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ABSTRACT 

The spurious pressures and acceptable velocities generated when using certain 
combinations of velocity and pressure approximations in a Galerkin finite element 
discretization of the primitive variable form of the incompressible Navier-Stokes 
equations are analyzed both theoretically and numerically for grids composed of 
quadrilateral finite elements. Schemes for obtaining usable pressure fields from the 
spurious numerical results are presented for certain cases. 

INTRODUCTION 

Discretlzed approximations to the incompressible Navier-Stokes equations, in the 
primitive variable (velocity-pressure) formulation, especially when generated via the 
Galerkin finite element method (GFEM) have been plagued with confusion regarding the 
"appropriate" workable combination of velocity and pressure approximations. Since the 
early observations of Hood and Taylor [1], in which spurious pressure solutions were 
generated when the same basis functions were used for pressure and velocity on conforming 
quadrilateral elements, but not when using mixed interpolation (pressure one order lower 
than velocity), most GFEM practitioners have accepted this necessity and adhered to it. 
The explanation in [1], cast in terms of the "balancing of residuals" from momentum and 
continuity equations, was judged inadequate by Olson and Tuann [2] who explained it in 
terms of the eigenvalues of a single element - herein both of these explanations are 
shown to be inadequate. 

Even when mixed interpolation is employed, numerical difficulties can be 
encountered; for example, piecewise linear approximation for velocity and piecewlse 
constant approximation for pressure has been found to work poorly in some cases [3-6]. 
The solutions sometimes display acceptable velocities but totally spurious pressures 
which are afflicted with the "checkerboard (CB) syndrome," wherein pressure oscil?.ations 
occur which are frequently of one sign on all "nlack" elements and of the opposite sign 
on all "red" elements. 

Herein we will focus on this problem for 2-D grids composed of quadrilateral 
finite elements and will define and characterize this behavior, both theoretically and 
numerically, in terms of "aero energy pressure modes," and present some simple methods 
for extracting good physical pressures from polluted numerical results in certain cases. 
Out techniques are useful in 3D calculations [7] as well as in some finite difference 
techniques fe], t9l. Detailed analyses and results, summarized in this paper, will be 
available in the near future [10]. 

CONTINUUM EQUATIONS AND THEIR GFEM DISCRETIZATION 

The setting for our discussion will be the steady Stokes equations: 

V • x « 0 , V • u = 0 , ( l a , l b ) 
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3u, 3u. 
where Tj.j = - P *j.j + S^j is the symmetric stress tensor, s^j : IJ t-r- -̂ + ̂ ~T") 
u = (u, v) is the velocity, p is the pressure and u is the x j c X i 
(constant) viscosity of the fluid. The results presented herein also apply to unsteady, 
nonlinear (viscous or inviscid), and nonisothermal (Boussinesq) flows. 

The GFEM discretized approximation is applied to the weak form of (1): viz, 

/ I • ''^ = / •Pii • n , i = 1, 2, .. . , N; / </-. V • £ = 0 , i = 1, 2 M; 
ft 3« 1 Si x (2a,?.b) 

over the domain U with boundary dV. where _n is the outward pointing unit normal 
vector, i • n is the surface traction, <J>i represents any basis function for velocity, 
and i|̂  is any basis function for pressure. Inserting the following appropriate 
piecewise polynomial basis function expansions, 

N. 
. i . n 
u = I u * (x) , i = 1, 2; p = I p i, (x), (3a, 3b) 

1 k=.l X K k=l k k 

i n t o (2) l e a d s t o t h e GFEM e q u a t i o n s [ l l ] , 

K U + C P = f_, £ U = £ r (4a , 4b) 

where U = ( u l f u 2 , . . . , u N l , v x , v 2 , . . . , v N 2 ) T , N = N x + N 2 , P = ( P 1 , p 2 , . . . , p M ) T , K 
i s a p o s i t i v e - d e f i n i t e symmetr ic m a t r i x , and C i s an u n s y m m e t r i c and i n d e f i n i t e 
r e c t a n g u l a r m a t r i x , which i s t he " c a u s e " of t he problem a d d r e s s e d h e r e i n . The v e c t o r s f_ 
and g_ r e f l e c t t h e e f f e c t of t h e imposed boundary c o n d i t i o n s ; f_ c o u l d r e p r e s e n t n o t on ly 
p r e s c r i b e d b o u n d a r y f o r c e s b u t a l s o v e l o c i t i e s , whe rea s g c o r r e s p o n d s o n l y t o p r e s c r i b e d 
v e l o c i t i e s . {The s p e c i f i c a t i o n of p r e s s u r e boundary c o n d i t i o n s i s i n a p p r o p r i a t e and i s 
n o t c o n s i d e r e d h e r e i n ; s ee [ l l ] ) . 

C° BILINEAR VELOCITY-PIECEWISE CONSTANT PRESSURE ELEMENT 

In o r d e r t o m o t i v a t e our d i s c u s s i o n of more c o m p l i c a t e d e l e m e n t s , we w i l l f i r s t 
c o n s i d e r t h i s " s i m p l e " s p e c i a l c a s e . Here t he d i s c r e t i z e d c o n t i n u i t y e q u a t i o n (4b) 
g u a r a n t e e s a mass b a l a n c e on each e l e m e n t i n t he mesh. T h e s e mass b a l a n c e s , i n 
c o n j u n c t i o n w i t h t h e imposed b o u n d a r y c o n d i t i o n s , can l e a d t o what a r e t e rmed " p r e s s u r e 
modes" which c o r r e s p o n d to s p e c i a l s o l u t i o n s of (4) w i t h £_ = 0_ a n < ^ 2 = £ ^ o r w h i c h U = £ 
and CP = ^ for n o n t r i v i a l P . These s o l u t i o n s may be s p u r i o u s in t h a t t h e y do n o t 
c o r r e s p o n d to p h y s i c a l p r e s s u r e s w h i c h , i n n u m e r i c a l s i m u l a t i o n s , a r e o f t e n b u r i e d i n t h e 
" n o i s e l e v e l " s i n c e t h e s e modes c a u s e t h e o v e r a l l c o e f f i c i e n t m a t r i x t o be s i n g u l a r . For 
t h i s p a r t i c u l a r e l e m e n t , t h e r e a r e two p r e s s u r e modes which can e x i s t ; one o f t h e s e can 
e x i s t on any ( i s o p a r a m e t r i c ) mesh, and t h e o t h e r , on a mesh composed of p a r a l l e l o g r a m s . 
A. H y d r o s t a t i c P r e s s u r e Mode 

T h i s p h y s i c a l mode i s more g e n e r a l than t h e ( spur ious ) CB mode, i n t h a t i t can occur 
f o r any t ype of v e l o c i t y and p r e s s u r e a p p r o x i m a t i o n and f o r any domain s u b d i v i s i o n . I t s 
e x i s t e n c e depends s o l e l y on bounda ry c o n d i t i o n s . 

The d i s c r e t i z e d c o n t i n u i t y e q u a t i o n s (2b) may be summed to a r r i v e a t t h e g l o b a l 
mass b a l a n c e 

/ V • u h = / n • u h = 0 . (5) 

T h i s c o n s t r a i n t among normal v e l o c i t y components of t h e b o u n d a r y modes must be s a t i s f i e d 
by t h e n u m e r i c a l s o l u t i o n s . For e x a m p l e , f o r t h e s i m p l e g r i d r e p r e s e n t e d i n F i g . 1 , t h e 
c o n s t r a i n t e q u a t i o n t a k e s t h e form 

( u 4 - u i ) h 1 + ( u 8 - u 5 ) ( h i + h 2 ) + ( u i 2 - u 9 ) h 2 + ( v g - v i ) & i + ( v 1 0 - v 2 ) ( £ i + £ 2 ) + ( v l l " v 3 ) ( £2+^3> 

+ (v 1 2 -v4)£ 3 = 0 . TEX 
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Consideration of possible applied boundary conditions (BC's) then leads directly 
to the following conclusions (assuming at this point, that no other pressure modes exist): 

1. If the imposed BC's do not imply a constraint among normal velocities on the 
entire boundary (i.e., normal tractions specified on a portion of DP.) then (5) is 
independent and required and there is no hydrostatic pressure mode. (The pressure datum 
is set by the normal traction bt 'ndary condition). 

2. If the imposed BC's satisfy (i.e., duplicate) Eqn. (5), then the system is 
consistent but overspecified and a hydrostatic pressure mode will exist. The latter, if 
the only pressure mode present, can be eliminated with no adverse effects by specifying 
the pressure at one "node" in the system. A contained flow is a common example wherein 
the pressure is only determined up to an arbitrary additive constant. 

3. Finally, if the imposed BC's violate equation (5), which can only occur (as in 
2 above) if the normal velocity is specified everywhere on the boundary, then the 
discretized system is inconsistent and no solution is possible. 
B. The Checkerboard Mode 

Here one asks the question: Are there, in addition to the above hydrostatic case, 
any other linear combinations of the M continuity equations which can result in a 
boundary node constraint equation? In order to answer this question, we use some of the 
ideas presented in [12] and [13]. For the simple grid of parallelograms displayed in 
Fig. 2, a slight generalization of Fig. 1, consider, for the moment, the continuity 
equation associated with element #1. It can be cast in the form 

V. 

i 
9 10 11 ^ 

5 6 7 .8 

4 

"" M *" 

1 2 

" V 3 •" 

3 4 

• 

Figure 1 

(u. - u 1 + V u 5 ) 
~T 

( V W V 

h , i-in n 
< V V v i -v 

C, tan e (7) 

by dividing i t s original form by the area of element #1 (C^h^ sin 0). Recasting a l l 
of the continuity equations associated with the grid of Fig. 2 into th i s form by dividing 
by the appropriate element areas, the following "CB equation" can be obtained from the 
original set of continuity equations: 

M M 

I C /A - I C /A = 0 
i= l l X i= l l 

(8) 

where C B. f CR. are interpreted to mean the discretized continuity equation for 
the i-th black, or red, element, M B, H R are the total number of black, or red, 
elements (M B+M R = M), and A^ is the area of the i-th element. A closer inspection 
of Eqn. (8) reveals that it does, in fact, represent a constraint among only boundary 
nodes on the grid of Fig. 2; or, in fact, on any grid composed of arbitrary-sized 
parallelograms with constant angle 9. For the important special case of rectangles (9 = 
n/2), the constraint equation relates tangential velocities on the boundary. (See [10], 
for a more detailed discussion). It is noteworthy that the constraint Eqn. (8) does not 
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eliminate all interior nodes on a general mesh with distorted isoparametric elements {or 
any mesh containing "bent lines"). In the special, but important case of constant 0, the 
boundary constraint equation is, as in the hydrostatic case, the reason for the existence 
of a (spurious) CB pressure mode. Noting that Eqn. (8) must be satisfied regardless of the 
applied BC's (again temporarily ignoring the possibility of other pressure modes) leads 
to: 

1. If the imposed BC's do not imply a constraint among the velocities on the 
entire boundary, then the constraint Eqn. (8) is independent and required and no spurious 
CB mode occurs. However, the resulting "boundary equation" (8) generated by the 
continuity equations is extraneous (in contrast to that corresponding to the hydrostatic 
mode). 

2. If the imposed BC's duplicate the constraint Eqn. (8), the system is 
consistent, but over-specified. A spurious CB pressure mode exists and, contrary to the 
hydrostatic mode, it cannot oe eliminated by specifying a "nodal" pressure (which is 
nevertheless legitimate and removes the rank deficiency) and it can lead to non-physical 
constraints. 

3. Finally, if the imposed BC's violate Eqn. (8), the discretized system is 
ill-posed and no solution is possible. 

In concluding this discussion it should be pointed out that there is a possibility 
of the simultaneous existence of both pressure modes sines constraint Eqns. (5) and (8) 
are always present (there are but two pressure modes for this element) and 
concomittantly, the possibility of ill-posedness due to a violation of either constraint 
equation. In this case, as in the previous case, post-processing will be required to 
filter the spurious CB mode. Also note here that specification of the pressure at two 
points in the flow field (one on any black element, the other on any red) will remove the 
rank deficiency and, while physically absurd, is mathematically permissible - a 
manifestation of the spurious CB mode. 
C. Description of the Pressure Modes 

The existence of a pressure mode can be recast in terms of the existence of a zero 
eigenvalue for the eigenvalue problem associated with (4), i.e., 

T K w. + C r. = \. w. , C w. = X. r. , (9a, 9b) = — i = — l l - l = — i l - l ' v ' ' 
T T where Â  are the eigenvalues and (w^ £ i ) T the corresponding eigenvectors, i = 1, 

2, ..., N + M. A pressure mode corresponds to a solution to (9) of the form 

*. = 0 , w. = 0 , C £. = 0 , (10) 

where r_i is the pressure mode - and our goal here is to describe its form. 
(1) Hydrostatic Pressure Mode 

Here the eigenvector corresponding to the hydrostatic mode is simply _r = PJJ, 
where PJJ is an arbitrary constant vector. The proof follows directly from the 
definition of 

§£* 5 ( % c £ H

) T ( § y £ H ) T ) T w h e r e 

M 3 < j > . 3$. 

"" ( i x ^H' i = E p i ' IT *i d x d y = P H ' TT d x d y = P H ' *i d y ( 1 1 ) 

x H *• j=i 3 n d x ] H a x H an x 

and (gy PJJ) ̂  can be generated by an interchange of x and y in (11) and changing the 
sign of the final result. Consequently, the conditions under which C PJJ = 0 are: 

1. If u and v are specified everywhere on 30, i>i = 0 on 3fi and each component 
of (11) vanishes. A contained flow always displays a hydrostatic mode. 

2. If all of 3H has the normal velocity component and the tangential force 
prescribed. (See fio] for details). 



In general, a hydrostatic mode exists under any combination of the above two 
boundary condition types (and only these types). 

(2) Checkerboard pressure Mode 
If the i-th equation of (2b) is multiplied by the coefficient 

£• ~ v° = t 1/h- ^ t h e C B eigenvector) , (12) 
where Aj is the area of the i-th element, the plus sign corresponding to a "black" 
element and the minus sign to a "red," an equation similar in form to (11) is obtained. 
The resulting equation e n be used to generate the following results, which are detailed 
in [10](the CB eigenvector also satisfies Eqn. 10): 

1. For a general, arbitrarily-oriented grid of parallelograms, a CB mode can 
exist only if all boundary velocities are specified (e.g., contained flow). 

2. For a grid of parallelograms oriented so that two sides are parallel to the 
x-axis, a CB mode can also exist if u is 'free' along the two sloped sides. There also 
exists the counterpart for a grid aligned with the y-axis; however, neither of these 
cases is of much practical interest since the associated boundary conditions are not the 
physically relevant ones. 

3. For a grid of arbitrary-sized rectangles a CB mode can also exist when the 
tangential components of velocity are prescribed over the entire boundary, a situation 
which may be more commonly encountered in practice. An example of such a CB situation is 
displayed in Fig. 3. If the tangential boundary condition at the right side is changed 
from v = 0 to ft = 0 (i.e., specified shear stress), the CB mode could no longer exist. 

Finally, it is noteworthy that the existence of a CB mode can preclude the 
existence of a solution to the algebraic system; there are, in fact, common situations 
(see Ex. 2 below) in which a CB mode exists, but the solution to the discretized 
Navier-Stokes equations does not exist. The "converse" is also true in that the 
nonexistence of the CB mode is a sufficient condition for the existence (and uniqueness) 
of a solution to the algebraic system (in tht absence of the hydrostatic mode). 
D. Further Implications of the Spurious Constraint 

The fact that the "CB constraint equation," (8), must always be satisfied by the 
discretized solution carries other, rather serious implications, over and above the 
possible existence of a CB mode. We will demonstrate two consequences of this extraneous 
constraint via simple examples. In the first example, the (extraneous) constraint on 
boundary velocities occurs in a flow which has no CB mode and, in the second example, it 
occurs in conjunction with the CB mode and can lead to an ill-posed problem. 
Example 1: Tangential Velocity Constraints 

We begin by returning to the grid in Fig, 3 and modifying the 'outflow' boundary 
condition from v = 0 to f t = 0, so that no CB mode can exist. However, application of 
the CB constraint equation to this grid gives, considering the imposed boundary 
conditions, 

'{ + r - ) ^ " (T7~ + f"> vo + <TT + T T » V T + ••• + (f- + TT^~> vw = ° • ( 1 3 > 
h l h 2 1 h 2 h 3 2 h3 h4 3 " hN hNfl N 

The existence of this spurious constraint equation, which will be satisfied by the 
numerical solution, is an artifact of the discretization with the bilinear element and it 
exists independently of, and in addition to, the proper constraints; viz, those imposed 
by the shear-free boundary condition and global mass conservation. If this 'element' 
converges to the solution of the (Navier-)Stokes equations, this constraint is presumably 
not too 'harmful' (our numerical simulations which do, in fact, satisfy (13), appear 
'reasonable') and in fact, must vanish as h -* 0. Finally, if v is specified at the 
outflow such that (13) is violated, the problem is ill-posed and no solution exists. 
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Example 2: The Driven Cavity 
The popular lid-driven cavity problem is an appropriate example to demonstrate 

another important consequence of the "CB constraint," and is depicted in Fig. 4. 
Application of (8) to this grid gives a different result, depending on whether N-l 

(the number of elements across the top of the cavity) is even or odd: For N-l even, 

1 .1 1 . , 1 1 , - 1 1 , 1 „,-,„, 7T-u - (7- + j-)u + (7- + TT-)U,- ... - (7 + -p )u + j u = 0 (14a) 
4 1 ll 4 2 S S 3 LN-2 V l N _ 1 Vl N 

and for N-l odd, 

-TT-u - (7- + TT-)U + (7- + 7-)u, - ... + (7! + j , )u - j , u = 0 . (14b) 
1 L 1 2 l 2 3 J N-2 N-l N l N-l N 

Consider first the r.impler case in which u^ = u 0, i = 1, 2 ... N; i.e., the case of 
equal velocity at every node, including the first and last (a 'flow-through' cavity). In 
this case, both (14a) and (14b) are satisfied identically (i.e., the CB constraint is 
automatically satisfied for either an even or odd mesh and a CB mode will exist). If, 
however we wish to compute the more difficult case of a contained flow, we might set u^ 
= u N = 0 and u^ = u 0, i = 2, 3, ..., N-l. In this case we obtain 

-u (7— + 7 ) = 0 for an even grid, 
° 1 N-l 

and u (—ir- + -t ) = 0 for an odd grid. 
° L l N-l 

While the constraint equation on an odd grid can be satisfied if Cj = ^N-1 d" which 
case the CB pressure mode, as well as the hydrostatic mode, exists), it can never be 
satisfied on an even grid. Hence, the driven cavity problem, for these (mathematically 
permissible) boundary conditions, is ill-posed on any grid with an even number of 
elements across the top and on any odd-element grid which doesn't satisfy -Ĉ  = CN_-^. 
These are clearly physically erroneous constraints and are forced upon the discretized 
system by the extraneous CB pressure mode. An even grid can, if desired, be employed for 
a contained flow simulation (u^ = UN = 0), if the proper precautions are taken: 
e.g., for u^ = u 0; i = 3, 4, N-2, (14) can be easily satisfied (e.g., for C = 
constant, U2 + u^-i = u 0 will suffice, and it is then reasonable to take U2 = 
uN_i = 1/2 u 0; we have used this approach successfully and have presented results in 
[6l). 

The net result, as demonstrated by these two examples, is that the CB constraint 
is rather insidious, far-reaching, and probably even has important implications regarding 
the ultimate proof of convergence of this FEM approximation (which proof, according to 
[14], is "still an open question" - perhaps it must remain that way). 
E. The Impure Checkerboard Pressure Mode 

We now address the most difficult of the pressure mode effects which we have 
encountered: one might optimistically expect, since the existence of the CB mode was 
proven under somewhat specialized conditions (a mesh of parallelograms), that it would 
not occur under the more general conditions of a mesh composed of variously distorted 
isoparametric elements. Unfortunately, this is not the case; in fact, a 'residual' CB 
pattern appears to be present (under appropriate boundary conditions; viz., those which 
permit the existence of a "pure" CB mode) even in a mesh composed of arbitrarily 
distorted isoparametric elements. However, since it does not display characteristics 
identical to the pure CB mode, we have labeled this an "impure" CB mode. 

Barically, the impure CB mode appears to exist in such a way that, while not pure 
(ther-i is no corresponding zero eigenvalue in the matrix with an associated pure pressure 
eigenvector - other than the hydrostatic pressure mode - and therefore, no associated 



redundant continuity equation), the pressure solution is still oscillatory and generally 
unacceptable without further post-processing. Our explanation of the impure mode (which 
appears to explain essentially all of the results from a wide variety of numerical 
experiments) is one which considers it as a perturbation from the simpler pure CB mode 
anr it is this approach which we shall present; i.e., any mesh which is not composed of 
parallelograms is to be interpreted as a perturbation (small in theory, but not 
necessarily in practice) from one which is. The original CB theory is only partially 
applicable in that it would predict that the perturbed matrix would no longer have a zero 
eigenvalue (correct) and that a CB pressure mode would no longer exist (incorrect). It 
is toward the reconciliation of this, and similar issues, that we present the results of 
an approximate (linearized) perturbation analysis of the impure CB mode. 

The analysis (see [10] for details) is performed on a perturbed version of (4) in 
which K • K + .SK, C •- C + iSC, _f * £_ + 5f and g_ •+ g_ + ĝ_ and a parameter L, which is a 
measure of =the perturbition-(i .e., | SKpV. 0(t), etc.). For example, c could be 
associated with the departure of the elements of the grid from parallelograms, as in one 
of the examples presented in [10]. The results are: 

1. The CB eigenvector (_0 £ c ) T i s projected from the original null space 
into the space of the remaining perturbed eigenvectors, in specific but small 0 ( e ) , 
amounts. 

2. The impure CB eigenvector contains, in addition to the pure pressure mode, 
small amounts (0(>)) of the velocity and pressure portions of all other eigenvectors. 

3. All eigenvalues are perturbed to 0(F.) except the CB eigenvalue, which is 
perturbed to 0(c 2). Moreover, all eigenvectors are perturbed to 0 ( E ) , which leads to 
the presence of the original CB mode to a "large" extent (0(l/e)) in the "perturbed" 
pressure solution; concomitantly, the velocity field is perturbed to 0(1) (an 
unfortunate, but true result). 

4. Since the e > 0 limit is a singular one, the (1/e) behavior must be 
interpreted to mean that the impure CB mode approaches the pure CB mode with an arbitrary 
amplitude coefficient as c >• 0. 

In spite of the difficulties associated with the singular limit, these results 
have been corroborated by our numerical results as illustrated in [10]. 
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Since the CB pressure mode has been shown to be quite persistent, it must be 
filtered from the physical part of the pressure solution if usable pressure results are 
to be obtained. The two schemes' which we have developed to filter this pressure mode are 
directly related to a knowledge of the form of the CB eigenvector, and (in the first 
scheme) the fact that this eigenvector is, in some sense, orthogonal to the integral of a 
bilinear basis function. (See [10] for details). 
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The CB f i l t e r i n g (and 'smoothing ') techniques descr ibed here each genera te a 
smoothed (physical) pressure at a node ( i ) joined by an even number of e lements . The 
reason we refer to the pressures as 'smoothed' is t ha t they are now a v a i l a b l e a t the 
ve loc i ty nodes r a the r than a t the element cen t ro id s , and can, if des i red , be considered 
as continuous functions via r ep re sen t a t i on by the v e l o c i t y ba s i s func t ions , H ^ } . 
(1) Basis Function Weighting 

In this scheme 

p. = / p <t>. dxdy/ / *. dxdy , (15) 
1 \i 1 a x 

where p n is the pressure obtained from Eqns. (3) and (4). 
The associated nodal pressure field gives a best fit (based on H j O i n a 

modified least squares sense over the domain 2. Details and examples are presented in 
Lee et al. [6]. 
(2) Area Weighting 

Here 

P. = - I P A , (16) l L e e A e 
where A is the total area of the elements sharing node (i), P e is the polluted computed 
pressure, A e is the area associated with element 'e', and the sum is over all elements 
sharing node i. (For either filtering scheme, "corner ncdes" must receive special 
attention as described, for example in [5] or [6]). In our experience both filters have 
been successful in filtering not only the pure CB mode on a regular mesh of 
parallelograms, but also the impure CB mode on irregular meshes. The latter method is 
obviously simpler and concomitantly, more cost effective, than the basis-function 
averaged scheme and hence is to be recommended (the two methods give identical results 
for pure CB modes). 

Two additional noteworthy features of the latter scheme are: 
1. It is directly extendible to the three-dimensional (FEM) case. 
2. Caldwell [7] has used this technique to successfully smooth a CB mode obtained 

when using the 3D BAAL finite difference code [9]). 

GENERALIZATION TO OTHER ELEMENTS 

While theory (see, for example, [15] and t16]) provides, under certain hypotheses, 
an existence and uniqueness proof for the continuum Navier-Stakes equations in certain 
function spaces, the GFEM approximation in the same spaces can, as illustrated in 
previous sections, suffer from non-uniqueness and even non-existence. This situation 
arises due to the existence of spurious pressure modes in the pressure approximation 
space. In order to gain additional insight into such problems, it is necessary to extend 
the previous investigation of "pure" pressure modes to more complicated mixed- and 
equal-order interpolation elements, and this leads naturally to an Investigation of the 
uniqueness and existence of the GFEM approximation of the problem in its natural function 
space setting. 
A. Theory 

The .formulation of the Stokes problem can be cast in the following form: 

(p , V - w ) = A(u , w h) , (V • u h, q h) = 0 (17, 18) 
for all w h t W h i Q , q hcQ h. Here 

(a,b) = / ab , A(u,w) = / (Vw)T
:s(u) , (19, 20) 

« 9. 



Wj| 0 is a finite dimensional space of r° vector functions on , with vanishing 
components on those parts of the boundary on which the associated velocity components are 
specified, and Q n is a finite dimensional subspace of functions which form a basis for 
the space of all square integrable functions on :•> ; i.e., t^U;)- The usual GFEM 
subspaces Q n are either piecewise continuous (C°) or piecewise discontinuous (C-!) 
polynomials. The previous considerations on the linear velocity - constant pressure 
element can be recovered and generalized by investigating the uniqueness and existence of 
the GFEM solution. 

Addressing the uniqueness question leads to the following result, whose 
development is detailed in [10]; 
Condition A: 

For all wh t:W h f 0, 

( , - w h, p h) = 0 (21) 
must imply p n = 0 if the Galerkin finite element pressure field is to be unique. If 
solutions to (21) exist with p n f 0, (i.e., if Condition A is violated) the GFEM 
solution is non-unique and pressure modes will exist even though a unique velocity field 
is obtained. 

It is noteworthy that the latter condition is also a restriction appropriate to 
the GFEM Navier-Stokes problem because it is generated by setting u n = ̂  and the 
nonlinear terms vanish. The hydrostatic pressure mode obviously violates Condition A 
and, being acceptable physically, can be incorporated by recasting Condition A .o read 
ph = constant. Condition A appears to be a special case of a result due to Erezzi [17] 
for saddle point variational problems and furthermore, one of its consequences is that 
the computation of the eigenvalues of an element matrix as, for example, carried out by 
Olson and Tuann [2] is insufficient for the investigation of pressure modes. 

When pressure modes exist, certain solvability conditions must also be satisfied 
by the GFEM system. These are generated by setting (w,q) = (0, P^i) , i.e., the 
pressure modes, in the Galerkin formulation, (17)-(18), which leads to 
Condition B: 

(7 • u h, p£.) = 0 ; i = 1, 2, ... n , (22) 

where n is the total number of pressure modes. If this condition is violated, the 
associated GFEM system is inconsistent and has no solution. 
B. Applications 

(1) The Linear Velocity-Constant Pressure Element. The utilization of the 
foregoing conditions can be illustrated by applying it to the previously considered case 
of the linear velocity - constant pressure element. The satisfaction of Condition A 
is implemented in this case by setting 

w h = ir

X) * h , (23) 
L 2 

where i|>h is an arbitrary piecewise bilinear velocity basis function and C]̂  and C2 
are arbitrary constants, and by requiring any possible pressure modes to be independent 
of the choice of basis function. The three relevant forms are illustrated in Fig. 3 by 
nodes A, B and C and their corresponding shaded supports. It is apparent that associated 
with interior nodes (node A) are velocity basis functions with support over a four-patch 
of neighboring elements and that basis functions with one- or two-patch supports are 
associated with boundary nodes (nodes B and C, respectively). (The one and two patch 
cases do not have to be considered if the problem has purely Dirichlet boundary data 
since these degrees of freedom do not appear in W n 0 ) . The invariance of the possible 
pressure modes to the velocity basis functions w n appearing in (23) can be satisfied by 
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requiring the four-patch (one- or two-patch) results to be "patch -independent." That is, 
the results must be simultaneously applicable to every such patch (basis function) 
associated with the mesh. This restriction can be used to establish that the CB mode can 
only exist on meshes generated by straight parallel lines. Consequently, only the 
general four-patch displayed in Fig. 5a need be considered. (In Fig. 5, 0 is the same 
angle defined in Fig. 2). 

y 

(a) Four-patch (b) Two-patch (c) One-patch 
Figure 5 

Substituting (23) into (21), coupled with a piecewise constant pressure f ield, yields 

t2{prP2) + t 4 ( p 3 ~ p 4 ) = ° ' ( 2 4 ) 

- (t +.t2 cos 9 ) P l - (t 3-C 2 cos e)p2 + (^-^ cos e)P3 + <*3+t4 cos e)P4 = o .(25) 
The only solutions to (24) and (25) which are patch-independent are the hydrostatic-
mode and the CB mode. Here it is apparent that invariance is guaranteed since the 
amplitude of the CB mode on an element depends only on the area Df that element. If the 
problem being considered is one in which the velocity is specified everywhere on the 
boundary, i.e., Dirichlet type boundary data, the existence of a checkerboard mode has 
been established. On the other hand if normal . arce, or tt tion-type conditions are 
specified on the boundary, then it is necessary to ch'sck th : any possible 
patch-invariant pressure modes associated with the four-patcn are also compatible with 
any one- or two-patch associated with a boundary degree of freedom in the velocity 
field. The three different combinations of boundary conditions of interest and the 
corresponding restrictions imposed by applying (21) on the two-patch of Fig. 5b (whose 
dimensions correspond to those in Fig. 5a for elements 1 and 2) are: 

f n«u specified; f ^ + l ^ = 0 ; f
t ' u

n specified: (P-^Pj) = 0 (26, 27) 

V f n s P e c i f i e d : (Pi"P 2
) = ° ' £1 P1 + £3 P2 = ° ' ( 2 8' 2 9> 

A perusal of these constraints establishes that the hydrostatic mode does not satisfy 
(2'j) and (29) and the CB mode does not satisfy (27) and (28) . Consequently, it follows 
that specification of f t on any part of the boundary will annihilate the pure CB mode; 
it also follows that if f n is additionally specified on any part of the boundary, the 
hydrostatic mode is annihilated and there is no longer any indeterminancy in the 
"physical" pressure field. In this case, the pressure may not be specified anywhere in, 
or on, the domain - a result which can be shown to be independent of the velocity basis 
and valid in general. In addition, the requirement of compatibility of possible pressure 
modes with any degrees of freedom associated with a one-patch, as illustrated in Fig. 5c, 
establishes that if such velocity degrees of freedom exist, the pure C3 mode does not 
exist. Thus, only if the velocity is specified at a corner node of a domain can the pure 
CB mode occur if it is otherwise allowable. Finally, the solvability constraints 
previously generated for the linear velocity-constant pressure element can be duplicated 
here by applying Condition B to the CB mode (an exercise we leave to the reader). 

/ 
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(2) Equal-Order Interpolation Elements. In order to illustrate the application 
to equal order interpolation elements, the C° bilinear velocity-bilinear pressure (C° 
or C~^-) interpolation will now be considered. In the discontinuous pressure case, the 
pressure interpolation employs (2x;,) Gauss point pressures. In order to demonstrate the 
existence of pressure modes, it is only necessary to demonstrate a violation of Condition 
A. Here again pure pressure modes are found to be restricted to meshes generated by 
parallel straight lines. An isoparametric finite element is used and each of the 
quadrilateral elements in Fig. 5 is mapped onto the reference square [-1, -l] <_ (i .1) ^ 
[l, ll . A violation of Condition A can be demonstrated by setting 

h r. - h , Cl,,h,. , 
P, = D n , w = ( ).'• (• ,-,) , 

2 
i, 

v»here p; , Q(, b j ,'jrtion of the bilinear pressure in element i, D^ is an 
arbitrary constant ii element i, and i n(", ) is the appropriate velocity basis function. 

For this case, application of (21) to the four-patch of Fig. 5a leads to 

h h t - h h " X X 

' P •' • w = ) / p V • w = j D j' i ",,[C (.-, +e, n) + C l Y , + s O ] df,dn = 0 ,(30i 
i = l , i = l - l - l i i i ^ i i 

where ^, ;• j, ,̂  and '̂  are constants associated with the capping of element i 
into the reference square. Note that the integrals in (30) are identically zero for 
arbitrary constants (C^, C2, D-jJ because all integrands are odd functions in 
either .''. or n. By restricting the index "i" in (30) to 2 or 1, one generates the form of 
the integral for a typical boundary two- or one-patch, respectively. Therefore, the same 
conclusion holds in these cases. Consequently, Condition A is violated not only in the 
C° bilinear pressure approximation case, but also in the discontinuous (C~l) bilinear 
case. (The pressure mode pf = D^Cn corresponds to a C° approximation if the 
magnitude of D^ is the same for all elements in the patch but its sign is different for 
any two adjacent elements sharing a node; otherwise, pj is a piecewise discontinuous 
(C--M approximation. The same reasoning can be applied to the functions p^ = Dj_C 
or Pj1 = Dj/i which appear below). Moreover, here the violation of Condition A, and 
hence the occurrence of at least one spurious pressure mode, is independent of the 
prescribed velocity boundary conditions because the boundary one- and two-patch (velocity 
basis functions which would be associated with boundary nodes) result is independent of 
Ci and C 2. 

Replacement of ph appearing in the integral in (30) successively by D^ = 
const., Dj/ , and Dj/i can be used to further establish that at least the physical 
hydrostatic pressure mode, a spurious plane " :-wave" pressure mode and a spurious plane "n 
wave" pressure mode, respectively, are also possible in the C° pressure approximation 
C---. For the f.- and n-modes, Condition A is not violated automatically because of an 
odci integral as in the £n-mode case, but by satisfaction of certain constraints by these 
waves. In these cases, violation of Condition A on a "four-patch" requires that 

h 
= L . , 1 

(1) p7 = D.f ; D 1 = D 4,D 3 = D 2; (2) p'.. = D ^ : T>x = D 2,D 3 = D 4- (31) 

Condition (1) is satisfied by a £-wave on any four-patch in the grid and Condition (2) is 
similarly satisfied by the n-wave. The inclusion of a one- and two-patch test, which 
reflects the specification of normal or tangential forces on the boundary, establishes 
that the ^-wave and n-wave pressure modes can be suppressed if the force normal to the 
wave form is specified on a portion of the boundary. Consequently, in general multiple 
degeneracies must occur when using this element to simulate flows in which the velocity 
is specified everywhere on the boundary. In fact, on a sufficiently large mesh of 
elements (where momentum equations sufficiently exceed continuity constraints), we have 
found seven spurious pressure modes numerically; the C -^ bilinear pressure case will be 
even more degenerate because of an excess of continuity constraints compared to momentum 
constraints. 
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(3) The Biquadratic Velocity-Bilinear Pressure Element. Finally, a very accurate 
and useful element which is afflicted with one spurious pressure mode is that defined by 
biquadratic (9-node) velocity and discontinuous bilinear pressure (at the 2x2 Gauss 
points). For a description of the pressure mode and a useful filter for this element, 
see [10] . 

REMARKS ON EARLIER THEORY AND THE PENALTY APPROACH 

Focusing on the GFEM formulation, certain earlier analyses provide, for example, 
hypotheses under which the scheme converges to a unique solution as well as error 
estimates, In [15] and [16] a finite element mesh composed of non-degenerate triangles 
is considered and both general results and results for specific elements is provided; 
[18] and [19 ] provide less detailed results applicable to a class of elements. Most of 
these results, including existence and uniqueness, appear to be applicable to the 
Lagrange family of quadrilateral elements. Consequently, one must rationalize the 
existence of pressure modes, i.e., non-uniqueness in the approximate pressure field, and, 
for example, the theoretical results establishing uniqueness. Moreover, as demonstrated 
herein, the solvability constraints imposed on the discrete problem by the spurious 
pressure modes can force the allowable boundary conditions to be mesh dependent - a 
constraint which raises the fundamental question of convergence of the method. Finally, 
the equivalence of the mixed interpolation GFEM employing a discontinuous pressure 
approximation space (with Gauss point nodes) and the penalty approach via GFEM (see [20 ]) 
must be questioned in general. More details on these issues can be found in [101. 

NUMERICAL EXAMPLES 

During this investigation a sufficient number of numerical experiments (well over 
one hundred) were conducted to corroborate the theory. A selected set will be presented 
at the meeting and a summary will appear in [loL 

SUMMARY AND CONCLUSIONS 

We have explained the cause of the spurious pressures generated when the GFEM is 
applied to the incompressible Navier-Stokes equations, some of the implications of the 
spurious pressure modes were also described. Finally, we have shown that useful pressure 
fields can nevertheless be obtained, in some cases, via appropriate filtering and 
smoothing schemes, applied in a "post-processing" manner. 
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