink guesses that when
g does send some data it will be a small parcel. According to its
guess, the sink allocates a large amount of space to o and a small
amount of space to g (Fig. 4a). It informs both a and B of their
respective window sizes and waits for data to arrive. Now suppose the
sink guessed badly, i.e., source a has no data to send, while source B
has a great deal of data it wishes to deliver to the sink. In this
case, source B will begin sending its data segmented in the small
parcels dictated by the small window size it has received from the sink
(Fig. 4b). This forces source B to use small parcel sizes and
detrimentally affects data switch performance in two ways. First of
all, the lossless, sequencing, nonduplicating data switch is very likely
a combination of switching hardware and communications software. Fach
parcel of data transmitted through it incurs a fixed amount of bandwidth
overhead due to various low-level header and "packaging" information
that accompanies the parcel. This implies that the effective data
.switeh bandwidth decreases as the number of parcels into which a data
unit is segmented increases. Second, extra delays are incurred, since
the source must wait for a windowing 'reply” to be received from the
sink before the next parcel can be sent. Both of these factors motivate
both source and sink to keep the window size for that conversation as
large as possible.

In our example, the sink will begin to receive many small parcels
from source B. After a certain amount of time, the sink will probably
suspect that its guess of expected traffic was quite bad. In reaction
to that suspicion, the sink can do one of two things. It can simply
continue giving source B a small window size and live with the resulting
inefficiency, or it can renege on its window commitment to source a and
allocate some of that space to the source g data transfer (Fig. 4c).

If, after the sink reneges, source o sends a large parcel of data to the
sink, some or all of that parcel will not be accepted by the sink since
buffer space is no longer available for it (Fig. 4d). Thus, reneging on
a window can itself cause inefficiencies to occur. Needless to say,
more complicated thrashing—like situations can occur where the sink is
forced to continually renege on its source windows.
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Potential inefficiencies using windowed flow control. (a)
Sink ¢ initially assigns a large buffer space and window size
to a, and a small space and window size to 8. (b) Source 8
begins sending its data in correspondingly small parcels. If
g has much data to send, inefficiencies result. (c¢) Sink 6
reneges on a’s large window. It assigns more buffer space to
g, which can now send larger parcels. (d) If o tries to send
a parcel as large as its original window, buffer space is no
longer available. Thus, new inefficiencies arise.



-292-

MESSAGE BUFFER MULTIPLEXING: GIMME-GIVEYA

The disadvantage of windowed flow control discussed above can be
summarized in the following way. Control information flows from the
sink to the source in the form of a "damping" factor called the window.
However, no control information flows from the source to the sink. If
all systems were continuously attempting to transmit data to every other
system, this deficiency would cause no problems. When the traffic over
the data switch is bursty, however, such forward control information is
desirabte. The GIMME-GIVEYA (rhymes with Jimmy-Olivia) protocol
provides this forward control path. It is first described in its "pure"
form‘[9] and then presented in a more efficient "piggyback"” form, which
distinctly resembles windowed flow control.

The GIMME-GIVEYA protocol is based on the concept of buffer space
negotiation. The initiator of a data transfer, the source, requests
space in the message buffer of the sink. Sometime after the request,
the sink grants space in its buffer, notifying the source of the space
size. The space allocated will be less than or equal to the space
requested. The source then sends data to the sink in an amount equal to
the space granted. When the source has more data to send (which will be
immediately, if the space granted by the sink was less than the space
requested by the source), the above sequence is repeated.

The protocol used to implement this negotiation is equipped with
three buffer-management messages, which correspond to the three stages
of the negotiation. When the source wishes to inform the sink of a
buffer space request, it issues a GIMME message, which contains the size

_of the space requested. The sink responds with a GIVEYA message, which
contains the size of the space granted. 'The source then sends a DATA
message to complete the buffer space transaction. An example of a
GIMME-GIVEYA message exchange is shown in Fig. 5.

Pure GIMME-GIVEYA suffers from an overabundance of messages
transmitted for each parcel of data delivered. While windowed flow
control delivers a data parcel for every two messages transmitted (the
ACK/WINDOW message and the DATA message), pure GIMME-GIVEYA requires
three (a GIMME, a GIVEYA and a DATA message). To reduce this traffic,
the GIMME message for the next buffer space request can be piggybacked
onto the DATA message of the current transaction. Doing this reduces
the messages per data parcel to two (Fig. 6). Notice that piggyback
GIMME-GIVEYA includes an ACK message (upon which the GIVEYA is
piggybacked), which allows the sink to accept less than the total amount
of data encapsulated in the DATA message. While this addition allows
the sink to renege on promised message buffer space (something that
should be avoided if at all possible), it in no way encourages that

practice. In fact, the forward control path was added so that reneging
on buffer space promises could be avoided. There are situations,
however, when reneging may still be necessary (e.g., a source system

crash occuring after space has been allocated by the sink, tying up
buffer space wastefully). As can be seen by comparing Figs. 3 and 6,
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Fig. 5. Typical message.exchange for the "pure'" GIMME-GIVEYA protocol.

piggyback GIMME-GIVEYA is very similar to windowed flow control. The
main difference between the two is the accompanying GIMME message
piggybacked on each DATA message. This GIMME information provides the
forward control path which has been mentioned previously. This
similarity remains even if data messages are "pipelined.” In that case,
a GIMME message would be piggybacked onto a DATA message only if it is
necessary to request more sink buffer space.

While piggyback GIMME-GIVEYA is more efficient than pure
GIMME-GIVEYA, it requires a seperate beginning and ending sequence to
respectively gain an initial space allocation and inform the sink that
no more message buffer space is needed. Figure 7a illustrates the
sequence of messages which are exchanged to initially gain sink message
buffer space. The source first sends an unattached GIMME message, to
which the sink responds with an unattached GIVEYA message.  The source
then sends a DATA message piggybacking its next GIMME message.
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Fig. 6. Typical message exchange for the piggybacked GIMME-GIVEYA
protocol.

Piggyback GIMME-GIVEYA can now proceed until the source no longer has
any .data to send to the sink. When this condition obtains (Fig. 7b),
the source piggybacks a GIMME O message on its last DATA message
(informing the sink that it desires no more message buffer space). The
sink responds by acknowledging receipt of all or part of the data parcel

and acknowledges the GIMME O message by piggybacking a GIVEYA 0 message
upon the ACK. At this point, the source must initiate a new, unattached
GIMME-GIVEYA sequence (Fig. 7a) when it wishes to transmit more data to
the sink.

APPLICATIONS OF THE GIMME-GIVEYA PROTOCOL

It has been argued that whenever an entity (e.g., a system, a process)
wishes to multiplex its buffer space among several conversations and
whenever those conversations involve bursty traffic, then some sort of
buffer space negotiation is needed to achieve efficient utilization of
that buffer space. The GIMME-GIVEYA protocol provides a framework for
negotiation. However, this framework, which includes forward and
reverse control paths, must be used in conjunction with a suitable
buffer allocation strategy in order to actually obtain efficient buffer
space utilization. I[f the allocation strategy makes no use of the
forward or reverse control jinformation, the advantages of the
GIMME-GIVEYA protocol become vacuous. Another way of thinking about
this is to see the GIMME-GIVEYA protocol as offering a mechanism to
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Fig. 7. Separate beginning and ending sequences of piggybacked
GIMME-GIVEYA. (a) The initial exchange. (b) Informing the
sink that no more buffer space is needed.

achieve efficient buffer space utilization, while the buffer allocation
strategy implements a policy which may or may not allow such efficient
utilization to be achieved.

For example, if a process converses with only one other process or
if a process statically allocates its buffer space for each
communication path, there is no advantage for it to use the GIMME-GIVEYA
protocol. If, however, a process is attempting to dynamically multiplex
its buffer space among multiple conversations, or if a system is using a
common buffer area for the purposes of end-to-end communications,
GIMME-GIVEYA allied with a suitable buffer allocation strategy can be of
real benefit. The possibility of using the GIMME-GIVEYA mechanism in
end—~to—end protocols and to aid in the control of congestion in
store—-and~forward networks is under active consideration.

Application of the GIMME-GIVEYA protocol should be beneficial
whenever the two conditions stated above (i.e., a desire to multiplex
buffer space, and bursty traffic) obtain. Different applications may
require different buffer allocation strategies, but the mechanism of
buffer space negotiation should remain constant. For this reason,
investigation of suitable buffer allocation strategies will also be a
major research effort in the future.
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COMPARING BUFFER RESERVATION AND BUFFER MULTIPLEXING: A SIMULATION
STUDY

A simulation study was undertaken to compare message buffer
reservation with message buffer multiplexing. The study focused on a
commercially available procuct [10] which implements a data switch via a
CSMA (Carrier Sense Multiple Access) broadcast bus. Every host system
is connected to the bus by one or more communication adapters, which
handle all bus contention details. The underlying capacity of the
broadcast bus is 50 Mbps. An adapter is equipped with buffer storage
where message data is staged before being transmitted. Message
transmission proceeds by the host indicating to its adapter that it
wishes to transmit data, the adapter reserving both its own and the
destination adapter’s buffer memory, the data being transferred from
source to destination host via the two interfacing adapters, and then
the source adapter releasing both its own and the destination adapter’s
buffer. A more detailed expoéition of the protocols and algorithms used
by adapters to effect buffer reservation and data movement can be found
in Donnelley and Yeh [6]. The simulation results from their work on the
buffer—reservation approach are used here for comparing buffer
reservation with buffer multiplexing.

The simulation of Donnelley and Yeh was modified to implement a
buffer—-multiplexing approach utilizing the pure GIMME-GIVEYA
buffer—management protocol. The bus contention logic as well as the
report and graphics generation sections were kept intact. The
possibility of developing a mathematical model of either the
buffer—reservation or GIMME-GIVEYA protocol was rejected due to the
. complexity of the analysis. The only way a mathematically tractable
analysis could be carried out would be to apply unrealistic and
distorting simplifications to the problem. This did not seem advisable.

Throughput Comparison

The first configuration that was studied consists of three hosts,
each interfaced to the broadcast bus through its own adapter. Each
adapter was equipped with 8K (K = 1024) bytes of buffer memory. The
first buffer—allocation scheme studied allocates buffer space in
exponentially decreasing sizes. That is, one buffer is one-half as
large as the total buffer memory, another is one-—fourth as large, etc.
This strategy will be called exponential buffer allocation. For a
three—host configuration this scheme partitions buffer memory into four
blocks: one 4K in length, another 2K, and the final two 1K. Since each
adapter can only have four "paths" active at one time (two paths
carrying traffic from the adapter to the other two, and two paths
carrying traffic to the adapter from the other two), this
buffer—allocation strategy prevents anomalous conditions from occuring,
such as store—and-forward lockup [11]. The assignment of these blocks
to each path is dynamic, according to the following rules. A path is
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allocated the smallest block large enough to satisfy the GIMME request.
If no block larger than or equal to the GIMME request is available, the
largest one available is allocated.

It should be emphasized that partitioning memory into blocks whose
lengths are a power of 2 can result in very large memory sizes for only
a moderate number of adapters. That is, since adding an adapter to the
data switch implies either decreasing the size of the smallest buffer
space or increasing the minimum buffer size to be twice as large as the
previous minimum, adapter buffer size will eventually grow exponentially
with the number of adapters added to the data switch. In a practical
situation, with a more realistic number of data switch connections, such
a constraint would be intolerable and so some other buffer~allocation
scheme would be necessary. Results given below show how performance can
be significantly affected by the buffer—allocation strategy employed,
especially at high loads.

When comparing the simulation results of GIMME-GIVEYA and the
buffer—-reservation protocol, one must consider the accuracy of the
underlying model. The simulation for the buffer—reservationvprotocol
was based on an existing implementation of that protocol, and so its
results should be realistic. Message length, time to process messages,
etc., were carefully chosen to accurately reflect the operation of the
existing system. Since no implementation of GIMME-GIVEYA currently
exists, it was not possible to achieve this level of accuracy in its
simulation. Even though the parameters which should affect the
protocol’s performance were carefully chosen to be realistic, the
results presented below should be viewed with some caution.

Figure 8 presents the major result of this paper. The horizontal
axis represents the load placed upon the data switch,® and the vertical
axis shows the throughput obtained. ILoad is measured in terms of the
average waiting time between host requests for data transfer. The
arrival process waits an exponentially distributed time, requests the
transfer of data (which may require multiple DATA messages), and, after
sucessful transmission, cycles back to wait another exponentially
distributed time. For a detailed explanation of the arrival process,
see Donnelley and Yeh [6]. As can be seen from Fig. 8a, buffer
multiplexing offers a 30% to 50% increase in throughput performance over
buffer reservation, for a message size of B8K.bytes. The performance
results presented for the buffer—-reservation approach are the best
results obtained by Donnelley and Yeh using a deadlock prevention scheme
suggested by Shoshani. At every load, buffer multiplexing offers
improved performance, but the most dramatic improvement occurs at high
loads. For a message size of 12 bytes (Fig. 8b), buffer multiplexing
achieves 10 times the throughput (5 Mbps versus 0.5 Mbps) of buffer
reservation. The more dramatic improvement for small message sizes is
probably the result of a 12 byte message fitting into any of the (4K,
2K, or 1K) message buffers. This decreases the number of DATA messages

‘For details on measuring load, see [7].
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detailed explanation of how load is measured, see [7].
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transmitted‘per host message and thereby reduces the data switch
overhead, as discussed in the section on windowed flow control. These
results demonstrate the advantages of buffer multiplexing over buffer
reservation, at least for the CSMA broadcast faciltiy studied.

It is fairly difficult to provide a detailed analysis of all the
factors contributing to the improved performance of buffer multiplexing
over buffer reservation. However, the improvement is probably caused in
a large part by the adverse effect on throughput of the
reservation-release activity centeral to any buffer reservation

technique, but missing from the buffer multiplexing scheme. It is not
that the reservation class messages (e.g., "reserve your buffer"”, "my
buffer is already reserved", 'release the reservation on your buffer")

themselves consume a large amount of bandwidth, but the time spent by
each system managing the reservation protocol, and in particular the
time spent taking remedial action if a desired buffer is already
reserved (e.g., reporting failure to the host, setting up a new
transfer), is time that could be spent transmitting data. Since the
reservation scheme also needs some sort of flow control protocol to
ensure that the data delivery rate matches the receiver consumption
rate, the extra reserve-release mechanisms of the buffer reservation
approach tend to decrease its transport efficiency.

Figure 9 shows the performance obtained by buffer multiplexing for

various message sizes. As can be seen, the maximum throughput for
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Fig. 9. Throughput as a function of load placed upon‘a data switch
when buffer multiplexing is used. Results are shown for three
different message lengths.
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message sizes of 12, 1K, and BK bytes was respectively 5 Mbps, 40 Mbps,
and 47 Mbps. This family of curves-illustrates the stability of buffer
multiplexing as the load increases. The performance of buffer
reservation (Fig. 8a), on the other hand, suffers a slight dip as load
increases from medium to high.

Slow Path Interference

To further illustrate the advantages of buffer multiplexing over
buffer reservation, the following experiment was performed. Consider a
configuration consisting of three hosts connected to the broadcast bus
by three adapters (Fig. 10). Furthermore, suppose hosts a and g are
connected to their adapters by 50 Mbps channels, while host § is
connected to its adapter by a 5 Mbps channel. Two paths will be allowed
to be active, the o”f path and the 62 path. The experiment is designed
to determine if the slow 078 path would interfere with the faster a”g
path. Figure 11 shows the results of the experiment when buffer
reservation is used. At high loads the faster path’s throughput is
"pulled down'" by the slower path. This occurs because §°s buffer is
being reserved by 6 and then held while an BK-byte message is
transferred from host 6 to host §. Since the buffer-reservation scheme
employs double buffering in adapters, only 4K bytes are transferred from
adapter to adapter at one time. This causes'the buffer memory of
adapter 8 to be reserved while the second 4K bytes of data is being
transferred from host 6 to adapter & (at a rate of 5 Mbps). When the
load increases, the resulting underutilization of adapter B’s buffer
causes the throughput of path a”f to degrade. Note that this effect is
not actually caused by the dduble buffering scheme employed. Even if

Host « Host §
50 Mbps 5 Mbps
Adapter Adapter
High-speed Low-speed
path : path
Adapter
50 Mbps

> N gy % )

Fig. 10. Configuration for investigating whether the use of a slow path
(6-8) between hosts will interfere with the use of a faster
path (a>g).
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Fig. 11. Throughput as a function of data switch load when buffer
reservation is used for the configuration in Fig. 10.

the complete 8K bytes of adapter buffer space were available for such a
transfer, the same "pull down” effect would occur for host messages
greater than 8K bytes.

The path throughput curves for buffer multipiexing are presented in
Fig. 12. Notice that path a?f throughput is not degraded by path 678
activity. Throughput for path a?f increases until it reaches a plateau

of around 20 Mbps. This is still less than the underlying channel
capacity of 50 Mbps because of the overhead of the GIMME-GIVEYA

messages, the computation time in the adapters for buffer management,

bus contention, and the fact that adapter a must share buffer space with
adapter B8 (i.e., it does not obtain all 8K bytes of adapter 6’s buffer).
The jump in o?f throughput and slight dip in the 628 throughput at the
highest load is caused by a buffer capture effect of the allocation
strategy. That is, when a message transfer is completed, the buffer
space allocated to it is released back into the free buffer pool. When
two paths are simultaneously active, one has a 4K-byte buffer allocated
to it, while the other has a 2K-byte buffer allocated. At low loads the
d*ﬁ and 6”8 paths get approximately equal use of the 4K-byte buffer space
because message interarrival time is fairly long. At the highest load,
however, message interarrival time has almost gone to 0, which results

in the 4K-byte buffer being reallocated to the 'a?f path almost as soon as
it was released by it. This behavior causes "buffer capture' of the
4K-byte buffer by the a~f path. '
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Fig. 12. Throughput.as a function of data switch load when buffer
multiplexing is used for the configuration in Fig. 10.

Effect of Allocation Scheme

To investigate the sensitivity of buffer-multiplexing performance
to the buffer allocation scheme employed, two changes were made in the
simulation. First of all, the number of adapters connected to the bus
was increased from three to five. This was done so that the results
being obtained did not depend on some idiosyncrasy of a .
three—host/adapter configuration. Second, a different buffer allocation
scheme was implemented so that its performance could be compared to the
exponential buffer allocation scheme. The second allocation technique
assigns constant buffer size to each possible path into and out of an
adapter. Since there are four other adapters to which or from which and
adapter can be transferring data, eight constant size buffers of
8K bytes each were assigned. This resulted in an adapter buffer size of
64K bytes,

Figure 13 presents the results of the buffer allocation scheme
comparison. Notice that at high loads the throughput of the exponential
allocation scheme drops slightly. This decline results from the
scheme’s poor utilization of additional adapter buffer space. . A
64K-byte buffer is divided into one 32K-byte buffer space, one 16K-byte
buffer space, etc. The 32K~-byte buffer space is only being utilized by
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Fig. 13. Throughput as a function of data switch load. for two different
buffer allocation schemes: constant size and exponential.

25%, since the message size being simulated was 8K-bytes. On the other
hand, each smaller buffer (say a 512-byte buffer) is not big enough to
hold a complete host message, so that transmission overhead was
increased. Constant size buffers, on the other hand, are very suitable
to the traffic pattern simulated. Throughput for this scheme remained
constant as load increased from medium to high.

The results comparing buffer allocation schemes only demonstrate
the sensitivity of data switch performance to the chosen buffer
allocation scheme. No claim is being made that constant size buffer
allocation is superior to exponential buffer allocation. It just so
happens that for constan£ message sizes, constant size buffer allocation
provides superior characteristics {(a not too suprising result). It is
the author’s opinion that neither of these buffer allocation schemes
show very robust performance for all types of traffic characteristics.

SUMMARY

GIMME-GIVEYA, a protocol for buffer space negotiation, has been
introduced. Arguements have been given as to why it is preferable to
the more traditional windowed flow c¢ontrol mechanism. The GIMME—-GIVEYA
protocol has been used to demonstrate the superiority of buffer
multiplexing over buffer reservation, at least for the CSMA broadcast
bus system studied. There seems to be no reason to doubt that these
results have more general application.
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LABELED SLOT MULTIPLEXING :
A TECHNIQUE FOR A HIGH SPEED,
FIBER OPTIC BASED, LOOP NETWORK

Sheldon Blauman

TRW Communications Group
Torrance, California

Abstract

A high speed, fiber optic based, ring structured, local
computer network 1s described. The TTIL based prototype
system operates at a line rate of 20 mbps. The interface
logic has been specified to allow implementation i1in the
faster ECL components, which could operate at line rates to
200 mbps., The loop interface mates the high speed fiber
optic channel to 1ts relatively slow computer elements
through a technique called Labeled Slot Multiplexing (LSM).
The Dbyte multiplexed LSM 1loop 1s non-hierarchial and
asynchronous, requiring no host computer or line supervisor.
Agents on the 1loop contend for space non-destructively,
placing byte packets on the 1line only when space 1is
avallable, Time slots on the loop are not pre-determined,
and packets may be inserted whenever space exlsts, Address
recognition is implemented at the line level, and provides
for both functional and physical addresses. Up to 63
devices may share the loop, with a potential for 192 logleal
funetions. The loop interface 1s modular, separated into
two 1logical/physical packages, a 1lline interface and a
processor interface. The line interface contains only the
logic which must function at line rates, with the slower,
byte oriented operations performed in the 1less expenslve
processor interface.,

INTRODUCTION

Fiber optlies, promising high bandwidths and low error
rates with excellent nolse immunity (1,2,3), offers an
almost ideal communications medium for computer to computer
links, and makes possible new approaches to local network
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design. The primary challenge facing a designer 1s the
efficient utilization of the medium, which has a much
greater bandwidth potential than most local networks
require, or can use. TRW's Communications Group's research
organlzation has been experimenting with the appllication of
fiber optics to local computer networks,

The first step in applying fiber optics 1s deciding on
a network topology. Two conslderations help to make that
decision: the high speed of fiber optic 1links, and their
greater interface cost over purely electronic communication
lines. A loop, or ring structure can utilize a high speed
communications medium, and requires a minimum number of
%ﬁgerfaces while providing a path between all 1ts agents

A basic problem in applying fiber optles to a 1loop
network iIs that the medium has much greater bandwlidth
potential than the computing elements 1t is to couple. If
the optical channel is run at the relatively slow speed of
its processors there 1s 1little Justifilcation, other than
noise immunity, for the more expensive fiber optics over
. conventional communication channels. If the .channel i1s run
at a bandwldth greater than that of 1ts agents, there must
be a means of gearing the agents to the speed of the 1loop,
which may be in the hundreds of megabits/sec, range (5),
requiring very high speed ECL logilc. This effectively
eliminates most exlsting loop protocol designs (6,7,8,9),
. which all appear to require interface unlts too expensive to
implement in high speed components. The need for costly ECL
logic at higher bandwldths necessitates a new approach to
loop protocols; one which minimizes loglc at the 1line
level, and in particular does not require large, high speed
buffers. A network of that type has been developed at  the
University of Cambridge, in England, which proves a simple
system may make effective use of a high speed medium (10).
The following design, lndependently arrived at, 1is similar
in concept but very different in approach.

Before evolving the network design, we will outline our
requirements for a local distributed computer system., It 1s
desireable that there be no supervisory agent 1In the
network, eliminating that potential single polnt of fallure.
Address recognition at the line interface level 1is essential
to high speed operation, and automatic recognition of
logical addresses as well as a device's physical address
would eliminate the need for routing tables or schemes, A
global address capability 1s also a desired feature,
allowing a single message to be sent to multiple loglcal
destinations, Because we are dealing with a rellable and a
high speed communlications medlium, segmented messages are not
necessarily required for efficlent 1line utilization, few
errors belng expected, and when occuring, retransmission
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being very rapid. This prompts the requirement for a
continuous message transmission capabllity. One additional
feature, which becomes feasible with high speed
communication channels, 1s the ability for an agent to
accept 1ts own messages, allowing a computer to 1ssue a
request for a function and then accepting the request itself
if no other agents are capable of processing that function.

Incorporating all the above mentioned features into a
local network both alds in system operation and simplifies
the software requirements. The software simpliclty 1is of
particular importance 1f micro-computers are to be the
agents in the network. We will now proceed with the
generation of a design which will achieve all these desired
capabilities.

LINE PROTOCOL

The requirement for mimimum line level logic, and in
particular short line buffers, preordains some form of 1line
multiplexing. In returning to basilc communications
engineering, a possible protocol for a high speed loop of
thls design is Time Division Multiplexing (TDM), perhaps
with byte length slots. TDM requires a marker, which each
agent counts from to find 1its assigned slot, or logical
channel. Two problems are that a supervisor 1s required to
generate the marker and clock the loop, and that each slot
requires a reserved 1location, even when unused. The
requirement for a supervisor is the most disturbing of the
problems, since it presents a single point of fallure for
the network, which otherwise could be non-hierarchlcal. of
course any of the agents on the loop 1s also a potential
single point of failure, since the loop 1s broken at each
agent, fiber optics not lending themselves to large numbers
of passive taps. The individual agent problem can be solved
through a normally closed optical switch, which 1s only open
when the assoclated agent 1s alive and well; switches of
this type have been bullt at TRW. However the supervisor
cannot be bypassed, and must be functional for the 1loop to
operate, making fallsoft operation difficult.

An advantage of fiber optics 1s that generically it
provides an almost open ended bandwidth capabllity,
currently limited to rates approaching 200 mbps/km (5,11),
but with potential for much higher rates. It seems
reasonable to utilize some of this abundance of resource as
overhead, if doing so can solve some of the problems
inherent in TDM. The primary need for the supervisor is for
the generation of the marker which each agent uses to locate
its slot, An alternative method 1s to label each slot with
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the ldentity, or channel number, of 1its owner. An agent
listening on a channel can then watch for its channel 1I1.D.,
rather than count to a slot from a marker. A transmitting
agent places its labeled data on the 1line as the data
becomes avallable and whenever space exists on the line. As
in TDM, the packet, including both data and label, must be
removed or replaced with a new packet by the originator
after one loop cycle. In addition to eliminating the marker
requirement, and hence the supervisor, thls technique should
allow better line utilization by not reserving channel space
and not fixing the transmission rate to that of the slowest
agent. The disadvantage of thls scheme 1s 1t requires a
high overhead for the label relative to the data,
particularly if the data is only 8 bits in length. However
the bandwidth of the fiber optic 1link can always be
increased to compensate, just by improving the components.
This allows a desligner to freely determine the correct
bandwidth for a system, knowing that it can be achieved by
properly specifying the electooptic 1interface. The real
bandwidth limitation 1s the electonics, and not the 1line
itself,

LINE INTERFACE

The labeling technique described above defines a method
for identifying data on the line, but does not specify how a
message may be directed to a destination. Since the network
is a loop, and a packet passes completely around before
being removed by the originator, all agents will see every
packet., This allows messages to be addressed functionally,
wlthout knowlege of the the physical location of a requested
resource. Of course physical addressing is also requlred,
since it 1s necessary to transmit the response specifically
to the requesting agent. Transmitting a message on a byte
by byte basis requires potential recelvers to 1dentify the
destination at the very start of the message, so they might
determine if they should capture subsequent packets from
that source. This formulates the first rule of our message
protocol: messages must begin with their destination, which
may be either a logical or a physical address. To simplify
the protocol, the destination field 1s limited to a single
data field, in this case one byte, allowing 255 destinatlon
addresses. Since some of these must be physical addresses
it 1s necessary to define the number of agents permitted on
the loop. For our network purposes, 63 1s a reasonable
number of nodes, allowing 192 1logical functions in the
system. This fixes the source I.D. portion of the packet
label at 6 bits. To distinquish the initial destination, or
start of message (STX) packet, from a subsequent data



~-313-

packet, a flag 1s required, adding one blt to the label. It
1s also desireable to acknowlege packets which have been
accepted and copied, which adds one more control bit, for a
total label size of.8 bits. In addition to the 1label and
data fields, start/stop bits are required for
synchronization, giving a total packet size of 18 bits
(longer start/stop "fields" may be required at higher 1line
speeds).

With the packet format described, 1t 1s possible ¢to
define the llne interface logic. To be effective, this
message protocol must be processable at the 1line 1level in
high speed logic. To facilitate this, each packet is fully
buffered at the line interface, 1introducing a one packet
delay, during which time all line operations are performed.
The most difficult feature to implement 1s the ability ¢to
recognlize an acceptable, logically addressed request at line
speeds. This problem 1is solved through the use of a high
speed 1 x 256 bit RAM chip, with each bit location
corresponding to a destination address. Each function
processable by an agent 1is flagged by a bit set in the high
speed RAM by the agent's software. There 1s also one bit
set to indicate the physical address of the agent, since
some messages, particularly responses, must be sent to a
specific physical location. In addition, a physical
address register 1s required, which is compared to the label
field to determine which packets have been ¢transmitted by
that agent and must be removed. The 1line interface 1is
designed to look for acceptable packets 1ndependently of
identifying 1ts own transmissions, allowing it to accept 1its
own messages., This ellminates the need for the agent's
operating system to support two separate transaction routing
schemes, simplifying the overhead software, an important
consideration in memory limited microprocessors,

The logic design of the line interface has been kept
simple in order to minimlze hardware and to allow operation
at 1line speeds. The optical recelver 1is always in
communication with its upline agent to maintain
syncronization, Thils eliminates the requlrement for a 1long
startup header. When data is seen on the line, a clock 1s
derived from the signal and passed with the data to the
receiver loglc, which collects the 1incoming packet 1n a
serial to parallel shift register., After the full packet 1is
received, the Information is passed to a receiver operating
latch and to an output shift register. The recelver
immediately checks to determine i1f the packet was originated
at its node. If it was, the output is inhibited to prevent
retransmission of the packet, removing it from the loop. If
not, retransmission 1s initiated while the receiver performs
subsequent checks on the captured information., The transmit
clock is derived from a local oscillator and 1s not bit
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synchronized with the input derived clock.

If the recelver is not in the process of recelving a
message, that is, not currently 1listening for a specific
"channel"”, it checks for the presence of the new message
flag. If set, the data byte contains the destination for
the message. The receiver decodes the destination as the
address to 1its RAM, and checks the bit at that address to
determine if it 1s set. If the bit 1s set, and the packet
has not been acknowleged by some upline agent, that node 1is
an eligible receiver. The receiver sets the acknowledgment
bit in the packet in the output latch, sets an internal busy
flag for itself, and traps the address of the originator, or
channel I.D., in a register to be compared with the label on
all subsequent packets. One exception to the above sequence
is in the checking of the acknowledgment flag., A class of
functions 1is specified as global, and when a destination
address falls within that range, the presence of the ack bit
1s ignored in the decision to accept the message. This
allows all eligible receivers to accept a broadcast message
concurrently.

Once a receiver has accepted a packet, a virtual 1link
has been established between 1t and the originator. The
receiver then watches all subsequent packets passing on the
loop for those with a matching label fleld. As the packets
from the prescribed source are found, they are acknowledged
and the data byte captured and relayed to the processor
interface. The sequence continues until the receliver sees a
packet from that source with the message control flag set,
as 1n the first packet of the message. This second
occurance of the control flag in conjunction with a reserved
code lndlcates the end of transmission, or ETX. This event
causes the receiver to notify the processor interface, which
sets a status and Interrupts the processor. However, the
line interface remains busy untlil signaled by the interrupt
processor 1t may proceed to search for a new message. The
ETX packet looks identical to a start of message (STX)
packet, except that destination address zero i1s reserved as
an ETX code, which no other receiver will confuse as a valid
starting address.

PROCESSOR INTERFACE

The loop interface 1s not designed for direct computer
connection; it requires a separate Interface (1e:
controller) between it and the processor, This minimizes
the amount of hardware which must be redesigned to mate
other processors to the network. The processor interface 1s
byte oriented, operating at the DMA rate of the processor,
and not at line speed. This allows a design utilizing much
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lower speed logic than that 1in the 1lline 1nterface, The
processor interface 1s full duplex, with separate input and
output sections, each with 1its own DMA channel, When
eligible for a new message, the 1nput section has a
preallocated empty buffer available for 1immediate access.
When the line interface locates a message and begins to trap
and relay the data, the processor interface DMA's each byte
into the assigned buffer. As bytes are received and stored,
an address register 1s incremented, and a preset buffer byte
count decremented. When the byte count goes to zero, the
processor is interrupted and a new buffer requested. The
sequence continues until an ETX occurs. The ETX occasions
an Interrupt for message completion processing, however 1t
- does not automatically reset the 1line and processor
interfaces as not busy, both of which walt until made
avallable for new messages by the interrupt software.

The 1nput portion of the interrupt code has three basic
functions: supplying new buffers, assigning messages to
thelr processing routines, and determining resource
availability. The latter function, though software
oriented, is pertinent to the description of the loop
architecture. Upon completion of an input sequence, the
interrupt handler chains the newly recelved message to 1ts
destination program, and if the message 1s a functional
request, determines 1f there is capaclty for more
transactions of that function type. If the resources are
available, the interrupt processor instructs the I1nterface
hardware to return to non-busy mode, watching for new
eligible messages. If the resources for that functlon have
been saturated, the interrupt handler clears the the bit 1in
the line interface memory assoclated with that function
before making the receiver available for new messages.,

The output section of the interrupt processor operates
in a similar, though complementary fashion., When called by
a program to ¢transmit a message, the system presets
processor Interface registers with the address and length of
the first buffer, then sets a control register to indicate a
new message 1s avallable, If the message is fully contained
in the one buffer, the control word also indicates that the
last byte should cause the ETX bit to be set. The writing
of the control byte starts up the output 1logle of the
processor interface hardware. :

The processor 1interface hardware formats the flrst
packet of the message with the flag bit set, passes 1t to
the line Interface, then walits for the first packet to
return before issuing the subsequent bytes of the message.
If the first packet returns un-acked, the output logic
issues an Interrupt to notify the software a recelver was
not found. The software will decide on subsequent action,
which will generally be to reissue the request some number
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of times, assuming potential receilvers are momentarily busy.
After the first packet has been accepted, the bytes will be
DMA'd from the processor memory at a programmably set rate
calculated to not overrun the receiver's DMA capablity. Ir
any of the returned packets are not acked, the processor
interface will set an error flag and issue an Interrupt to
force a retry of the entire message.

The loglc in the output section of the 1line 1Interface
is simple. If the output latch, or register, is clear, and
no data is in the input reglster, the output section gates
the packet into its output latch, knowing 1t has sufficient
time to transmit the entire packet, even 1f the recelver
immediately gets incoming data. This provides a
nondestructive contention scheme, which allows packets to be
sent as frequently as possible, yet not interfere with other
messages occupylng the loop at the same time.

ERROR HANDLING

Posslible transmit errors are non-acked returned packets or
-an incorrect number of returned packets, The hardware
detects "ACK" errors and keeps a returned packet count for
software detectlon of lost packets. Possible recelve errors
are incompleted transmissions (underflow) and . inability to
~ process the next packet in time (overflow). The hardware
sets an overflow flag when that condition occurs, and the
software monitors recelve cycles to determine ifr an
underflow has occured, However there is no way to detect
garbaged or orphaned packets continually reclirculating on
the loop without the addition of a line monitor, which 1s
prohibited under our original design eriteria., This is an
intentional deficiency, since few line errors are expected
in a fiber optic network; however, the condition must be
provided for in some fashlon, because 1t can happen.,

A simple and effective, though somewhat brusque
technique, 1s to periodically halt the 1loop for a long
enough time to completely clear it. Unfortunately this will
also abort any valid messages on the 1line at the time;
however, both transmitters and recelvers will detect the
flush generated errors and reset themselves, This 1loop
shutdown capablility is under software control, and when
invoked 1nhibits the transmitter from initlating or
retransmitting any packets,

Because a low error rate 1s an inherent and Justifylng
feature of fiber optics, 1loop flushes may be performed
periodically on a relatively infrequent basls of minutes or
even hours, with the option for an operator initiated flush.
Properly implemented, this capability should cause little 1if
any system disruption; however, it 1ls necessary to guard
against gradual loop degradatlon from accumulating garbage.
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Though somewhat basic, the technique appears an excellent
alternative to a loop monitor or supervisor, particularly in
the case of a low error rate medium,

CONCLUSION

This completes the description of the fiber optic 1loop
interface, For ease of development the flrst prototype
version i1s implemented in lower speed TTL logic, functlioning
at 20 mbps, whlich should be adequate for evaluation
purposes. However, the loglc 1s designed for bandwidths ¢to
200 mbps, utilizing high speed ECL components at the 1line
interface level. The protofype processors are Motorola 6800
based, and the processor interface exists as a one card
controller on the bus, The 1line 1interface exlsts as a
separate package, linked to the processor interface through
a cable. In theory, only the processor interface board
would have to be redesigned to allow adaption of other
processors to the loop.

Because thls paper systematically evolved the design of
the loop Iinterface from a hardware viewpoint, little
attention has been paid to Justifying the approach from a
software viewpoint. However, all hardware features were
specified with an operating system structure in mind, and a
good percentage of the code had been generated before the
final design stage of the hardware was complete, resulting
in some design changes to arrive at a fully integrated
hardware/software package.

SUMMARY

A distributed local computer network has been described
which utilizes fiber optics as 1ts communication channel.
The line and message protocols both depend upon, and take
advantage of, the high bandwldths and 1low error rates
provided by the flber optic medium. A 1labeled slot
multiplexing scheme is used, each slot containing a data
byte and label. The label on each packet 1ldentifies 1its
originator, and includes an STX/ETX flag and an
acknowledgment bit. The originator of a packet watches for
its return, and removes it from the loop, the acknowledgment
bit indicating 1ts acceptance by an ellgible receiver, The
first byte of a message, indicated by the presence of the
STX bit, must contaln the destination, which may be logical
or physical. The 8 bit byte allows 255 addressess, 63 of
which are reserved as physical unit numbers. Destination
zero 1s reserved as an ETX flag, and in conjunction with the
presence of the ETX bit in the label, indicates the end of a
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transmission to an active receiver, The 1line 1interface
logic includes a 1x256 RAM chip which provides the table of
acceptable destinations at any processor. This allows the
dynamlc detection and acknowledgment of messages processable
by that recelver.

The above structure 1s intended to both provide a high
speed, non-hierarchical loop and to minimize operating
system software requlrements, an important feature for
micro-processor based networks. Messages proceed around the
loop with only a one packet delay at each agent, and with no
requirment for active software intervention. The functional
destination capablility eliminates the need for routing
tables, and a subset of functions designated as global
allows a single message to be directed  to multiple
destinations, These fedatures allow concurrency and
redundancy to be provided with relatively 1little software
effort. The message protocol requirements are simple only
specifying that each message begins with an é bit
destination code and ends with a 2zero byte, Though byte
oriented, the protocol 1s not ASCII structured nor bit
patterned, allowing any data format to Dbe used. The
prototype system depends on a software generated and decoded
CRC for error detection. However, this capability could be
implemented in hardware 1n the processor interface loglc,

Though the prototype system utlilizes micro-computers as
its processing agents, a mini-computer LSM network would be
even more practical, better utilizing the bandwidth
potential of the fiber optic loop. Looking ahead, the next
generation of 16 bit micro-processors appear to be an
excellent candidate for agents on an LSM 1loop. With the
protocol modified to allow 16 bits of data, this comblnation
could prove to be an extremely potent network computer, the
loosely coupled components functioning as one entity, but
more failsafe and more easlly expanded than a single
mainframe computer.
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Abstract

Since 1976, the Computer Engineering Section at TRW has been using
Concurrent Pascal [1] in its multiple-minicomputer Signal Processing Facility
for research into the software engineering of special purpose locally distri-
buted systems. In such systems, the particular operating system support
required at any processor can be quite specific, removing the necessity for
use of typical vendor-supplied general purpose operating systems. With the
aid of appropriate Concurrent Pascal code segments, complete operating system
environments can be easily constructed which exactly match local processing
requirements. Intercomputer 1ink drivers, file systems, graphics packages,
and performance monitors are examples of typical services. To these, we have
added a simple distributed.file manager (DFM) which maintains three possible
levels of access control for a file distributed redundantly over any number
of machines.

The purpose of this paper is to discuss the particular services or
application code interfaces into the DFM which were decided upon, the opera-
tion of the manager and its representation as a collection of Concurrent
Pascal system types, and our method of monitoring its performance.

1.0  INTRODUCTION

Our work has been conducted with an emphasis on the beneficial effects
of Concurrent Pascal on distributed systems software engineering for multi-
processor local network architectures. We believe that two barriers to rapid
and reliable construction of such distributed systems are the use of vendor-
supplied operating systems, which are usually designed to support general
purpose timesharing on a single processor, and the use of vendor-supplied
languages which do not provide the level of software structure necessary for
simple and effective solutions to problems of parallel execution. We don't
claim that Concurrent Pascal, or any other language designed to support con-
current programming (e.g. Modula, Ada, etc.) is "the" answer to low risk
implementation of distributed systems. However, we do feel it is important
to break the vendor-supplied 0S "habit" and these languages provide an
important and workable means of doing so.
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Using Concurrent Pascal (or other appropriate languages), application-
tailored operating systems can be created and their performance studied and
monitored in the space of weeks. Simulation of data distribution protocols,
for instance, may be unnecessary when actual implementation takes no more
time.

In our search for an expedient software development base, a Concurrent
Pascal operating system_was developed starting from Per Brinch Hansen's
original SOLO system [2]. The resultant Experimental Development System
(EDS) has now been further modified with the addition of a Distributed File
Manager (DFM). While the DFM is primarily meant to be available for incor-
poration into special-purpose operating systems supporting distributed processing
applications, inserting it into EDS provided insight into the interface between
a distributed processing capability and applications code, and allowed us to
easily test and monitor DFM performance.

The DFM discussed in this paper is oriented toward maintaining three
possible levels of access control for a single redundantiy distributed file.
Distributed database protocols are often presented in the context of updates,
and our particular choice of access levels is an attempt to generalize these
results in a straightforward fashion to include less expensive types of control
for read operations. The three levels of access control correspond to the
following possible characterizations of the local file copy: latest copy;
consistent copy; and possibly inconsistent copy. Updates may be performed only
on a latest copy, but reads may be performed under any level of DFM control.
Responsibility for requesting the appropriate level is left to the application.

Extensions to this basic capability for handling a single distributed
file readily suggest themselves. However, since this file is essentially a
shared array of disk pages made available to application code on any number
of machines, a useful environment for distributed processing applications is
made available.

. The following presentation is structured in a top-down manner. First an
overview of EDS is given in order to introduce system access graphs and provide

a general idea of the software environment into which the DFM was inserted.

This is followed by a discussion of the application code interfaces to the
Distributed File Manager and the services which were made available. The struc-
ture of the DFM in terms of Concurrent Pascal system types, and the rationale
behind its operation are detailed, after which we discuss performance monitoring.
We conclude with a few words concerning the utility of the DFM.

2.0 THE OPERATING SYSTEM

Our Experimental Development System (EDS) is written in Concurrent Pascal.
In addition to the usual Pascal data types such as integer, array, record, etc.,
Concurrent Pascal provides the additional system types of "process" and "monitor.
These are provided in order to facilitate the explicit high-level expression of
a multiple process environment, and the means by which processes may communicate
with each other. If a Concurrent Pascal process wishes to do so, it may load
and _execute a Sequential Pascal program which has been previously compiled. This
is equivalent to what happens in a timesharing system when a process associated
with a remote terminal responds to a command by loading and executing a user
program.



-324-~

The basic structure of EDS is three processes (input, job, and output),
plus monitors to allow the job process to communicate with the input and
output processes. Through these monitors, the job process first makes its
1/0 requirements known to the input and output processes, and then subsequently
accepts or sends blocks of information as they are made available. Depending
on the communicated requirements of the job process, the I/0 processes load
and execute appropriate sequential programs. Unlike the I/0 processes, which
are essentially dependent on the job process for information determining their
course of action, the job process prompts the user by loading and executing
a sequential program specifically designed as a user interface. Operating
system services made available to a sequential program include the ability to
request that a different sequential program be loaded and run, thus the user
interface program reads a command line from the console, parses it it determine
the user's requirements, and then requests that the appropriate program be run.
When the required program has run to completion, the user interface is continued
(with the completion status of the requested program made known to it), and
the cycle repeats itself. Figure 1 is an access graph or diagram of the important
EDS system components.

The simplicity of EDS is one of its most valuable features, allowing it to
be rapidly modified to suit its users' requirements. Such simplicity provides an
excellent basis for distributed processing experiments, and in general helps to
blur the distinction between application and operating system code. Though we
feel that this is an asset when creating specially tailored systems (in which
the operating system "is" the application code to a great degree), it should be
noted that Concurrent Pascal can be, and has been used to create larger and more
sophisticated operating systems. Three worthy of mention are the Interactive
Graphics Operating System of John Barr [3], the MUSIC Multi-User system of Klaus-
Peter Lohr [4], and the Capabilities Operating System (LINUS) of Mike Ball [5].

Typical services provided by the EDS processes which execute sequential
code (we have already mentioned the ability to run sequential programs) include
a set of file access services - open, close, get, put, etc. - and a set I/0
functions - readregister, writeregister, awaitinterrupt, etc. - which are useful
for writing device drivers in Pascal [Gﬁ. To these services, an additional set
has now been made available for experimentation. They provide the ability to
manipulate a locally disk-resident array of pages which are shared redundantly
(updates are broadcast and incorporated into external file copies) with coopera-
ting job process programs on other machines. These newly provided services will
now be disucssed.

3.0 DISTRIBUTED FILE SERVICES

The EDS file system is built around a disk-resident catalog of named files
and their attributes. One attribute of a file is the disk address of its page
map. . Opening a file involves a search of the catalog for a file's attributes,
followed by reading it's page map into memory. Subsequent file I/0 requests
(get,put) are then processed by referencing this page map and performing the
appropriate disk access. '

- The DFM performs its local operations in a similar manner, making use of
the catalog to locate a file's page map, etc., with the restriction that only one
file may be accessed through it. Pages may be read from this file at any time,
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monitored in the space of weeks. Simulation of data distribution protocols,
for instance, may be unnecessary when actual implementation takes no more
time.

In our search for an expedient software development base, a Concurrent
Pascal operating system was developed starting from Per Brinch Hansen's
original SOLO system [2]. The resultant Experimental Development System
(EDS) has now been further modified with the addition of a Distributed File
Manager (DFM). While the DFM is primarily meant to be available for incor-
poration into special-purpose operating systems supporting distributed processing
applications, inserting 1t into EDS provided insight into the interface between
a distributed processing capability and applications code, and allowed us to
easily test and monitor DFM performance.

The DFM discussed in this paper is oriented toward maintaining three
possible levels of access control for a single redundantly distributed file.
Distributed database protocols are often presented in the context of updates,
and our particular choice of access levels is an attempt to generalize these
results in a straightforward fashion to include less expensive types of control
for read operations. The three levels of access control correspond to the
following possible characterizations of the local file copy: latest copy;
consistent copy; and possibly inconsistent copy. Updates may be performed only
on a latest copy, but reads may be performed under any level of DFM control.
Responsibility for requesting the appropriate level is left to the application.

Extensions to this basic capability for handling a single distributed
file readily suggest themselves. However, since this file is essentially a
shared array of disk pages made available to application code on any number
of machines, a useful environment for distributed processing applications is
made available. ' '

The following presentation is structured in a top-down manner. First an
overview of EDS is given in order to introduce system access graphs and provide
a general idea of the software environment into which the DFM was inserted.
This is followed by a discussion of the application code interfaces to the
Distributed File Manager and the services which were made available. The struc-
ture of the DFM in terms of Concurrent Pascal system types, and the rationale
behind its operation are detailed, after which we discuss performance monitoring.
We conclude with a few words concerning the utility of the DFM.

2.0 THE OPERATING SYSTEM

Our Experimental Development System (EDS) is written in Concurrent Pascal.
In addition to the usual Pascal data types such as integer, array, record, etc.,
Concurrent Pascal provides the additional system types of "process" and "monitor.
These are provided in order to facilitate the explicit high-level expression of
a multiple process environment, and the means by which processes may communicate
with each other. If a Concurrent Pascal process wishes to do so, it may load
and_execute a Sequential Pascal program which has been previously compiled. This
is equivalent to what happens in a timesharing system when a process associated
with a remote terminal responds to a command by loading and executing a user
program.
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The basic structure of EDS is three processes (input, job, and output),
plus monitors to allow the job process to communicate with the input and
output processes. Through these monitors, the job process first makes its
1/0 requirements known to the input and output processes, and then subsequently
accepts or sends blocks of information as they are made available. Depending
on the communicated requirements of the job process, the I/0 processes load
and execute appropriate sequential programs. Unlike the 1/0 processes, which
are essentially dependent on the job process for information determining their
course of action,.the job process prompts the user by loading and executing
a sequential program specifically designed as a user interface. Operating
system services made available to a sequential program include -the ability to
request that a different sequential program be loaded and run, thus the user
{interface program reads a command 1ine from the console, parses it it determine
the user's requirements, and then requests that the appropriate program be run.
When the required program has run to completion, the user interface is continued
(with the completion status of the requested program made known to it), and
the cycle repeats itself. Figure 1 is an access graph or diagram of the important
EDS system components. :

- The simplicity of EDS is one of its most valuable features, allowing it to
“be rapidly modified to suit its users' requirements. Such simplicity provides an
excellent basis for distributed processing experiments, and in general helps to

blur. the distinction between application and operating system code. Though we
feel that. this is an asset when creating specially tailored systems (in which

the operating system "is" the application code to a great degree), it should be

.. noted that Concurrent Pascal can be, and has been used to create larger and more
sophisticated operating systems. Three worthy of mention are the Interactive
Graphics Operating System of John Barr [3], the MUSIC Multi-User system of Klaus-
Peter Lohr [4], and the Capabilities Operating System (LINUS) of Mike Ball [5].

~ Typical services provided by the EDS processes which execute sequential

code (we have already mentioned the ability to run sequential programs) include
. a set of file access services - open, close, get, put, etc. - and a set I/0

.functions - readregister, writeregister, awaitinterrupt, etc. - which are useful
for writing device drivers in Pascal [6]. To these services, an additional set
has now been made available for experimentation. They provide the ability to
manipulate a locally disk-resident array of pages which are shared redundantiy
(updates are broadcast and incorporated into external file copies) with coopera-
ting job process programs on other machines. These newly provided services will
now be disucssed.

3.0 DISTRIBUTED FILE SERVICES

The EDS file system is built around a disk-resident catalog of named files
and their attributes. One attribute of a file is the disk address of its page
-map. Opening a file involves a search of the catalog. for a file's attributes,
followed by reading it's page map into memory. Subsequent file I/0 requests
(get,put) are then processed by referencing this page map and performing the
appropriate disk access. o

- The DFM performs its local operations in a similar manner, making use of
the catalog to locate a file's page map, etc., with the restriction that only one
file may be accessed through it. Pages may be read from this file at any time,
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and the application code has the option of requesting that the DFM maintain inter-
page consistency during local file access. This 1s done by allowing the DFM to
exercise a certain amount of access control.

Updates may only be performed on what is called the "latest" copy of the
file, access to which is globally exclusive. This file copy contains all previous
updates, thus the term "latest."

A non-exclusive "consistent" copy is also available for read-only operations,
and this consistent copy will reflect all or none of the updates performed on
any "latest" copy. In practice, this copy will initially be the latest version
of the file, with new updates from other nodes temporarily locked out. If an-
other node is performing updates on the "latest" copy at the time a "consistent"
copy is requested, the DFM will wait until these updates are finished before
locking the local copy and continuing the program which requested a "consistent"
copy. The use of the word “"consistent" here is based on the assumption that :
the file 1s always left in a consistent state upon completion of updates on any
"latest" copy. Since access to consistent copies is not globa11y exclusive,
ef:ig;ency of file access is made possible for code which doesn't require update
privileges.

Programs which don't require inter-page consistency need not request a
“consistent copy, in which case reads will be performed with no file locking in
effect, and without delay even if updates are being currently performed. Appli-
cations which allow pre-allocation of information to particular file pages would
be capable of exploiting this. An example would be a mailbox application.

Actual file 10 is supported with the usual page update and read services.
An additional facility whereby an accessing program may wait until one of a set
of pages is updated before performing a read is also available.

The separate DFM service calls will now be 1isted, and their meanings dis-
cussed. The semantics of these DFM service calls are a separate concern: from
the underlying manager protocols which implement them, details of which are
disucssed in a later section. . For instance, while the particular manager we used
employs distributed control, there is no reason why the same services might not
be provided through the use of a centralized control protocol.

3.1 DFM Entry Procedures

The following represents the application code interface to the DFM. For
those unfamilfar with Pascal-1ike code, the keyword "var" is used to give a called
procedure the ability to modify or assign a value to a passed parameter. In the
following, the passed parameter "OK" is used for the purpose of allowing the DFM
to explicitly refuse particular requests for service. For example, a PUT_COPY
would be refused (and the value "False" returned in the variable “OK") if the DFM
was not maintaining a latest copy at the time of the request.

type
PAGE = array[1..512] of char;
ID = array[1..12 ] of char;

FILE_CURRENCY = (POSSIBLY INCONSISTENT,
CONSISTENT,
LATEST);
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NODE = 1..10;

NODE_SET = set of NODE;
WAITPAGE = 1..100;
WAITPAGE_SET = set of WAITPAGE;

procedure entry CONNECT(RECEIVE_SET: NODE_SET;
FILE_NAME: ID;
var OK: boolean);

procedure entry DISCONNECT;

procedure entry REQUEST;pOPY(LEVEL:‘FILE CURRENCY ;
var OK: boolean);

procedure entry RELEASE_COPY;

procedure entry PUT_COPY(PAGENO: integer;
' BLOCK: PAGE;
var OK:vboo1ean);

procedure entry GET_COPY(PAGENO: integer;
var BLOCK: PAGE);

- procedure entry GET_NEXT(TRIGGER SET: WAITPAGE_SET;
var PAGENO: integer;
var BLOCK: PAGE);

3.2 DFM Entry Semantics
The services ava11ab1e'through the above interface are now described.
3.2.1 Connect

This service and its counterpart (Disconnect) represent an area not usually
mentioned in conjunction with DFM protocols. This may be due to the assumption
that initialization is a minor detail, but we found Connect to be a very interest-
ing problem, requiring its own special protocol (i.e. aggreement among the DFM's)
for a solution.

We decided to allow the local application program to specify the nodes from
which external updates will be recefved (as well as the file on which they should
be processed) in order to avoid building this information into the DFM (creating
potential inhomogeneity in the managersg, and to avoid the possibility of unex-
pected updates to a file not explicitly connected via a local request. This last
possibility might not represent any great danger to a system for which necessary
synchronization is achieved in some other way, but we nevertheless chose to en-
force synchronization as part of the Connect service.

Stated briefly, a local Connect service will complete as soon as all nodes
from which updates will be accepted have themselves requested a Connect service.
This approach has some interesting implications (not all favorable) and was chosen
with an eye on code complexity. If all nodes specify the same receive_set in the
Connect request, then the usual redundant copy database results. Disjoint parti-
tioning of the network nodes is also possible. Unfortunately, a non-disjoint
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partitioning would be vulnerable to lost updates (updates generated by a success-
fully connected node before another node issues a connect request specifying

the desire to accept updates from the first node). This problem appears to occur
outside the range of expected DFM usage, but it points out the fact (as if we
needed to be reminded) that possibilities for interesting and possibly erroneous
DFM protocol design decisions exist aside from those associated directly with
update and access control.

3.2.2  Disconnect

This is the counterpart to Connect. A Disconnect service will complete
as soon as all nodes from which updates can be accepted have themselves requested
a Disconnect service.

3.2.3 Request Copy

This service represents our attempt to generalize global mutual exclusion
update protocols to include less expensive types of access for read operations
in a straightforward and easily implemented fashion. In the discussion that
follows, assume that each network node has performed a Connect service specifying
all network nodes as the receive_set. Then each node has one local disk file
(referred to as the local file copy) on which reads and distributed updates will
be processed. All calls to Request_Copy instruct the DFM to maintain a certain
level of control on local and external access to this file until a corresponding
Release Copy service is executed. In the interim, any number of permitted accesses
of the Tocal file copy may be performed.

External accesses are always updates (in a redundant copy database) and local
accesses may be either updates or reads. The three possible levels of access
control for the local file copy are: : : y

1. external updates allowed, local updates not allowed, and local
reads allowed

‘2. external updates not allowed (but queued for later 1nc1usioﬁ
in the local file copy), local updates not allowed, and local
reads allowed

3. external updates not allowed (none can arrive due to the g1bba11y
mutually exclusive nature of the protocol by which this level of
access is granted), local updates allowed, and local reads allowed

In the first case, no guarantee concerning the consistency of the local copy
can be made by the DFM since a related stream of external updates may only be
partially completed at the time a series of local read operations are performed.
In the second case, the DFM is able to guarantee consistency of the local file
. copy because no updates to this copy can occur, and because the Request Copy

service for this level of access will not complete until the local copy reaches

a consistent state. Consistency is assumed to occur at the completion of a

stream of related updates, which is signalled by an updating node when it performs

& Release Copy service. Only in the third case may updates be created for inclu-
sion in the local copy and distribution to "connected" external file copies.

_ Use of a global mutual exclusion update protocol (and waiting for the completion
"of locally queued external updates before local access is allowed) guarantees

seriality of update operations.
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As mentioned previously, three possible characterizations of the local copy
corresponding to these access levels are: possibly inconsistent; consistent;
and latest. The default condition is the possibly inconsistent state.

3.2.4 Release_Copy

This i1s the counterpart to Request Copy. The result of performing this
service 1s to return a local file copy to the possibly inconsistent state, as
well as to signal the end of related updates if the local copy was previously
a latest copy. If the Tocal copy was previously a consistent copy, external
updates (if any) from nodes having the latest copy will then be processed.

In all cases external updates are processed in the order in which they are
originally performed on a local copy.

3.2.5 Put_Copy

This service is the means by which an update of "connected" file copies is
performed. Assuming that the Tocal file copy of the node requesting this service
is the Tatest copy, the following actions are taken. First the update is broad-
cast to external nodes. The update protocol we use employs a ring network for
this purpose. This serves to balance the load of distributing updates to all
copies. The update is passed from one node to the next, with each DFM examining
the update to determine its origin. If the origin is contained in the receive_;et
for a node, then the update is queued for processing at that node. Each node in
the network sees the update in this way, until the update returns to its origin.
Here the update is removed from the ring. As soon the update is originally
released to travel about the ring, the update of the local copy at the originating
node is performed. Subsequent requests for the Put_Copy service are handled as
soon as they are issued, without waiting for the return of previous updates from
around the .ring.

The particular intercomputer 1ink chosen determines the data transmission
protocol which is used. In our case, a fairly sophisticated 1ink is used which
implements CRC checking at the hardware Tevel. The software {s designed to recover
from hardware-detected transmission errors by retransmitting the message. Since
both sender and receiver are notified by the hardware when transmission errors
occur, this is fairly easy to do. This is one area in which local networks can
differ drastically from those more geographically dispersed.

3.2.6 Get_Copy

This service is the means by which a read access of the local file copy is
performed. This service is available at any level of access control.

3.2.7 Get_Next

This service was included to allow an application to receive an externally
generated page update as soon as it arrives locally. In making the Get Next
service request, an application specifies which pages it is interested in, and
the next arriving update for any of these pages causes the call to comp]ete The
number of the page which was updated is returned along with the new page contents.
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A request for a consistent copy at this point (as soon as the return from
Net Next is effected) would complete as soon as all of the related updates which
incTuded the "trigger" are processed on the local file copy, and would lock out
further sets of updates from some other (or the same) external node. This might
be important if separate sets of updates could arrive faster than they can be
processed by the application.

4.0 DISTRIBUTED FILE MANAGER IMPLEMENTATION

various aspects of the DFM implemention are now discussed.

41 DFM Structure

The system components which make up the DFM are detailed in the access
graph of Figure 2. A 1ist of these system types, and a short discussion of
their respective functions will now be given. The parameters in the following
type definitions designate the system components which are available for use by
a component of the type being defined. For instance, a component of type
RINGOUTPROCESS can make calls to a component designated as ROB (which is of
type RINGOUTBUFFER).

type RINGOUTBUFFER = monitor;

This buffer holds messages destined for transmission to other nodes, via
the ring-network structure used for inter-machine communication. DRMANAGER
calls it in order to create ring messages, and RINGOUTPROCESS calls it in order
to receive them.

type RINGOUTPROCESS = process(ROB: RINGOUTBUFFER);

This process contains the PCL-11 communication 1ink transmissfion driver,
and implements the ring structure. The process accesses ROB to get a message
for the ring, transmits the message to the "next" ring node, then cycles back
to get and transmit the next message, etc.

type EXTUPDATEBUFFER = monitor;

This buffer holds messages and updates associated with external nodes from
which updates can be received. DRMANAGER writes to it, and EXTUPDATEPROCESS reads
from it. When the local file copy is locked, this is where external updates
queue up for ultimate delivery when a local Release_Copy is performed.

type FILEMANAGER = monitor;

This monitor performs file I/0, and contains file locks for use in main-
taining required Tevels of file protection. It is accessed by DRMANAGER to
request locking, EXTUPDATEPROCESS to perform external updates, and the job
process to perform local file manipulations.

type EXTUPDATEPROCESS = process (EUB: EXTUPDATEBUFFER;
FM: FILEMANAGER):
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This process reads updates posted by DRMANAGER to EUB, performs appropriate
calls to FM, and then cycles back to get another transaction from EUB, etc.

type DRMANAGER = monftor (FM: FILEMANAGER;
ROB: RINGOUTBUFFER;
EUB: EXTUPDATEBUFFER);

This monitor mediates requests for DFM services from the local job process,
and from external managers at other nodes whose requirements are pulled off the
ring by RINGINPROCESS. When appropriate, it sends messages to the ring via ROB,
relays external updates via EUB, and sets locks by calling FM. DRMANAGER is
called by the Tocal job process, responding to service requests, and RINGINPROCESS,
responding to ring arrivals.

type RINGINPROCESS = process(DRM: DRMANAGER);

This process contains the PCL-11 communication 1ink receiver dfiver. It
-accesses the PCL-11 bus to receive messages addressed to this node, calls DRM
to deliver them, then cycles back to receive the next ring message, etc.

4.2 - DRMANAGER Operationv

While the collection of system types 1isted above are responsible for
performing collectively as the Distributed File Manager, the DRMANAGER monitor
contains the basic intelligence related to the protocol whose purpose is to provide
global mutual exclusion of access to latest copies, and perform distribution of
updates. Aside from the particular services we chose to make available to appli-
cations -programs, it is the operation of DRMANAGER which may be of greatest interest
to others. In what follows, we will provide a short overview of this operation.

The DRMANAGER Connect protocol has already been discussed. A major influ-
ence on its development was our decision to use a distributed control update
protocol. If we had used a centralized manager, Connect would have been more
straightforward. A primary motivation for this work was the question of DFM
services however, and we decided to make use of a distributed control protocol
which we previously implemented following a description given by E11is [7]. As
discussed in the concluding remarks, a centralized control protocol is now being
investigated as well.

Our paper [8] examines E11is' protocol in some detail. His protocol is
elegant and requires few ring messages, but only allows one transaction on a file
copy (each transaction is implicitly a Request Copy and a Release_Copy as well).
Bringing a database from one consistent state to another usually involves a series
of related file transactions, so we extended E11is' update protocol by requiring
explicit request and release of the file copy, between which any number of file
transactions might occur. The resulting protocol is used by DRMANAGER in order
to control access to what we have termed the latest copy, and distributes updates
which are processed on it.

Access control and maintenance ofiwhat we have termed a consistent copy
was motivated by the desire to allow a series of related reads (for. example, an
index traversal) without requiring the use of the latest copy, access to which is
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mutually exclusive. Providing a consistent copy proved to be as interesting as

the update protocol, and the use of a concurrent programming language significantly
afded our visualization of the problem. Requests for a consistent copy involve

no ring traffic since they are handied Tocally in the FILEMANAGER monitor by
waiting for the end of the present set of updates (which is signalled by a release
message), and then locking out further updates until the consistent copy is locally
released via Release_Copy.

4,2,1 The Distributed Control Update Protocol

The underlying idea behind the DRMANAGER update protocol is the manner in
which “simultaneous" requests for a latest copy are handled. Each node has a
unique priority, and messages are sent on a ring-network communication structure
in order of increasing node priority. A request for the latest copy travels over
the ring and is examined by each 1ocal DRMANAGER before being relayed on. If
such a request arrives at a node of higher priority than that of its origin,
and the higher priority node itself has a request in transit (this is the meaning
of simultaneous in this context) then the lower priority request is delayed and
saved. Subsequently, the higher priority node will receive its request when it
returns around the ring. This return indicates that it's request for the latest
copy is granted.

After performing the necessary transactions on its file copy (with page
updates being appropriately broadcast as they occur), the higher priority node
performs a Release_Copy. A release message is then sent around the ring which
signifies the end of updates to this particular latest copy, and indicates whether
or not a lTower priority request has been saved. This message is followed imme-
diately by the saved lower priority request, {f any. The saved Tower priority
request, 1f any, then continues around the ring to ultimately return to {ts origin.

An additional constraint is used to 1imit the number of requests which have
to be saved (i.e. removed from the ring pending grant and release of the latest
copy) at any node: once a request is relayed, the relaying node may itself make
no requests until a release message indicating no following saved requests is
received. HWith this restriction, no node need ever save more than one request;
without it, the maximum would be dependent on the total number of nodes in the
network. The protocol has the nice property that no request is ever denied (thus
retries are not necessary), and all requests are ultimately granted. Since the
node priorities are used only to break ties, each node is served fairly.

4.3 Hardware Configuration

The actual hardware that is used includes a DEC PCL-11 (Parallel Communica-
tions Link) intercomputer link which connects four PDP-11 machines and one VAX-
11/780. The PCL is a multi-dropped TDM Bus (time division multiplexed - i.e.
transmission time is time-sliced by node, allowing one 16 bit parallel data transfer
per slice). Although this link supports a totally connected network, it is used
here to implement a ring structure, in accordance with the requirements of the
distributed control update protocol.

One of the strong points of the PCL 1ink is that is supports reconfiguration
of a network in case of node failure. The DFM presently implemented does not
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make use of this capability, however, and is vulnerable to node failure. An inte-
resting and effective use of the PCL would be to implement a “"wheel" structured
network in order to support distribution of updates via a ring structure (to
balance update broadcast load) and to provide for centralized control of access

to the latest copy (an efficient method for global access control).

5.0 PERFORMANCE MONITORING

In order to monitor the DFM and observe the overhead associated with its
various operations, we dedicate a separate machine to the function of driving a
graphics display device (in this case a Tektronix 4014) to report this information.
At this machine, a process reads data posted to it via inter-computer link, and
sends this information to a buffer. Another process reads the contents of this
buffer at a set frequency, and makes calls into a display utility implementing a
graphics capability on the Tektronix device in order to display bar graphs for
each machine which is reporting. V

At the reporting machines a reporting process is included which reads
performance information posted to a buffer by the job process as it makes calls
to the DFM, and then sends this information via {inter-computer 1ink to the
display machine. Each call by the job process to the reporting buffer increments
a count representing the number of times a particular DFM call has been made.
This count is reset to zero each time the process in charge of relaying this in-
formation to the display machine calls to receive it. Since this is done once
a second, the information which is ultimately displayed is the number of various
DFM calls made per second. The particular information we display is (for each
reporting machine): request of latest copy; request of consistent copy; updates,
reads, and read _nexts. i

This admittedly simple-minded scheme allows us to easily determine the
performance of the DFM by writing a simple application program which does nothing
but make use of DFM services. The overhead associated with requesting the latest
copy without contention is summarized as follows: i

# network nodes overhead (in msecs)
] 31
2 70
3 109
4 145

These results show the expected dependency on the number of machines in the
network. This dependency could have been simulated, and an estimate of the res-
pective overheads obtained, but the above values reflect actual run-time system
performance - a fact we feel would be fmportant when performaing tradeoff analysis
for proposed systems.

Since requests for a consistent file copy are handled locally, this over-
head is independent of the number of participating nodes. Consistent requests
were observed to take about 5 milliseconds.

These measurements were made using an interpreter based implementation of
the Concurrent Pascal language [2], running on PDP-11/40, 11/45, 11/60, and VAX-
11/780 machines. _
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6.0 CONCLUDING REMARKS

The Distributed File Manager implemented appears to supply a basic and
useful capability for the control and manipulation of distributed information.
For instance, typical real-time databases often present the problem of simultane-
ous updating and reading by numerous and loosely related tasks. The DFM.supports
the partitioning of such activity onto separate processors. Implementation of
data pipeline schemes is another possibility.

As always, the application should determine the particular software support
which {s required, and with Concurrent Pascal one may confidently advocate this
approach. The total implementation time required for the DFM, for instance, was
three weeks. This supports the contention that Concurrent Pascal is an effective
programming tool for distributed systems. Furthermore, it lends additional cre-
dence to the ideal of the "tailored" or special purpose operating system; for
although the DFM may not exactly fit the requirements of a particular app]1cat1on,
extensions or added capabilities are no great problem. Multiple files, f11e.
partitioning onto various processors, keeping lists of changed pages, maintaining
files in primary storage instead of on disk, utilization of shared memory - these
are all easily done, and with a minimum of "artificial" (i.e. vendor supplied)
constraint and difficulty.

Due to the dependency of latest-copy request overhead on the number of
machines in the network, one might wonder why a centralized control protocol
was not chosen. Garcia-Molina has presented results which seem to convin-
cingly indicate the superiority of centralized control protocols over those
utilizing distributed control fg]

In our environment, one of the greatest problems associated with special
purpose distributed systems is their high risk. For this reason, considerations
of code complexity are fairly important to us. Garcia-Molina claims centralized
control is easier to impiement, but we believe that consideration of fallback
in the event of machine failure may turn the tables with respect to code com-
plexity. (In any case, DRMANAGER required only about 200 lines of code to imple-
ment all of the services discussed.) In order to handle node failures in the
distributed control case, we see a recovery capability essentially arising out
of a no-lost-message constraint (with certain embellishments) which would require
a small additional amount of code at each node. In the centralized control case,
complete centralized manager code must exist at each node (as opposed to only one
if node failures are not handled) to recover from arbitrary node failures, and
switchover must not only worry about lost messages, but also must have been pre-
ceded by posting system-wide status information to some delegated secondary. At
switchover, a new secondary must be chosen and a complete status summary posted
to it as well.

Because of such details, we believe that fault tolerant distributed control
may actually be less complex than centralized alternatives. The DFM discussed
in this paper is presently being extended to provide immunity to node failure,
and since we are also implementing a centralized control protocol, a more realistic
comparison of the relative benefits of the two approaches should soon be available.
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ABSTRACT

COCANET is a local computer network being developed, in part, to support
distributed data base system research. A multidestination, or multicast, proto-
col is provided to satisfy the communication requirements of the INGRES distri-
buted data base system. These requirements include sending messages to a
dynamically varying subset of processes. Efficient implementation of the multi-
cast protocol in a local broadcast network is described. In addition, internet-
work support of the protocol is discussed.

COCANET extends a econventional UNIX® programming environment across
multiple processors by supporting transparent resource sharing and message-
oriented interprocess communication mechanisms.

Keywords: Local computer networks, multidestination addressing, multicast pro-
tocols, distributed data base systems, resource sharing.

1. INTRODUCTION

COCANET is a local computer network designed and currently being imple-
mented at U.C. Berkeley. It was developed to support research on distributed
data base systems and to provide shared access to resources available on
different machines in the Department of Electrical Engineering and Computer
Science (e.g., a high-resolution graphics output device and the ARPANET).

The computers which will be connected to the prototype network are DEC
PDP-11's (an 11/70 and two VAX’s) running the UNIX operating system [Ritchie
78]. The physical architecture of the prototype is a ring using local network
interfaces (LNI) developed at U.C. Irvine [Mockapetris 77]. The UNIX program-
ming environment has been extended across the different hosts so that users
connected to one host ean transparently access resources located on the other
hosts. The network software is organized to allow local network hardware other
than LNI's to be used.

COCANET supports a conventional process-to-process communication prote-
col and a multicast, or multidestination addressing, protocol. While the multi-
cast protocol was primarily motivated by the communication requirements of
the INGRES distributed data base system [Epstein 79, Stonebraker 77], it can
also be used for other distributed applications (e.g., data base machines [Stone-
braker 79a]).

! The first author was supported in part by AFOSR Grant 78-3598 and the second author was sup-
ported in part by DOE contract W-7405-ENG-48

% UNIX is & trademark of Bell Laboratories.
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Most previous research on distributed data base systems has not directly
addressed the problem of network communication protocols [Rothnie 77].
Research on computer networks, on the other hand, has addressed some of the
communication issues [Dalal 78, Farber 73, McQuillan 78], but not all of them:
{e.g., sending a message to a dynamically varying subset of processes). More-
over, broadcast (send to all hosts) and multicast protocols are not always sup-
ported at the application program interface (e.g., see the ARPANET).

This paper describes the communication requirements of distributed
INGRES, a multicast proatocol designed to meet those requirements, and an
efficient implementation of the protocol in a local broadcast network. The paper
does not address the problem of security in a distributed environment (the pro-
tec]:g,ion mechanisms implemented in the prototype are described in [Birman
791).

In the next section, the communication requirements of distributed INGRES
are illustrated by examining several sample queries. Section 3 describes the
COCANET UNIX interpracess communication protocols. The LNI implementation
of the multicast protocol and it's extension across network boundaries is
presented in section 4.

2. DISTRIBUTED INGRES

v This section presents an overview of distributed INGRES, examples of
queries which motivated the multicast protogol, and the communication archi-
tecture of the system. '

Figure 1 shows the logical organization of distributed INGRES [Stonebraker
77]. A user is connected to a master INGRES which spawns slave INGRES's at
sites where a fragment of the data base exists. Master INGRES processes user
queries by sending commands to the slaves which access the local data and then
send the results to other slaves or to the master. A query optimization algo-
rithm produces a sequence of commands to solve the query [Epstein 78]. In
addition, master INGRES handles updates, crash recovery, and concurrency con-
trol [Stonebraker 79b].

A trivial personnel data base is used to illustrate the commands that are
sent between INGRES processes. Assume that the employee and department
relations

EMP(emp#.,name,dept#,salary,...)
DEPT(dept# name,floor,...)

are distributed according to the criteria

distribute EMP at
site-1 where EMP.dept# = 93 or EMP.dept# = 122,
site-2 where EMP.dept# = 47,
site-3 where EMP.dept# > 0

distribute DEPT at

site-1 where 10 < DEPT.depi# and DEPT.dept# < 100,

site-3
Distribution criteria restrict a tuple to one unique site [Ries 78]. The distribute
commands place tuples of employees in departments 93 and 122 at site-1,
department 47 at site-2, and all other departments at site-3 (assuming that
department numbers are positive). Department tuples are placed at site-1 for
departments 11 through 99 and at site-3 for all other departments. Thus,
employee ‘information is stored at three physical locations while department
information is stored at two. :
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MASTER INGRES

COMPUTER NETWORK

SLAVE -~ [SIAVE
INGRES INGRES

SLAVE
INGRES

Figure 1. Logical Organization of Distributed INGRES

The first example query is

retrieve (EMP.name)
where EMP.salary > 30K

This query can be processed by sending the query to each site that has a frag-
ment of the EMP relation. Each site executes the query on its local fragment.
The result relations are sent back to master INGRES which collects the
responses and passes them on to the user. Thus, master INGRES must be able
to broadcast to slave INGRES’s and to receive process-to-process messages from
each slave. Notice that if the query had been on the DEPT relation only a subset
of slaves (e.g., sites 1 and 3) would have to receive the message. COCANET sup-
ports a multicast protocol that allows messages to be sent to arbitrary subsets
of a set of processes.

The second example illustrates anether use of the subset addressing
feature. To reduce the number of sites to which a command must be sent, mas-
ter INGRES uses the distributfion criteria to identify what subset of sites might
have relevant data. For example, suppose the query is

retrieve (EMP.name,DEPT.floor)
where EMP.dept# = DEPT.dept# and EMP.dept# = 93

which lists names and locations for employees in department 93. Because the
department tuple and employee tuples for that department are stored only at
site-1 (see the distribution criteria above), the query need be sent only to that
site.

A slave INGRES needs to be initiated at a particular site only after the first
query that needs data al that site is processed. A user who submits ad hoc
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queries interactively may access only a small part of the data base during a ter-
minal session. For example, assume that the data in the sample data base is
distributed over 20 sites and that the terminal user only requests information
about employees in. one or two departments. If the gueries can be solved
without ever accessing data stored at the other sites, slave INGRES's do not have
to be initiated at those sites. On the other hand, after several queries, the user
might request information from a site which previously had not been gueried.
The slave could then be initiated and the query processed. To support this
feature, the multicast protocol must be able to add processes dynamically to a
connection.®

The last example shows the use of multidestination file transfer by slaves to
send relalions to other slaves. It also shows how complex queries which involve
several steps are processed. The query

retrieve (EMP.name,DEPT.name)
where EMP.dept# = DEPT.dept# and EMP.salary > 30K

lists the employees and the department they work in if they make more than
$30K. One strategy to process the request follows. First, at each site which has
a fragment of the EMP relation run the restriction

retrieve into TEMP(EMP.name,EMP.dept#)
where EMP.salary > 30K

Second, build a complete copy of the TEMP relation at each site which has a
fragment of the DEPT relation. In this example, site 1 sends a copy of it's TEMP
fragment to site 3, site 2 sends a copy of it's TEMP fragment to sites I and 3, and
site 3 sends a copy of it's TEMP fragment to site 1. Third, at each site which has
a DEPT fragment perform the join

retrieve (TEMP.name,DEPT.name)
where TEMP.dept# = DEPT.dept#

Note that the TEMP relation in this join query is the union of all TEMP fragments.
The results are then sent to master INGRES. Because TEMP is a complete copy
of all qualifying employee tuples, combining the result of running this query at
each DEPT fragment gives the answer to the original query.

These operations are synchronized by master INGRES which 1n1t1ates each
step after acknowledgments are received that indicate successful completion of
the previous step. Slaves must be able to send data to several other slaves (e.g.,
site 2 sent data to sites 1 and 3). When a slave must send data to other slaves, a
recepior process is initiated at each destination site, a connection is opened to
just those receptors, and the data is transmitted to all of them.

Distributed INGRES does not require guaranteed delivery on multicast
transmissions, Le., an explicit acknowledgment from each destination site that
the message was received. The high-level distributed INGRES protocol has an
acknowledgment mechanism built in to the pattern of communication (e.g., send
a command, receive response that the command was completed and possibly
data, send the next command, and so forth). Because the application is a data
base system, the high-level protocol also has an elaborate crash recovery
mechanism which is invoked if an expected response is not received after a rea-
sonable delay. Consequently, whether communication to one or more slave
processes is interrupted by a transmission failure or by a hardware or software
failure at the destination site, the data base system will recover.

3 Processes might also be dynamically removed from a connection. This capability can be sup-
ported but no proposal has been made to use it.
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In summary, a multicast protocol is needed which allows messages to be
sent to multiple destinations and to dynamically varying subsets of those desti-
nations. Moreover, it must be possible o add new processes to the set of desti-
nations. COCANET supports such a protocol as described in the remainder of the
paper.

3. INTERPROCESS COMMUNICATION

Conventional UNIX does not support an IPC protocol that can be easily
extended to a network environment [Chesson 75, Sunshine 77]. Among other
problems, the UNIX IPC protocol neither allows a process to wait for a message
from more than one process at a time nor allows two unrelated processes to
communicate (e.g., a process may wish to communicate with a mail daemon
which is always executing).

COCANET UNIX supports two message-oriented IPC protocols to solve these
two problems. The first allows two processes to send messages to each other
(called process- to- process). The second allows one process to send messages to
several processes (called multicast). These protocols can be used to implement
distributed applications. Besides distributed INGRES, they are used to extend
all conventional UNIX file operations to a network file system. Consequently,
existing programs can access remote files without modification. The remainder
of this section describes how these protocols are used. A complete description
of their integration into UNIX will be available in [Birman 79].

COCANET UNIX introduces connections between processes over which mes-
sages can be sent. To the processes, a connection looks similar to a conven-
tional UNIX pipe [Ritchie 78). A simple example will assist in the explanation.
Suppose two processes A and B on different hosts are communicating (assume
for the moment the processes and the connection between them already exists).
Send and receive operations on the connection provide a full-duplex, message-
oriented communication link, that is, a bi-directional sequence of messages with
the sender’s identity encoded in each message. Because more than one process
can send on a connection, a process can receive messages from many sources
and can wait for a message from one of several processes. A stafus operation is
also provided so that a process can test whether a message exists or if the con-
nection is in an error state.

To understand how connections between processes are created, the net-
work file system and network connection name space must be explained. The
file system in UNIX is organized as a tree structure. "/" refers to the directory
at the root of the tree so that "/f" refers to the file or directory named f. Under
COCANET, the file system of each host includes pseudo-directories which contain
addressing information needed to communicate with hosts on the network. For
example, in the file system on host-1, "/host-2" refers to the root of the file sys-
tem on host-2.

Comnections are referenced by the pair <destination host, connection
name>. Suppose process A was on host-1, process B was on host-2, and the con-
nection name was AtoB in the example above. Process A refers to the connec-
tion as "/host-2=AtoB" and process B refers to it as ""/host-1=AtoB". /host-1
and /host-2 are the file system pseudo-directories on hosts 2 and 1, respec-
tively, that specify the destination host. AtoB is a name in the connection name
space maintained by the network software.

Now suppose that process A existed on host-1 and that it wanted to initiate
B and to open a connection between the two processes. The steps neeessary to
accomplish this are as follows. First, A creates a process-to-process connection
" /host-R=AtoB" using the operation create. The create operation makes the
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connection name AtoB defined from /host-1 {(where A is located) known in host 2.
Second, A initiates the process B on host 2 using the conventional UNIX exec
operation on a remote file {e.g., ""/host-2/B"). B is passed the connection refer-
ence "/host-1=AtoB" as a program argument. Process B opens the connection
reference which has been passed using the open operation. Now, messages can
be sent back and forth over the connection. The state of the system after each
operation is shown in figure 2. Connections are closed by calling the close opera-
tion. :

process A

host-1 host-z

After create:

rocess A
P N
( .
/host-2=AtoB /host-1=AtoB
host-1 host-2

After initiate:

process A process B
2
/host-2=AtoB /host-1=AtoB
host-1 host-2
After open:
process A | process B

: ‘ :
/host-2=AtoB ""'\\___/" /host-1=AtoB

host-1 host-2

Figure 2. Connection Establishment
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Multicast connections are established in the same way except that a mul-
tiCreate operation is called which accepts a list of destinations rather than just
one. After a destination process opens a multicast connection, messages can be
received but not sent on that connection by the destination process. Multicast
connections are inherently one-way.

Most applications which use a multicast connection will also open a
process-to-process connection back to the multicast source. The reference for
the process-to-process connection can be passed to the destination process
either as a program argument or in a message sent over the multicast connec-
tion.

Operations are also provided to add a new destination process to an existing
multicast connection (addMultiDest) and to change the subset of processes
which are to receive messages sent on the multicast connection (changeMul-
tiSubset).

4. MULTICAST PROTOCOL IMPLEMENTATION

This section describes the 1mp1ementat1on of the multicast protoecol. The
message-oriented JPC protocols described in the previous section which consti-
tute the user programming environment are called the nefwork access protocols.
These protocols are implemented within a particular network by a lower level
protocol called an intranet protocol. The first subsection describes an intranet
implementation of the multicast protocol in a local network composed of LNI's.
The second subsection discusses some hardware changes to improve the reliabil-
ity of an LNI-based network. The last subsection describes how the multicast
protocol can be extended across network boundaries.

Given a muiticast connection between a source process and n destination
processes, how can a message be sent to a subset of those destinations, say, m <
n destination processes? One approach is to send m separate messages, one to
each destination in the subset. In a local network this approach is impractical
for moderate sized m because the communication overhead is high and the
elapsed time to send that many messages can be long.

Another approach is to send one message that will be received by all n des-
tinations. Some indication of which m destinations are actually to receive the
message can be encoded into the message header (e.g., a variable length
address field or a fixed length bit string). Then, either network software or each
destination process can determine whether the message should be accepted or
discarded. This method can be implemented in a broadcast network such as
DCS [Farber 73] or Ethernet [Metcalfe 76] assuming that some form of destina-
tion address matching is performed in the network interface. This approach is
practical in those applications where m / n approaches 1.

On the other hand, if m / n is small, as might be the case in a distributed
data base system, other factors may cause this approach to be impractical.
First, n — m hosts will receive a message which is not addressed to one of their
processes. These hosts must service an interrupt and scan the message header
to determine if the message should be discarded (the scan operation will prob-
ably not be in the interrupt routine which means the network control program
must process the message). Second, as the number of hosts which are to
receive a multicast increases, the probability that some hosts will fail to receive
it increases. Thus, the message will have to be retransmitted.

A better approach to sending a message to a subset of a multicast connec-
tion is to send one message in such a way that only hosts with one of the
processes in the subset actually receive the message. The associative address
matching capability of the LNI can be used to implement this approach. A fixed
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length bit string representation of the multiple destination addresses is encoded
into the addresses of multicast channels.* The LNI address matching can then be
used to determine whether a particular message is addressed to & process in
the attached host.

4.1. Intranet Multicast Implementation

The LNI provides very flexible message addressing in the hardware. Each
interface has a table of addresses to which it will respond.® The destination
address in a message is associatively matched with the entries in the name table
as the message passes the interface. If the message address matches an entry in
the table, the message is copied into the attached host. Two masks, one in the
message and one stored with each name table entry, can restriet the matching
to arbitrary subfields of the addresses. If either mask bit is set, the correspond-
ing bits in the addresses need not match. Several examples are given in figure
3. The current version of the LNI has 32 bit addresses and 18 name table
entries. These apparent hardware limitations are discussed in more detail
below.

Figure 4 shows the format of multicast addresses. The OHN and CHAN
fields, taken together, uniquely determine the multicast channel. Each multi-
cast destination corresponds fo a bit in the SUB field. The destination’s name
table mask restricts the SUB field comparison to the assigned bit. For example,
suppose the multicast channel and destinations were as depicted in figure 5
{only the SUB field is shown and. it is limited to 8 bits for simplicity). To send a
message to destinations at sites 2 and 4, it is addressed to 010100. Only those
sites will match the address (the mask in the message itself is set to zero).
Thus, only the sites which are supposed to receive the message do receive it.

Name Table

entry addresses masks

00111010 00000000
11010100 00000011
11000010 00000101
00011000 00000000

LoD .

Incoming Message

dest. address dest. mask remarks
00111010 00000000 matches entry 1
11010011 0c0e0000 does not match
11000111 00000000 matches entry 3
00001000 00010111  matches entry 4

Figure 3. Address Matching Examples

4 A channel is the intranet analog of a connection.
5 For historical reasons, this table is called a name table.
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Field Size (bits) Use

TYPE 2 Specifies type of message.
0 broadcast
1 process-to-process
2 multicast
3 unassigned

OHEN 8 Originating host number on this
network.
CHAN 8 Data transmission channel number.

OHN and CHAN fields together uni-
guely determine the multicast
channel in this network.

SUB 18 Selects subset of processes on
this network to receive the mess-
age.

Figure 4. Multicast Channel Address Format
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SITE-1
Local network
NAME MASK interfaces
100000 | 011111 ‘\
NAME MASK NAME MASK
010000 | 101111 000100 | 111011
SITE-3
NAME MASK
001000 | 110111

Figure 5. Subset Addressing Example

New destination processes can be added dynamically to a multicast channel

by assigning the next available bit in the SUB field to the process and entering
the name in the destination processes’ host LNI. These actions are taken in
response to the operations addMultillest and open called, respectively, by the
multicast source and destination processes.

The LNI and the implementation described in this subsection appear to have

four limitations:

1.

2
3.
4

an LNI name table is limited to 18 entries,

. a host is limited to 256 (28) open multicast channels which it originated,

a local network is limited to 64 hosts, and

. 2 multicast channel is limited to 18 destination processes. ©

These limitations are discussed in the following paragraphs.

The prototype LNI's have been implemented in TTL medium scale integra-

tion. The design of the interfaces was biased towards a large scale integration

% A channel is limited to 15 destinations if the sequence value is moved into the name as sug-

gested in the next subsection.
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(LSI) implementation and allows variation in the number of bits per address and
the number of entries in an LNI name table [Mockapetris 78]. Consequently, the
limited number of name table entries holds only for the interfaces we have

" ordered.” In a reasonable sized network an LNI implemented in LSI will have

several hundred name table entries. The second and third limitations are
caused by the 4 octet (8 bit bytes) address size. These limitations can be
relaxed by enlarging the address by several octets (e.g., to 6 or 8 octets).

The last limitation, the number of destination processes on a multicast
channel, can be avoided by using more than one channel to implement a multi-
cast eonnection, i.e., one multicast connection may have several 1ntranet chan-
nels. To send a message may requxre that two or more copies of the message be
transmitted around the ring.? Another approach to avoid this limit is to have
longer addresses. While this approach works, it is not too practical because the
number of destinations increases only by one for each additional address bit.
Nevertheless, for some applications this approach may be optimal. A completely
different approach to the problem is to allow variable length addresses and to
have the network interface recognize the more complex format. The point is
that several low-level implementations exist and it remains to be seen which will
be cost effective for different applications.

4.2. LNI Hardware Improvements

This subsection discusses two LNI hardware changes that weould improve
network reliability in the areas of multicast channel message sequencing and
network robustness in the presence of failures.

To guarantee that the most recently received message is not a copy of the
previous message, a one bit sequence value is used. The network software in
each host anticipates the sequence value of the next message to be received. If a
transmission failure occurs, the source host retransmits the message with the
same sequence value. By comparing the sequence value in the message with the
sequence value in the last correctly received message on that channel, a desti-
nation host can determine if the message is a copy .of the last one received. If
so, it is discarded. Otherwise, the sequence value is updated and the message is
passed to the destination process.

This technique works as long as the sequence values for the destinations
remain synchronized. However, because each host does not receive every mes-
sage on a multicast channel, the values must be synchronized prior to changing
the addressed subset. For this reason, before any subset change, a sequence bit
synchronize message is sent to the old subset to ctear the sequence value (i.e.,
set to zero). Thus, the sequence value on the first transmlssmn is guaranteed to
be cleared.

Another problem with multicast message sequencing arises because hosts
which are temporarily busy may not accept messages [Rowe 75]. The LNI associ-
ates with each message as it is transmitted around the ring two status bits,
called the match and accept bits. If a message is copied into a host a one is
ORed into the accept bit. If the destination address was matched but the mes-
sage could not be copied, a one is ORed into the match bit. These status bits
indicate to the transmitting host whether the message was received by all desti-
nations. The possible status bit settings and their meanings are summarized in
figure 6.

? Three devices have been ordered. We chose 18 entries because of cost considerations and be-
cause the first experiments with COCANET will be small.

8 Dynamic assignment of destinations to channels may reduce the number of transmissions re-
quired if some subsets account for a high volume of traflic.
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MATCH ACCEPT MEANING

0 0 The message was addressed to a non-
existent process; no LNI recognized
the message.

0 1 The message was transmitted to one
Qr more processes; at least one LNI
copied the message.

1 0 The message was recognized by one
or more processes, but no LNI could
copy the message.

1 1 The message was transmitted to at
least one process, but at least one
LNI recognized the message but
could not copy it.

Figure 8. Status Bits Results

Suppose that a multicast message is to be sent to several sites and that the
first time the message is sent the status bits returned are match-accept. In
other words, some sites received it and some did not. If subsequent retransmis-
sion also results in match-accept status, the transmitting host is unable to
determine whether all sites have received the message. For exarmple, a site
which received the first transmission could fail to receive the second, and a site
which failed to receive the first transmission may have successfully received the
second. This problem results from the fact that two bits are being used to
describe the status of multiple destinations.

This problem can be eliminated by moving the sequence value into the
address in the LNI name table. When a message is accepted, the sequence value
in the name table is flipped. Now, if the message must be retransmitted, it will
not match and consequently will not be accepted by hosts which successfully
received the first transmission. For multicast messages this means that only
those sites which did not accept the first transmission will match the
retransmission. Thus, the match bit can be interpreted as indicating continued
failure to copy the message into some addressed host(s).

~Although this solution can be implemented with the current LNI hardware,
it may be impractical because the sequence bit must be flipped by software.
Redesign of the LNI, however, could lead to efficient support of the multicast
sequencing mechanism.

The second problem with the LNI hardware is that all addresses in a name
table are unusable if a host crashes. As a message passes through the interface
the address will be matched, a copy will be attempted (if appropriate), and the
match and accept bits will be set regardless of whether the host operating sys-
tem is functioning normally. Some mechanism is needed to clear the name
table either from another host on the ring, from a wire center [Saltzer 79], or
from monitoring hardware at the failed host [Kunzelman 78].
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4.3. Internet Support of a Multicast Protocol

This subsection describes one way to support the multicast protocol across
several networks. A hierarchical address space for interconnected networks is
assumed, e.g., hosts have addresses of the form "NET:HOST". It should be noted
that distributed INGRES must know about the network topology because the
time required to send messages between the various processes (from the master
to the individual slaves, between slaves, and from individual slaves to the mas-
ter) influences the query optimization algorithm.

A multicast message is sent {e destinations on a foreign network by sending
one copy of the message to a gateway process that is responsible for forwarding
the message to all destinations which can be reached through the gateway. To
illustrate this idea, consider the networks in figure 7. Source process S in a
COCANET wants to send a message to processes D1 and D2 in the same network
and processes D3 and D4 in another network. One copy of the message is sent to
P which forwards the message to D3 and D4 using whatever multicast implemen-
tation is best in the foreign network. Subset addressing can be supported either
by encoding destinations in a message header or by having P maintain an active
destination list.

Messages propagate across several networks in the same way. One copy of
the message is sent to a gateway which sends it to the local destiinations and to
the next gateway(s). If any gateway process is unable to deliver the message to

COCANET

Other network

Figure 7. Internetwork Multicast Example
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a foreign destination, a control message is sent back to the souree host which
causes the multicast connection status to be set to an error state. Because the
multicast protocol does not guarantee delivery, this action should be taken only
when a catastrophic failure occurs. No explicit flow-control mechanism is
assumed other than that provided to control transmission through the gateway.

5. SUMMARY

This paper describes the design of a multicast communication protocol for
a distributed data base system. The protocol includes a novel subset addressing
capability and the ability to add new processes to a connection which is already
open. An efficient implementation of the protocol in a local computer network
composed of LNI hardware was also presented. In addition to the multicast pro-
tocol, the UNIX programming environment has been extended across multiple
hosts to support general resource sharing.

The current status of the prototype COCANET is that the network software
has been debugged in a single machine environment which' simulates the send-
ing and receiving of messages. The prototype should be fully operational shortly
after we receive the network interfaces.
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Abstract

We first give a short description of the architec-
ture of the DDBMS~POREL which we are currently implement-
ing at the University of Stuttgart. Afterwards we study
in some detail the transaction processing control, the
Execution Monitor, which at runtime is responsible for
the administration and control of the transaction flow in
the network. Each transaction in the DBMS is associated
with a specific Execution Monitor which completely super-
vises its processing and initiates and executes the ne-
cessary synchronlsatlon, resource handling and recovery
preparation.

1. INTRODUCTION

POREL is a decision support and data base management
system based on a distributed relational data base desig-
ned to run on a heterogeneous network of minicomputers.
POREL ignores the possible existence of other local data
base systems and makes no attempt to integrate them into
the distributed data base.

Therefore a totally new system had to be designed
including user interfaces, languages, synchronization
aspects, network featureg, authorization mechanisms, in-
tegrity features and the data base machines themselves.

The word "heterogeneous" in our system therefore
stems from the underlying computer network which contains
different hardware and also different operating systems.
But upon this inhomogeneity a homogeneous DB system is
built up.

We achieve acceptable independency from the base
svstems by choosing the high level language PASCAL as one
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of the implementation tools. However, PASCAL on one ma-
chine is not PASCAL on another. We therefore take an
existing, easily portable, PASCAL system and install it
on every new machine in our network. Of course some
efforts must be put in for rewriting the code generation
phase and the runtime routines, but in this way we have
access to the same language interface everywhere. The
still necessary assembly written routines are kept »
simple and small in number as they have to be redone on
every new machine category. Through this approach the
user sees only a single data base system. In such a
unified and integrated system he does not need to know
where data are kept or programs are executed. That is
the DDBMS presents itself like a centralized system.

POREL supports three interfaces for the data base
user:

- A Relational Data Base Language - RDBL - a non proce-
dural, algebra oriented interactive language for data
definition, manipulation and control (see[10]: 78/5);

= A Host Language (PASCAL or FORTRAN) with RDBL as data
language, whereby RDBL has been extended with a cursor
concept for navigating in a tuple at a time logic
through relations similar to the solution which is
found in SEQUEL 2 (see[10]1: 78/8).

= A problem solving decision support system which pro-
vides the user with an environment adapted to his
application area (see [15]).

A detailed discussion of these interfaces is beyond
the scope of this paper and not necessary for an under-
standing. Actually according to the single system philo-
sophy, the chosen interfaces are quite independent from
a distributed environment, they could also be found in a
centralized data base. For further study the interested
reader is referred to the indicated references.

The whole data base system is based on a set of re-
lations stored on the different nodes. If necessary even
single relations may be distributed over the network,
however only horizontal splitting is supported.

As the long distance communication is much slower
than local access and communications costs are quite
significant, the effectiveness of a distributed system
directly depends on the amount of information inter-
change. This network traffic carefully has to be mini-
mized ({21, [61, [81). :

_ To improve data access in retrieval queries, copies
of relations or parts of it may be kept all looking iden=-
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tical for the user. But care has to be taken with update

sensitive data as update traffic is increased and net-
workwide consistency is more complicated to achieve.

In our solution one of the copies is selected as
original and always used for the updates. Other copies
may be behind in various stages (delayed update). A me-
chanism based on version numbers keeps track of the
actual state. This eventually may lead to a situation
where, when a copy is to be used, it is easier to re-
place the copy by the original than to effect all out-
standing updates. '

All this operating informaﬁion as well as the rela-
tion and database descriptions are kept in several system
catalogues (see [51, [101: 78/4).

The catalogue organization has been adapted to the
partitioning of the analysis phase into two parts by pro-
viding for a network independent (NUA) phase a so called
short catalogue and for the network oriented phase (NOA)
the long catalogue. For the NUA the (short) catalogue is
copied onto each site, giving fast local access to avoid
a possible data transmission. bottleneck in such a system.
In the case of changes in the catalogue this redundancy
will cause considerable overhead, but the data contained
in the short catalogue are chosen to be of rather static
nature. The long catalogue information for the NOA phase
is associated with the corresponding data locations, i.e.
stored wherever a part of the described data is located
(original or copy) and therefore not always locally
available.

2. POREL SYSTEM ARCHITECTURE - AN OVERVIEW

Before we start to explain the functions of the
Execution Monitor in detail we give a short introduction
into the different components of POREL and illustrate
their function.

Figure 1 shows a process oriented representation of
the architecture, as it would be seen by a user with
deeper knowledge of what is going on below him. The figure
does not show the multi-user, multi-process environment
which actually exists. That is, more than one dialog pro-
cess, more than one network independent analyzer etc. may
run in parallel at the same time. However, each node in
the network has only one execution monitor, catalogue
manager, scheduler and lockhandler.
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Now let us explain some important modules (for details
see [31, [71, [101).

The command and dialog level accepts all inputs from
the user, gives helping hints in case of troubles, routes
information to the chosen interfaces and formats the re-
sults on the user display.

The Network Independent Analysis NUA (see 10 : 10/7)
is in the conventional sense a compiling system which gets
as input all RDBL source language statements from the
user interfaces (RDBL stand alone, host language, decision
support). It has to do all work which can be done without
knowledge of the underlying distributed system, i.e. all
information is locally available (short catalogues) and
compiling actions cause no data communication between
sites. '

NUA's duties are:

- Syntactical and semantical analysis

- Generation of code in the relational machine language
(RML) without regard to network or distribution aspects
(RML is an algebra oriented nonprocedural data base
language)

-~ Code optimization

- Insertion of integrity constraints and trigger functions
(see [16])

-~ Analysis for possibly parallel executable parts in a
transaction

-~ Separation of necessary access rights for later authori-
zation checking

- Insertion of synchronization and timing control

- Delivery of program status and user statistical infor-
mation

The Network Oriented Analysis (NOA) (see [10]: 78/10,6)
level belongs logically to the compile time actions, but
was separated from the NUA as it covers now the network
and distribution aspects of the DBMS and therefore needs
information possibly distributed in the network, so caus-
ing some system data transfer traffic.

NOA's duties are:

- Looking for the network locations of data used by the
transaction

- Collecting the long catalogue information for each used
relation and user authorization data

= Checking authorization statically

- Doing more necessary breaking up and parallelization of
object code, inserting more timing, locking and synchro-
nization control commands
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- Searching for the optimal execution place by mihimizing
data transfer.

The Runtime Checker (NUA2 and NOA2) fulfills duties
which are taken from the NUA as well as from NOA. It
effects its control only in case of a time delay between
translation and execution (not compile-and-go mode). In
this case the generated code and information has to be
compared against the actual state of the DB for any pos-
sible changes affecting the correct execution of the
code,

The Execution Monitor (see [10]: 78/11) is responsible
for the timing control, the synchronization and admini-
stration during the execution phase of the different parts
of a transaction. It also has to provide necessary infor-
mation for recovery purposes. It is the communication
partner for all other monitors in the network.

The monitor's duties are:

- Distribution of the transaction parts according to their
destination in the network

- Timing control by interpreting the connecting WAIT-sta-
tements

- Reacting to incoming control messages giving the state
of an execution, error conditions, rejected requests
etc.

- Global lock control with voluntary preemption in case
of a possible deadlock situation

- Providing global recovery information

- Starting recovery analysis in erroneous situations

- Communicating with other monitors

The Scheduler distinguishes the different requests
given to it and routes them to the appropriate modules:
lock request to the lockhandler
catalogue request to the catalogue manager
normal user request to one of the n base
machines the scheduler has under its control.
System internal requests are thereby treated with higher
priority to guarantee faster execution.

The lockhandler controls lock information for all
local data and grants or rejects incoming requests.

The Catalogue Manager is responsible for maintaining
all system catalogues (short and long form) in a consi=-
stent state and for providing all required information
for the system modules. '




-359-

The Base Machines (see 10 : 78/12,9, 12 ) are the
most important parts in the system as they represent the
local data management system. They process all requested
manipulations on the local relations, provide results for
the user and status messages for system modules and keep
local recovery information and transaction reset facili-
ties. A base machine has no data access to the network,
all involved data for the executed partial transaction
have to reside on the local node.

The Communication Svstem (see [10]: 78/13) has to
satisfy all process communication requests in the whole
database, independentlv on whether they are local or glo-
bal. It has to transmit data and control information, do
the necessary conversions of data representation and it
has to supervise the successful and errorfree execution
of the communication protocols. In case of an error
situation it has to give control back to the requesting
process. The communication system uses the planned X.25
network of the German PTT and some higher protocol levels
which have been worked out in cooperation with the PIX
group. However until X.25 actually becomes available we
use a terminal simulation technique for interconnectin
our computers, : '

3. THE EXECUTION MONITOR-STRUCTURE AND ORGANIZATION

The user transaction on its way through NUA, NOA
and/or the host language system was up to the moment of
arrival at the Execution Monitor only analyzed locally
at the user's node. Of course some networkwide infor-
mation (system catalogues) had already to be used to
satisfy the needs of some of these modules, but no exe~
cution took place.

When a transaction enters the monitor its runtime
phase starts. This monitor, the controlling monitor, now
is responsible during the total lifetime of the trans-
action for timing control and other organizational events
connected with this transaction. Lifetime of a trans=-
action means all processing from entering the monitor
module until the final actions following the END-TRANS~
ACTION statement are executed.

To perform this duty the monitor takes a central
place in the svstem architecture where the actual pro-
cessinag activity starts. He governs all distribution
aspects. That is, it distributes with the aid of the
interprocess communication system the transaction parts
in the network. and supervises their execution.
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The distribution processing is based on input data
coming from different sources. Most of the processing
requests originate from the NOA phase of the local node
in form of transaction parts. Other requests are sent
from monitors of remote sites. These requests are admi-
nistrated by the local monitor during their local life-
time, but still the remote monitor supervising the ori-
ginal transaction has overall control.

A second equally importand input stream is represen-
ted by the status control messages coming from other
monitors as well as from the local base machines for
guiding the organizational supervision of the trans-
action processing. To allow this control all trans-
action input to the monitor is organized in two parts:
one part containing monitor control statements and a se=-
cond part containing object code for the base level. This
part is not affected by monitor actions, whereas the mo-
nitor control statements will be processed by the monitor
directly.

Those transaction parts coming from the local NOA
are distributed in the network according to the control
information which has been determined by NOA as an opti-
mal execution strateqgy. Those transaction parts coming
from remote monitors are immediately routed to the local
base ma_chine level.

The different parts of a transaction have to be pro-
cessed in a predefined sequence to get the requested re-
sults. For that reason all transaction parts have WAIT-
instructions in the control part to identify these svn-
chronization order. The monitor evaluates the WAIT con-
ditions and realizes through them the proper execution
" sequencing,

Only if all WAIT conditions of a transaction part
are fulfilled the executable code is routed to its de-
stination. If the receiver happens to be a remote moni-
tor then the WAIT instruction is substituted by an empty
WAIT as its execution can start immediately at the de-~
stination site as all timing constraints have already
been removed.

In the WAIT instruction the timing interconnection
between transaction parts is established by specifying a
number of transaction part names whose termination must
be awaited before the execution of RML code belonging to
that WAIT part can be started.
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Example WAIT PT11 pPT8
WAIT PT11 PT9
WAILT PT11 PT10

This means that the actual transaction part named
PT11 cannot be released by the monitor for execution be-
fore the end signals of the parts PT8, PT9 and PT10 have
been acknowledged at the controlling monitor.

Each transaction is a closed unit of consistency and
integrity and it begins normally with a transaction part
without WAIT conditions, indicating that the initializa-
tion part can be started immediately. In the initializa-
tion part, according to the transaction building rules,
the used (sub-)relations and the access modes have to be
requested. To control and synchronize resource usage we
have chosen a preclaiming strategy to guarantee simple
reset handling in case of threatened deadlocks. There-
fore all data (subrelations) used in the transaction are
requested before execution begins. This happens in the
LOCK-phase which is always incorporated in the first part
of a transaction. Its correct execution is controlled by
the monitor. All single requests in the lockphase are
sent directly to the local base level or via the remote
monitors to the lockhandlers of the affected nodes. The
addressed lockhandler checks the request and depending
on already existing locks sends back a message to the
originating monitor: positive if the request can be
granted, negative if the requested lock mode is not
compatible with locks already granted for other users.

Even if only one of the lock requests is rejected,
the monitor has to release voluntarily all already
granted requests to avoid possible deadlocks in the net-
work as the result of cyclic waiting requests. Releasing
of granted locks can still take place without special
precautions because the actual transaction execution has
not yet started. Data manipulations can only start after
all requested data locks are granted.

Nevertheless a transaction may still have to wait
very long, without actually being deadlocked, until all
requests are granted, especially if it requires many data,
and consequently, in a heavy multiuser environment, always
one or more requests are rejected. We are aware of this
problem which can be solved bv introducing a priority
schedule or ordering of lock requests but in the first
version of POREL this aspect has not been included. The
monitor simply repeats rejected lock phases from time
to time until the time all requests are satisfied. In a
svstem not too heavily loaded (experimental phase) this
strategy should present no actual problemn,
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UNLOCK statements in the closing control component
of a transaction cause no further coordination, they are
just routed to the responsible lockhandlers to free the
data.

Transaction parts without LOCK/UNLOCK statements are
within their synchronization restrictions not further
controlled by the monitor,

The state of all transaction parts is stored in an
internal control state table of the monitor, as it has to
know the execution status of each part to guarantee cor-
rect execution. This internal table provides additional
information for status requests, for routine error con-
trols (e.g. time out failures) as well as for the initia-
lization of recovery mechanisms in erroneous situations.

Some requests (catalogue handling) are transferred
to the monitor as priority messages by setting the prio-
rity flag in the routines of the communication system.

In the monitor's input queue those requests are therefore
processed first. But during processing of a non priority
request an incoming priority message does not deactivate.
this activity i.e. there is no interrupt facility, it has
to wait until the input queue is searched for new demands.

4, STATUS AND CONTROL MESSAGES

The following group of messages for the monitor con-
tains status and control information coming from the vari-
ous base machines, either local or remote. They are the
result of state changing actions or illegal requests and
are used for updating the monitors' internal tables.

a) Termination Message

The processing of a transaction part in the base level
has successfully ended. If it concerns the last part
of a transaction, i.e., the whole transaction has now
terminated, all information in the internal tables is
erased, later status requests result in "transaction
unknown". A later reset of such a terminated transact-
ion by the monitor is not possible. Only transaction
recovery during lifetime is supported by the monitor.
More generalized recovery mechanisms using checkpoints
and log information have to be used for such purposes.

If merely an internal transaction part is terminated,
the state description in the internal table is changed
to FINISHED.
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b) Zero Message

This identifies the processed transaction part as
meaningless, i.e. it has had no effects in the base
level., This can occur in case that one cannot deter-
mine in advance where to actually process a request
because of insufficient information. The NOA there-
fore has to distribute the transaction on all nodes
where data it could possibly need are stored.
Example: An employee relation is distributed accor-
ding to the department membership; all departments
have their own subrelation.

DISTRIBUTE PERSON

SUBSET ADMINISTRATION ON K1
WHERE DEPT = 3
SUBSET FOOD - ON K2
WHERE DEPT = 2

A user then formulates a request not containing the
distribution criterion. :

SELECT PLACE, ADDRESS FROM PERSON
WHERE NAME = 'HENRY MEYER'

The NOA cannot determine where to process this request
and must create parallel requests searching all subre-
lations of PERSON in the network.

Normally only one of these requests ends up success-
fully. The others are for this request meaningless,
i.e. they end up with a zero message which is treated
like a termination message. It actually affects only
recovery situations where such requests need not to
be recovered or repeated.

c) Additional Message

Means that a transaction part has terminated, but
during processing has realized that due to changes in
data fields belonging to the distribution criterion

the actual result tuples no longer can stay on the
execution node., The executing base machine has no
possibility to effect control on other nodes directly,
it can only collect the affected data and give them
back to the monitor with some transaction code prepared
by an invocation of proper NOA components.
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For the monitor this indicates the end of the active:
partial transaction but the internal tables cannot yet
be searched for the next fulfilled WAIT-statement. In-
stead the additional code has to be placed in between
and sent to the proper processing node(s). Only after
the execution of these additional transaction parts
has taken place the monitor can continue ‘its normal
sequence of executing the transaction. The processing
of other transactions however is not affected.

Error Message

A transaction part has terminated in the base machine
in an erroneous state (e.g. a violation of integrity
constraints). Now the whole transaction has to be reset
and the monitor searches in its tables for all associa-
ted parts and transfers them to the recovery module
which does the actual work. The monitor forgets this
transaction and sends an error message to the user.

LOCK/UNLOCK message

These are lockhandler ready messages following data
lock or release requests. In case of a LOCK it tells
whether the request was granted or rejected, in case
of UNLOCK it is merely an acknowledgement that the
data is released again.,

There may be some status messages not destined for

local monitor, these are only routed to the addressed
monitors. That is we have decided that only monitors
should communicate control information between diffe-
rent sites (for result handling see section 6.1).

For control purpose the system modules or the user

may ask for the processing status of their transaction.
The controlling monitor then returns as result that
static information contained in his internal tables,
i.e. it is not checking whether the transaction pro-
cessing base machine is still alive or has failed.

That is the duty of a recovery module,

5.

DATA STRUCTURES IN THE MONITOR

We distinguish between incoming and outgoing data

and the internal tables for keeping track of data flow
and processing states in the network.
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5.1 Incoming Data

After the modifications to the RML statements made
by the NOA, which adds all network oriented aspects, the

transaction is given to the monitor for further handling.

The internal form of a transaction is essentially
represented by a sequence of quadruples together with
additional tables and program control information.

Another table, the transaction structure description,
provides hints which object code belongs to which partial
transaction, where to process (SEND) this code, how the
timing constraints look like (WAIT), and which data is to
be acquired or released (LOCK/UNLOCK). The monitor is
only interested in this structure description from which
it gains its control information. The object code tables
are not further investigated here.

The transaction structure description consists of
the following elements: ’

a) - SEND PLACE = . FROM TO

SEND is the code indiéating where (PLACE) the code
for a part transaction has to be processed. FROM-TO points
to the RML object code tables,

b) WAIT OWNNAM WAITNAM

This instruction specifies that transaction part
OWNNAM cannot be started before transaction part WAITNAM
has signalled its termination. If more than one transact-
ion part has to be waited for several WAIT statements

have to be issued.
c) LOCK MODE SRID NODEID

For each subrelation SRID which is used in the trans-
action a lock request must exist indicating the necessary
MODE (WRITE, weak READ, strong READ) and the location of
the data in NODEID. As we have chosen a distributed pre-
claiming strategy all lock requests have to be stated
before the actual transaction starts. :

d). UNLOCK MODE SRID NODEID

This instruction releases subrelations at transaction
termination. The MODE parameter is redundant and serves

only for control purposes.
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The transaction structure description therefore

looks like:

Transaction start

SEND
(WAIT)

*

LOCK:

Internal transaction

part

SEND
WAIT

LK I Y ]

Transaction end

- SEND.
WAIT

UNLOCK

LI 2N O

where to process

a WAIT statement only, if the
transaction is embedded in a
program consisting of several
transactions which have to be
processed sequentially.

for each used subrelation a
lock request

for each predecessing part
transaction a WAIT statement.
LOCK's cannot and may not occur
(preclaiming)

corresponding to unlock

As long as all rules for constructing transactions
are obeyed the monitor accepts processing requests in/
form of transaction parts from the host language inter-
face, up to whole programs consisting of several trans-~
actions to be executed in sequential order.

Together with the structure description the monitor
gets the program control block (PCB) containing program-
and user oriented administrative data: user name, input
location, data, time, message flow history, file names,
(see also section 6.1).

message kind, etc.
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Figure 2 shows a possible storage map

Program control block

Transaction structure Comprising transaction parts
description forming up to several trans-
actions. A
Statement gquadruple table Code for transaction part 1
and .

Auxiliary tables

. transaction part 2

. Depending on the size of such a block it is stored
~directly in the message buffer of the communication system -
or as files on external devices. But the monitor accesses
only the PCB and the structure description and therefore a
good strateagy is to store the object code information on
files and the monitor information in memory.

5.2 Outgoing data

They are firstly LOCK/UNLOCK statements destined for
the responsible lockhandlers guarding the requested data
and on the other hand complete transaction parts, e.q.
all tables for transaction part 1 and the PCB, which are
" sent to the executing base machine possibly via other
monitors. The structure description, except the LOCK/UN-
LOCK statements, remains in the monitor area.

5.3 Internal data

For the control of transaction parts which are to
be processed, are in processing, or are already finished
the monitor needs an internal table to keep track of the
status changes.

Origin | Stor | User | PTA {Entr | Proc | Proctime ([State | Wait
Loc name| time | loc startJter ,
I I | | | | I |
Meaning of the fields:
Origin is the processname which transmitted the request

to the monitor, i.e. the immediate predecessor in
the message flow- history.
Stor loc Where is the actual program code stored.
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User User's process name to which results and error
messages are sent.

PTA name Name of this transaction part for evaluation of
WAIT's, status requests and recovery purposes

Entr time Time of entry into the monitor.

Proc loc Where is the code executed.

Proc time Start Time of activating the partial trans-

action on the executing node
Term Time of receiving an end or error
: message.

State Processing state of transaction part
Possible contents:
NEW transaction part is in monitor area

but not yet started because WAIT is
still invalid

IN WORK  just under execution

FINISHED processing. terminated

BAD processing cancelled in an error
situation
LOCK just doing the lock phase

DELAY:TIME processing reset due to failed
lock requests
WAIT/LOCK WAIT condition, which must be fulfilled be-
fore activation. It is represented as a
pointer to the structure description where
also LOCK/UNLOCK information is available,

To control the lock phase the monitor keeps for each
transaction the essential information in a lock table.

Lockinfo Nodeid l - Mark
Mark indicates here whether the subrelations (lock-
info) are granted or rejected.

Transaction

A similar table is used for storing already evaluated
WAIT conditions.

transaction true WAIT cond

All transaction bound information is kept till the
end of processing. It is erased when the transaction has
successfully terminated or is given to the recovery module
in error situations.,
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6. ADDITIONAL REMARKS

6.1 Communication flow

In our first approach all information flow in the
network was supposed to be controlled by the monitor. But
this presented a serious bottleneck and we changed the
approach and made the monitor responsible for only trans-
action control and status/control messages. All other
information not destinated to these purposes are exchan-
ged immediately between the involved processes (e.g. re-
sults of catalogue requests, query results and error
messages to user or system modules).

Direct communication means that only the communica-
tion system is engaged in the transfer, the monitor is
freed from that work.

For this reason all processes in the network must be
uniquely identified. In order not to loose control totally
such immediate interprocess information flow has to be
successfully finished before the acting process delivers
any depending status message to the monitor. For example,
if in a transaction part an output of results to the
user is made then the base machine may not send a ter-
mination message to the monitor before the result trans-
fer is finished, i.e. has been acknowledged by the user
process.

In order to always have all information necessary
for communication control it must be added to all messa-
ges as a communication control block, and it is contain-
ed in the PCB. This control block is maintained by those
system modules which are involved in the handling of
that message on its way from origin to final destination.
For the communication system these control blocks act
like normal data and are not treated specially.

Necessary contents of the communication control
block:

ORIG Original sender, i.e. the process which
started the message, normally a user
I/0 process.
ACSEN Actual sender, the process which is current-~
ly concerned with handling the message
RMON Monitor responsible for transaction control
= monitor on user's input node
MKIND Kind of transmitted message
e.qg. termination
error
processing request
status request
etc.



~370-

DEST Final destination place, only necessary if
a direct communication is not possible and
intermediary services are required
(e.g. monitor)

Example : Figure 4 illustrates the different actions during
a transaction execution. (The line numbers in the
figure will be used as reference points in the
explanation below.)

Given is a network configuration

incorporating the two nodes N1 and N2,

A user working with dialog process DIA1 on node N1 is
starting an RDBL compilation (1). After NUA has done
the syntactical and semantical processing for a non-
distributed query the user request is passed to the
NOA to be analyzed in the network environment (2).
After this work is finished, the created object code
goes back to the user as immediate execution was not
identified (3).

Let us suppose the users' request results in four
transaction parts A, B, C, D which are dependent as is
shown here.

The associated internal transaction description is shown in
Figure (3).

Later the user starts the execution phase for his
query. As changes in the actual data base environment
may affect a succegful execution the runtime checker
analyses the RML-code again (4) Let us assume no data
base reorganization has taken place. Therefore the code
is given to the monitor (5) which sends transaction part
A to destination node 2 (6) whose monitor, as an inter-
mediary, starts execution on base machine 2 (6) which
after termination retransmits the ready message to MON1
via MON2 (8 + 9).
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Program control block

(Transaction structure description)

SEND N2 K L1

WAIT A - Transaction
LOCK WR PERS N1 part
LOCK RDE CITY N2 A
SEND N2 L M=-1

WAIT B A B
SEND N1 M N-1

WAIT C A C
SEND N1 N 0=-1

WAIT D B

WAIT - D C D
UNLOCK WR PERS N1

UNLOCK RDE CITY N2

K | code for transaction part A

Code for transaction part B

M| code for transaction part C

Code for transaction part D

Figure 3 : The transaction description

Corresponding to the timing constraints the monitor
after termination of transaction part A can start B and
C in parallel, B is sent again to node 2 (10), C to the
local base machine (not further illustrated here).

The remote monitor routes B to the base machine (11).
- Let us suppose transaction part B sends results directly
to the user (12), who acknowledges correct reception of
data. Transaction part B now finishes (like 8 and 9).

And so on ...
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ORIG ACSEN RMON MKIND DEST
1 | DIA1 DIA1 - TRANS -
2 | DIA1 NUA1 - TRANS -
3 | DIA1 NOA1 - READY -
4 | DIA1 DIA1 - EXEC -
51 DIA1 RTC MON1 EXEC Co-
6 | DIA1 MON1 MON 1 EXEC -
7 | bial MON2 MON1 EXEC -
8 | DIA1 BM2 MON1 READY MON1T .
9| DIA1 MON2 MON1 READY o
10 | DIA1 MON1 MON1 EXEC -
11| DIA1 MON2 MON1 EXEC -
12§ DIA1 BM2 MON1 RESLT -
13 | DIA1 DIA1 MON1 ACK

Figure 4. Message flow history for the example

6.2 Embedding the monitor into the system's architecture

When installing the monitor in the system the
question arises how many of them do we need? There are
two alternatives: one per given request (either trans-
action or program) created dynamically when a new re-
quest arrives and only responsible for this input alone,
or one for each site.

As a consequence of the first alternative many pro-
cesses will run concurrently and for systems like ours,
which have restrictions on the number of processes, this
may not be the right way. On the other hand this solu-
tion requires then an additonal site unigque module (like
the scheduler, lockhandler etc.) which coordinates the
log tape writing activities of the monitors for recovery
purposes.

For POREL we have chosen the second way, one monitor
per node. That is, we have a unique coordination process
on each node for all inputs of all local users. This
approach was found not to cause too much traffic load
for a single process as the monitor was freed from all
result handling work as mentioned above. We now were able
to integrate the log tape handler into the monitor as an
internal routine which needs no further synchronization.

6.3. Current and future research

There are two features we intend to incorporate into
our system. One is the concept of delayed updates. This
means that, when working with a data subset, we require
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at least the original to be locked, together with at most
one copy at the processing site. Updates on the locked
data are immediately executed. Updates for all other
copies can be delayed and executed whenever there is

time for or when a request is made for data for which
there still exist delayed updates. Using version numbers
an effective algorithm can be developed for the necessary
synchronization. When locking. another copy the lockhand-
ler has to compare its version number with that of the
original to be sure that the copy is up to date, if not
the remaining pending updates are executed before grant-
ing the lock request. The second feature is an alternative
mode for improving data transfer. Up to now all trans-
action parts are sent to their destination if all pre-
conditions are fulfilled. We can also select a different
approach:at transaction start all parts for one site

are collected and sent together to their destination.
Later on this is followed only by a short activation
message to start a specific part whenever its wait con-
ditions are satisfied.,

Using this strategy we even can go further by de-
centralizing the transaction based execution monitor
scheme somewhat further. Partial trees of the execu-
tion sequence which are to be processed on a single node
could be given in total to the remote node which then
also gets control over that tree and sends a status mes-
sage to the original monitor only at the end of its pro-
cessing. These subtrees usually are the result of the
optimization algorithms in the NOA level which break up
object code into maximally parallel executable streams
on concurrently working base machines. But the side
effects of such a partial decentralization have still
to be studied in detail, especially with respect to more
dynamic locking strategies and recovery.

7. CONCLUSION

In this paper we have now presented an overview of
the execution monitor used in the POREL system. Of course
much more could be said about this module and many que-
stions have to remain unanswered, in the space available.
We hope however to have given sufficient detail to grasp
the decentralized execution control mechanisms used in
POREL and the way this control unit interfaces with the
other parts of the system. In case of deeper interest
please consult the technical reports (10), which contain
the design specifications of the system and other publi-
cations about POREL.
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Abstract

A distributed data management system on a heterogeneous computer
network is presented. It consists of two components: a front end
system composed of a number of application specific data base manage-
ment functions and of a general purpose kernel. This architecture
has been developed (1) to provide for system evolution upon changes
"of user requirements, (2) for simplicity of the system structure,
and (3) for a high system performance. The paper elaborates on

the rationale for the approach. It encompasses a description of

the gross architecture of the system, reflects on the most critical
design issues for distributed data management systems on hetero-
geneous computer networks and explains the developed solutions.

1. INTRODUCTION

Decentralized computing systems seem to be attractive for a great
number of applications. It is obvious that the existence of some
kind of Distributed Data Management System (DDMS) is inevitable
for most applications /WE T78/.

At present a number of distributed data base management systems

are under development but none exist as a product on the market.
Since an agreement on a coherent set of requirements for DDBMS

has not been reached yet, each of the different design experiments
starts from a particular designer’s perception of the possible
environment in which the DDBMS would be used. Consequently, a great
number of obviously different, or sometimes not so different archi-
tectures have been proposed (a comprehensive list of references
may be found in /AD 78/).
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The nonexistence of a unique and coherent set of requirements and
objectives for DDBMS on the one hand, and our customers’ demands
for a maybe simple but soon usable Distributed Data Management
System on the other hand, are the determining factors for the de~
velopment of an alternate design and implementation strategy. This
paper elaborates on the rationale of this strategy and presents
the resulting Evolutionary System Architecture (ESA).

The system being presented was developed jointly by the Hahn-Meitner-
Institut for Nuclear Research, and Siemens AG. It was sponsored

by the German Ministry for Research and Technology (BMFT). This
effort resulted in a star-shaped computer network -the HMINET-
which has been operating since 1976. The network connects a large
number of process control computers of different manufacturers,
and three time-sharing mainframes (SIEMENS 7.760, 7.744 and 7.748)
via a central switching node (SIEMENS 330) using high speed data
lines (up to 200 kb/s). The process control computers serve as
data acquisition devices for nuclear physics and radiation chemis-
try experiments. The installation of an interconnecting link from
the HMINET to an external network in Berlin (BERNET), which will
connect research institutes and university computing centers is
planned. The entire network structure may be depicted as follows.

§7.760 §7.755 §7.748

S$330 §330 BERNET

_/

PDP 11/40f ...... PDP 11/70
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The description of the ESA system in this paper is organized in

the following way. Chapter 2 contains a more elaborate description

of our motives and goals and relates them to those of other re-
searches. The applied design strategy is then explained in chap-

ter 3. Chapter 4 encompasses a description of the gross architec-
ture of the ESA system, focussing first on a so-called ESA frontend
system and describing ESA's kernel system in the sequel. This chapter
reflects on the most critical design issues for distributed data
management systems on heterogeneous computer networks and explains
the solutions developed in our project.

2. RATIONALE

Our concept of a distributed data base management system is based
primarily on an analysis of our in-house applications in scientific
data processing and some application in some other environments:

(1) The acquisition, storage and pre-processing of large bulks

of data local to data produecing scientific experiments require

local front end data storage and retrieval capabilities. The ar-
chival and large scale evaluation of experimental data requires

back end data management capabilities on main frame computer systems.
Thus a DDBMS should provide means for an interactive data analysis
incorporating both access to local and remote data.

Similar requirements seem to determine some other important appli-
cations:

(i1) Applications in government administration.

There is a need for data-exchange capabilities among independently
operating data base systems for different governmental agencies.
The connection of these systems into a DDBMS is the only economic
way to exchange data. Very often, those networks will encompass
different types of computer systems and differently structured
data bases.

(1i1) Applications in business

& Office automation
The term stands for a number of efforts with the goal of supporting
the office work of executive secretaries. This application is con-
sidered to be the most expanding area of computer applications
in the 1980‘s. Local office computer systems support document pro-
cessing (dictation, text editing, copying, printing, photo composi-
tion, etc.) message processing (sending, receiving and distributing
of memoranda, letters, proposals, drawings, etc.) information ar-
chival, -and providing access capabilities to the company ‘s main
data base on mainframe computer systems.
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# Executive decision making
Decision making depends on the availability of appropriately pre-
pared data. It is assumed that computer-supported decision-making
will be one rapidly growing computer application area. It will
depend on locally and remotely accessible data.

(iii) Applications in Medicine: Practice Automation.

Besides tasks similar to office activites, like billing and account-
ing, doectors will use systems to support diagnoses. For both activi-~
ties, access to loecal data on small office systems and remote data
on mainframe systems will be necessary.

Based on this analysis we have drawn the following conclusions:

C1: Computer networks of small dedicated computers and main-
frame computers are most appropriate to support a great number
of different applications in different environments.

C2: For most of the considered applications a DDBMS should
primarily support the rather frequent access to "own" data

on local computer systems and should allow for the rather
infrequent access of "common" data on remote computer systems.

Our concept is also very strongly based on a thorough analysis
of possible difficulties because of a number of so far unsolved
problems for the development of DDBMS:

The differences between centralized and distributed data base systems
with respect to a number of fundamental technical problems have

been reported repeatedly in the literature /AD 78, R 77, PM 78/.

It is obvious that solutions to some of them, like synchronization
of concurrent updates, query processing, handling of component
failures, and in particular the conversion of data and operations

in heterogenous networks will also result in systems of high com-
plexity and cause high internal administration overhead. For its
expected complexity it does not seem to be clear to us as to whether
it is yet feasible to design and implement an efficient general
purpose distributed data base system for all kinds of applications.
We, in our effort, tend more to the assumption that a suitable
architecture framework encompasses both a general purpose kernel
system providing a machine-oriented data management facility (simi-
lar to the one usually attributed to an internal schema of a data
base system) and function units for special applications. Our Evolu-
tionary System Architecture was therefore developed to enable the
development of the kernel first and of arbitrary application units
on top.
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It is still a fact that a great number of applications use the
operating systems’ data management functions only and do not depend
on a data base system at all. It is therefore our intention to
devolop with our Evolutionary System Architecture a concept for

the integration of different data management capabilities into

a netwide data manager on top of the operating system level. Never-
theless --to avoid any misunderstanding-- it is not our intention
to develop a distributed operating system. We are much more in-
terested in a system for the administration of large amounts of
data by rather complex retrieval and update operations. These re-
quirements are - as stated in /RG 77/ - fundamentally different
from those for operating systems. The resulting architecture must
reflect these differences. We expect the kernel system to provide
data structuring capabilities and data manipulation capabilities
comparable to those in contemporary operating systems. Higher order
structuring and manipulation means are expected to materialize

in the aforementioned application- oriented function units.

According to these considerations our system concept is based on
the following additional conclusions:’

C3: A suitable architecture of a DDBMS consists of a general

purpose kernel system and of application specific function
units.

C4: A suitable DDBMS should support both a low-level user
interface providing efficient data base access capabilities,
and higher-level user interfaces for higher user convenience.
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3. ESA DESIGN STRATEGY

Two basic design strategies have been proposed for the design of

a DDBMS /AD 78/: A uniform integrated system may be built in an
overall top/down design process (T-systems in /AD 78/) in the one
case, or a number of different DBMS’s implemented on different

host computers will be integrated afterwards in a bottom-up fashion
(B-systems in /AD 78/) in the other case.

This of course does not imply that a different software design
methodology - top down or bottom up - has to be applied in the
design of these systems. To avoid any confusion we would prefer
to call the resulting systems pre-integrated and post-integrated
systems respectively.

The two resulting architectures may be depicted by the following
graph as proposed in /PM 78/.

Pre-integrated System Architecture

DM — D
51 W DMS+ W
netwide netwide

Host - Host Communication Network
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In this concept a user has access to a uniformly designed DDBMS
which uses local data management services (DMSi) or provides access
to remote data management services.

Post-integrated System Architecture

R D ,
DMS, , DMS,
local local
DEMS, DEMS,

Integrator Integrator

Host - Host Communication Network

In the second concept an integrator will be provided on top of
existing local DBMS’s. A user gets access to the uniformly designed
integrator which uses local DBMS services and provides access capa-
bilities to remote DBMS’s.

Our design strategy represents a position in between the two ex-
tremes. A number of different data management functions in different
operating. systems will be integrated resulting in a post-integrated
kernel system. The kernel system uses data management services
provided by local or rrmote operating system data management
functions. The kernel provides services to human users or to one

of the following front end systems: application specific data
management functions, a netwide general purpose DBMS or different
local DBMS's. '
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Evolutionary System Architecture

_DMS

DBMS

e

Kernel

After the design of its kernel ESA may be extended into one or

ﬂ

DMS+

DBMS

Kernel

DB2

Host - Host Communciation Network

all of the aforementioned directions. A more elaborate discussion
of the resulting systems will be given in the next section of the

paper.
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ESA consists of a front end system (or of a number of co-existing
frontend systems) and of a kernel system.

ESA‘s embedding into the entire network system may be depicted
in the following graphical representation of the network software

structure,

| RJE

EFE(

RJE

AL2

EITC ALl

EITC DIA MAD DATS DATS MAD DIA
(ESA kernel)| [(ESA kernel)
IPC IPC
| vos. Lnk| fvoc.umk|  |uoc.uriw]
e
LINK —{UINK|  JLINK —|L1NK

EL

TL

A8

As usual, the network is designed in a layered fashion providing
a number of different functions on each layer. The functions on
each layer will be performed by using services provided by the
functions of the next lower layer. Four layers may be identified
in the current state of development, e.g., the application level,
the end-to-end level, the transport level and the link level.
Communication between corresponding functions will be enabled by
communication protocols associated with each level in the network.

The two bottom layers - the link level (LL) and the transport

level (TL) - provide a datagram service controlled by a SIEMENS NEA2
protocol. Their function and internal structure is not of particular
interest for our further discussion.

The interprocess communication facility (IPC) is provided on the

end-to-end level (EL).
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Several basic functions are provided on the application level 1
(AL1), e.g.:

the system component called EITC (Extended Intertask Communication
System) facilitates the communication between programs which run
on different hosts;

DIA (Dialog)
permitting accesses from remote terminals (i.e., accesses to any
timesharing host from all terminals connected to the network);

MAD (Maintenance, Administration and Demonstration)
performing control functions like load measurement, network
administration, and information display;

DATS (Data Access and Transfer System)

providing the kernel functions for ESA and some other application
systems.

A number of functions on application level 2 (AL2), like a Remote-Job-
Entry-System (RJE), an electronic mail system (EM), a distributed
graphics system (G) and last but not least, ESA’s front end system
(EFE) are all based on services provided by DATS.

The following discussion will now be restricted to a more elaborate
desceription of ESA s front end system and the kernel DATS,

4.1 ESA Frontend System

In its current state ESA is meant to support rather simple appli~
cation-specific data base management functions (ASF’s) first, which
may be extended later on into a general purpose DDBMS. The simplifi-
cations introduced in the design of ASF’s become apparent in a
comparison of its characteristics with some interface character-
isties of general purpose DDBMS.

General purpose DDBMS s provide access to all data stored in the
distributed data base from any host in the network. This may be
accomplished by maintaining directories accessible from each host
in the network. A number of different strategies have been proposed
for the allocation of data in a computer network, e.g.,

(1) all data may be duplicated and located at each node of the
computer network (i.e., the fully redundant case);

(ii) data are stored partially redundant;

(1iii) data may be stored non-redundant;
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and for the location of directories in a computer network, e.g.,

(1) a directory containing entries for all data in the distributed
data base is maintained centrally at one host computer; access
to data is provided through this centrally located directory
only;

(ii) a directory containing entries for all data will be duplicated
‘and maintained on each of the host computers.

Any combinations of these alternatives for the placement of direc-
tories and data in the network has a great impact on the solution
of the concurrent update problem on query processing problems and
on the handling of component failures.

ESA materializes a somewhat simpler and restricted concept which

is based on a somewhat different perception of the requirements

for many applications. In our concept the front end system consists
of a number of rather autonomous application-specific data base
management functions (ASF’s) which share just some data and main-
tain the major part as "own" data. They form altogether an appli-
cation system. A more sound definition of an application system
will be given in the sequel,

An Application System, AS, consists of a time variant set Pt of

programs p and of a time variant set D ¢ of data repositories

ti

dti (which altogether form the data base) which are used by the

programs pti « One may then write more abstractly:

AS =(P..D:.R )
BT T where R, S P, x D¢

with Pyy € Py

dey € Dy

Each program p,, may have access to a number of data repositories
dti,...,dtJ during its execution and each data repository
dti may be used by a number of programs pti,...,ptj, Because

of this characteristic, the "access" relationship R is said to
be n:n.
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This definition of an Application System is in accordance with
information processing practice. For example, an enterprise’s pay-
roll AFS (index p) uses its own data repositories and some of the
production department's repositories. And, conversely, the produc~
tion department's data repository is used by the payroll ASF and
by the inventory control ASF's programs. This sample AS may be
visualized by the following graph.

O
Payroll :

:
Production AFSpr P3
Inventory AFS, P

The foregoing definition captures the very basic fact that appli~
cation programs are not independent of each other, even though
they have been independently developed. All the programs which
use a common data repository interfere with one another via the
common data.

However, the partial sharing of data among different application.
programs of different AFS's is the-very basic characteristic which
distinguishes application systems and general purpose data base
management systems. Each application-specific data base management
function ASF; provides just a window to the data base offering

a limited aceess capability to a part of the data base relevant

to this application only. The amount of sharing of data among ap-
plication programs determines the degree of autonomy between ASF s:
a small number of shared items cause high autonomy and vice versa.
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The placement of indexes and data of an AS in a network may now
be based on the following assumptions:

(1) Most of the Application Systems for the kind of applications
considered in Section 2 of the paper consist of highly autono-
mous ASF’s.

(i1) 1In most cases a host computer will be provided for each ASF.

(ii1) Most of the data will be stored locally on the host computer
allocated to the ASF, only a small portion of the data rele-
vant to an ASF will be stored remotely if the data is shared
and accessed more frequently at the other host. The data
will be stored in a non-redundant fashion.

(iv) Directories will be maintained on each host containing entries
for all data repositories relevant to the ASF allocated to
this host. Because of the sharing of data between ASF's only
partially redundant subdirectories of the data base direc-
tory will be maintained at each host.

Based on these assumptions ESA’s entire frontend system may be
constructed of a number of application programs p, with a direc-
tory 11 associated with each of them. The\applica%ion programs
and the associated directories may be partitioned according to
the number of ASF’s allocated to different hosts in the network.
For their execution, application programs perform then service
requests to a local data management system provided in the kernel
system or to one or more remote application programs. This may

be depicted for the sample system introduced above in the following
graph.
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To enable the communication between application programs and local
data management systems on the one hand, and between application
programs on different hosts on the other, ESA’s gross architecture
has been designed as depicted in the following graph.
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4.2 Provisions for Evolution

For its evolution ESA provides means for changes of its front end
system without causing any modifications of the kernel. Changes

of the front end application system can be facilitated by composing
it of quasi-standardized modules which are designed according to

a uniform generic module design concept. The concept provides means
for AS modifications by adding and removing modules /WE 78/

/HE 79/. According to this concept modules are defined to exhibit
clear and simple interfaces and internal structures which make
them function the same way in all possible environments. Thus,
modules may be connected to other modules and connections may be
removed without any effect whatsoever on the funectioning of any
other module,

To guarantee this invariance of a module's functionality, a module
is defined to exhibit the following characteristiecs:

Modules identify a particular type of data and all the operations
applicable to data of that type. Data and operations defined in
a module must fit together properly.

The rather imprecise statement that data and operations have to

fit together needs some further explanation: Data are representa-
tions of real phenomena. To meet these phenomena, the representing
data must assume certain characteristies. Data are, on the other
hand, subject to changes. It is therefore important to distinguish
two different types of characteristics: the extension, and the
intension of data. The term extension refers to the time dependent
aspects of the information contents (e.g., the actual set of tuples
in a relation at a certain point in time). The term intension refers
to the time invariant aspects of the information content (e.g.,

two domains of a relation are in a functional dependence at any
time). Data may then be manipulated (i.e., their extension may

be changed) according to their time invariant characteristics (i.e.,
according to their intension). It is consequently necessary for

the design of Application Systems to ensure that all operations
will be designed to be in accordance with the data’s intension.

A module design methodology which imposes the necessary disecipline
is therefore developed along the folllowing guidelines:

(i) Each individual type of data object and all the permissible
operations on data objects of this type will be defined to-
gether in a module.
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The data objeet will be manipulated by those operations only.
Different users may manipulate the data object by invoking one
of the predefined operations. This makes the module a self-
contained entity which will display the same time invariant char-
acteristies in all environments. The data are called encapsuled
by the permissible operations within the module.

(ii) A module definition encompasses the definition of rules for
the preservation of the semantic integrity of the type of
data defined in the module.

Changes of data are constrained by restrictions which are to be
obeyed in order to preserve the semantic meaning of the data. For
example: An inventory department’s data repository may contain
data about parts on hand. The order department is consequently
not. allowed to change the data in this repository after an order
of new parts has been issued, but only after the new parts arrive.
Thus; data changes may be tolerated if the preservation of the
semantic integrity of the data is guaranteed.

(1i1)A module definition encompasses the definition of rules for

the execution of concurrent execution requests for its
operations., ‘

Changes of data are also constrained by restrietions for the con-
current execution of operations on common data repositories. It

is necessary in this case to guarantee that the outcome of the
execution of an operation is the same as it would be if the oper-
ation were not interleafed with any other operation. Thus, con-
currently performed data changes may be tolerated if the preserva-
tion of the consistency of data is guaranteed.

Application systems when designed with the aforementioned methodolo-
gy allow changes of the system by additions and removals of modules
as desired,

The concept is applied in the design of an AS in ESA in the following
way:

The AS is constructed in a hierarchic fashion by the composition

of modules out of other lower level modules. As a consequence,

an AS is built as a hierarchic composition of indexes (representing
a hierarchic structuring of data types) and of associated operations
(representing the hierarchical structuring of application programs).
Modules in the hierarchy are related to one another by a so-called
"use~relationship® indicating that higher level modules use the
services of lower level modules to complete their task. This hier-
archic composition may be illustrated with the previously introduced
sample AS in the following way.
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For system changes, arbitrary modules may be added to the hierarchy

or removed from the hierarchy if the modules are not referenced
anymore in any other modules.
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4.3 ESA Kernel System

The Kernel System consists of a component called DATS (Data Access
and Transfer System) and of a SELECTOR component. The DATS component
has been designed to provide general purpose functions for a rather
great number of services like maintaining distributed data repre-
senting graphic information, facilitating electronic mailing of
information between different hosts in the network, facilitating
remote- job-entry, maintaining distributed data repositories, etec.

It was one of the main goals of the design to build DATS on top

of unchanged existing operating systems of the various host computer
systems participating in the HMINET. Thus the embedding of DATS

into the network system may be depicted as follows.

RJE b L

EM

USER DATS

End to End Communication Network

Based on this simplified depiction DATS may be considered as
consisting of two (distributed) communicating processes residing
on two -maybe different- host computer systems. For its expected

function the process pair is designed to provide as proposed in
/K 78/:

- a mechanism for the selection of requested data;
- a mechanism for the transfer of data;
- a mechanism for the transformation of data structures according

to the different data structuring capabilities on the different
host computers.



-395~

In order to provide these functions the interacting processes have
to accomplish tasks as different as data link control, system and
data resource allocation, addressing, interprocess synchronization,
error recovery, etc. A more detailed description of these tasks
will be given in the protocol definition for DATS after some further
explanation of DATS’ internal structure in the following section.

4,3.1 DATS’ Architecture

The kernel component DATS in turn consists of four components

with a somewhat overlapping function: Remote File Transfer (RFT),
Remote Data Access (RDA), Virtual File (VF) and Remote Execution
Request (RER). All four of them are composed of two processes residing
on different hosts and they communicate in accordance to a specified
protocol. The function of these components may be explained as
follows.

Remote File Transfer:

RFT may be initiated by a user process UP and

- it establishes a connection between a local RFT process called
FTM (File Transfer Master) and a remote RFT process called FTS
(File Transfer Slave);

- it transfers a remote file transfer request;

- it performs an access to the requested file;

- it transfers a message containing the requested file to the re-
questing host;

- it converts data formats of the transferred data into the for-
mats of the requesting host;

- it stores the transferred copy at the requesting host.

This communication pattern may be depicted in the following graph.

gp [~ — — — "™ FIM [~ FTS

=
|ii|

After the initialization of RFT by UP the two processes may continue
to execute in an asynchronous fashion.
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Remote Data Access:

RDA may be initiated in a user process UP and

- it establishes a connection between a local RDA process RFA,
and a remote RDA process AFR;

- it transfers a remote data access request;
- it performs an access to the requested record of a rzamote file;

- it transfers a message containing the requested record to the
requesting host;

- it converts data formats of the transferred data into the format
of the requesting host;

- it provides the transferred copy of the requested record to the
requesting program.

The communication pattern may now be depicted as follows.

UP : ' RFA AFR

< -
‘ H
After the initialization of RDA by UP the user process halts until
the termination of the remote data access.

Virtual File (not fully designed yet)

VF may be initiated in a user process UP and

- it establishes a connection between a local VF process VFL, and
a remote VF process VFR;

- it transfers a virtual file request;

- it maps an access request on a virtual file into an access request
on a local file;
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it performs an access to the requested file or records on the
remote host;

it maps the format of the accessed data into the virtual format;

it transfers the requested data to the requesting host;

it stores the transferred data in a data repository on the
requesting host.

This communication pattern may then be depicted as follows.

==~ VFL — VFR
Up
CONV COoNv
F°,R7 F,R
SN——”

After the initialization of VF by UP the two processes may continue
to execute in an asynchronous fashion.

Remote Execution Request (not fully designed yet)
RER may be initiated in a user process UP and .

- it establishes a connection between a local RER process RERL
and a remote RER process RERR;

- it transfers a remote execution request;

- it performs manipulation on data identified in the remote execution
request;

-~ the results of the remote execution are transferred to the user
process (UP)

This RER communication pattern may be depicted as follows.

up RERL RERR
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After the initialization of RER by UP the two processes may continue
to execute in an asynchronous fashion.

The first three components RFT, RDA and VF may all be used to per-
form similar tasks. The decision of which component will be used
in the execution of a certain user transaction will be based on
performance and availability criteria, These criteria have been
determined in system modeling, protocol modeling and system simu-
lation studies /PZB 78, CB 77, BB 79/ discussed below. A selector
component of the Kernel System decides during the execution of
user transactions on the selection of one of the aforementioned
components.,

The VF component is being developed in the system because the HMINET
will be connected to the highly heterogeneous BERNET system. In

that system all data management services will take place in terms
of a standard virtual data format as the one adopted for VF.

The RER component is meant to provide a capability for the efficient
change of remotely stored data.

The kernel system in its current implementation may then be depicted

as follows.
.S
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c RFT
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End to End Communication Network
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As mentioned before, the kernel provides services to a number of
application systems. A user may also gain direct access to the
DATS system via a simple DATS command language introduced below.

4,.3,2 DATS’ Execution

Several processes communicate during the execution of DATS. The
basic communication pattern will be depicted in the following graph.
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A user process UP requesting the service of DATS issues a request
to the SELECTOR component of the kernel system. The SELECTOR, after
deciding which of the DATS components to use, passes the user re-
quest to that component (RDA or RFT in the currently implemented
version). For the execution of either RDA or RFT a communication
channel --a so-called "coded connection"-- will be established
between the RDA/RFT component residing on the calling host (FTM/RFA)
and the RDA/RFT component residing at the remote host (FTS/AFR).
This will be accomplished in a two-phase process:

To initiate the communiecation the user process issues in the first
phase --the so-called remote connection phase-- a call of an INIT
statement (via the selector component) to the local component of
the RDA or RFT. Together with this call the user process supplies
the local component of the RDA or RFT with its own identifier,

with the identifier of the called host, and with the size of a
resource set (i.e., the maximum number of resources) required (i.e.,
remote files or remote record-oriented devices) as parameters.
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Based on this information the local component FTM/RFA in executing
the INIT statement establishes together with the remote component
FIS/AFR, a connection between the user process and the requested
remote resource set.

In the second phase --the so-called association phase-- the user
process supplies the local component FTM/RFA via an ROPEN statement
with the identifier of some particular resources out of the resource
set as parameters. Based on this information the local component
FTM/RFA establishes together with the remote component FTS/AFR

a connection between a user process and a particular resource.

After this communication connection has been established the user
process may issue calls on action primitives whose execution results
in transfers of data from the local to the remote host and vice
versa. A more complete list of primitives to initialize a conneec-
tion and to perform data transfers may be found in Appendix A.

4,3.3 Kernel Selector Functions

As mentioned above, a special kernel component, the selector, de-
cides on the selection of one of the DATS components with similar
functionality for the execution of user transactions. This deeci-
sion is primarily based on performance criteria as, for instance,
response time behaviour, local station throughput and buffer space
requirements, but is, of course, also dependent on the availabil-
ity of the respective DATS components in the local or remote hosts.
For the latter case, the selector component holds and updates a
table of DATS components status and configuration information.
Whenever one component, RDA for instance, is known to be unavaila-
ble or is known to be not functioning locally or at the remote
host, another DATS component, RFT for instance, may be selected

to provide the needed service.

We call a component selection of that kind an "availability based
selection” in contrast to the "performance based selection™ (which
shall be described in the following) and the "user intention based
selection", as, for instance, the selection of the Virtual File
component in highly heterogeneous networks.

The Multielass Concept.

Any host in the network is denoted as "local system". Let there

be four distinct user classes defined for local systems: CPU bound
Jjobs, two types of 1/0 intensive jobs and "normal® jobs. The latter
are representatives for the average job profile of some scientifiec
computing center or other. The two kinds of I/0 intensive jobs

are defined in the following manner:
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Access to a whole file - requiring the record by record transfer
from device to core - is modelled by the service of a "particular
abstract I/0 device", that is, any file access request of that

kind (called "bulk access request”) will be represented by a request
to this particular abstract device whose service times are appro-
priately determined as the estimated value of time needed to per-
form the whole access request. Here the files are assumed to exhibit
constant mean lengths, which has been observed and estimated with
relative accuracy.

The customer class of I/0 intensive jobs of the first kind is now
associated with the class of jobs which will set bulk access re-
quests with some significant probability. I/0 intensive jobs of
the second kind are defined as processes exhibiting high access
rates to different storage devices.

This constitutes the following associations: .

Customer class 1 s o CPU bound jobs
Customer class 2 A b normal jobs
Customer class 3 e I/0 intensive jobs of 18t kind

Customer class 4 UV I/O intensive jobs of 2nd kind.

The set of all modules materializing the transport of some message
through the network is called "network transport system" (NTS).

The NTS normally is a complex system of its own and can be modelled
by a special network of queues. In our case, nevertheless, we de-
cided to model it by one single server station (a detailed desecrip-
tion may be found in Appendix B). This station NTS is of paticular
importance for our investigation of different user classzs, since
different kinds of net traffic have to be considered. The distinctions
between the traffic characteristics of the NTS for the RFT, RDA,

VF and RER are primarily due to the different lengths of messages
in the respective DATS component. Furthermore, the traffic charac-
teristies for a DATS component are different for different transfer
directions (i.e. for transfers from the initiating to the exec-
uting process or for transfers in the reverse direction).
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These differences are captured in properly estimated class specific
NTS-server rates for each of the DATS components. To be more precise,
we associate two different customer classes with each traffic type
indicating the different characteristics of initiating local pro-

: k
cesses at some source system S and of executing processes at

some destination system SJ (J,k= 1,...,h; h the total number
of hosts in the network). Thus, eight customer classes

v v v

11" T12° V217 Va2 V310 V320 Vit Vi
net, each of them being associated with one of the aforementioned
(local) customer classes at the source and the destination system
for the execution of the DATS components.

s Vg Vo .y V may be defined in the

During the execution phase of one of the DATS components a certain
customer class vi2 will be associated with that component at the

source and a different one v11 at the destination system. Thus, &
customer class change from v ijinto v
(i=1,...,8; j,k€ {1,2}) happens in between the execution of the

DATS component at the source and the destination. This may be il-
lustrated in the following figure.

Destination System S k
c

1 class v | __lL‘ 62 ;)
: 11

class change |

| Network Transport System (NTS) |

L class change

b —

Source System SJ
c

class v '
i2
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An association list for the four possible traffic types and the
possible associated customer classes may be given as follows.

~associated loecal class change when
traffic type customer class in -leaving NTS
8 (k=1,...,h) to class
1 (destination) v =2
tr = RER 12
1 2 (source) viq S 1
2 (destination) v =24
tr_ = VT 22
2 2 (source) v =3
21
3 (destination) v =6
tr_ = RFT 32
3 3 (source) v =5
31
. 2 (destination) . v =8
tr = RDA | h2
4 4 (source) vu1 =7

The depicted associations may be interpreted as in the following
example. The list indicates for the RDA system: the traffic type
vu1 of the NTS for the traffic between a source system and the
destination system is associated with network user class 7, and
traffic type vu2 of the NTS for the traffic between the destination

and the source is associated with network user class 8; the associated
local customer class in the destination system is 2 (i.e. normal
Jobs) and in the source system is 4 (i.e. I/0 intensive jobs of

the nd kind). That means, that in its execution the RDA is of
user class 4 at its source, of user class 7 in NTS on its transfer
from source to destination, of user class 2 at its destination

and of user class 8 in NTS on its transfer from destination to
source.
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This multiclass concept is used to define customer classes of a
queueing model which is built up to analyze the dynamic behaviour
of the communication system. It yields formulas for the computation
of relevant performance measures. In our system the kernel selector
computes on the basis of these formulas approximate values for

.the following performance measures: response time, local station
throughput, and needed buffer space (average queue lengths). This
is done according to some known network status and configuration
parameters and local load parameters which have to be delivered

by other modules or are predefined.

4.3.4 Data Representation and Conversion

Different representations of data on different hosts in the network
result in incompatibilies in the data access and transfer system.
Files and records may be internally structured in terms of bit
strings, character strings, integers, real numbers.

Their représentation is not identical on each machine and usually
another set of physical data formats is associated with each operating
system connected to the network.

These incompatibilities may be resolved in two different ways:

- by a declaration of a netwide standard format;
A translation from standard format to the local format has
to be done on each host in the system. This may lead to
a loss of precision for the data representation on certain
systems or may cause on overhead for others; :

- by permitting all kinds of data representations in the net-
wark;
Conversion routines must then exist in every host to convert
from all existing data representations into the local repre-
sentation.

Because of the low heterogeneity of the network and the needed
precision the second solution has been chosen in our system.

Another category of inconsistencies results from different oper-
ational capabilities on different hosts. Access methods like se-
quential, indexsequential or different types of random access tech-
niques may exist as standard features of the local DMS or not.
Furthemore the same access techniques are implemented differently
on different hosts. For the execution of a data transfer request
the mapping from one access techniques into another one on a dif-
ferent host with the same effect will be performed in one case.

A mapping from one implementaion of a given access technique into
another implementaion with an equivalent effect will be performed
in the second case. :
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For conversion of formats, access operations and access right
indicators the system will be supplied with parameters from higher
level software layers or from a user programm indicating the source
and destination formats for the conversion. Depending on these
parameters the conversion will than take place either on the source
or on the destination host.

4.3.5 Synchronization of Concurrent Accesses

Data access requests may be issued concurrently from a number of
source host computer systems to one destination host. To allow
shared access to data in the destination host a locking mechanism
provides means to assure all users get access to consistent data.
For that purpose user request (i.e., each association phase in

the DATS protocol) is accompanied by a lock/unlock command (i.e.,
open/close command in the kernel command language) at its start

and termination. This guarantees an exclusive write access or a
shared read access to data allocated to the requesting process.

The coordination of the concurrent accesses may be achieved as
follows: For each user request a different instantiation of a remote
data access process AFR/FTS 1is created on the destination host.

Each of these instantiations gets the requested data allocated
exclusively for writes and in a shared mode for reads. If several
instantiations of remote access processes request accesses to common
data concurrently they will be served in some priority order (e.g.
FIFO) as defined in the remote data management system. This may

be depicted in the following graph:
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Instantiations of remote processes AFR/FTSL other than those request-
ing common data may be executed in an asynchroneous fashion., All

of them are dedicated to perform a particular remote (i.e., remote

to a ealling RFA/FTM process) task. For completion of these tasks
they are never impelled to call upon the service of any other remote
processes on other hosts. Thus cyclic access may not be created

and consequently deadlocks may not occur,

4,3.6 Resiliency Provisions

A rather great variety of resiliency provisions have been imple-
mented for the back up of the system after failure in one of its
function units. In principle resiliency will be gained by applying
an error detection and signalling schema and by a time out mechan-
ism. The implemented resiliency mechanisms are defined to provide
means for detection of the following kinds of failures:

-detection of local failures by the RFA/FTM process

-detection of transmission errors by the end-to-end transport:
system

-detection of remote failures by the AFR/FTS process.

A netwide error code has been defined for the detection of the
failure locality and the signalling of failures between different
hosts in the network. A failure in the transmission of failure
signals will be resolved by the time out mechanism.
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5, Coneclusion

The conecept of a data management facility on a computer communi-
cation network has been introduced. The concept is different from
others since it is primarily aimed for system evolution over time
with changing user requirements, The resulting Evolutionary System
Architecture (ESA) has also been developed for the sake of simpli-
city of the system structure and for high system performance,

The system is composed of two main components, the ESA front and
system and the ESA kernel system. The front-end system consists
of a number of highly autonomous application specific funetion
units ASF's. The kernel system encompasses a number of components
with different but somewhat overlapping functionality. Only one
of the components will be selected for the execution of a data
access request in a user program. The selection is based on per-
formance criteria. This decision will be made in the so-called
selector component of the kernel.

An evolutionary change of the system will be enabled by the compo-
sition of the front-end of highly autonomous modules. Modules may
be added and removed from the system for its changes. The module
concept also incorporates means for the preservation of the consis-
tency of data during its concurrent execution. For the lack of
space in this paper the required front-end level synchronization
mechanism has not been described. The concept is to some extent
similar to the "event count" notion in /KR 79/ and the interested
reader is referred to a paper in preparation.

The main emphasis has been placed on the description of the kernel
system. This is of particular importance since this system component.
has been in operation for some time now and its well-functioning

has been validated. Performance considerations play an important

role in the efficient use of data management capabilities on computer
networks. For that reason the provision for an efficient computation
of data access services in the kernel system is discussed in some
detail. This problem is particularly acute for heterogeneous networks
and their additional intrinsic overhead for the execution of format
conversions. The kernel has consequently been designed to provide
means for dealing with this problem by offering different options

for the execution of data access requests with different performance
characteristics,

In its continuation the project should lead to some improvements

of its current version and to its extension by new components. .

The design of a well performing system usable in a realistic appli-
cation environment will be our continuous concern.
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APPENDIX A

DATS Opeprations

A communication connection will be established upon a user request
in a two-phase process.

The first phase - the remote connection phase - establishes the
connection user/remote host. Information about user rights on the
remote host, about the resources which should be allocated and
granted to DATS for this user, and the maximal common transmission
. buffer between the two involved processes are the main negotiation
subjects of this phase.

In the second phase, i.e., the association phase, a connection
user/remote file is established. User access rights on the remote
file will be checked in this phase. Several association phases
are allowed during a remote connection phase.

After that the requested data are read or written by the remote
DMS in the data access and transfer phase.

A user program communicates with the DATS by means of a set of
language primitives.

a) Initialization primitives: they are associated to the remote
connection phase and perform the following function:

INIT - defines the user access rights on the remote host;
- allocates a resource set in the RDA system;
- establishes buffer conventions between RFA and AFR.

DISCON - terminates remaining association phases;
= releases the resource set;
- ends the remote connection phase.

b) Control primitives: they may be executed in the association
phase and operate in the following manner:

RFCB - generates a Remote File Control Bloc, (RFCB) which
is the information carrier between a user and a remote
DMS; the parameters of this primitive describe the
attributes of the remote file.

ROPEN

establishes a conneetion user-file;
= transfers the Remote File Control Block to AFR;
= prepares the remote file (local open).

RCLOSE -~ terminates the remote flle handling;
- returns information about the state of the file;
- cancels the connection.
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The status primitive generates a temporary assoclation phase:

RSTAT - establishes a temporary connection user file;
- returns information about the remote file;
- cancels the connection.

¢) Action primitives: they may be executed in the data access and
transfer phase and perform the following tasks:

RPUT -~ writes or reads a data structure in a user;
RGET -~ specified format to or from the remote system;
RCNTR - controls a remote file (pointer position, etec.).

These action primitives are translated locally into DMS specific
access programs.
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Appendix B

The queueing model

It is well known that an exact analysis of general queueing net-
works is either impossible up to now or leads to an unacceptable
amount of computation. For queueing networks of GORDON-NEWELL type,
for instance, the necessary amount of computation rises significant-
1y with the number of service stations and circulating customers.
The authors, therefore, decided to model the real system by a closed
local balanced queueing network of the above mentioned type and

to use a decomposition method suggested by Chandy et al. /CH 75/.
It has already been shown for the case of end-to-end level data
flow that this simplification leads to acceptable results (see

/BB 79/), The main idea is to represent each local system in the
network by a central server queueing system with exponentially
distributed service times (CPU as central server), and to compose
then each such local system into one single queue. An equivalent
exponential central server queueing network is constructed this

way in which the central server represents the network transport
system (NTS). The average class dependent service rates of the
composite queues are calculated as the values of class dependent
throughput rates of the shortened "rest of the network™ queues

(see /CH 75/ and /BB 79/). They.in fact are dependent on the vector
M= (m(1),...,m(V)) of actual numbers m(v) of customers of class

v in the very local system under consideration (v=1,...,V, with

V the total number of customer classes in the network).

In order to reduce the enormous difficulties in caleulating the
throughput rates for such complex server activities the customer

k k
number specific meanﬁjA (8) of the service times/u (K;s) are used
] ]

instead of the/u k(K;s) itself in further calculations (the error
' ¢
seeims to be negligible); here K denotes the vector of numbers k(v)

of net customers of class v visiting the local system Sk which
in turn is characterized by an upper index k21, The upper index
0 denotes the NTS-server. Bach k(v) corresponds to some "f{ixed"
number b(v) of "background customers® (local programs or tasks
or requests, ete.) in the local system, such that b(v)+k(v)=m(v).
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Since k(v) is the only variable number (v=1,...,V), it is allowed
k k

to write/4 (K:s8) instead of/u (M;s). The lower index ¢ always
e e y

points towards the fact that composite queues S are considered

c

k
to represent the actual local system S . Let K(s) be the total
number of circulating net customers of class s and let

k k
P Lk(1),.00,k(s=1),k(8)=n,k(s+1), ... ,k(V)] =:p_(n)
denote the probability that there are k(v) customers of class vis
k
and n customers of class s in the system S (v¢ {1,...,V}). Then,

using/Acz(n) for/4:(k(1),...,k(s):n,...,k(V);s) , We have

 K(s)
k k k
/(Ac(s) = Z Z /ucs(n) ps(n)
Q(s) n=1

(Q(s) is the set of all vectors (k(1),...,k(s)=zn,...,k(V)) with
0 £k(v) 2K(v) for vis).

k
Moreover, let'ﬁ (K;s;n) denote the probability that there are
k <k '
n=k(s) customers of class s in the system S : 1 (K:s;n)= EE pk(n),

Q(s)
then K(s)

ﬁk(K;s) = Z nﬁk(K;s;n)

n=1
is the expected number of customers of class s waiting or being

k
served in queue S, Based on an elaborate analysis (the interested
reader is referred to a paper in prqparation) this yields

K f1- 'Ek(K;s_;O)} 'ﬁk(x;s)

T (K;s) = =
v
k =k
N (K;
Z,uc(v) (K;v)
v=1

for the class dependent throughput through queue Sk.
c




-414-

Based on Little's result for the relation between average
response time, average queue length and average arrival rate in
steady state we may get

\'

Z N k(K;v)/M :(v)

k(K;S) - v=1

: k
+ (s)
K 2 ¢
1- § "(k;s;0)
for the value of the average response time of class s concerning
k
queue S . .
c
These results and other formulas ( for needed buffer space, average

server utilization, waiting times ete.) may be used upon selection
of DATS components:

Uk(K;s) = 1-78“((1(;3;0) (utilization),

K Uk(K;s) 'ﬁk(K;s)
T (K;s) = (throughput),
\')

k k
_g__;/“c(") N (K;v)

K N-k (K:8)
w(K;8) = (waiting time),
Tk(K;s)
k k k
T (K;8) = w (K;s) +/A c(s) (response time).
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Obviously the response time for each trr /fie type also includes
the service times of the server NTS for the transfers in both direc-
tions, i.e. for both iser classes v11 ¢ ad v12° Thus, for the execu-

tion of the RFT component for example, the RFT response time may
be computed from

Rtr ) = ¥(k;v )+/4°'<v Y+ 10 lv ),
3 31 c 31 c 32

provided that there are K customers at all travelling through the
network at that time.

Example

In the following example we now restrict our attention to the
selection of one of the two RFT or RDA in the execution of a user
transaction. Files to be manipulated from remote are supposed to

" be of fixed average length f, i.e. some constant r shall represent
the estimated average number of records in a file. Zach record

in turn is assumed to be of fixed length p equal to the data length
of one "transport element®” in the network; thus, f=r p. For the
passing of parameters together with each RDA request let us suppose
furthermore that each such request will also correspond in length
to one transport element, independent of the type of the requested
operation in the data access and transfer phase; thus,

0 0
v, )= v .
My ey
Then, RDA and RFT performance can be compared with respect to the
response times as follows:

k
If m records of some file residing at system S shall be manipulated,
c

k
the expense of time D (including network delay) for the RDA system
is

k k o)
D (K,tru) = mo {'f (K’V!H) + 2/“'0("1!1)_} ,



~-418-

A Concurréncy Control Mechanism for Distributed. Databases. Which
Uses Centralized Locking Controllers

H. Garcia-Molina _

Stanford University, Stanford, California

On Efficient Monitoring of Database Assertions. in Distributed
Database Systems

D.Z. Badal

University of California at Los Angeles, Los Angeles, California

3:30 p.@ -~ 4:00 p.m. Break
4:00 p.m. - 5:30 p.nm.

PROTOCOL MODELING
Chairperson, to be. .announced
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S.S. Lam
University of Texas, Austin, Texas

Global and Local Models for the Specification and Verification
of the Distributed: Systems

M. Gouda, D. Boyd, and W. Wood

Honeywell, Bloomington, Minnesota

Protocols for Dating Coordination

D. Cohen and Y. Yemini
USC-ISI, Marina del Rey, California
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9:00 a.m. - 10:30 a.m.
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Session Chairman: Mr. Ed Birss
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Distributed Control of Updates in Multiple-Copy Databases: A Time
Optimal Algorithm

R.J. Ramirez and N. Santoro

University of Waterloo, Waterloo, Ontario, Canada

Concurrency Control in a Multiple Copy DistributedvDatabase.System
W.K. Lin
Sperry Research Center, Sudbury, Massachusetts
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Concurrency Control Algorithm for Bistributed Dbatabase System
T. Minoura
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10:30 a.m.~ 11:00 a.m.  Break
11:00 a.m.- 12:00 m.

LOCAL NETWORKS PANEL
Session Chairman: Drx. John Shoch
Xerox—~PARC, Palo Alto, California

12:00 m. - 1:30 p.m. ZLunch
1:30 p.m. ~ 3:00 p.m.

DATABASE MACHINES PANEL
Session Chairwoman: Dr. Paula Hawthorn
Britton-Lee, Berkeley, California

The designers of state-of-the-~art database machines will discuss
the roles of their machines in future distributed systems. Also
discussed will be the major design differences and target applica-
tions for the machines.

Panel:

Stewart Schuster, Tandem Computers
Harvey Freeman, Sperry Research

Mike Stonebraker, U.C. Berkeley

David DeWitt, University of Wisconsin

2:30 pem. - 3:00 p.m. Break
3.00 p.m. -~ 5:00 p.m.

NETWORK RESOURCE ALLOCATION
Session Chairman: Dr. Yogen Dalal
Xerox-SDD, Palo Alto, California

Synchronization of Distributed Simulation Using Broadcast Algorithms
J.K. Peacock, E. Manning and J.W. Wong
University of Waterloo, Waterloo, Ontario, Canada

The Updating Protocol of the ARPANET's New Routing Algoritb- A Case
Study in Maintaining Identical Copies of a Changing Distri .ed Data
Base

E.C. Rosen

Bolt Beranek and Newman, Cambridge, Massachusetts
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The NIC Name .Server -- A Datagram Based Information Utility
J.R. Pickens, E.J. Feinler and J.E. Mathis ’
SRI International, Menlo Park, California

A Protocol for Buffer Space Negotiation
D. Nessett

Lawrence Livermore Laboratory, Livermore, California

6:00p.m. -10:00 p.m. Bay Cruise and Dinner

Thursday,. August 30, 1979

9:00 a.m. - 10:30 a.m.

IMPLEMENTATION OF DISTRIBUTED SYSTEMS - II
Session Chairman: Dr. Daniel Sagalowicz.
SRI International, Menlo Park, California

Labeled Slot Multiplexing: A Technique for a High Speed, Fiber
Optic Based, Loop Network '

S. Blauman '

TRW, Redondo Beach, California

A Distributed File Manager for the TRW Experimental Development
System

S. Danforth

TRW, Torrance, California

Network Support for a Distributed Data Base System
L.A. Rowe and K.P. Birman
University of California at Berkeley, Berkeley, California

10:30 a.m. - 11:00 a.m. Break

Transaction Processing in the Distributed DBMS-POREL
U. Fauser and E. Neuhold
University of Stuttgart, Stuttgart, W. Germany

An Evolutionary System Architecture for a Distributed Data Base
Management System

H. Weber, D. Baum and R. Popescu-Zeletin

Hahn-Meitner Institute, Berlin, W. Germany
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