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LKBSTRACT

The spurious pressures and acceptable velocities generated when using certain
combinations of velocity and pressure approximations in a Galerkin finite element
discretization of the primitive variable form of the incompressible Navier-Stokes
equations are analyzed both theoretically and numerically for grids composed of
quadrilateral finite elements. Schemes for obtaining usable pressure fields from the
spurious numerical results are presented for certain cases.

INTRODUCTION

Discretized approximations to the incompressible Navier-Stokes eguations, in the
primitive variable ({velocity-pressure) formulation, especially when generated via the
Galerkin finite element method (GFEM) have been plagued with confusion regarding the
"appropriate" workable combination of velocity and pressure approximations. Since the
early observations of Hood and Taylor [1], in which spurious pressure solutions were
generated when the same basis functions were used for pressure and velocity on conforming
quadrilateral elements, but not when using mixed interpolation (pressure one order lower
than velocity), most GFEM practitioners have accepted this necegsity and adhered to it. &
The explanation in [1], cast in terms of the "balancing of residuals" from momentum and i
continuity equations, was judged inadequate by Olson and Tuann [2] who explained it in ;
terms of the eigenvalues of a single element - herein hoth of these explanations are 4
shown to be inadequate.

Even when mixed interpolation is employed, numerical difficulties can be
encountered; for axample, piecewise linear approximation for velocity and piecewise
constant approximation For pressure has been found to work poorly in some cases [3-6].
The solutions sometimes display acceptable velocities but totally spuricus pressures o
which are afflicted with the "checkerboard (CB) syndrome," wherein pressure oscillations i
occur which are frequently of one sign on all “plack® elements and of the opposite sign
on all "red" elements.

Herein we will focus on this problem for 2-D grids composed of guadrilateral
Finite elements and will define and characterize this behavior, both theocretically and
numer ically, in terms of "zero energy pressure modes," and present some simple methods
for extracting good physical pressures from polluted numerical results in certain cases,
Our techniques are useful in 3D calculations [7] as well as in some finite difference
techniques (81, (9], Detailed analyses and results, summarized in this paper, will be
available in the near future [10].

CONTINUUM EQUATIONS AND THEIR GFEM DISCRETIZATION

The setting for our discussion will be the steady Stokes eguations:
Vel =0 , Veu=0 , {la, 1b) ~
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where le =-p §, ij * S5ij is the symmetric stress tensor, 8ij ¢ p(s;— t %

)

u = {u, v) is the velocity, p is the pressure and 1 is the j i

(constant) viscosity of the fluid. The results presented herein also apply to unsteacy,
nonlinear {viscous or inviscid), and nonisothermal (Boussinesq) flows.
The GFEM discretized approximation is applied to the weak form of (1): viz,

jé.v‘b fﬂpin,i=l,2,--.,Nf\l/"Ll=O, i=1,2, «.e i M

s Q (2a,2b)

over the domain & with boundary 3¢ where n is the outward pointing unit normal
vecter, 1 ° n is the surface traction, ¢1 represents any basis fZunction for velocity,
and ¥; is any basis function for pressure. Inserting the following appropriate
piecewise polynomial basis function expansions,

N.
i M
h k . h
w= L ufe® , i=1,2 p = ] p oy (X, (3a, 3b)
k=1 k=1
into (2) leads to the GFEM equations [11] ,
T
Ku+cp=1, ¢ =g, (4a, 4b)

where U = {uy, ug, ..., UNpr VI V2s o eees VNZ)T' N =0Ny + Ny, P={P], P2+ ---s PM) s K
is a pos;tlve~def1n1te symmetric matrlx, and C is an unsymmetrlc and indefinite =
rectangular matrix, which is the "cause" of the problem addressed herein. The vectors £
and g reflect the effect of the imposed boundary conditions; f could represent not only
prescribed boundary forces but also velocities, whereas g corresponds only to prescribed
velocities. (The specification of pressure boundary conditions is inappropriate and is
not considered hecein; see [111).

CO BILINEAR VELOCITY-PIECEWISE CONSTANT PRESSURE ELEMENT

In order to motivate our discussion of more complicated elements, we will first
consider this “simple" special case. Here the discretized continuity equation (4b)
guarantees a mass balance on each element in the mesh., These mass balances, in
conjunction with the imposed boundary conditions, can lead to what are termed "pressure
modes" which correspond to special solutions of (4) with f=0andg=0 for wnich U=20
and CP = 0 for nontrivial p. These solutions may be spurious in that they do not
correspand to physical pressures which, in numerical simulations, are often buried in the
"noise level" since these modes cause the overall coefficient matrix to be singular. For
this particular element, there are two pressure modes which can exist; one of these can
exist on any (isoparametric) mesh, and the other, on a mesh composed of parallelograms.
A. Hydrostatic Pressure Mode

This physical mode is more general than the (spurious) CB mode, in that it can occur
for any type of velocity and pressure approximation and for any domain subdivision. Its
existence depends solely on boundary conditions,

The discretized continuity equations (2b) may be summed to arrive at the global
mass balance

[reaP=] n-u=0 . (5)
Q IR

This constraint among normal velocity components of the boundary mades must be satisfied

by the numerical solutiens. For example, for the simple grid represented in Fig. 1, the
constraint equation takes the form

{ug-uj)hy + (ug-us) (hy+hy) + (uip-uglhp + {(ve-vy)ly + (vip=-vo) (L1+€2) + (vi1-v3) (£a+l3)

+ (v ly =0 . 76N"\



Consideration of possible applied bourdary conditions (BC's) then leads directly
to the following conclusions (assuming at this point, that no other pressure modes exist):

1. T1f the imposed BC's do not imply a constraint among normal velocities on the
entire boundary (i.e., normal tractions specified on a portion of 3Q) then (3) is
independent and required and there is no hydrostatic pressure mode. (The pressure datum
is set by the normal traction bt ndary condition).

2. 1If the imposed BC's satisfy (i.e., duplicate) Egn. (5), then the system is
consistent but overspecified and a hydrostatic pressure mode will exist. The latter, if
the only pressure mode present, can be eliminated with no adverse effects by specifying
the pressure at one "node" in the system. A contained flow is a common example wherein
the pressure is only determined up to an arbitrary additive constant.

3. PFinally, if the imposed BC's violate eguation (5), which can only occur (as in
2 above) if the normal velocity is specified everywhere on the boundary, then the
discretized system is inconsistent and no solution is possible,

B. The Checkerboard Mode

Here one asks the question: Are there, in addition to the above hrdrostatic case,
any other linear combinations of the M continuity equations which can result in a
boundary node constraint equation? In order to answer this question, we use some of the
ideas presented in [12] and {13]. For the simple grid of parallelograms displaved in
Fig. 2, a slight generalization of Fig. 1, consider, for the moment, the continuity
equation associated with element #1. It can be cast in the form

v
v
9 10 11 12
h
5 6 7 8 2
S 6, (g —= hy
1 3 4
2 L
Figure 1
(uy=u, tug-ug) . (Vg=v #Ve=v,) . (Vgmvytvy~vg) . .
T h, sin 9 { tan o

1 1 1

by dividing its original form by the area of element #1 ({1h; sin 8). Recasting all

of the continuity equations associated with the grid of Fig, 2 into this form by dividing
by the appropriate element areas, the following "CB equation" can be obtaiued from the
original set of continuity equations:

;B I;R
c, /A, - § c /A =0, (8)
g1 Bt ogn RyE

where Cp;s Cr; are interpreted to mean the discretized continuity equation for

the i=-th blacﬁ, or red, element, Mg, My are the total number of black, or red,

elements (Mg+Mg = M), and A{ is the area of the i-th element. A closer inspection

of Egqn. (8) reveals that it does, in fact, represent a constraint among only boundary
nodes on the grid of Fig. 2; or, in fact, on any grid composed of arbitrary-sized
parallelograms with constant angle 6. For the important special case of rectangles (6 =
n/2), the constraint equation relates tangential velocities on the boundary. (See [10},
for a more detailed discussion). It is noteworthy that the constraint Eqgn. (8) does not
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eliminate all interior nodes on a general mesh with distorted isoparametric elements (ot
any mesh containing "bent lines"). 1In the special, but important case of constant &, the
boundary constraint equation is, as in the hydrostatic case, the reason for the existence

of a (spurious)CB pressure mode. Noting that Egn. (8) must be satisfied regardless of the
applied BC's (again temporarily ignoring the possibility of other pressure modes) leads
to:

1. If the imposed BC's do not imply a constraint among the velocities on the
entire boundary, then the constralnt Egn. (B) is independent and required and no spurious
CB mode occurs. However, the resulting "boundary equation” (8) generated by the
continuity eguations is extransous (in contrast to that corresponding to the hydrostatic
mode) .

2. If the imposed BC's duplicate the constraint Egn. (8), the system is
consistont, but over—-specified. A spurious CB pressure mode exists and, contrary to the
hydrostatic mode, it cannu: ope eliminated by specifying a "nodal” pressure (which is
nevertheless legitimate and removes the rank deficiency) and it can lead to non-physical
constraints.

3. Finally, if the imposed BC's violate Egn. (B8), the discretized system is
ill-posed and no solution is possible,

In concluding this discussion it should be pointed out that there is a possibility
of the simultaneous existence of both pressure modes since constraint Egns. (5) and (8)
are always present (there are but two pressure modes for this element) and
concomittantly, the possibility of ill-posedness due to a violation of either constraint
equation., In this case, as in the previous case, post-processing will be reguired to
filter the spurious CB mode. Also ncte here that specification of the pressure at two
points in the flow field (one on any black element, tlie other on any red) will remove the
rank deficiency and, while physically absurd, is mathematically permissible - a
manifestation of the spurious CB mode,
C., Description of the Pressure Modes

The existence of a pressure mode can be recast in terms of the existence of a zero
eigenvalue feor the eigenvalua problem associated with (4), i.e

2.y

= A = ]
Koy S5 =8 o EXp =L (9a, 9b)

. T T . : :
where A; are the eigenvalues and (wj £i)T the corresponding eigenvectors, i = 1,
2, ««ey N+ M, A pressure mode corresponds to a solution to (9) of the form

' w=0 . =0, (10)

0

where rj is the pressure mode - and our goal here is to describe its form.
(1) Hydrostatic Pressure Mode

Here the eigenvector corresponding to the hydrostatic mode is simply r = Py,
where Py is an arbitrary constant vector. The proof follows directly from the
definition of

- T T T
€ By = UERY) (C By ) where
M ¢>i ap,
(C, By = z P é—;— ; dxdy = B, f—— dxdy = B, {P b, dy (11)

and (Cy Py)j can be generated by an interchange of x and y in (11) and changing the
sign of the final result. Consequently, the conditions under which C Py =20 are:

1. 1f u and v are specified everywhere on 22, ¢; = 0 on 32 and each component
of (11) vanishes. A contained flow always displays a hydrostatic mode.

2. If all of 9% has the normal velocity component and the tangential Force
prescribed., (See [10] for details).



In general, a hydrostatic mode exists under any combination of the above two
boundary condition types (and only these types).

(2) Checkerboard Pressure Mode
If the i-th equation of (2b) is multiplied by the coefficient

r, = P? =+ 1/Ai (the CB eigenvector) , (12)

where Aj is the area of the i-th element, the plus sign corresponding to a "black"
element and the minus sign to a "red," an equation similar in form to (11} is obtained.
The resulting equation c~n be used to generate the following results, which are detailed
in [10] (the CB eigenvector also satisfies Eqn. 10):

1. For a general, arbitrarily-oriented grid of parallelograms, a CB mode can
exist only if all boundary velocities are specified (e.g., contained flow).

2. For a grid of parallelograms oriented so that two sides are parallel to the
x-axis, a CB mode can also exist if u is 'free' along the two sloped sides. There also
exists the counterpart for a grid aligned with the y-axis; however, neither of these
cases is of much practical interest since the associated boundary conditions are not the
physically relevant ones.

3. TFor a grid of arbitrary-sized rectangles a CB mode can also exist when the
tangential components of velocity are prescribed over the entire boundary, a situation
which may be more commonly encountered in practice. An example of such a CB situation is
dispiayed in Fig. 3. If the tangential boundary condition at the right side is changed
from v =0 to £, = 0 (i.,e., specified shear stress), the CB mode could no longer exist.

Finally, it is noteworthy that the existence of a CB mode can preclude the
existence of a solution to tlhe algebraic system; there are, in fact, common situations
({see Ex. 2 below) in which a CB mode exists, but the solution to the discretized
Navier-Stokes equations does not exist. The "converse" is also true in that the
nonexistence of the CB mode is a sufficient condition for the existence {and unigueness)
of a solution to the algebraic system (in the absence of the hydrostatic mode).

D. Further Implications of the Spurious Constraint

The fact that the "CB constraint eguation," (8), must always be satisfied by the
discretized solution carries other, rather serious implications, over and above the
possible existence of a CB mode. We will demonstrate two consequences of this extraneous
constraint via simple examples. In the first example, the (extraneous) constraint on
boundary velocities occurs in a flow which has no CB mode and, in the second example, it
occurs in conjunction with the CB mode and can lead to an ill-posed problem,

Example 1: Tangential Velocity Constraint:

We begin by returning to the grid in Fig, 3 and modifying the ‘outflow' boundary
condition from v = 0 to £ = 0, so that n° CB mode can exist. However, application of
the CB constraint equation to this grid gives, considering the imposed boundary
conditions,

2 G PRIV et G
1 2 2 3 3 4 N N+1
The existence of this spurious constraint equation, which will he satisfied by the
numerical solution, is an artifact of the discretization with the bilinear element and it
exigtsS independently of, and in addition to, the proper constraints; viz, those imposed
by the shear-free boundary condition and global mass conservation, If this 'element'
converges to the solution of the (Navier-)Stokes equations, this constraint is presumably
not too ‘'harmful' (our numerical simulations which do, in fact, satisfy (13), appear
‘reasonable') and in fact, must vanish as h - 0. Pinally, if v is specified at the
outflow such that (13) is violated, the problem is ill-posed and no solution exists.

)vN =0 , (13)

“orar



Example 2: The Driven Cavity

The popular lid-driven cavity problem is an appropriate example to demonstrate
another important consequence of the "CB constraint," and is depicted in Fig. 4.
Application of (8) to this grid gives a different result, depending on whether N-1
(the number of elements across the top of the cavity) is even or odd: For N-1 even,
1
¢
1
and for N-1 odd,

1 1 1 1 1 1 1
u, = (= + 3)u, + {7~ + Ju,~ aee = + Ju + u_. =0 {(l4a)
A A b2 G g1 ¥

1 1 1 1 1 1 1 1
u, = (7 I, (T 7uy - e (T - 7——u,= 0 . (14b)

L A A T A w2 Gwer WL Ty ¥

Consider first the simpler case in which uy = ug, i =1, 2 ... N; i.e., the case of

equal velocity at every node, including the first and last (a 'flow-through' cavity). In

this case, both (l4a) and (14b) are satisfied identically (i.e., the CB constraint is

automatically satisfied for either an even or odd mesh and a CB mode will exist). IE,

however we wish to compute the more difficult case of a contained flow, we might set u;

=uy =0and ujy = vy, 1 =2, 3, ..., N-1. 1In this case we obtain

—uo(%— + Tl__) =0 for an even grid,
1 N-1
1 .
and u (- %— + z———) =0 for an cdd grid,
° 1 wa

While the constraint equation on an odd grid can be satisfied if {; = EN—l (in which
case the CB pressure mode, as well as the hydrostatic mode, exists), it can never be
satisfied on an even grid. Hence, the driven cavity problem, for these (mathematically
permissible) boundary conditions, is ill-posed on any grid with an even number of
elements across the top and on any odd-element grid which doesn't satisfy {; = {y.q.
These are clearly physically erroneous constraints and are forced upon the discretized
system by the extranecus CB pressure mode. An even grid can, if desired, be employed for
a contained flow simulation (uy; = uy = 0), if the proper precautions are taken:
e.g., for uy =ug; i =3, 4, ... N-2, (l4) can be easily satisfied (e.g., for { =
constant, Uy + uy-] = ug will suffice, and it is then reasonable to take up =
?Nil = 1/2 ug; we have used this approach successfully and have presented results in
6l).

The net result, as demonstrated by these two examples, is that the CB constraint
is rather insidious, far-reaching, and probably even has important implications regarding
the ultimate proof of convergence of this FEM approximation (which proof, according to
14!, is "still an open question" - perhaps it must remain that way).

E., The Impure Checkerboard Pressure Mode

He now address the most difficult of the pressure mode effects which we have
encountered: one might optimistically expect, since the existence of the CB mode was
proven under somewhat specialized conditions (a mesh of parallelograms), that it would
not occur under the more general conditions of a mesh composed of varlously distorted
isoparametric elements, Unfortunately, this is not the case; in fact, a 'residual' CB
pattern appears to be present (under appropriate boundary conditions; viz., those which
permit the existence of a "pure" CB mode) even in a mesh composed of arbitrarily
distorted isoparametric elements, However, since it does not display characteristics
identical to the pure CB mode, we have labeled this an "impure" CB mode.

Barically, the impure CB mode appears to exist in such a way that, while not pure
(ther: is no corresponding zero eigenvalue in the matrix with an associated pure pressure
eigenvector - other than the hydrostatic pressure mode - and therefore, no associated




redundant continuity equation), the pressure solution is still oscillatory and generally
unacceptable without further post-processing. Our explanation of the impure mode (which
appears to explain essentially all of the results from a wide variety of numerical
experiments) is one which considers it as a perturbation from the simpler pure CB mode
ans it is this approach which we shall present; i.e., any mesh which is not composed cf
parallelograms is to be interpreted as a perturbation (small in theory, but not
necessarily in practice) from one which is. The original CB theory is only partially
applicable in that it would predict that the perturbed matrix would no longer have a zero
eigenvalue (correct) and that a CB pressure mode would no longer exist (incorrect). Tt
is toward the reconciliation of this, and similar issues, that we present the results of
an approximate (linearized) perturbation analysis of the impure CB mode.

The analysis {see [10] for details) is performed on a perturbed version of (4) in
which K » K + 8K, C ~ C + &C, £+ £ + 6f and g ~ g + 6g and a parameter ¢, which is a
measure of the perturbation (i.e., \Sgrﬁt O(¢), etc.). For example, ¢ cculd be
associated with the departure of the elements of the grid from parallelograms, as in one
of the examples presented in [10]. The results are:

1. The CB eigenvector (0 EE)T is projected from the original null space
into the space of the remaining perturbed eigenvectors, in specific but small O{:),
amounts.

2. The impure CB eigenvector contains, in addition to the pure pressure mode,
small amounts (O(:)) of the velocity and pressure portions of all cther eigenvectors.

3. All eigenvalues are perturbed to O(x) except the CB eigenvalue, which is
perturbed to 0(e2). Moreover, all eigenvectors are perturbed to O(e), which leads to
the presence of the original CB mode to a "large” extent (0(1/¢)) in the "perturbed"
pressure solution; concomitantly, the velocity field is perturbed t> O(1) (an
unfortunate, but true result).

4., Since the ¢ » 0 limit is a singular one, the (1/¢) behavior must be
interpreted to mean that the impure CB mode approaches the pure CB mode with an arbitrary
amplitude coefficient as ¢ > O.

In spite of the difficulties associated with the singular limit, these results
have been corroborated by our numerical results as illustrated in (101.
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F. Filtering and Smoothing Techniques

Since the CB pressure mode has been shown to be quite persistent, it must be
Filtered from the physical part of the pressure solution if usable pressure results are
to be obtained. The two schemer which we have developed to filter this pressure mode are
directly related to a knowledge of the form of the CB eigenvector, and (in the first
scheme) the fact that this eigenvector is, in some sense, orthogonal to the integral of a
bilinear basis function. (See [10] for details).




The CB filtering (and ‘smoothing') techniques descr.bed here each generate a
smoothed (physical) pressure at a node (i) joined by an even number of elements. The
reason we refer to the pressures as 'smoothed' is that they are now available at the
velocity nodes rather than at the element centroids, and can, if desired, be considered
as continuous functions via representation by the velocity basis functionms, {¢i}.

(1) Basis Function Weighting

In this scheme

P, = f ph ¢, dxdy/ f b, dxdy , (15)
g L @ !

where ph is the pressure obtained from Egns. (3) and (4).

The asscciated nodal pressure field gives a best fit (based on (#j1)in a
modified least squares sense over the domain .. Details and examples are presented in
Lee et al. [s].

(2) Area Weinhting

Here
p. =2 Ve a , (16)
A

where A is the total area of the elements sharing node (i), Py is the polluted computed
pressure, A, is the area associated with element 'e', and the sum is over all elements
sharing node i. (For either filtering scheme, "corner ncdes" must receive special
attention as described, for example in [5] or [6]). 1In our experience both filters have
been successful in filtering not only the pure CB mode on a regular mesh of
parallelograms, but also the impure CB mode on irreqular meshes. The latter method is
obviously simpler and concomitantly, more cost effective, than the basis-function
averaged scheme and hence is to be recommended (the two methods give identical results
for pure CB modes).

Two additional noteworthy features of the latter scheme are:

1. It is directly extendible to the three~dimensiaonal (FEM) case.

2. Caldwell {7] has used this technique to successfully smooth a CB mode obtained
when using the 3D BAAL finite difference code [9]).

GENERALIZATION TO OTHER ELEMENTS

While theory (see, for example, [15] and [16]) provides, under certain hypotheses,
an existence and uniqueness proof for the continuum Navier-Stokes equations in certain
function spaces, the GFEM approximation in the same spaces can, as illustrated in
previous sections, suffer from non-uniqueness and even non-existence. This situation
arises due to the existence of spurious pressure modes in the pressure approximation
space. In order to gain additional insight into such problems, it is necessary to extend
the previous investigation of "pure" pressure modes to more complicated mixed- and
equal-order interpolation elements, and this leads naturally to an lnvestigation of the
uniqueness and existence of the GFEM approximation of the problem in its natural function
space setting.

A. Theory

The lormulation of the Stokes problem can be cast in the following form:

h h
By V- w) = A(gh. 3h) ' v - gh, qh) =0 (17, 18)
for all ghewh'o, thQh. Here
_ _ T
(a,b)y = [ ab , A(w,w) = [ (Yw) :S(w) (19, 20)

Q 0
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Wy,o is a finite dimensional space of 9 vector functions on . with vanishing
components on those parts of the boundary on which the associated velocity components are
specified, and OQp is a finite dimensional subspace of functions which form a basis for
the space of all square integrable functions on ¢ ; i.e., Lj(:). The usual GFEM
subspaces Qp are either piecewise rcontinuous (C®) or piecewise discontinuous (c-l
polynomials. The previous considerations on the linear velocity - constant pressure
element can be recovered and generalized by investigating the uniqueness and existence of
the GFEM solution.

Addressing the unigueness question leads to the following result, whose
development is detailed in {107;
Condition A:

For all !h “Wh,or

(7~ yh. Ph) =0 (21)
must imply ph = 0 if the Galerkin finite element pressure field is to be unique. 1If
solutions to (21) exist with ph # 0, (i.e., if Condition A is violated) the GFEM
solution is non-unique and pressure modes will exist even though a unigue velocity field
is obtained.

It is noteworthy that the latter conditieon is also a restriction appropriate to
the GFEM Navier-Stokes problem tecause it is generated by setting uh = 0 and the
nonlinear terms vanish. The hydrostatic pressure mode obviously violates Condition A
and, being acceptable physically, can be incorporated by recasting Condition A o read
ph = constant. Condition A appears to be a special case of a result due to Brezzi [17]
for saddle point variational problems and furthermore, one of its consequences is that
the computation of the eigenvalues of an element matrix as, frnr example, carried out by
Olson and Tuann (2] is insufficient for the investigation of pressure modes.

When pressure modes exist, certain solvability conditions must also be satisfied
by the GFEM system, These are generated by setting (w,q) = (0, pgi), i.e.y the
pressure modes, in the Galerkin formulation, (17)-(18), which leads to
Condition B:

(‘QE'E:P

ci) =0 ; i=1,2, ...n , (22)
where n is the total number of pressure modes. 1If this condition is violated, the
associated GFEM system is inconsistent and has no solution.
B. Applications

(1) The Linear Velocity-Constant Pressure Element. The utilization of the
foregoing conditions can be illustrated by applying it to the previously considered case
of the linear velocity - constant pressure element. The satisfaction of Condition A
is implementad in this case by setting

C
W h (23)
2

where ¢ is an arbitrary piecewise bilinear velocity basis function and C; and Cp

are arbitrary constants, and by requiring any possible pressure modes to be independent
of the choice of basis function. The three relevant forms are illustrated in Fig. 3 by
nodes A, B and C and their corresponding shaded supports, It is apparent that associated
with interior nodes (node A) are velocity basis functions with support over a four~patch
of neighboring elements and that basis functions with one~ or two-patch supports are
associated with boundary nodes (nodes B and C, respectively), (The one and two patch
cases do not have to be considered if the problem has purely Dirichlet boundary data
since these deqrees of freedom do not appear in Wh,o)- The invariance of the possible
pressure modes to the velocity basis functions wP appearing in (23) can be satisfied by

[
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requiring the four-patch (one- or two-patch) results to be "patch -independent.”™ That is,
the results must be simultaneously applicable to every such patch (basis function)
associated with the mesh. This restriction can be used to establish that the CB mode can
only exist on meshes generated by straight parallel lines. Consequently, only the
general four-patch displayed in Fig. 5a need be considered. (In Fig. 5, 0 is the same
angle defined in Fig. 2).

(a) Four-patch {b} Two-patch {c) Onec-patch
Figure 5

Substituting (23) into (21), coupled with a piecewise constant pressure field, yields
ty(P7Py) + (4lpyR,) =0 (24)

(Cl+C2 cos ﬂ)pl - (CB—Cz cos a)p2 + ((1-64 cos e)p3 + (£3+€4 cos %)p4 =0 .(25)
The only solutions to (24) and (25) which are patch-independent are the hydrostatic

mode and the CB mode. Here it is apparent that invariance is guaranteed since the
amplitude of the CB mode on an element depends only on the area 2f that element. If the
problem being considered is ore in which the velocity is specified everywhere on the
bourdary, i.e., Dirichlet type boundary data, the existence of a2 checkerboard mode has
been established. On the other hand if normal . srce, or ti tion-type conditions are
specified on the boundary, then it is necessary to check tt : any possible
patch-invariant pressure modes associated with the four-patch are also compatible with
any one- or two-patch associated with a boundary dearee of freedom in the velocity
field. The three different combinations of boundary conditions of interest and the
corresponding restrictions imposed by applying {21) on the two-patch of Fig. 5b (whose
dimensions correspond to those in Fig, 5a for elements 1 and 2) are:

- Sfied: 0 ? - . fied: _ -
fn,ut specified: lpl + 3p2 0 ft’un specified (pl p2) 0 (26, 27)

2 : . - - i () =
Et'fn specified: (p1 pz) 0o , Llpl + L3p2 0 . (28, 29)

A perusal of these constraints establishes that the hydrostatic mode does not satisfy
{25) and (29) and the CB mode does not satisfy (27) and (28). Consequently, it follows
that specification of fy on any part of the boundary will annihilate the pure CB mode;

it also follows that if f, is additionally specified on any part of the boundary, the
hydrostatic mode is arnihilated and theve is no longer any indeterminancy in the
Yphysical" pressure field. 1In this case, the pressure may not be specified anywhere in,
or on, the domain - a result which can be shown to be independent of the velocity basis
and valid in gerneral, In addition, the requirement of compatibility of possible pressure
modes with any degrees of freedom associated with a one-patch, as illustrated in Fig. 5c,
establishes that if such velocity degrees of freedom exist, the pure CR mode does not
exist. Thus, only if the velocity is specified at a corner node of a domain can the pure
CB mode occur if it is otherwise allowable., Finally, the solvability constraints
previously generated for the linear velocity-constant pressure element can be duplicated
here by applying Condition B to the CB mode (an exercise we leave to the reader).



{(2) Equal-Order Interpolation Elements. In order to illustrate the application
to equal order interpolation elements, the CO bilinear velocity-bilinear pressure (C°
or C“l) interpolation will now be considered. 1In the discontinuous pressure case, the
pressure interpolation employs (2x1) Gauss point pressures. 1In order to demonstrate the
existence of pressure modes, it is only necessary to demonstrate a violation of Condition
A. Here again pure pressure modes are found to be restricted to meshes generated by
parallel straight lines. An isoparametric finite element is used and each of the
quadrilateral elements in Fig. 5 is mapped onto the reference square (-1, -1] < (I,n) <
{1, 1]1. & violation of Condition A can be demonstrated by setting - -

ph =D, n W’ - (Cl)‘h(f'”
i i ' - c.' " !
2
where p? . Qp if . ,wrtion of the bilinear pressure in element i, D; is an
arbitrary constant in element i, and 5h(f,-) is the appraopriate velocity basis function.
For this case, application of (21) to the four-patch of Fig. 5a leads to

4 4 11

+ h | h N . h .. h - . ,

Sp S tw o= g opp v tw = ) DT (€ (ke ) + Oyl +aie) ] dfdn = 0 (30)
i=1 i=1 1. ol

where ., i, 1{ and '; are constants associated with the mapping of element i
into the reference square. Note that the integrals in (30} are identically zero for
arbitrary constants (Cy, Cp, Dj) because all integrands are odd functions in
either { or n. By restricting the index "i" in (30) to 2 or 1, one generates the form of
the integral for a typical boundary two- or one-patch, respectively. Therefore, the same
conclusion holds in these cases. Consequently, Condition A is violated not only in the
C® bilinear pressure approximation case, but also in the discontinuous (c~1y bilinear
case. (The pressure mode p{ = D{in corresponds to a C© approximation if the
magnitude of D; is the same for all elements in the patch but its sign is different for
any two adjacent elements sharing a node; otherwise, p? is a piecewise discontinuous
(C‘lz approximation. The same reasoning can be applied to the functions pj = Dj&
or pf = Dj" which appear below). Moreover, here the violation of Condition A, and
hence the occurrence of at least one spurious pressure mode, is independent of the
prescribed velocity boundary conditions because the boundary one- and two-patch (velocity
basis functions which would be associated with boundary nodes) result is independent of
Cy; and C,.

Replacement of ph appearing in the integral in (30) successively by D; =
const., Dj ', and Di'l can be used to further establish that at least the physical

hydrostatic pressure mode, a spurious plane "’ -wave” pressure mode and a spurious plane "n-
p p B

wave" pressure mode, respectively, are also possible in the C° pressure approximation
¢~~>. For the £~ and n~modes, Condition A is not violated automatically because of an
odu integral as in the En-mode case, but by satisfaction of certain constraints by these
waves. In these caSes, violation of Condition A on a "four-patch" requires that

() =Dy : D =D,D, =Dy (2) pt = D,n ¢ D, = D,,D, = D,. (31)

i i 1 4’73 i i 3 4°
Condition {1} is satisfied by a f-wave on any four-patch in the grid and Condition (2) is
similarly satisfied by the n-wave. The inclusion of a one- and two-patch test, which
reflects the specification of normal or tangential forces on the boundary, establishes
that the f£-wave and n-wave pressure modes can be suppressed if the force normal to the
wave form is specified on a portion of the boundary. Consequently, in general multiple
degeneracies must occur when using this element to simulate flows in which the velocity
is specified everywhere on the boundary. In fact, on a sufficiently large mesh of
elements (where momentum equations sufficiently exceed continuity constraints), we have
found seven spurious pressure modes numerically; the C~1 bilinear pressure case will be

even more degenerate because of an excess of continuity constraints compared to momentum
constraints.

e
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(3) The Bigquadratic Velocity-Bilinear Pressure Element., Finally, a very accurate
and useful element which is afflicted with one spurious pressure mode is that defined by
biquadratic {9-node) velocity and discontinuous bilinear pressure (at the 2x2 Gauss
points). For a description of the pressure mode and a useful filter for this element,
see [10].

REMARKS ON EARLIER THEORY AND THE PENALTY APPROACH

Focusing on the GFEM formulation, certain earlier analyses provide, for example,
hypotheses under which the scheme converges to a unique solution as well as error
estimates. Tn {15] and (161 a finite element mesh composed of non-degenerate triangles
is considered and both general results and results for specific elements is provided;
[18] and [19] provide less detailed results applicable to a class of elements. Most of
these results, including existence and uniqueness, appear to be applicable to the
Lagrange family of quadrilateral elements, Consequently, one must rationalize the
existence of pressure modes, i.e., non-uniqueness in the approximate pressure field, and,
for example, the theoretical results establishing uniqueness. Moreover, as demonstrated
herein, the solvability constraints imposed on the discrete problem by the spurious
pressure modes can force the allowable boundary conditions to be mesh dependent - a
constraint which raises the fundamental guestion of convergence of the method. Finally,
the equivalence of the mixed interpolation GFEM employing a discontinuous pressure
approximation space (with Gauss point nodes)and the penalty approach via GFEM (see [20])
must be guestioned in general. More details on these issues can be found in [101.

NUMERICAL EXAMPLES

During this investigation a sufficient number of numerical experiments (well over
one hundred) were conducted to corroborate the theory. A selected set will be presented
at the meeting and a summary will appear in 1.

SUMMARY AND CONCLUSIONS

We have explained the cause of the spurious pressures generated when the GFEM is
applied to the incompressible Navier-Stokes equations., Some of the implications of the

spurious pressure modes were also described. Finally, we have shown that useful pressureA

fields can nevertheless be obtained, in some cases, via appropriate filtering and
smoothing schemes, applied in a "post-processing" manner.
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