EGG-NE-10137
December 1991

INFORMAL REPORT

" Idaho | VENTURE/PC_MANUAL
N A MULTIDIMENSIONAL MULTIGROUP NEUTRON DIFFUSION
National CODE SYSTEM
Engineering | VERSION 3
.~ Laboratory
. Menaged o Purda
T bythe U.S. . , K' w' Cho

" .Department .
.. of Energy

i v
o E G&E Idaho

Work performed under
DOE Contract
- No. DE-ACO7-761D01570

"
A\
3 }"\‘

DISTRIBUTIQN nF THIS QQCUMENT fs UNLIMITED

LT L ot oam oty e, .

LY




EGG-NE--10137

VENTURE/PC MANUAL o oz

A MULTIDIMENSIONAL MULTIGROUP
NEUTRON DIFFUSION CODE SYSTEM

VERSION 3

A. Suarpiro, H. C. Huria, K. W. Cxo

DecemBer 1991

DISCLAIMER

UNIVERSITY OF CINCINNATI
NUCLEAR ENGINEERING PROGRAM
CINCINNATI, OHIO 45221

Prepared for EG&G Idaho, Inc.
Under Subcontract No. C-87-101212
and the U.S. Department of Energy
Under Contract No. DE-AC07-761D01570
Sponsored by DOE Offices of Energy Research and Nuclear Energy

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their
emplovees, makes any warranty, express or impiied, or assumes any legal liability or -=sponsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

ERAL R S LR
DISTRIGUTION OF THIS QUCUMENT IS UNLIMITED

, . BRCISSTE R
L R miagd o 4 e e



Table of Contents

Abstract . . T i
Acknowledgement O T R ii
List of Figures . . e e e e e e e e e e e e e e e iii
VENTURE/PC Code Abs;ract R T T iv

Getting Started . . . . . . . . . vii

PART I. DESCRIPTION OF CODE SYSTEM o 4 e e s 1

1.Introduction . . . ¢« ¢ o s . . . . . 1
5. VENTURE/PC Code SYSEem . . « « o « « « « « + = .. 2
3. Driver. « « « o o e e e s e e e e e e e e . . 5
4. COntroi Module. « « « « o« o « o . 5
5. INPUL PrOCESSOr. . « « « =« o « & o o o+ o = v 00000 6
6. Cross Section ProCessOor. . .« « « « + « + o o = o o o = o e 6

7. VENTURE Neutronics Module. . .« .« « « « « « o o o = o o o = 9

7.1 VENTURE STRUCTURE. . . « « « « ¢ o o < o o o = = o ¢ 9
7.2 VENTURE Subroutines. . . e 10
7.3 VENTURE File Requlrements e e e e e e e e e e 10
7.4 Data Handling Modes. . . « « + «+ « « « o &+ o = = v 14
7.5 Units. . . . . e e e e e e e e s 15
7.6 Access to Mlcroscoplc Cross Sectlons. e o e e« e s 15
7.7 Fatal Errors. . . . e e e e e e e e e e e 15
7.8 Geometry and Boundary Condltlons. « e e e e e e s 16
7.9 Special Boundary conditions. .« .« .+ « o e o e . 16
7.10 Types of Problems Solved. . . . . « « « = = « « = 17
7.11 Iteration Procedures. . .« . « « =+ + o o o @ o . ¢ 17
7 .12 Perturbation Calculations. . . . . 18
7.13 The Uncommon Reactor Core Neutronlcs Problem . 18
7.14 Space-Energy Rebalance. . . . . e e e e e e e 18
7.15 Adjustable Diffusion cOeff1c1ents e e e e e e 19
7.16 Equilibrium Xenon. . . « « « « o o« o = s 19
7.17 Temperature Correlation. . « « « ¢« & o o o o e . 20

8. EXPOSURE Code Module. . . « « « « o « ¢ ¢ o =« =



T L T I TIPSR TROE YL [N

PART II. DESCRIPTION OF INPUT FOR VENTURE/PC . . . . . . . 24

9. Input Structure. . . . . . ¢ . ¢ . v e v e e e e e e 24
10. Control Module Input. . . . . . . . . ¢ v v v v v v . . 26
10.1 Memory Allocation . . . . . . . . . . 4 . e .. 26
10.2 Using Binary Standard Interface Files as Input. . 27
10.3 Calculational Path. . . . . . . . . . « v v . . . 28
10.4 Machine Dependent and Miscellaneous Data. . . . . 29
10.5 Example of Input for Control Module. . . . . . . 33
11l. Input for Input ProcessSor. . « « « « v v « o o o o o . 35
12. Standard Interface Files Required by Modules. . . . . . 35
13. Some, Examples of Input Structure. . . . . . . . « . . . 39
13.1 NEW2DXY.INP . .+ & v ¢ ¢ v o o o« o o o o o o o o 39
13.2 NEWBWR.INP . v v v v v o v v o v o v e e e e e 42
13.3 Three Theta-R CaseS . + + + ¢« « &« « & o o o v o 44
13.4 Exposure Problem. . . . « e e e e s e e 46
13.5 Using Standard Interface Flles on Input. . . . . 48
14. Relocating Fuel BundlesS. . . « « « &« « ¢ & o o o o o 50
15. Data Transfer, File Management and Input-Output. . . . 50
15.1 standardized Routines. . . . . « + « v « « . . . 50
15.2 Input and Output Files. . . . . . . . . . . . . . 51
15.3 saving of Standard Interface Files. . . . . . . . 51
15.4 Scratch and Direct Access Files. . . . . e e e 52
15.5 Saving of Standard Interface File in Text Format 52
16. Correspondence Between DVENTR and DTNINS. . . . . . . . 53
17. Compiler and Overlay Structure for VENTURE Code. . . . 56
18. VENTURE/PC Interactive Processor, "VIP". . . . . . . . 65
REFERENCES . & . & ¢ & v v 4 v v 6 v 4 o o o o o o o o o W 67
APPENDIX I FORTRAN LISTING OF DRIVER . . . . . . . 69
APPENDIX IV VENTURE SUBROUTINES . . . . . . . . 76

APPENDIX III. BURNER SUBROUTINES o e e e e e 4 . 86



Abstrarct

VENTURE/PC is a recompilation of part of the Oak Ridge BOLD
VENTURE code system, which will operate on an IBM PC or compatible
computer. Neutron diffusion theory solutions are obtained for
multidimeﬁsional, multigroup problems. This manual contains
information associated with operating the code system. The purpose
of the various modules used in the code system, and the input for
these modules are discussed. The PC code structure is also given.

Version 2 included several enhancements not given in the
original version of the code. In particular, flux iterations can be
done in core rather than by reading and writing to disk, for
problems which allow sufficient memory for such in-core iterations.
This speeds up the iteration process.

Version 3 does not include any of the special processors used
in the previous versions. These special processors utilized
formatted input for various elements of the code system. All such
input data is now entered through the Input Processor, which
produces standard interface files for the various modules in the
code system. In addition, a Standard Interface File Handbook is
included in the documentation which is distributed with the code,
to assist in developing the input for the Input Processor.

i




ACKNOWLEDGEMENT

This work is a recompilation of codes developed at Oak
Ridge over a period of several years. In particular, the excellent
work and reports of D.R. Vondy, T.B. Fowler, and G.W. Cunningham,
who developed the original code at ©Oak Ridge, 1is hereby
acknowledged and credited. Also, the work of R.D. Odell and others
at Los Alamos resulting in a generalized Input Processor is
acknowledged. This manual is a reorganization of reports received
from the Radiation Shielding Information Center on the BOLD VENTURE
code systen.

We also acknowledge the Reactor Physics group at INEL,
in particular, Dr. D.W. Nigg, for their financial support, and for

beginning the task of developing reactor physics and shielding

codes for the microcomputer.

ii




10.

11.

12.

13.

14.

15.

l6.

17.

18.

19.

List of Figqures

Components of the Computation System........iiiiiiiirtennnnn. 4
Calculational Modes of Cross Section Processor..... e 8
Calculational Flow for VENTURE Neutronics Module......... N §
VENTURE Interface Files.....eceeuvvevunnn e eer e Ceeseaesan 12
VENTURE Scratch Files....ccvveeeeceens Cetsaenaeaane R .|
User Flow Diagram of BURNER Module........oceeeeenan et 22
Interface Files required for BURNER Code........ e rerateseed23
Example of Input Structure............ Cheseena e Cee bt s 25

User Inpu£ Instructions to Control Module CONTROLl..........30

Example of Input to Control Module..... ceesenas ceeens ceeans 34
Module Control Records and Interface Files........c.eeeeun 38
Input Structure for Two dimensional X-Y Problem........ ceeodl
Input Structure for BWR Assembly Sample Problems...........43
Input Structure for Three Theta-R Cases.......... cesreseenn 45
Input Structure for an Exposure Problem...... Ceetsiecaceas 47
Example of Input with Standard Interface files.............49
VENTURE/PC Ovzrlay Structure......eeeeseess e usercunassn s 58
Subroutines in VENTURE/PC Overlay Structure............ ... 60
VIP Overlay StruCtUre. ...t meeantnncenncescnsncsnnnnsans 66

iii



VENTURE/PC Code Abstract

1. Program Identification VENTURE/PC is a PC version of that part
of the BOLD VENTURE code system developed at Oak Ridge for IBM
mainframes, which includes the Control Module, an Input Processor,
a Cross-Section Pgocessor, the VENTURE neutronics code, and an
Exposure Module which utilizes the BURNER code for depletion
calculations.

2. Eggg;iég “The VENTURE code solves the usual neutronics
eigenvalue, adjoint, fixed source, and criticality search problems.
It treats up to three dimensions, maps power density, and does
first order pefturbation analysis at the macroscopic cross section
level. The Burner code solves the nuclide chain equations to
estimate the nuclide concentrations at the end of an exposure time,
and also after a shutdown period.

3. Method of Solution The VENTURE module applies the Finite-
Difference Diffusion or a simple P1 Approximation. VENTURE uses an
outer-inner iteration scheme with several different data handling
methods. Overrelaxation is applied to the inner and outer
iterations, and succeeding flux iterates may be accelerated with
the Chebychev process. The BURNER code uses a difference
formulation based on average generation rates, or a matrix
exponential formulation to approximate the solution of the coupled
burn-up differential equations, or an explicit solution for simply
coupled nuclide chains. Space dependence is included by working

with zone averaged fluxes.

iv



4. Related Material A Control Module, Input Processor, and a Cross
Section Processor interface with input files to produce standard
interface files for use by VENTURE and BURNER; Standard interface
files are binary sequential files which follow a prescribed or
standardized format.

5. Restrictions The code 1is variably dimensioned, but the data
arrays are limited to 36000 words, or 144000 bytes, to work within
the 640K memory limit of the present DOS operating system.

6. Computer The code will work on IBM or IBM compatible
microcomputers working under the DCS operating system.

7. Running Times Running times are variable, and very problem and
machine dependent. Many two or one dimensional problems should
complete within 30 minutes on an original IBM PC, and in less than
half that time on AT type machines. Three dimensional problems
should probably be reserved for AT or higher class machines.

8. Programming Language FORTRAN 66 or 77. The program was
originally written in ASA 1966 FORTRAN, but was compiled for the
microcomputer with FORTRAN 77.

9. Operating System The program was compiled under DOS 3.1, and
should run with earlier versions of DOS.

10. Machine Regquirements The program requires about 5 megabytes of
disk storage, to hold the executable files and files gen rated by

the code. It also requires 640K of memory, and a math co-processor.



11. Authors A. Shapiro, H.C. Huria and K.W. Cho
Nuclear Engineering
Mail Location 72
University of Cincinnati
Cincinnati, Ohio 45221
(513) 556=-2014
12. References "BOLD VENfURE IV, A Reactour Analysis Code
System, Version IV"
Radiation Shielding Information Center
Oak Ridge National Laboratory -
Post Office Box X
Oak Ridge, Tenn. 37831
CCC-459 (Computer Code Collection)
13. Materials Available VENTURE/PC Manual, Standard Interface File
handbook, VIP (Venture Interactive (Input) Processor), VENTURE Code
System, executable files and source decks on 1.2 MB 5 1/4 inch

diskettes.

vi



GETTING STARTED
VENTURE/PC is a multidimensional, multigroup, neutron

diffusion code system, with provisions for processing cross
sections, and for calculating burnup. VENTURE/PC is a BPC
compilation of part of the BOLD VENTURE code system, developed over
several years at Oak Ridge National Laboratory. The conversion to
the microcomputer was done as part of the INEL program for
establishing a PC based reactor physics package.

| VENTURE/PC is a very large code system, with many input
options, which makes the code complicated. The executable code
requires almost 3 million bytes for storage, and requires almost
all of the maximum DOS memory of 640K to run. The code was linked
with overlays, with the linked executable file being about 522K,
but file buffers, and the operating system take up most of the
remaining memory within the 640K DOS limit. In addition, the code
comes with an interactive input processor, VIP for VENTURE
Interactive Processor, which requires about 900,000 bytes for
storage. VIP was also linked with an overlay structure to allow it
to run with DOS. Additional disk space must be made available for
files. Thus, to run VENTURE with the interactive input processor,
a subdirectory of about 5 MB will be required. The VENTURE/PC code
system was compiled under DOS 3.1 with the Lahey FCRTRAN-77
compiler, version 2.22. Overlay linking was accomplished through

the Phoenix PLINK86 Plus overlay linker, version 2.24.

‘vii



To run VENTURE/PC , the CONFIG.S5YS file on the hard disk
root directory should be set for FILES = 50 and BUI'FERS = 10. In
addition, to run VIP the ANSI.SYS file from DCS should be placed on
the rdot directory, and the line DEVICE=ANSI.SYS should be added to
the CONFIG.SYS file. The system should be booted with these
configuration specifications.

Prior to running any problems, the input file for the
problem should be copied to the file VENTURE.INP. The output will
be written to the file VENTURE.OUT. Several sample problems are
given with the code. They all have names with the .INP extension.
They can be copied to the VENTURE subdirectory for checking the
VENTURE operation.

All standard interface files generated during a run are
maintained by name. Text versions of standard interface files are
retained on option in the file named STFILE.TXT, which may be
edited with any good PC editor.

The file F77L.EER is now included with the code package. This
file should be placed on the VENTURE subdirectory. It will provide
statements associated with FORTRAN errors, such as improperly

formatted input. It is part of the Lahey FORTRAN compiler package.

viii’



PART I. DESCRIPTION OF CODE SYSTEM

1.Introduction

VENTURE/PC is an IBM-PC or compatible microcomputer version of
the BOLD VENTURE [1] system of connected codes or modules used to
analyze the core of a nuclear reactor by applying multigroup
diffusion theory. The code system can analyze 1, 2, or 3 dimensions
in various geometries. Variable dimensioning is used throughout the
codes, which allows for any number of energy groups and mesh
points, with the limitation that the problem fit into core memory.
Upscattering as well as downscattering is accommodated by the
codes. A depletion module is included for burnup calculations.

An important feature of this code system is that each
code module receives input from, and writes output to, standard
interface files. Standard Interface Files (SIF’s) are unformatted
binary sequential files which have been specified as to format and
structure by the Committee on Computer Code Coordination [2], or
CCCC. An Input Processor [3) reads standard interface card image
(or ASCII) format, and converts the input to standard interface
files for use by the code modules. Version 3 of VENTURE/PC differs
from previous versions in that all special processors have been
removed from the code system. These special processors were
designed to read formatted input developed for the various code
modules prior to CCCC standardization. All input for the code

modules in version 3 is accomplished through the Input Processor.



A Standard Interface File Handbook which accompanies the
documentation should help significantly in developing the input.
QL_VENIUREZEQ Code System

The structure of version 3 of VENTURE/PC is shown in Figure 1.
It includes a Driver, a Control module, an Input Processor, a Cross
Section Processor, and the two main calculational modules VENTURE
and EXPOSURE.

The Driver reads the input data on the file VENTURE.INP. All
input data must reside on the file VENTURE.INP prior to making a
run. To store multiple input data sets on the same disk, each data
set should have its own unique name. If the data set is to be used
to make a run with VENTURE/PC, it should be renamed or copied to
VENTURE.INP. The Driver first calls the Control Module which
initializes a file catalog and a control file. All interface files
are catalcged as to name, unit number and version number, and must
be recorded on the catalog file on unit 09. The standard interface
file CONTRL, which is initialized by the Control Module, contains
records of control information required by the modules for
selecting various options or calculational pathways. It is written
on unit number 10. Upon return from the Control Module, the Driver
calls the other modules in an order specified by the Control

Module.



The primary function of the Cross Section Processor is to
convert'isotope ordered cross sections in an ISOTXS file, to group
ordered cross sections in a GRUPXS file, as required by VENTURE.

The VENTURE neutronics module calculates the neutronics of a
problem, while the EXPOSURE module solves the isotopic rate
equations for number density variations associated with fuel burnup
and fission product buildup.

The numbers associated with the modules on Figure 1 are the

input identification numbers for these modules.



USER

INPUT DATA

RESIDENT DRIVER

RESIDENT DATA

CONTROL BLOCK

Code Modules

INPUT PROCESSOR

CROSS SECTION PROCESSOwa

13

VENTURE NEUTRONICS

Figure 1. Components of Computation System

EXPOSURE

(From Reference 1)



3. Driver.

The Driver used for VENTURE/PC was established from the
partial FORTRAN version of the Los Alamos Driver given in
reference [4]. The detailed FORTRAN listing of the Driver developed
for this work is given in Appendix I. The function of the Driver is
to first call the Control Module, and read that block of data
associated with the Control Module on the input file, VENTURE.INP.
The VENTURE.INP file is assigned to unit 1. This Control Module
data block is then written on unit 5, for the Control Module to
access. This procedure of reading data blocks from the input file,
and overwriting the data on unit 5 is done for all input sections.
Upon return from the Control Module, The Driver calls the Input
Processor and/or the VENTURE neutronics module as specified in the
control file. The Input Processor develops all necessary standard
interface files required to run the other modules. The other
modules required by the problem are then called by the Driver in

the sequence given in the control data block.

ontrol Module.

The primary functions of the Control Module are to
initialize the file which catalogs the standard interface files on
unit 9, initialize the standard interface file CONTRL on unit 10,
set the problem data storage in memory, identify standard interface
files to be used initially, and perform wrap up procedures when a

problem prematurely aborts or when it finishes the calculation

(8]



correctly. The catalog file is referenced by the various modules to
obtain the unit numbers for standard interface files required by
that module. The CONTRL file contains global information records
pertinent to the problem, and a specific record for each
computational‘module. The individual records on the CONTRL file for
the computational moaules are developed by the Input Processor.
Computational modules read the applicable control information on
these records from the CONTRL file when they are accessed.

5. Input Processor.

The input Processor was developed at Los Alamcs [3], and has
the function of converting ASCII or BCD input into Standard
Interface Files. The ASCII or BCD input is structured in the same
manner as the Standard Interface Files. gee the "Standard Interface
File Handbook" for a more detailed discussion of Sﬁandard Interface
Files and the Input Processor.

6. Cross Section Processor.

The Cross Section Processor is documented in reference
[5]. A primary function of this processor is to convert a nuclide
ordered ISOTXS file to a group ordered GRUPXS file required by the
VENTURE neutrorics module. It can also create a nuclide ordered
file from the ORNL CITATION code format, update an existing nuclide
ordered file, and merge two existing nuclide ordered files. The
processor has the capability of creating nuclide mixtures and
macroscopic cross sections in the nuclide ordered format. It can
handle up to 1000 energy dJgroups, 500 nuclides and a Legendre

expansion order as high as 20. The capabilities and variations of



this processor are summarized in Figure 2. It reads the records
labeled XCPINS and DVRINS on the CONTRL file to determine the path
to follow.

6.1 CITATION Cross Sections.

The CITATION code [6] was the prcursor to VENTURE, and many
macroscopic cross section sets are available in CITATION format. A
Special Processor, DCMACR [1], converts the CITATION macroscopic
cross sections to microscopic cross sections, and writes the
microscopic cross sections on unit 8. The Cross Section Processor
can then process the microscopic, cross section set, and convert the
set to a form which can be used by the VENTURE neutronics module.
The code DCMACR is provided as a separate code with the VENTURE/PC
version 3 package. It must be used to process CITATION cross
sections before VENTURE/PC is run, and should reside on the same

subdirectory as VENTURE/PC.



[ Start

Process interface file CONTRL for
records labeled XCPINS and DVRINS

IX(5)=1

Update ISOTXS Convert CITATION Merge two

‘ to ISOTXS IS0TXS
Input: Input: Inputf:
CXSPRR ver. n :x§3 CXSPRR ver. n } CXS5PRR ver. n
ISOTXS ver.n LE.|] CITATION ISOTXS ver. n-1
Qutput: 0 Output: Qutput:
ISOTXS ver. n+l ISOTXS ver. n ISOTXS ver. n+i

[ !

Create Mixtures

Ingut:
IX(L1).LE.O CXSPRR ver. n

ISOTXS ver. n

Qutput:

ISOTXS ver. n+l

Edit ISOTXS
IX(23).LE.O Ingut:

ISOTXS ver. n

Convert 1ISOTXS

to GRUPXS
IX(4).LE.O Ingut:

IS0OTXS ver. n

Qutput:

GRUPXS ver. n

Edit GRUPXS

IX(24).LE.O Ingut:
GRUPXS ver.n

END

Note: Ver. n refers to the current latest version at that stage of
processing.

Figure 2. Calculational Modes of Cross section Processor
(from ref. 5)



7. VENTURE Neutronigs Module.

The VENTURE module calculates the neutronics of a given
problem and is the main module of the code system. Its primary
documentation is reference‘[S], with VENTURE additions given in
refefence [7]. The interested reader can find the details of the
VENTURE code in these references. An outline of the code will be
reproduced here.

7.1 VENTURE STRUCTURE.

A flow chart for the calculational procedure is shown in
Figure 3. The necessary macroscopic cross sections and egquation
constants must be calculated from the data given in the standard
interface files wused for input. After the procedures are
initialized and scratch files prepared, an outer iteration loop is
started. In criticality problems, the fission source and inscatter
source are then calculated to provide the source term for the inner
iteration. The inner iteration loop is then done for each group,
with accelerated overrelaxation used to speed convergence. The k.,
eigenvalue is calculated and the iterated results edited. The
convergence criteria are tested, and if convergence is not
achieved, the outer iteration loop is repeated. If a direct search
problem was specified, the formulation is constructed as an
eigenvalue problem, with the eigenvalue as a multiplier on the
search paraheters of interest (e.g., buckling or dimensions, or
nuclide concentrations). The desired k., is kept constant. This
eigenvalue multiplier is evaluated upon the completion of the inner

iteration for each energy group. Thus, for direct search problems,



the search parameters are estimated after the inner iterations,
without the necessity of an outer iteration. A loop to upgrade
cross sections is made after the inner iteration, if a direct
search on nuclide concentrations was specified. The indirect search
loop changes cross sections or dimensions after the outer
iteration, to effect a change in Kk,., until the desired k., is
achieved. Thus, in the indirect search analysis, both the search
parameters and k.. are changed, and this can only be done through
an outer iteration. Upon completion of the outer iteration, the
interface files of flux and power density are written, and the
results are edited and updated. If an adjoint problem is required
it is then done, after which perturbation integrals and importance

maps can be generated.

7.2 VENTURE Subroutines.
The VENTURE subroutines, as taken from reference [5)], are
shown in Appendix II. They are grouped together in this Appendix as

to function.

2.3 VENTURE File Requirements.

The standard interface files used by VENTURE are shown in
Figure 4, along with the files which can be generated by the code
on option. The scratch files with their associated unit numbers are
shown in Figure 5. Additional information regarding the individual

file records is given in reference [5].

10



Enter

~-Problem setup, Initial access to
interface data files.

~=~[Search Loop]

~--Macroscopic Cross Section Calculation

--Equation Constant Calculation

--Initialization Procedure

--Required Scratch Data File Processing

~-Quter iteration loop

~--Fission source calculat.ion

-~-Loop over energy groups

--Inscatter Source Calculation (P,, P,)*

[::::--Inner iteration loop ‘

--Line overrelaxation

--Chebyshev acceleration

--Eigenvalue calculation from a neutron
balance

--Edit iterative results

~-[Direct search return to upgrade cross
sections]

--Convergence test on outer iteration

==[Indirect search return]

-~Return for residue calculation
(one sweep of eqguations)

--Write interface files
(flux, power density)

~-Edit results (neutron balance, flux,
power density, neutron density)

--[{Update interface files for Direct Nuclide
Concentration Search]

-=-Succeeding Adjoint Problem return

--Perturbation Integrals, £ Importance Maps

RETURN

* The inscatter source calculation is normally done outside the
inner iteration loop; however, in one data handling mode this
source is calculated inside the inner iteration loop to minimize
data transfer.

Figure 3. User Flow Chart, VENTURE Finite-Difference
Diffusion Theory Neutronics Code Block, (from ref. 6)

11



VENTURE Interface Files

Interface Data Files Used

GRUPXS = Group ordered microscopic cross sections

GEODST - Geometry Description

NDXSRF - Nuclide to cross section referencing data

ZNATDN ~ Zone nuclide atomic densities

SEARCH - Search data (required only for search)

FIXSRC - Fixed source (required for a fixed source problem only)
RTFLUX - Total neutron flux (if supplied and for successive cases)

ATFLUX - Total adjoint neutron flux (if supplied)

RZFLUX - Zone average total neutron flux (for successive cases)

Interface Data Files Generated by Option

RTFLUX - Total neutron flux

ATFLUX - Total adjoint flux

RZFLUX - Zone average total neutron flux

PWDINT - Point power density

GEODST - Geometry description upon dimension search

NDXSRF - Nuclide to cross section referencing data upon dimension
search

ZNATDN Zone nuclide atomic densities upon concentration search
FIXSRC - Fixed source result

PERTUB - Regular, adjoint flux integrals

RSTRTR - Data for problem restart

FISSOR - Special fixed source data

Figure 4. VENTURE Interface files (from ref. 5)

12



21
22

23

24
27
28
29
40
41
42
43
44
45
46

47

(Direct

(Direct
(Direct
(Direct
(Direct

(Direct

Access)

Access)
Access)
Access)
Access)

Access)

Scrateh Files by Unit Number

Macroscopic scattering cross sections
Principal macroscopic cross sections

Equation coupling constants in space, normally
not used

Total neutron flux
Flux copy

Flux copy

Del dot J times volume (cuvrrent in the P, sense
Equation constants
Fixed source

Fission source

Total source

Neutron balance data
Miscellaneous®
Miscellaneous

Search data, misc.

> By miscellaneous is meant that these files are generally used to
store different information at different stages of a calculation,
but the required storage space is usually not large relative to
those for which requirements are given in detail.

Figure 5. VENTURE Scratch Files (from ref.

5)

13



7.4 Data Handling Modes.

There are several different methods of storing the necessary
flux and coupling constant data built into the VENTURE code module.
These are:

All Stored Mode. In this mode, all data necessary to
complete a calculation is stored in memory. There.is little if any
data transfer between disk files and memory. This mode can only be

used for small problems with few space-energy points.

Space Stored Mode. This is the preferred mode for
problems of moderate size, which should apély to most problems
which can be run by VENTURE/PC. The equation constants, flux
values, and the necessary source values to complete a one group
inner iteration for the flux values at each mesh point are s*ured
in memory. To obtain source values, the flux values and scattering
data must be read from disk files between iterations.

Multirow Stored Mode. This is a data handling technique
for two dimensional problems. Data for only several rows of fluxes
for a single group are stored in memory, thereby reducing the
memory required to complete an inner iteration.

Multiplane Stored Mode. In this mode, data for several
planes of a three dimensional problem are stored in memory. Storing
equation constants and source values for n planes, and flux values
for n+2 planes, allows inner iterations to be done for n planes,
with one access of equation constants, one access of old flux
values, and one transfer of new flux values for each plane of the

problemn.

14



One Row Stored Mode. For large three dimensional
problems with many space points, it may be necessary to limit the
data in memory to that required to complete an inner iteration for
a single row. Storage is allocated for the necessary five rows of
flux values and equation constants to complete the inner iteration.
This method applies only to three dimensional problems, and is slow
due to the many disk transfers required to complete a problem.
2.5 Units.

Dimensions are in centimeters, nuclide densities in
atoms /barn-cm, microscopic cross sections in barns, and macroscopic
cross sections in cm™.

7.6 Access to Microscopic Cross Sections.

Except for nuclide concentration searches, the microscopic
cross sections and nuclide densities are accessed only once. All
subsequent calculations use macroscopic cross sections which are
calculated in the beginning.

7.7 Fatal Errors.

Fatal errors are of the following types:

Error Number 666 - error encountered in processing
interface data files;

Error Number 444 - data transfer errors;

Error Number 555 - other interpreted errors and

system errors.

15



7.8 Geometry and Boundary Conditions.

The one dimensional geometries available are the slab,
infinitely high cylinder,  and sphere. The two dimensional
geometries include X-Y,‘R~Z, Theta-R, equilateral triangle, T, and
equilateral hexagon, H. Three dimensional geometries include
X-Y¥-Z2, Theta-R-2Z, T-Z, and H-Z. Left boundary conditions include
zero flux, reflected, extrapolated, and repeating. Right boundary
conditions are zero flux, reflected, extrapolated, repeating, and
rotational symmetry conditions. For multidimensional problens,
additional column and plane boundary conditions must be specified,

the latter required for three dimensional problems.

VENTURE allows for some special boundary conditions. These
include 90° and 180° rotational symmetry for slab and rectangular
geometries, and 120° and 60° rotational symmetry for corresponding
triangular coordinates. Rotations are keyed to the right hand or
third side of these geometries. See reference [5] for additional

details.

16



7.10 Types of Problems Solved.

VENTURE can solve the following types of neutronics problens:

1

2

~J

Usual Eigenvalue Problem.

Fixed Source Problem

Adjoint Flux Problem

Direct Buckling Search

Direct Reciprocal Velocity Search
Direct Nuclide Concentration Search

Indirect Searches - Concentrations and Dimensions

7.11 Iteration Procedures.

Solutions to eigenvalue and search problems are done through

the usual inner-outer iteration procedures. Overrelaxation is

applied to speed convergence. Chebyshev polynomials are utilized to

obtain overrelaxation coefficients. The eigenvalue is estimated

after each outer iteration as the ratio of the total production

rate to loss rate. A very detailed discussion of the rather

complicated acceleration techniques utilized in VENTURE is given in

reference

[5].

17



i

7.12 Perturbation Calculations.

VENTURE provides information associated with perturbation
calculations. Given forward and adjoint flux solutions, the
derivative of Kk, with respect to each zone cross section and
diffusion constant are calculated and edited on option. The zone
integrals of volume times the product of the flux and its adjoint
are written on an interface data file for future use. Pointwise
importance maps of Qz,, %.,, and their differences are edited. In
addition, the change in k.., produced by 100% changes 1in cross
section are calculated. Also, the effect of uncertainties in cross

section are generated.

7.13 The Uncommon Reactor Core Neutronics Problem.

For stability studies, the dominant higher harmonic solution
is needed. A procedure has been implemented in VENTURE to remove
the fundamantal contribution to the iterated solution after each
outer iteration, leaving the dominant higher harmonic. This can be
done for both forward and adjoint distributions. See reference [7]
for additional details.

7.14 Space-~Enerqgy Rebalance.

Space~energy rebalance has been incorporated as an option for
accelerating outer iteration convergence. It can be applied to one
dimensional slab (X), cylindrical (R), or spherical (R) geometry;
two dimensional X-Y or cylindrical R-Z geometry; and three
dimensional X-Y~-Z geometry. Rebalance cannot be applied to problems

with internal black absorbers, or zone dependent fission spectra.

18



Problems applying rebalance must be run in the '"space stored" mode.
additional information on rebalance is given in reference [7].
7.15 Adjustable Diffusion Coefficients.

The diffusion coefficients can be adjusted in all zones as
follows:

D/, = @, + @,Dg,,

where o, and a,lare input values, and Dy, is the calculated
diffusion coefficient for group K and zone 2. This may be applied,
e.g., if data is available on the increase in diffusion coefficient

produced by heterogeneity.

7.16 Equilibrium Xenon.

Eguilibrium Xenon concentration bas been programmed into
VENTURE, and may be used on option. The effects of equilibrium
Xenon can then be evaluated without the need to use the small
exposure time steps required to build Xenon to its equilibrium
value. This saves computer time and money. Reference [7] has

additional information associated with equilibrium Xenon.

19



7.17 Temperature Correlation.

VENTURE and EXPOSURE include a temperature correlation for
microscopic cross sections, so that temperature effects on
reactivity can be evaluated. This requires two sets of microscopic
cross sections at each of two reference temperatures. The

correlation is as follows:

tan™ [ a(T-T,)/(T,~T:)]
o(T) = o(T,) + [0(T2)=0(Ty) ]
tan™(a)

where a and the reference temperatures T,and T, must be given.

8. EXPOSURE Code Module.

The code module for exposure calculations is the BURNER
code [8]. Input for the EXPOSURE module is accomplished by
generating the EXPINS record on the CONTRL file, and the standard
interface file EXPOSE generated by the Input Processor. The EXPINS
record and the Standard Interface File EXPOSE are given in the SIF
Handbook.

Three techniques are used to solve the burnup equations:
the matrix exponential method, the average generation rate method,
and the explicit chain equation method. The methods differ by the
numerical approximation techniques used to solve the coupled burnup
equations. The average generation rate method uses the average
precursor concentration over the time step in the precursor
generation or production term. The matrix exponential method arises
from expanding the exponentials in the solutions of the first order
differential equations associated with burnup. The expansion order

is carried out to the number of isotopes in the chain, in order to

20



account for all the nuclide couplings in the chain. The explicit
chain equation method directly evaluates the solutions of the
burnup equations for simple chain coupling, without making
numerical approximations.

The matrix exponential method is recommended for complicated
couplings in the nuclide chain, while the average generation method
is recommended for simple chains. The full matrix exponential
method requires about three or more times the computation when
compared to the average generation method. The explicit chain
method requires the most computational effort.

The BURNER code uses zone dependent fluxes and cross sections,
so burnup as a function of core position can be evaluated.

A flow diagram for the BURNER code is shown in Figure 6. The
subroutine listing for the code is given in Appendix III. The
standard interface files associated with BURNER are shown in Figure
7. The primary zone exposure calculations require the availability
of the following files: CONTRL; NDXSRF; GRUPXS; EXPOSE; RZFLUX; and

ZNATDN.

21



ENTER

ACCESS KEY INFORMATION FROM INTERFACE FILES
———ALLOCATE STORAGE, SELECT INPUT/OUTPUT
PREPARATORY PROCESS INTERFACE DATA
SELECTIVE DOCUMENT EDITS

———CALCULATE SPECIFIC REACTION AS NEEDED

CALCULATE EXPOSURE (see inset)

LOOP OVER ZONES, SUBZONES
RENORMALIZE POWER LEVEL
SPECIAL EDITS

LOOP OVER EXPOSURE TIME STEPS
EDITS, WRITE INTERFACE FILES

CALCULATE SHUTDOWN (see inset)

LOOP OVER ZONES, SUBZONES

r—————SPECIAL EDITS

LOOP OVER SHUTDOWN TIMESTEPS

EDIT RESULTS, WRITE INTERFACE FILES

RETURN FOR FINE SCALE, POINTWISE CALCULATION
EDITS, WRITE INTERFACE FILES

EXIT

MATRIX EXPONENTIAL

AVERAGE GENERATION RATE

EXPLICIT CHAIN
(all or supplemental)

INSET

Figure 6. User Flow Diagram of BURNER Module
from ref. 8)

22



CONTRL

NDXSRF

GRUPXS

EXPOSE
RZFLUX

ZNATDN
PTATDN
EXPOHT

ZNTEMP
QNATDN

ZNPOWD

GEODST

RTFLUX

External Data Files Addressed in BURNER

(read only)

(read only)

(read only)

(read only)
(read only)

(read/write)
(read/write)
(read/write)

(read only)
(write only)

(write only)

(read only)

(read ohly

Ingtruction records EXPINS, DVRINS,
and PROINS

Nuclide referencing data and
gggélde concentration assignment

Microscopic cross section data-group
orderead

Basic exposure data
Zone average flux -~ also flux values

t selected points for a geometr
?ndg endent P calculatiog (i%
modified)

Nuclide concentrations (zone and
subzone)

Nu¢lide concentrations (at selected
points)

Continuously updated integrals of
exposure conditions

Temperature data (zone and subzone)

Nuclide concentrations leaving the
zones and subzones for the
continuocus fueling model (same form
as ZNATDN) .

Power density data (zone and
subzorne)
Zone class data, - also conplete

geometry processing for a geometr
e egdent calculation at sSelecte
points

Regular total flux - for a geometr
dependent calculation at Selecte
points

Figure 7. Interface Files Requ%red by BURNER code

(from ref. '8

23



PART 11. DESCRIPTION OF INPUT FOR VENTURE/PC
9. Input Structure.

The input consists of two main sections, i.e, the cControl
Module section and the Input Processor section. The input blocks
assoclated with each input section begins with a header card, which
contains the name of the input section, and terminates with an END
card. An example of the input structure is shown in Figure 8. The
first input section is always associated with the Control Module,
which must be called first by the Driver to initialize the catalog
file and the interface file CONTRL. The CONTRL file is referenced
by all the modules for control information. The first card of the
Control Module data contains an equal sign followed by the name of
the Control Module, in this case "=CONTROL1l", since CONTROLl1l is the
present name assigned to the Control Module. The Control Module
input is formatted, so care must be used in placing the input data.
The next input section is that of the Input Processor. The Input
Processor will write standard interface files from free format card
image or ASCII files written to comply with the standard CCcCC file
structure. A "STOP" card exists before the "END" card of the Input

Processor.

24



=CONTROLL

CONTROL MODULE DATA

END
INPUT PROCESSOR

INPUT PROCESSOR DATA

STOP
END

Figure 8. Example of Input Structure

25



10. Control Module Input.
The user input instructions for the initial block of

data on the input file associated with the Control Module is shown
in Pigure 9. The name of the present version of the Control module
as developed at Los Alamos [4] is "CONTROL1" and must be on card 1
following an equal sign. This input is automatically inserted by
the interactive input processor, VIP, supplied with the code, and
is therefore not required when the interactive input processor is

utilized to generate an input file.

10.1 Memory Allocation

After the title card, the first record on the third card (or
record) is the memory allocation for the data of the problem. The
maximum data memory that can be accommodated for the PC version of
VENTURE is 36000 words (or 144000 bytes), and this is the default
value used in VIP for running the code. Smaller memory allocations
can be used, but not higher, since, otherwise, the 640K memory
limit of DOS would be exceeded. IT IS ADVANTAGEOUS TO USE THE
MAXIMUM MEMORY ALLOWABLE, since then if the problem dimensions
permit, flux files used for iteration will be written as arrays in
core. In addition, if there is still sufficient memory, source and
other data files will be contained in core. The use of core for
data storage and retrieval, significantly speeds the iteration
process, as compared to disk storage and retrieval. There are

times, however, when reducing the data storage allocation will help

26



run a problem that may not run with the maximum data storage. This
is a result of the dependence of the data handling mode on the
storage allocation. The data handling mode determines whether data
ils stored in memory or on disk, and, therefore, changes with the
data memory allocation. Some problems may not run with the data
handling mode associated with the maximum storage allocation. As an
example, direct access file records may be larger than the Lahey
compiler allows (i.e., 32 kilobytes) with the data handling mode
associated with the maximum storage allocation, but these record
lengths would be less than the maximum with a data handling mode
associated with a smaller storage allocation. Thus, if a problem
doesn’t run with the maximum storage allocation, adjusting the
allocation to a lower value which changes the data handling mode
may help.

For application to computers other than those limited by the
640K DOS limit, core storage can be increased by increasing the
dimension of the data container array, designated by "a", in the
FORTRAN of the DRIVER module. This container array is presently
dimensioned at 36000 words. For larger core computers, increasing
this dimension will allow larger problems to run within core, and
greatly speed convergence. Of course, recompilation would be

necessary to change the container array dimension.

The parameter IP7 in columns 37 to 42 on record 3 must be set

greater than zero if an interface data file is to be used as input.

27



In particular, if an interface data file such as an ISOTXS or
GRUPXS file is to be input, IP7 must be set to 1 or highér. This
option would be used, for example, if a GRUPXS file was generated
in a previous run, and is to be used in the present run. The names
of the interface files to be used as input are given by the
parameter H(I) on record 5. Fach interface file has a 6 letter
name, and is stored as a double word containing 8 bytes, i.e., as
REAL*8.
0. ti t

The calculational path is defined by the sequence of numbers
on the next, or fourth record. This sequence is associated with the
numbers assigned to the modules on Figure 1. This data record
defining the calculational path is crucial for the proper operation
of the modules in the code, and must be constructed with care and
a good understanding of how the modules interact with each other.
Interface files must be available to the modules as required when

they are called.



Wil

10.4 Machine Dependent and Miscellaneous Data.

Data associated with processor time is not applicable to
VENTURE/PC, sirnice such data is machine dependent, and is designed
for an IBM mainframe installation. Default values of zero should be
used for such input, as IP5 on record 3. Several data locations
have been reserved by the originators of BOLD VENTURE for future

use, and should be left blank or assigned a zero value.

29



RECORD COLUMNS
NUMBER (FORMAT)

1 1

1 2-9

2 (12A6)

3 1-6

3 7-12

3 13-18

3 19-24

3 25-30

3 31-36

3 37-42

3 43-48

3 49-54

3 55-57

3 58~60

REFERENCE TYPICAL
NAME ENTRY
CONTROL1
TITLE
IP1 36000
IP2 0
IP3 0
IP4 0
IPS 0
IP6 0
IP7
IP8
IP9
IP10 0
IP11 0

USE

PRECEDES CONTROL MODULE
NAME.

CONTROL MODULE NAME

THE RUN TITLE CARD
PRIMARY MEMORY ALLOCATION
FOR DATA (NOTE: 36000 CAN
BE USED FOR ALL PROBLEMS
PROVIDED 640K OF MEMORY IS
AVAILABLE.)

RESERVED

RESERVED

NA

NA

NA

ADDITIONAL INPUT IS
INCLUDED TO PRESENT
INTERFACE DATA FILE
INFORMATION, IF > 0

A MODULAR NUMBER. DATA
FILES WILL BE SAVED
AFTER EACH ACCESS OF
MODULE NUMBERED IP8

RESERVED

FIGURE 9. USER INPUT INSTRUCTIONS TO CONTROL MODULE CONTROL1

30



ool s " i [l i " v ' ' ' o b I

RECORD COLUMNS  REFERENCE TYPICAL USE
NUMBER (FORMAT) _ NAME ENTRY

3 61~63 IP12 1 INITIALIZE INTERFACE DATA
FILE TABLE INITIALIZATION
OPTION

0 - USE SEEK DEFAULT
TABLE (SETS UP 15
INCLUDING CONTRL
AS THE FIRST)®

> 0 = SET UP THIS MANY
FROM THE LIST OF
WHICH CONTRL IS THE
FIRST

3 64-66 IP13 0 OPTION ON REINITIALIZATION
OF INTERFACE DATA FILE
TABLES FOR ANY SUBSEQUENT
ACCESS OF THE INPUT
PROCESSOR AFTER THE FIRST
0 - NO ACTION (LEAVE AS
ISs)
> 0 = RETAIN THIS MANY
(PLUS CONTRL)

3 67~69 IP14 0 EDIT LEVEL FOR CONTROL
MODULE PRIMARILY FOR
DEBUGGING IF > 0

3 70-72 IP15 0 FRIMARY TERMINATION
OPTIONS

4 (2413) IM(I) STRING OF INTEGERS PRESENTING
THE CODE MODULE NUMBERS TO DEFINE
THE CALCULATIONAL PATH, TERMINATING
WITH A BLANK ENTRY. A LOOP OVER A
SUBSTRING OF TWO OR MORE CODE
MODULES IS DEFINED BY A NEGATIVE
NUMBER WHICH IS THE NUMBER OF
PREVIOUS ENTRIES INCLUDED IN THE
LOOP, AND THE NEXT ENTRY IS THE
NUMBER OF PASSES THROUGH THE LOOP.

FIGURE 9. USER INPUT INSTRUCTIONS TO CONTROL MODULE CONTROL1l (cont.)

31



(9(2X,A6)) H(I) THIS IS A STRING OF INTERFACE
DATA FILE NAMES. TERMINATION OF
EACH SET OF NAMES IS WITH A

BLANK 8 COLUMN FIELD, OR AN ENTRY

"X" IN THE LAST COLUMN OF A
SEPARATED 8 COLUMN FIELD. THIS
PROVIDES NAMES OF FILES MADE
AVAILABLE FROM A PREVIOUS RUN.®

(A3) END NORMAL DATA BLOCK TERMINATOR.

* These files are CONTRL(10), GRUPXS(1l), GEODST(12), NDXSRF(13),
ZNATDN(14), SEARCH(15), RSTRTR(16), RTFLUX(17), ATFLUX(18),
RZFLUX(19), PWDINT(20), CXSPRR(30), ISOTXS(31), ISOTXS(32),
FIXSRC(33). The numbers in parenthesis are the logical unit numbers
assigried to the files. The two ISOTXS files are required for the
application of temperature effects.

¢ IP12 should be 1. Assignment of unit numbers is in increasing
order beginning with unit 11.

FIGURE 9. USER INPUT INSTRUCTIONS TO CONTROL MODULE CONTROL1
(cont.)

32



0.5 ample of Input for Control Module.

An example of input for the Control Module is shown in
Figure 10. The memory allocated for data in this problem is 15000
words. The "1" on card 3 in column 63 indicates that only one
initial entry will be made on the catalog file, that entry
associated with the file CONTRL, which must always be available.
The sequence of numbers on card 4 indicate the order of the modules
to be accessed. The numbers are associated with the module number
assignments on Figure 1. For this problem, the Input Processor,
designated number 1, will be accessed first. The VENTURE code is
labeled number 7, is then called. The Input Processor must generate
all of the standard interface files required by the VENTURE
neutronics module. The final "0" on card 4 indicates that no

additional modules will be called.

33



=CONTROL1

TWO DIMENSIONAL, NON SEPARABLE WATER REACTOR PROBLEM

15000 0 0 0 0 0 0 0 0001000
170

END

Figure 10. Example of Input to Control Module

34



11. Input for Input Processor.

After the Control Module input is processed, additional input
must be available for the Input Processor. The primary function of
the Input Processor is to create interface files entirely from card
input. The card input follows a structure similar to the structure
associated with the interface files themselves, ahd uses free
format. Blanks are recommended between data entries, but other than
that the data can reside anywhere on a record or card. See the
Standardllnterface File Handbook for details associated with using

the Input Processor to generate input data.

12. Standard Interface Files Required by Modules.

The standard interface files required by the various
modules are shown in Figure 11. Figure 11 is an extremely
important figure for the proper understanding of input to
VENTURE/PC. It shows the necessary control records on the file
CONTRL, and indicates which standard interface files are required
to run the various modules, and which files may be written by the
various modules. Thus, this figure contains invaluable information
associated with setting up a calculational pathway. Figure 11
should be referred to when determining VENTURE/PC input.

The first Standard Interface File produced by the Input
Processor must be the CONTRL file. The Control Module requires the
PROINS and DVRINS records on the CONTRL file jin that order, and
these records must be the first records written on the CONTRL File.
Refer to the Standard Interface File Handbook for details of the
CONTRL file and the records for this file. The PROINS and DVRINS:

35



records are global in nature, and are required for all runs with
VENTURE/PC. Additional records which are problem dependent must be
| placed on the CONTRL file. If the Cross Section Procesor 1is
required, the XCPINS record must be written on the CONTRL File. The
DTNINS record is required to run the VENTURE neutronics module, so
would be required for all neutronics problems. If an exposure or
burnup problem is to be run, the EXPINS record is required for the
BURNER module. After the PROINS and DVRINS records, the other
records can appear in any order on the CONTRL file.

Additional Standard Interface Files are required by the Cross
Section Processor, VENTURE neutronics module, and the Exposure
Module. If the Cross Section Processor reads CITATION microscopic
cross sections, or updates existing ISOTXS files, or merges ISOTXS
files, or is used to create mixtures, the CXSPRR Standard Interface
File (SIF) is required (see Figure 1). If, on the other hand, the
Cross Section Processor is used only to edit an existing ISOTXS
file, or convert an existing ISOTXS file to a GRUPXS file, or edit
a GRUPXS file, the CXSPRR SIF is not necessary.

In addition to the control information given on the DTNINS
record for VENTURE, other important information must be made
available to run a multigroup diffusion code like VENTURE. all
cross sections must be in group ordered form, so a GRUPXS file is
required. The geometry must be specified, the mesh spacing set up,
and the boundary conditions must be given. Thus, a GEODST SIF is
necessary. Cross sections must be identifisd and assigned to
mixtures, and mnmixtures must be asigned +to =zones. This is
accomplished through the NDXSRF SIF. In addition, the atomic

36



densities of the isotopes in mixtures assigned to zones must be

given. Thus a ZNATDN SIF is required for VENTURE. The manner in

which number densities of isotopes are calculated for VENTURE is
discussed in section VII of the SIF Handbook.

| If a burnup problem is run, in additiion to the EXPINS record

on the CONTRL file, the EXPOSE SIF must be made available to the

BURNER module. This is in addition to other SIF's prodﬁced by

VENTURE, which is run prior to BURNER.

37



Module No. Name of Required Required Written Ref.

Record in on on
File CONTRL Option Option
CONTROL PROINS (any) (any) 1
DVRINS
INPUT 1 (any) (any) 1,8
PROCESSOR
CROSS 6 XCPINS IS0TXS GRUPXS GRUPXS 2
SECTION CXSPRR 1S0TXS
PROCESSOR
VENTURE 7 DTNINS GEODST RTFLUX RTFLUX" 2
NEUTRONICS NDXSRF ATFLUX ATFLUX
ZNATDN RZFLUX RZFLUX
GRUPXS FIXSRC FIXSRC
RSTRTR RSTRTR
SEARCH PWDINT
ZNTEMP PERTUB
FISSOR
ZNPOWD
GEODST
EXPOSURE 13 EXPINS EXPOSE PTATDN PTATDN
NDXSRF ZNTEMP QNATDN
ZNATDN GEODST® ZNATDN
GRUPXS TRIGOM" ZNPOWD
RZFLUX EXPOHT EXPOHT*
CFHIST CFHIST®

RTFLUX

*May be created if it does not exist
"Will be used if it exists

Figure 11. Module Control Records and Interface Files
(From ref. 1)

38



13. Some Examples of Input Structure.

Examples of input structure, including the structure for the
sample problems [9], will be given in a format which will provide
the calculational path given in the Control Module input, and the
Standard Interface Flles and control records generated by the Input
Processor. The details of the files can be examined by viewing the
sample problem input provided with the code package. From the point
of view of learning the input, however, it 1is best to give and
explain the basic structure without the file details.

13.1 NEW2DXY.INP -~ The input structure for the revised two
dimensional X-~Y problem is shown in Figure 12. The Control Module
input indicates that the Input Processor is to be called first,
followed by the VENTURE neutronics module. This is indicated by the
calling sequence 1 7 0 in the Control Module data, where the "o"
indicates the end of the problem. These numbers correspond with the
module numbers given on Figure 1. The Input Processor must generate
all the files required by the VENTURE neutronics module for this
problem. The control records on the Standard Interface File CONTRL
are generated first. All of these records are considered to be 1D
Records. The PROINS record is always given first, and always
followed by the DVRINS record. The DTNINS record provides the
control information for the VENTURE neutronics module and follows
the other two records which are used for global information. The
CONTRL file always ends with a blank record designated by 6 blanks
between asterisks. VENTURE needs the following additional SIF’s to
proceed with the calculation: GRUPXS for cross sections; GEODST for
geometry specifications; NDXSRF for cross section referencing; and

39



ZNATDN for zone atomlc densitles. These are all developed through
the Input Processor.

The Input Processor always concludes data
input with a STOP card followed by an END card.

40

ne



=CONTROL1

TWO DIMENSIONAL, NON SEPARABLE WATER REACTOR PROBLEM
36000

L 7 0

END

INPUT PROCESSOR

0V CONTRL

1D PROINS

1D DVRINS

1D DTNINS

1D * * 0.0 100R 0 100R
0V GRUPXS

OV GEODST

OV NDXSRF

0V ZNATDN

STOP

END

Figure 12. Input Structure for Two Dimensional X-Y Problem.

41



13.2 NEWBWR.INP - The input structure for the revised BWR assembly
X-Y analyses is shown in Figure 13. This data combines the 12 X 12
and 24 X 24 cases glven separately in previous versions of
VENTURE/PC. The Control Module indicates the following sequence for
calling modules: 1 6 7 1 7 0. Thus, the Input Processor (1) 1is
called first, followed by the Cross Section Processor (6), and the
VENTURE neutronics module (7). These are followed by the Input
Processor (1) and VENTURE module (7) to run the second problen.
CITATION cross sections were used for this problem. The CITATION
cross sections must be prbcessed by the separate DCMACR code to
convert macroscopic cross sections to microscopic and write them on
unit 8. The DCMACR processing must be done on the samo subdirectory
as the VENTURE code.

The control records are generated on the CONTRL file by the
Input Processor. These include, as always, the global records
PROINS and DVRINS in that order. The XCPINS control record is
required for this problem, since the Cross section Processor is
used to process the CITATION cross sections and convert them to
GRUPXS form. Then, of course, the DTNINS file is required to run
the VENTURE module. *

The CXSPRR Standard interface file is also necessary for this '
problem, since CITATION cross sections are processed.

In addition to cross sections, VENTURE also needs the GEODST,
NDXSRF and ZNATDN files.

The same cross sections are used for the second problem, but
different GEODST, NDXSRF and ZNATDN files are required. Thus, the
Input Processor is rerun to generate the new files.

42



Wy o

=CONTROL1

36000

1

6 7 1

END

INPUT

ov
1D
1D
1D
1D
1D
ov
ov
ov
ov

CONTRL
PROINS
DVRINS
XCPINS
DTNINS
* *
CXSPRR
GEODST
NDXSRF
ZNATDN

STOP
END
INPUT PROCESSOR

ov
ov
ov

GEODST
NDXSRF
ZNATDN

STOP
END

Figure 13.

0

PROCESSOR

Input Structure for BWR Assembly Sample Problems.

43



13.3 Three Theta-R Cases - The input for three theta-R cases run in

succession is shown in Figure 14. The calling sequence is 1 6 7 1
7 1 7 0, indicating that the Input Processor is called first,
followed by the Cross Section Processor and the VENTURE neutronics
module, which completes the first problem. The remaining two
problems require the Input Processor and VENTURE module in that
order called twice, once for each problen.

This problem also uses CITATION cross sections. The Input
Processor first writes the necessary records on the CONTRL file.
These include: PROINS, DVRINS, XCPINS and DTNINS, as in the
previous problem. The CXSPRR Standard Interface File must be
written for the Cross Section Processor to convert CITATION cross
sections for use by VENTURE. The GEODST, NDXSRF and ZNATDN files
must be written for VENTURE. The Input Processor is called twice
more, in between calls to VENTURE, to write‘new GEODST, NDXSRF and

ZNATDN files to run the remaining two problems.

44



el

=CONTROL1

36000

1 6 7 1 7 1 7 0
END

INPUT PROCESSOR
0V CONTRL

1D PROINS

1D DVRINS

1D XCPINS

1D DTNINS

1D * *

0OV CXSPRR

0V GEODST

OV NDXSRF

OV ZNATDN

STOP

END

INPUT PROCESSOR
OV GEODST

OV NDXSRF

0V ZNATDN

STOP

END

INPUT PROCESSOR
0V GEODST

OV NDXSRF

0V ZNATDN

STOP

END

INPUT PROCESSOR
OV EXPOSE

STOP

END

Figure 14. Input Structure for Three Theta-R Problens.

45



T

13.4 Exposure Problem. - An input structure for an exposure problem
is shown in Figure 15. In this problem the calling sequence is:

16 17 13 7 13 7 13 7 0. The Input Processor (1) is called to
write the CONTRL file, followed by the Cross Section Processor (6)
required to convert an ISOTXS file to a GRUPXS file, followed by
the Input processor again to write the EXPOSE Standard Interface
File required by the BURNER module, followed by the VENTURE (7)
neutronics module which calculates the flux for the BURNER module
(13) and the initial burnup stép, afterwhich The VENTURE and BURNER
modules are alternated for the number of burnup steps desired (3 in
the example shown). The Input Processor first writes the PROINS and
DVRINS control records which are always required. It then writes
the XCPINS record for the Cross Sectioﬁ Processor, the DTNINS
record for the VENTURE module, and the EXPINS record for the BURNER
module. It also writes the ISOTXS file which is converted by the
Cross Section Processor to a GRUPXS file, and the three additional
Standard interface Files required by VENTURE, i.e., the GEODST,
NDXSRF, and the ZNATDN files. In addition, it is called again to

write the EXPOSE file required to run the BURNER module.

46



=CONTROLL1
REFERENCE CALCULATION FOR DPT SAMPLE PROBLEMS
36000

1 ¢ 1 7 13 7 13 7 13 7 O
END

INPUT PROCESSOR
OV CONTROL

1D PROINS

1D DVRINS

1D XCPINS

1D DTNINS

1D EXPINS

1D * *

0V ISOTXS

OV GEODST

OV NDXSRF

OV ZNATDN

STOP

END

INPUT PROCESSOR
OV EXPOSE

STOP

END

Figure 15. Input Structure for an Exposure Problem.

47



13.5 Using Standard Interface Files on Input.

If Standard Interface Files are available on the VENTURE
subdirectory, they can be used directly without using the Input
Processor to generate them. This is accomplished through the
Control Module} as previously explained (Section 10.2). An example
for running a VENTURE problem with all of the necessary SIF'’s
available, i.e., GRUPXS, GEODST, NDXSRF and ZNATDN is shown in

Figure 16.

48



=CONTROL1

EXAMPLE OF VENTURE RUN WITH NECESSARY INTERFACE FILES AVAILABLE
36000

1 1
7 O

GRUPXS GEODST NDXSRF ZNATDN X
END

Figure 16. Example of Input with Standard Interface Files

49



14. Relocating Fuel Bundles.

In version 2 of VENTURE/PC, the special processor DENMAN was
used to change mixtures assigned tc zones or subzones, and to
change nuclide concentrations, which in effect could be used to
simulate core bundle reshuffling. In version 3, however, all
special processors have been removed, including DENMAN. Fuel
reshuffling can be simulated, however, by using the Input Processor

to overlay and change the NDXSRF and ZNATDN standard interface

files.
15. Data Transfer, File Management and Input-Output.

Data transfer and file management are accomplished with
standardized routines which are used by all code modules and
subroutines.

15.1 Standardized Routines.

The standardized subroutines and their functions are:

REED - Transfers data from disk to memory.

RITE ~ Transfers data from memory to disk.

DOPC - Basic input-output management. Opens and closes
files, and differentiates between sequential and
direct access files. Only scratch files can use
direct access. Direct Access Files cannot be named
with the Lahey compiler used.

SEEK -~ Maintains file catalog, keeping track of file
name, unit number, and version number.

Subroutines often call SEEK to establish the
unit number for a given file.

50



5 ut_a t e

The input to run a given problem must be on a file named
VENTURE.INP, which is assigned unit number one. The Driver
overwrites the input for the various modules, i.e., the ihput
between the header card and END card, on unit 5, and all data is
read from this wunit. This file on unit 5 has been named
VENTURE.TMP. All output is written on unit 6, in the file labeled
VENTURE.OUT, so the output can be read by editing this file. The
output is quite extensive, so the VENTURE.OUT file should be edited
prior to printing. A condensed output file is written on unit 99,
which provides file management and data access information. This
file has been labeled CONDENSE.OUT.

15.3 Saving of Standard Interface Files.

The standard interface files generated during a run are saved
with their name, so they may be used in subsequent runs. These
include, with their usual unit number assignments:

CONTRL - Unit 10

GRUPXS - Unit 11

GEODST - Unit 12

NDXSRF - Unit 13

ZNATDN - Unit 14

SEARCH - Unit 15

RSTRTR - Unit 16

RTFLUX - Unit 17

ATFLUX - Unit 18
RZFLUX - Unit 19
PWDINT - Unit 20



CXSPRR = Unit 30

ISOTXS -~ Unit 31

ISOTXS(2) - Unit 32

FIXSRC -~ Unit 33
15.4 Scratch and Direct Access Files.

Other files which are generated during a run are named VENTNO,
where the NO is the unit number of the file. Thus, VENT36 is a file
generated during the run on unit 36. These files are deleted at the
end of a successful run, but will appear on the disk in the case of
an aborted run. Direct access files are not saved.

The general assignment of files is as follows:

Unit 09 - catalog File

Unit 10 - CONTRL file

Units 21-29 and 40-69 - Scratch files

Units 10-20 and 30-39 and 70 - 97 - Standard

Interface Files

Unit 98 - Control module instructions
15.5 Saving of Standard Interface File in Text Format.

If the selection was made to save results as formatted data
(see parameter IX(60) of DTNINS input), the results will be on a

file named STFILE.TXT, for Standard Files in text format.

52



16. Correspondence Between DVENTR and DININS.

The control information for the VENTURE neutronics code could
be input through the special processor DVENTR in version 2 of
VENTURE/PC. The same information is included in the DTNINS control
record, and 1is input through this record in version 3 of
VENTURE/PC. The correspondence between the input parameters in

DVENTR and DTNINS, taken from reference [l] is shown in Table 16.1.

53



Table 1l6.1 Correspondence Between DVENTR and DTNINS Parameters

DVENTR DTNINS DVENTR DTNINS DVENTR DTNINS
Input Record Input Record Input Record
Sec¢.001 Sec. 001 Sec. 001
RRX1 XX(1) IcX1 IX(4) IXEl IX(32)
RRX?2 XX(2) ICX2 IX(5) IXE2 IX(33)
RXX3 XX(3) ICX3 IX(10) IXE3 IX(35)
RXX4 XX(4) 1CcX4 IX(6) IXE4 IX(38)
RXX5 XX(5) 1CX5 IX(9) IXES5 IX(39)
RXX6 XX (6) I1CX6 IX(8) IXE6 IX(40)
RXX7 XX(14) I1CX7 IX(2) IXE7 IX(41)
RXX8 XX(9) I1CX8 IX(26) IXES 1X(42)
RXX9 XX(10) ICX9 IX(23) IXE9 IX(37)
RXX10 XX(8) IcX1l0 IX(22) IXELO IX(31)
RXX11 XX(11) ICX11 IX(21) IXE1ll IX(29)
RXX12 XX(12) ICX12 IX(20) IXEL2 IX(30)
RXX13 XX(13) ICX13 IX(27) IXELl3 IX(61)
RXX14 XX(15) ICX14 IX(25) IXEl4 IX(62)
RXX15 XX(16) ICX15 IX(24) IXE15 1X(51)
RXX16 XX(7) ICX16 IX(12) IXEL6 IX(58)
RXX17 ICX17 IX(17) IXEL17 IX(53)
RXX13 IcX18 I1X(18) IXEl18 IX54
ICX19 IX(19) IXE19 IX(52)
ICX20 IX(16) TIXE20 NO
ICcX21 IX(13) IXE21 IX(81)
ICcX22 IX(14) IXE22 IX(45)
ICX23 IX(15) IXE23 IX(59)
1CX24 IX(70) IXE24 IX(60) |

54




Table 16.1 Correspondence Between DVENTR and DTNINS Parameters

(continued)

DVENTR DTNINS DVENTR DTNINS DVENTR DTNINS
Input Record Input Record Input Record

Sec. 002 Sec. 002 Sec. 002
RXXN1 XX(19) IXCN1 IX(11) IXENL IX(46)
RXXN2 XX(20) IXCN2 IX(7) IXEN2 IX(47)
RXXN3 XX(21) IXCN3 IX(74) IXEN3 IX(48)
RXXN4 XX(22) IXCN4 X(74) IXEN4 IX(55)
RXXNS5 XX(23) IXCN5 IX(75) IXENS IX(28)
RXXN6 XX(24) IXCN6 IX(76) IXENG6 IX(34)
RXXN7 XX(25) IXCN7 IX(77) IXEN7 IX(36)
RXXN8 XX(26) IXCNS8 X(78) IXENS IX(43)
RXXN9 XX(27) IXCN9 X(79) IXEN9 IX(44)
RXXN10 XX(28) IXCN10 X(80) IXEN10O IX(49)
RXXN11 XX(29) IXCN1l IXEN11 IX(50)
RXXN12 XX(30) IXCN12 IX(82) IXEN12 IX(56)
IXCN13 IX(83) IXEN13 IX(57)
IXCN14 IX(84) IXEN14 IX(63)
IXCN15 IX(85) IXEN15 IX(64)
IXCN16 IX(86) IXENLle IX(65)
IXCN17 IX(87) IXENL17 IX(66)
IXCN18 IX(88) IXENL1S8 IX(67)
IXCN19 IX(89) IXEN19 1X(68)
IXCN20 IX(90) IXEN20 1X(69)

IXCN21 IXEN21

IXCN22 IXEN22

IXCN23 IXEN23

IXCN24 IXEN24

DS S




17. Compiler and Overlay Structure for VENTURE Code.

The VENTURE/PC code modules were obtained from the BOLD
VENTURE code system by downloading ; the source flles from a
mainframe tape to a PC via modem. The source codes were edited, and
the subroutines extracted and combined with the BRIEF PC Editor
(10], and compiled with the Lahey Fortran 77 compiler [11].

The executable file for VENTURE/PC requires 3 million
bytes, so cannot be run within the 640K of DOS without overlay. The
PHOENIX86 Plus [12) overlay linker was used to reduce the size of
the runtime code to about 540K. This overlay linker allows for
several levels of overlay. The overlay structure is such that only
subroutines which call each other, or depend on each other, are in
memory simultaneously, while the others reside on disk waiting to
be called. When they are called, they overlay the existing routines
in memory. In this manner, large codes can be run within memory
restrictions. The overlay structure for VENTURE, as taken from the
PLINK86 input, is shown in Figure 17. Files which are on the same
line in this figure, are in memory simultaneously. This is the case
for the DRIVER and VENTNEUT, for example, and for the subroutines
VENT and IONO. The DRIVER and VENTNEUT are in the root, and are
always in memory. Files which are in the same sections, but on
different lines, overlay one another in memory. Thus, CONTROL1 and
INPROSER do not reside in memory together, but overlay each other.
Sections which are indented, reside in another level of overlay,
and require their parent file in memory. Thus, in using the Input
Processor, INPROSER must be in memory along with the root files
DRIVER and VENTNEUT, but the files CGE, CIO, CGR etc., can overlay

56



1l

Wi

each other as they are called by INPROSER. Actually, the filé names
shown on the figure consist of more than one subroutine which were
compiled together, and which must be in memory together since they
call each other. The subroutines assigned to the various names of
Figure 17 are shown in Figure 18. Figure 18 can be.compéred with
Appendix II and III which define the subroutines for VENTURE and
BURNER, respectively.

In addition to overlaying code, the PLINK86 overlay linker
provides an option to overlay data segments [13]. When this option
was selected, the container array for data could be increased from
16000 words to 36000 words. This is a very significant increase,

and allows for much larger problems to be run.

57



OUT VENTURE
FILE DRIVER3,VENTNEUT
LIB F77L
LIB OVERLAY
OVERLAY F77LCODE,F77LDATA
BEGIN SECTION FILE CONTROL1
SECTION FILE INPROSER
BEGIN SECTION FILE CGE
SECTION FILE CIO
SECTION FILE CGR
SECTION FILE CIS
SECTION FILE CFX
SECTION FILE CCX
SECTION FILE CTF
SECTION FILE CRZ
SECTION FILE CDL
SECTION FILE CEX
SECTION FILE CZN
SECTION FILE CRF
END
SECTION FILE CROSPROS
BEGIN SECTION FILE ITI
SECTION FILE CTI
SECTION FILE M2I
SECTION FILE MIX
SECTION FILE IXS
SECTION FILE XSC
SECTION FILE GXS
END
SECTION FILE VENT,IONO
SECTION FILE SGX
SECTION FILE COR
SECTION FILE MAC
SECTION FILE COC
SECTION FILE ORL
SECTION FILE PHI
SECTION FILE COP
SECTION FILE COM
SECTION FILE OUT
BEGIN SECTION FILE MUE
SECTION FILE DOI
SECTION FILE FOl1
SECTION FILE FO2
SECTION FILE FO3
SECTION FILE FO4
SECTION FILE FO5
SECTION FILE FO6
SECTION FILE FOU
END

Figure 17. VENTURE Overlay Structure

58



SECTION FILE EDI,DARE
SECTION FILE SAV
SECTION FILE PER
BEGIN SECTION FILE PET
SECTION FILE JET
END
SECTION FILE EXPOSURE
BEGIN SECTION FILE BIN
SECTION FILE BZI
SECTION FILE BUR
BEGIN SECTION FILE OEX
BEGIN SECTION FILE OFI
SECTION FILE OMO
BEGIN SECTION FILE ZON
SECTION FILE PON
END
END
SECTION FILE OXP
BEGIN SECTION FILE EXH
SECTION FILE QXP
END
SECTION FILE EDE
SECTION FILE OOW
END
SECTION FILE FOL
SECTION FILE BPN
BEGIN SECTION FILE BPA
SECTION FILE BPB
SECTION FILE BPC
END
SECTION FILE PUR
END
END;

Figure 17. VENTURE Overlay Structure (Cont.)

59



SUBROUTINE COMBINATIONS USED FOR LINKING VENTURE/PC

CONTROL1l - CONTROL1, INTL, NORM, CFIL, DLET, PUTF, TABL,
WCTL. WRAP
DRIVER - GABY, FERR, RITE, SEEK, RCVI, STOR, SKER, PRTH,

PRTT, PRTI, PRTR, PRTD, CMPI, CMPH, CRIT, UROC,
CLOSFI, CSCRCLO

INPROSER - INPROSER, ABEL, CDINP, CAIN, KEEP, FBSAM, STOW,
INCHEK, INCHKD, ERMESG, GENRD, CDINPT, ERRMSG,
READHM, DCODNC, INTERP, REPEST, SETFMT

VENTNEUT - VENTNEUT, DIFF, DOPC

CGE - GGEODS, CNDXSR, CZNATD

CIO - CISOTX

CGR ~ CGRPXS

CIS - CISOGX

CFX - CFXSRC, CSEARCH, CSNCON

CCX - CCXSPR, CVENTR, CPRINT, CISOGR
CTF - CTFLUX, CCURNT, CAFLUX

CRZ ~ CRZFLUX, CPERTU, CPWDNT, CFISOR
CDL - CDLYXS, CBRKXS, CWORTH, CANSIN, CDACIN
CEX - CEXPOS, CZCONC, CRODST

CZN - CZNTMP, CZNPOW, CEXPOH, CPTATD

CRF - CRFUEL, CTRIGM

Figure 18. Subroutines in VENTURE/PC Overlay Structure

60



ITI - ITI1, ITI2

¢ctl - CTIl1, CTI2, CTI3, CHOL

M2I - M2Il1, M2I2

MIX - MIX1l, MIX2, MIX3, MIX4, MIXS5, MIXC
IXS - IXSl, IXsz2

XSC - XSCl, XSC2, XSC3, XSC4, XSC5_

GXS =~ GXS1, GXS2

INDVENTR - INDVENTR, INTL, INP1, VONT
GEM - GEOM, GOMN

REG - REGD

TREF - TRIF, HEXF

THK - THKD, VOLS, MSHP

KOM - KOMP, KMOT

OVL - OVLY, MOSH, OVLP

SSE - SSET
GOM -~ GOMA
DEN ~ DENS

GDN - GDNA
SES - SETS
SEA ~ SEAR
GMO - GOM1l, GOM2

Figure 18. Subroutines in VENTURE/PC Overlay Structure
(continued)

61



ZND ZND1, ZND2

NDR NDR1, NDR2

CTL - CTL1

VENT =~ VENT

IONO = IONO

SGX - SCGX0, SGX1, SGX2, SGX3, ScCAL_

COR - CORE, CORI, CORP, GNAM, CORD, CORB, DDSP, DASM, JPRT,
RBLA, RBLB

MAC - MACl, VZT2, MACA, MACB, MAC2, MAC3, MAC5, CHDM, MAC4,
MAC6, SERM

COC - CON1l, CON2, CON3, CKCT, CON4, CON5, CON7, CON9, GEOQ,
MSHO, NRCF, MSH1, MSH3

ORL - ORLX, ORLA, ORLB, ORLC, ORLD, ORLE, ORLF, LAXP, LAXR,
BATO, ORLR, CON6, RCOV

PHI - PHIA, PHIl, PHI2, PHI3, PHI4, PHI5, PHI6, EDBN, SDBN,
PHI7, TOIP, QDBN, RDBN, GRXP, PAN1l, PAN2

COP - ADN1l, ADN2, ADN3, DCID, DSDF, DIMS, DIM1, DIM2, CMES,
CHVL, ALDS, DIM3, ZVRV, CRGV, FLRD, FLMH

COM - COMC, LCAL, FLXR, FXSR, BSQV, AJNT, REV1, PROS, 2ZIO03,
FEFS, CORR, IFTD, ONES, TWOS, TRES, HST1l, HST2, HST3

OUT - OUTR, BALC, ZINS, CHBF, CHEV, RDAB, XTRP, JUSB, ATED,
FFGG, RDUE, RELX, PSOR, SSOR, FSOR, FLUX, LTRG, BHAV,

OELX, NEWB

MUE - MUEX, ETR1, ETR2, SGDA

DOL -~ DOIN, RRES, WRES, PREC

FOol - FOUl, sSOUl, POUl, INR1l, LOUl, LEK1

rog - FOU2, sOU2, POU2, INR2, LOU2, LEK2

FO3 - FOU3, SOU3, POU3, INR3, LOU3, LEK3, RBL1, RBL2, RBL3,
RBIL4, RBLS5

FO4 - FOU4, SOU4, POU4, INR4, LOU4, LEK4, QDUE, QELX, SOUX,

Figg;g418. Subroutines in VENTURE/PC Overlay Structure

(continued)

62



otk

- FOUS5, SOU5, POUS, INRS, LOUS, LEKS, J1C5

FOU6, SOU6, INR6, DELX

FOU - FOUX, SOUY, POUX, INRX, LOUX, LEKX, SOUZ, J1CX

SAV - SAV1, SAV2, SAV3, SAV4, SAV5, SAV6, SAV7

PER - PERO, RTUB, MRPT, QOUT, BBBl, BBB2, EASU

EDI - EDIT, POUT, NBAL, SOBL, FISS, FLXW, BSQS, PNDN, |
PTVL, PTZF, JINT, PND1, PND2, PND3, PND4, PNDS

DARE

PET - PERT, TUFY, LIFE, DAFA, MAPS, PMAP

JET - JERT, JUFY, JIFE, JAFA, JAPS, JMAP, JGET

THE NEXT SET OF SUBROUTINES ARE ASSOCIATED WITH EXPOSURE:

BIN - BINP, GNZC, BRN7, BRN4, BGXS, BZT1, BRNF, BRNW, 2JC2,
zZJCY, zIGY, EPFD, BRNX, HQUE, SKNU

BZI - BZIN, DEEF, CMOV, BRNS, BRN3, BRNZ, BRNT, BZT2, BRNA,
BRND, BRRF, PRRF

OFL - OFIX, BFIX

OEX - OEXP, POWL, ARRI, ZCRI, PARI, BRNO
BUR - BURN, BRNY, ZNAW, ZZPD, AUXE, TPNE
ZON - ZOND, Z%PF, ZONI, POWP

OMO - OMOV, BMOV

PON - PONI, PPOE, QNAW, QNAT

OXP - OXPH, CPHI, ECHK, ESET, FLUE

EXH - EXPH, REHT, CPH2, EPH2

QXP - QXPH, QPTD, QFLU, QEHT, CPH3, EPH3
EDE - EDEP, EDED, ETAB

OOW - OOWN, DOWN

Figure 18. Subroutines in VENTURE/PC Overlay Structure (cont.)

63



FOL - FOUL

PN - BPIN, PTNS

BPA - BPIA, PTAT, PGEO, GCHK, MSHK, VOLP, PLOC, PRN3, REOR,
CHEK, MSHO, MSH1, MSH3, NRCF

BPB - BPIB, ZFMP, ZFM3, ZFMV
BPC - BPIC, PRNZ, PRNT, PZT2, PRNA, PRND, BRPF, PRPF, PRNS

PUR - PURN, PRNY, PFIX, POWN, PNAW, PDST

Figure 18. Subroutines in VENTURE/PC Overlay Structure
(continued)

64



18. VENTURE/PC Interactive Processor, “VIP".

An interactive input processor 1s included with the
code. The processor, called VIP for VENTURE INTERACTIVE PRQCESSOR,
was written in FORTRAN and compiled with the Lahey FORTRAN~77
compiler, version 2.22. The processor is rather large, utilizing
about 900,000 bytes, and, therefore, required overlaying during the
linking process. The overlay structure for the VIP executable
program is shown in Figure 19.

The processor prompts the user for the input, and should
be reasonably self explanatory. Reviews of the input are provided

after each major section, at which point erroneous input can be

corrected.

65



ouT VIP

FILE VIP

LIB C:\LAHEY\F77L

LIB OVERLAY

OVERLAY F77LCODE,F77LDATA

BEGIN SECTION FILE CONTRLU,CONTRL2
SECTION FILE GRUPXS
SECTION FILE ISOTXS
SECTION FILE GEODST
SECTION FILE NDXSRF
SECTION FILE ZNATDN
SECTION FILE SEARCH
SECTION FILE EXPOSE

END;

Figure 19. VIP Overlay Structure

66



1. "BOLD VENTURE IV, A Reactor Analysis Code System, Version IV'",
RSIC Computer Code Collectlon, CCC-459, Radiation shilelding
Information Center, Oak Ridge National Laboratory, June, 1984,

This reference provides the extensions made to the previous version
of BOLD VENTURE. It also provides the updated input requirements.

2. R. Douglas 0’Dell, "Standard Interface Files and Procedures for
Reactor Physics Codes, Version 1IV", LA-6941-MS, Los Alamos
scientific Laboratory, September, 1977.

An excellent description of the purpose and format of Standard
Interface Files and DOE code standardization.

3. Bosher, G.E., 0Odell, R.D., Resnik, W.M, "LASIP-III, A
Generalized Processor for Standard Interface Files", LA-6280~MS,
Los Alamos Scilentific Laboratory, April, 1976.

A description and discussion of the Los Alamos Input Processor for
converting card image format to Standard Interface Files.

4. Vondy, D.R., Fowler, T.B., Cunningham, G.W., Petrie, L.M., "A
Computation System for Nuclear Reactor Core Analysis", 0Oak Ridge
National Laboratory, ORNL-5518, April, 1977.

A description of the system and codes used with VENTURE for nuclear
reactor core analysis.

5. Vondy, D.R., Fowler, T.B., Cunningham G.W., "VENTURE: A Code
Block for Solving Multigroup Neutronics Problems Applying the
Finite Difference Diffusion Theory Approximation <to Neutron
Transport, Version II", ORNL-5062/R1, Oak Ridge National Lab, Nov.
1977.

An earlier version of VENTURE, but the most definitive report on
the VENTURE neutronics module, providing a detailed account of the
theory and equations associated with the code.

6. Fowler, T.B., Vondy, D.R., Cunningham, G.W., "Nuclear Reactor
Core Analysis Code: CITATION", ORNL-TM-2496, Rev. 2, July, 1969
The precursor code to VENTURE.

7. Vondy, D.R., Fowler, T.B., Cunningham, G.W., "The Bold Venture
Computation System for Nuclear Reactor Core Analysis, Version III/,
Oak Ridge National Lab, ORNL-5711, June, 1981.

Essentially the same as reference 1, but given as an Oak Ridge
report rather than as a Computer Code Collection.

8. Vondy, D.R. and Cunningham, G.W., "Exposure Calculational Code
Module for Reactor Core Analysis: BURNER", ORNL-5180, Oak Ridge
National Lab., Feb. 1979.

A description of, and the theory used, in the BURNER code module
for isotope depletion and production.

67



9. Vondy, D.R. and Fowler T.B., "Reference Test Problems for the
VENTURE Neutronics and Related Computer Codes", ORNL/TM-5887,

Oak Ridge National Lab, August, 1977.

A listing with input for VENTURE sample problems.

10. "BRIEF, Basic Reconfigurable Interactive Editing Facility, Ver
2", Underware Inc., 84 Gainsborough St., Sulte 103W, Boston, Mass.,
02115,

An excellent PC Editor for code development and editing.

11. "F77L FORTRAN 77 Language System, Ver 2.22", Lahey Computer
Systems, Inc., P.O. Box 6091, Incline Village, Nv. 89450-6091,
(702)831-2500,

A very excellent FORTRAN compiler, providing rapid compilation and
running.

12. "PLINK86PLUS Overlay Linker, Ver 2.24", Phoenix Technclogles
Ltd, 320 Norwood Park South, Norwood MA. 02062 (800)344-7200.
A nmultilevel overlay linker for PC’s.

13. Nigg, D.W., INEL, EG&G Idaho Inc., Personal Communication

68



APPENDIX I

FORTRAN LISTING OF DRIVER



CDRIVER FORTRAN VERSION OF THE DRIVER

SHONONIROINONINO NSNS RS NS NONONSNONINONG NS

PRIMARY DATA USE BY THE DRIVER

IC(1) COUNT OF ACCESSES OF THE CONTROL MODULE,
SET 0 FOR SUBSEQUENT CASE, =1 FOR TERMINATION
IC(2) = IC(6) STOP RETURN NUMBERS ALLOWED FOR CODE MODULE ACCESSES
IC(7) TASK COMPLETION FLAG, DRIVER SETS ZERO IF SUCCESSFUL
IC(8) INSTRUCTION TO DRIVER TO TRANSFER USER INPUT DATA
SET TO 0 FOR SUCCESSFUL TRANSFER
IC(9) COUNT OF SUCCESSFUL CODE MODULE TASK COMPLETIONS
IC(10) RESERVED
AC(1) NAME OF CONTROL MODULE
AC(2)-AC(6) NAMES OF CODE MODULES TC BE ACCESSED
AC(7) RESERVED FOR FUTURE DRIVER CONTROL
AC(8) LATEST INPUT DATA HEADER (NAME OF SPECIAL PROCESSOR)
AC(9)~AC(10) RESERVED FOR FUTURE DRIVER CONTROL

PROGRAM DRIVER

REAL*8 AC,BLANK,CMODNM, C8,END

REAL*8 HNCTL,RCD

REAL*8 TITLE,FILEIN,FLN,GONOR,GLN,DDN,RSTKA,WSTKA ,RSTKB, WSTKB
LOGICAL LUNIT

REAL*8 MODNAM

INTEGER*2 IC,JP,JD

COMMON/MEM,/ MEMORY
COMMON/CDATA/ AC(40), IC(80), JB(72), JD(48)
COMMON/VCTRL,/ HNCTL,RCD(100),1CD(100)

COMMON /CINPT/TITLE(24),FILEIN(72),FLN(72,5),GONOR(100),GLN(72,5),
*DDN(103) ,RSTKA, WSTKA , RSTKB , WSTKB,

*NFLN(5) ,IX(15),1%(201),NZ(900),NE(72),NVR(72,5),MVERS(100),
*MEDUM(100) ,MMODD(100) ,NFNO , NMOD

DIMENSION A(36000)
DIMENSION C8(10)

DATA BLANK/’ y
DATA END/’/END’/
DATA EQ/’'='/

TOINP = 1
IOUT = 6

IOFIVE = 5§

OPEN(IOINP, FILE=’VENTURE.INP’,BLANK=‘ZERO’)
OPEN(IOUT, FILE=‘CONDENS.OUT’)

OPEN (IOFIVE, FILE='VENTURE.TMP" )
WRITE(IOUT,1000)

70



Line

INAME = 0
CALL VNAME( IOUT, INAME)

INAME = ]
DO 100 N = 1,40
IC(N) = 0

IC(N+40) = 0
AC(N) = B..ANK
100 CONTINUE
GO TO 103
101 CONTINUE
IC9 = IC(9)
DO 102 N = 1,10
IC(N) = 0
AC(N) = BLANK
102 CONTINUE
IC(9) = Ic9
103 CONTINUE
WRITE(IOUT,1005)

C READ CONTROL MODULE NAME
READ(IOINP,IOOI,END=115) X ,CMODNM
WRITE(IOUT,1006) CMODNM
IF(X.NE.EQ) GO TO 114
AC(1)= CMODNM
REWIND IOFIVE

a0

MEAD CONTROL MODULE DATA
10! CONTINUE

READ(IOINP,1004,END=113) C8

WRITE(IOUT,1005) C8

IF(C8(1).EQ.END) GO TO 105

WRITE(IOFIVE,1004) C8

GO TO 1n4
105 CONTINUE

ENDFILE IOFIVE

REWIND IOFIVE
106 CONTINUE

IC(1l) = IC(1)+1

IF(IC(1).EQ.1) CALL GABY(IP,ID,IC,AC)
C*******************************'k***************************************
C

c ACCESS CONTROL MODULE HERE USING THE OPERATING SYSTEM LOADER,
Cc COMMUNICATING THE COMMON DATA BLOCK CDATA.
Cc

'C***********************************************************************
IF(IC(1).LT.0) GO TO 111
IF(IC(1).EQ.0) GO TO 101
. IC8 = IC(8)
CALL VNAME(IOUT,INAME)
DO 400 IMD=1,NMOD
NZMOD = NZ(IMD)
IF(NZ(IMD).LT.3.) THEN

O

71



Q0

READ INPUT OR SPECIAL PROCESSOR NAME.
INQUIRE(UNIT=IOFIVE, OPENED=LUNIT)
IF(.NOT.LUNIT) OPEN(IOFIVE,FILE=/VENTURE.TMP’)
READ(IOINP,1004,END=110) C8

WRITE(IOUT,1005) C8

AC (8) = C8(1)

MODNAM = C8(1)

IF(IC8.EQ.2) AC(2) = C8(1)

REWIND IOFIVE

READ INPUT OR SPECIAL PROCESSOR DATA
107 CONTINUE
READ(IOINP,1004,END=110) C8
WRITE(IOUT,1005) C8
IF (C8(1).EQ.END) GO TO 108
WRITE(IOFIVE,1004) C8
GO TO 107
108 CONTINUE
ENDFILE IOFIVE
REWIND IOFIVE

IC(8) =0
109 CONTINUE

IC(7) = O

ENDIF

GO TO (210,220,230,400,400,260,270,280,290,400,310,320,330,
* 400,350,400,400,400,390,400) NZMOD
210 CALL CLOSFI
CALL INPROSER(A,MEMORY)
GO TO 400
220 CONTINUE
GO TO 400
230 CALL FILEDTOR
GO TO 400
260 CALL CLOSFI
CALL CROSPROS (A ,MEMORY)
GO TO 400
270 CLOSE(3)
CLOSE(5)
CLOSE(9)
CLOSE(98)
CALL CLOSFI
CALL VENTNEUT (A ,MEMORY)
IF(IMD.NE.NMOD) THEN
CALL CLOSFI
CLOSE(23)
CLOSE(24)
CLOSE(27)
CLOSE(28)
CLOSE(40)
OPEN(5,FILE='VENTURE.TMP’ ,BLANK='ZERO’)
ENDIF
GO TO 400
280 CALL VALENEUT

72



290

310

320

330

350

390
400

GO TO 400

CALL CLOSFI

CALL REACRATE(A,MEMORY )
GO TO 400

CALL VANCNEUT

GO TO 400

CALL CNTRODPO

GO TO 400

CALL CLOSFI

CALL EXPOSURE(A,MEMORY)
CLOSE(23)

CLOSE(24)

CLOSE(27)

CLOSE(28)

CLOSE(40)

GO TO 400

CALL PERTUBAT (A,MEMORY )
GO TO 400

CALL FUELMANG

CONTINUE

Chhhhhhkhhhkkhhkhhhkhkhhkkhhkrhhhhkhhhhhdhhhdhhhkhhhhhkhkhhkhhhhhhhhkhhhhkdrhkersn

c
C
C

C
cC
c
C

4

C
C
c

C

ACCESS CODE MODULES HERE USING THE OPERATION SYSTEM LOADER -
(MODULE NAMES ARE AC(2) THROUGH AC(6) UP TO A BLANK) ,

ADD 1 IC(9) FOR EACH SUCCESSFUL MODULE ACCESS,

IF THE RETURN STOP NUMBER FROM AN ACCESSED MODULE AC(N) EXCEEDS
THE ALLOWED VALUE IC(N), IC(7) IS SET TO THE RETURNED NUMBER AND
THE CONTROL MODULE IS ACCESSED WITHOUT FURTHER CODE MODULE
ACCESSES.

khkkhhkkkhkhkhkhkhkhkkhkhkkhhhkhhhhhhkhhbhhdhhbhhkhdhkhkhrhrhhhkhhkkhhhrhhhrhhhkhrhhrrdhih

110

111

113

114

115

116

1000

1001

GO TO 115
CONTINUE
WRITE(IOUT,1008)
GO TO 116
CONTINUE
WRITE(ICUT,1009)
GO TO 116
CONTINUE
WRITE(IOUT,1007)
GO TO 116
CONTINUE
WRITE(IOUT,1003)
GO TO 116
CONTINUE
WRITE(IOUT,1002)
CONTINUE
CALL DELFIL
STOP
FORMAT(’ FORTRAN DRIVER FOR A MODULAR CODE SYSTEM FOR TESTING

*(7-1-76)")
FORMAT(Al,A8)

73

HW

i

|
|



it o

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

100

FORMAT(’ NORMAL END OF RUN - EOF IN INPUT STREAM')

FORMAT(’ NO ‘‘’=’' PRECEDING THE CONTROL MODULE NAME' )

FORMAT (10A8)

FORMAT(10A8)

FORMAT(‘ CONTROL MODULE NAME = ' ,A8)

FORMAT ('’ END FILE READING CONTROL MODULE DATAY)

FORMAT(/’ END FILE ENCOUNTERED READING INPUT/)

FORMAT(’ DRIVER INSTRUCTED TO TERMINATE')

FORMAT (241I3)

FORMAT (A6)

END

SUBROUTINE VNAME (IOUT, INAME)

Printing the header page

IF(INAME.EQ.O0) THEN

WRITE(*,100)

RETURN

ENDIF

WRITE(IOUT,100)

FORMAT (
lgx"************************************************************'/
28X, * *71/
38X, ' * ‘ *!/
48X,'* V V EEEEE N N TTTTT U U RRRR EEEEE PPPP CcCCCC *//
58X,'* V V E NN N T U U R R E P PC c %!/
68X,’'* V V E NNN N T U UR R E P P C *//
78X,’'* V V EEEE N N N T U U RRRR EEEE ~- PPPP C *!/
88X,'* Vv V E N NNN T U URR E P C Ly
98X,* V V E N NN T U UR R E P cC C *x1/
18X, '* A\AY EEEEZ N N T Uuuuyu R R EEEEE P cceee 1y
28X, % *!/
38X, % VERSION 3.0 *!/
48X, ! * *1 )
58X, ’'* DEVELOPED FOR THE *7/
68X, ! * *1/
78X, '* INEL REACTOR PHYSICS PC CODE SYSTEM *!/
88X, ! * *!
98X, ! * BY THE *!
18X, " * *!/
28X, ' % NUCLEAR ENGINEERING PROGRAM *!/
38X,/ * UNIVERSITY OF CINCINNATI *1/
48X, * H. C. HURIA, A. SHAPIRO, AND K. W. CHO */ /
58X, * (Under Subcontract C87-101212) *!/
68X, % *! /
78X, ' * * )

88X,'************************************************************’)

110 FORMAT(1H1)
WRITE(IOUT,110)
RETURN
END
CGABY CONTROL MODULE ENTRANCE ROUTINE, TYPICAL GABY
C GABY
SUBROUTINE GABY (IP, ID, IB, AB) GABY
o GABY

74

10
20
30
40



CccC

100

110

120

INTEGER*2 IC,JP,JdD,IB,IP,ID

REAL*8 AC,AB

COMMON/MEM/ MEMORY

COMMON /CDATA/ AC(40), IC
I

) 80), JP(72), JD(48)
DIMENSION IP(1), ID(1),

(
B(1), AB(1)

DO 100 I=1,40
AC(I) = AB(I)
IC(I) = IB(I)
IC(I+40) = IB(I+40)
CONTINUE

DO 110 I=1,72
JP(I) = IP(I)
CONTINUE

DO 120 I=1,48
JD(I) = ID(I)
CONTINUE

1 u
!

GO TO THE MAIN PROGRAM OF THE CONTROL MODULE
CALL CONTROL1

GABY 260

130

RETURN ROUTE FROM THE MAIN PROGRAM
DO 130 I=1,40

AB(I) = AC(I)

IB(I) = IC(I)

IB(I+40) = IC(I+40)

CONTINUE

RETURN TO THE DRIVER
RETURN
END

GABY
GABY

GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY

GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY
GABY

50
60

80
100
120
130
140
150
160
170
180
190
200
210
220
230
240
250

270
280
290
300
310
320
330
340
350
360
370



APPENDIX IV

VENTURE SUBROUTINES
(from reference 5)

76

UL

(IR}



THE ACCESS,

CONTROL, AND GENERAI PURPOSE ROUTINES

MAIN

IONO
VENT

DRIV

DIFF

CORE

DASU
EASU

TIMER"
STOR
SKER
FERR
KEEP*

ENTRY POINT TO NEUTRONICS CODE BLOCK.

CALLS ERRSET, TIMER, DOPC, IONO, VENT, DRIV

ASSIGNS INPUT/OUTPUT UNIT NUMBERS

ACCESSES CODE BLOCK CONTROL INFORMATION

CALLS SKER, FERR

PASSES INFORMATION TO THE CONTROLLER ROUTINE

ALLOCATES CORE STORAGE

CALLS GETCOR, ROXX, ROXY, DIFF, DOPC, FRECOR

CONTROLS THE CALCULATION

CALLS CORE, MACl, CON1, PHIA, ORLX, COMC, LCAL, FLXR,
FXSR, BSQV, AJNT, PROS, DOPC, OUTR, DSDF, DCID,
DIMS, AJDS, FLRD, ADNl1l, EDIT, SAVl, PERT, JERT,
FERR, TIMER

DETERMINES STORAGE REQUIREMENTS AND DATA HANDLING MODES.

CALLS CORI,CORP, GNAM, CORD, CORB, DDSP, DASU, SKER, JPRT,
FERR.

SETUP DIRECT ACCESS FILES

SETUP DIRECT ACCESS FILES

CALLS DOPC, FERR

SERVICE ROUTINE FOR COMPUTER TIME, ETC.

SERVICE ROUTINE FOR MOVING DATA IN MAIN MEMORY

FILE MANAGEMENT RELATED ERROR MESSAGES

ALL OTHER FATAL ERROR MESSAGES

DUMMY ROUTINE USED TO OUTFOX THE OPTIMIZING COMPILER

THE INP QouTP QUTINES

DOPC

RITE

SEEK

CRIT*

DEFILE"

CLOSDA*®
FBSAM®

INITIALIZES, OPENS, AND CLOSES DATA FILES

ENTRY ROXY COMMUNICATES DATA ARRAYS

CALLS SEEK, RITE, DEFILE, CLOSDA, (FBSAM AND ENTRIES)

DATA TRANSFER MANAGER AND WRITES DATA (FORTRAN WRITE) -CALLED BY
MOST ROUTINES.

ENTRY REED READS DATA (FORTRAN READ) - CALLED BY MOST
ROUTINES
ENTRY ROXX" COMMUNICATES DATA ARRAYS

CALLS CRIT, CRED, (FBSAM, AND ENTRIES)
INTERFACE DATA FILES MANAGER
CALLS RITE, REED
ASSEMBLY LANGUAGE ROUTINE FOR CORE TO EXTENDED CORE DATA
TRANSFER (SEE SECTION 203 FOR THE FORTRAN EQUIVALENT)
ENTRY CRED EXTENDED CORE TO CORE DATA TRANSFER
ASSEMBLY LANGUAGE ROUTINE TO EXECUTE THE FORTRAN DEFINE FILE
TATEMENT USING PROBLEM DEPENDENT VARIABLES (OPENS DIRECT ACCESS
FILES) - ACCESSES SYSTEM ROUTINE IHCEDIOS
ASSEMBLY LANGUAGE ROUTINE TO CLOSE DIRECT ACCESS FILES
LOCAL I/O ROUTINE USED ALONG WITH THE I/O PACKAGE TO PRODUCE
SPECIAL CAPABILITY

77



THE CALCULATION OF MACROSCOPIC 085S SEC

MAC1

MACA

MACB
MAC2
SCAL
MAC3
MACS5
CHDM

MAC4
MAC®6

CONTROLS MACROSCOPIC CROSS SECTION CALCULATION

CALLS MACA, MACB, MAC2, SCAL, MAC3, MAC5, CHDM, MAC4, MAC6é, SKER,
FERR

INITIAL PROCESSING OF GRUPXS

CALLS STOR

CHECK NAMES AND CLASSES ON NDXSRF AND GRUPXS FOR AGREEMENT
CALCULATE MACROSCOPIC PRINCIPAL CROSS SECTIONS

LOCATES POSITION OF SCATTERING RECORDS ON GRUPXS

CALCULATE MACROSCOPIC SCATTERING CROSS SECTIONS

ADJUST DIFFUSION CONSTANT AND SCATTERING DATA FOR Pl CALCULATION.
CHECK DIMENSION SEARCH DATA

CALLS SKER

CALCULATE MACROSCOPIC SEARCH DATA

EDIT MACROSCOPIC CROSS SECTIONS

THE CALCULATION OF EQUATION CONSTANTS

CON1

MSHO
NRCF
MSH1
CON2
GEOQ
CON3

MSH3
CKCT
CON4

CON5
CON7
CONS

NROD
BNDY

CONTROLS EQUATION CONSTANT CALCULATION

CALLS MSHO,NRDF,MSH1,CON2, GEOQ, CON3, MSH3, CKCT, CON4, CONS5,
CON7,CONS, STOR, SKER,FERR

SETUP COARSE MESH PARAMETERS FOR 1D AND 2D CASES

CONVERT REGION ASSIGNMENTS BY COARSE MESH TO FINE MESH
CALCULATE FINE MESH DISTANCES

SETUP BOUNDARY CONSTANTS AND BUCKLING

CHANGE FROM 3D YO 2D CASE

RESTRUCTURE MACROSCOPIC DATA AND ZERO ROD CROSS SECTIONS
CALLS NROD, STOR

EDIT FINE MESH DISTANCES

SETUP INDEXING FOR DIFFUSION CONSTANTS

CALCULATES LEAKAGE CONSTANTS

CALLS NROD, BNDY

CALCULATES LEAKAGE CONSTANTS (TRIAGONAL)

CALCULATES LEAKAGE CONSTANTS (HEXAGONAL)

CALCULATES ZONE VOLUMES FROM REGION VOLUMES AND DETERMINE ZONE
WITH MAXIMUM NU-SIG-VOL

CALLS NROD

FUNCTION TO DETERMINE INTERNAL BLACK ABSORBER ZONES
FUNCTION TO CALCULATE NON-RETURN LEAKAGE CONSTANT

78



THE INITIALIZATION PROCESS

ORLX

ORLA

ORLB

ORLC

ORLD

ORLE

ORLF

BATG

ORLR
RCOV
LAXR
LAXP
MUCK
LUCK
CONG
PHIA
PHI1
PHI?7
TOIP
PHI2

EDBN

CONTROLS ITERATIVE PROCESS PARAMETER INITIALIZATION

CALLS ORLA,ORLB, ORLC, ORLD, ORLE, ORLF,BATG, ORLR, CONG, FERR,
RCOV

LOCATES A REFERENCE POINT IN MESH TO USE AS A BASIS FOR
INITIALIZATION PROCEDURES (2, 3-D PROBLEMS ONLY)

CALLS KEEP

DETERMINES AN ENERGY DISTRIBUTION FUNCTION FROM EQUATION ONSTANTS
AT THE REFERENCE POINT (2, 3-D PROBLEMS ONLY)

CALLS KEEP

SETUP 1-D EQUATION CONSTANTS ALONG THE ROW CONTAINING THE
EFERENCE POINT (2, 3-D PROBLEMS ONLY)

CALLS KEEP

SETUP DATA FOR THE 1-D INITIALIZATION CALCULATION

(2, 3-D PROBLEMS ONLY)

CALLS NROD

SETUP CROSS SECTIONS FOR THE I-D INITIALIZATION CALCULATION

(2, 3-D PROBLEMS ONLY) |

SOLVES THE 1-D PROBLEM FOR INNER AND OUTER ITERATION BEHAVIOR
(2, 3-D PROBLEMS ONLY)

CALLS LAXR, LAXP

CALCULATES OVERRELAXATION COEFFICIENTS AND INNER ITERATIONS AND
HEBYSHEV PARAMETER AND SETS DEFAULT OPTIONS (2, 3-D PROBLEMS
ONLY)

CALLS LUCK

BYPASS INITIALIZATION DURING SEARCH OR PERTURBATION ONLY
CALCULATIONS (2, 3-D PROBLEMS ONLY)

RECOVERS DATA FOR SUCCESSIVE NEUTRONICS PROBLEMS

LINE RELAXATION FOR 1-D INITIALIZATION PROBLEM

POINT RELAXATION FOR 1-D INITIALIZATION CALCULATION

FUNCTION TO LOCATE REFLECTED BOUNDARY

FUNCTION TO DETERMINE MESH DEPENDENT PARAMETER FOR LAMDA
PREPARE MACROSCOPIC CROSS SECTIONS AND OTHER DATA FOR ITERATIVE
PROCESS

CONTROLS FLUX INITIALIZATION

CALLS PHI1, PHI7, PHI2, PHI3, FERR

INITIAL FLUX IS CONSTANT

CALLS NROD

INITIAL FLUX IS SYNTHESIZED FROM THE RESULT OF THE 1-D
NITIALIZATION CALCULATION (2, 3-D PROBLEMS ONLY)

CALLS SDBN, TOIP, NROD

SIMPLE LINEAR INTERPOLATION

INITIAL FLUX IS AFUNCTION OF SPACE AND ENERGY

CALLS EDBN, SDBN, NROD

CALCULATF ENERGY DISTRIBUTION FUNCTION

79



SDBN
PHI3

PHI4
PHIS5

PHI6

GRXP
PAN1
PAN2
PBND
PC2D
PC3D

PR AT R Lo . TP e Lo I

CALCULATE SPATIAL DISTRIBUTION FUNCTIONS
PROCESS INITIAL FLUX FROM FLUX INTERFACE (MAY BE EXPANDED TO NEW
MESH EXCEPT FOR HEXAGONAL GEOMETRY)

CALLS PHI4, PHI5, PHI6, GRIP, PANLl, PAN2, NROD, SKER
ID FLUX EXPANSION

2D PLUX EXPANSION

CALLS PBND, PC2D

3-D FLUX EXPANSION

CALLS PBND, PC2D, PC3D

GROUP EXPANSION

TRIANGULAR EXPANSION ON PLANES

TRIANGULAR EXPANSION BETWEEN PLANES

FUNCTION TO DETERMINE ARTIFICIAL FLUX POINT

FUNCTION TO DETERMINE ARTIFICIAL CORNER POINT - 2D
FUNCTION TO DETERMINE ARTIFICIAL CORNER POINT - 3D
CALLS PC2D

IHE ITERATIVE PROCESS

COoMC
LCAL

FLXR
FISR

BSQV
AJNT

REV1
PROS

2I03
FEFS

DSDF
DCID
DIMS
ADJS

DIM1
DIM2

DIM3

ZVRV
FLRD

“HES
CRGV

UTILITY SUBROUTINE

CALCULATES STARTING ADDRESSES IN DATA ARRAY

CALLS FERR

OBTAINS INITIAL FLUX

OBTAINS A FIXED SOURCE

CALLS SKER

SEARCH CALCULATION UTILITY ROUTINE

SETS UP INPUT/OUTPUT FILES FOR THE ADJOINT PROBLEM
CALLS REV1

PROCESSES SCATTERING DATA FOR ADJOINT PROBLEM

SETS UP INPUT OUTPUT FILES

CALLS %I03, FEFS

PROCESSES PRINCIPAL CROSS SECTIONS

SETS INITIAL FLUX TO FIXED SOURCE WHEN FIXED SOURCE

LT 0

CALCULATES INDIRECT NUCLIDE SEARCH CHANGE EIGENVALUE
CONTROLS SEARCH CALCULATION EXIT OPTIONS

CALCULATES DIMENSION SEARCH CHANGE FACTOR

CONTROLS DIMENSION SEARCH CHANGES

CALLS DIM1, DIM2, DIM3

READS COARSE MESH MODIFIERS FROM SEARCH INTERFACE FILE
CONTROLS COARSE MESH AND VOLUME CHANGES - WRITES NEW GEODST
CALLS CMES, CRGV

CONTROLS CHANGE ZONE VOLUMES - WRITES NEW NDXSRF INTERFACE
CALLS ZVRV

CHANGES ZONE VOLUMES

READS GEODST FOR FINAL EDIT OF MESH - DIMENSION SEARCH
CALLS FLMH

CHANGES COARSE MESH

CALCULATES REGION VOLUMES FROM POINT VOLUMES

CALLS CHVL

80



CHVL CHANGES REGION VOLUMES

FLMH EDITS FINAL MESH - DIMENSION SEARCH

OUTR OUTER ITERATION CONTROLLER
CALLS DOIN, ZINS, FSOR, SSOR, FLUX, PSOR, JUSB, BALC, ITRP,
WRES, PREC, MUEX, CHEV, ETR1, ETR2, ATED, SGDA, FERR

BALC NEUTRON BALANCE EQUATION | |
ZINS CALCULATES THE DIRECT SEARCH PROBLEM EIGENVALUE
CHBF CHEBYSHEV ACCELERATION ROUTINE
CHEY CHEBYSHEV ACCELERATION ROUTINE
RDAB CALCULATES ROD ABSORPTIONS
LTRG CALCULATES IN~LEAKAGE FOR TRINAGULAR GEOMETRY
ITRP ASSESSES FLUX CONVERGENCE
CALLS FFGG, BHAV |
BHAV CALCULATES ITERATIVE CONVERGENCE PARAMETERS
JUSB OVERRELAXATION COEFFICIENT CONTROL
ATED EDITS ITERATION DATA
FFGG CALCULATES FLUX EXTRAPOLATION FACTORS
RDUE RESIDUE ESTIMATE OF THE MULTIPLICATION FACTOR
RELX SOLVES FOR THE FLUX VALUES ALONG A ROW AND OVERRELAXES THEM
OELX SOLVES FOR THE FLUX VALUES ALONG A ROW NO OVERRELAXATION
NEWB CALCULATES NEW OVERRELAXATION FACTORS
FSOR FISSION SOURCE CALCULATION CONTROLLER
CALLS FOUl, FOU2, FOU3, FOU4, FOUS, FOU6
SSOR SCATTERING SOURCE CALCULATION CONTROL
CALLS SOUl, SOU2, SOU3, SOU4, SOUS, SOU6
PSOR P-1 SCATTERING SOURCE CALCULATION CONTROL
CALLS POUl, POU2, POU3, POU4, POUS5
FLUX INNER ITERATION CONTROL
CALLS INR1, INR2, INR3, INR4, INRS5, INR6, INRX, BHAV
MUEX EXTRAPOPLATION PARAMETER PROCESSING
ETR1 SINGL < ERROR MODE FLUX EXTRAPOLATION
ETR2 DOUBLE ERROR MODE FLUX EXTRAPOLATION
SGDA SAVES AND RETRIEVES DATA DURING DIRECT NUCLIDE SEARCH
DOIN FLUX CALCULATION UTILITY ROUTINE
RRES READS RESTART FILE
WRES WRITES RESTART FILE
PREC CALCULATES ONE-DIMENSIONAL SWEEP PARAMETERS
ADN1 CONTROLLER FOR UPDATING ATOMIC DENSITIES
ADN?2 UPDATES ATOMIC DENSITIES
ADN?3 EDITS ATOMIC DENSITIES
INR1 INNER ITERATION CONTROL (1 ROW STORED MODE)
CALLS LOUl, RDUE, RELX, LEK1, CHEV, OELX, NEWB
LOU1 IN-LEAKAGE CALCULATION
FOU1 FISSION SOURCE CALCULATION
Soul SCATTERING SOURCE CALCULATION
POU1 P-1 SCATTERING SOURCE CALCULATION
LEK1 OUT-LEAKAGE CALCULATION

81



I

INR2

Fouz
Lou2
sou2
PQU2
LEK2
INR3

LOu3
FOU3
S0u3
POU3
LEK3
INR4

LOU¢4
LTRG
FOU4
SOU4
POU4
LEK4
J1C4
QDUE

QELX
INRS

LOUS
FOUS5
S0U5
POUS
J1C5
LEKS
INR6

FOU6
SOU6
DELX
INRX

INNER ITERATION CONTROL (ALL DATA STORED MODE)

CALLS LOU2, RDUE, RELX, LEK2, CHEV, RDAB, OELX, NEWB
FISSION SOURCE CALCULATION

IN-LEAKAGE CALCULATION

SCATTERING SOURCE CALCULATION

P-1 SCATTERING SOURCE CALCULATION

OUT-LEAKAGE CALCULATION

INNER ITERATION CONTROL (SPACE PROBLEM DATA STORED MODE)
CALLS LOU3, RDUE, RELX, LEK3, CHEV, LTRG, RDAB, OELX, NEWB
IN~LEAKAGE CALCULATION

FISSION SOURCE CALCULATION

SCATTERING SOURCE CALCULATION

P-1 SCATTERING SOURCE CALCULATION

OUT-LEAKAGE CALCULATION

INNER ITERATION CONTROL (MULTIPLE PLANE DATA STORED MODE)
CALLS LOU4, QDUE, QELX, LEK4, SOUX, J1C4, CHEV, LTRG, RDAB, NEWB
IN-LEAKAGE CALCULATION

SPECIAL IN-LEAKAGE CALCULATION FOR TRIANGULAR GEOMETRY
FISSION SOURCE CALCULATION

SCATTERING SOURCE CALCULATION

P~1 SCATTERING SOURCE CALCULATION

OUT-LEAKAGE CALCULATION

DEL DOT J CALCULATION

ACCESSES RESIDUE CALCULATION

CALLS RDUE

ACCESSES FLUC CALCULATION

CALLS RELX, OELX

INNER ITERATION CONTROL (MULTI-ROW STORED MODE)

CALLS LOUS, RDUE, RELX, LEK5, JIC5, CHZV, OELX, NEWB
IN~LEAKAGE CALCULATION

FISSION SOURCE CALCULATION

SCATTERING SOURCE CALCULATION

P-~1 SCATTERING SOURCE CALCULATION

DEL DOT J CALCULATION

SUT-LEAKAGE CALCULATION

CONTROLLER ROUTINE FOR THE SPECIAL 1-D PROCEDURE

CALLS CHEV

FISSION SOURCE CALCULATION

SCATTERING SOURCE CALCULATION

LINE RELAXATION WITHOUT OVERRELAXATION

INNER ITERATION CONTROL (MULTI-LEVEL DATA TRANSFER MODE)
CALLS LOUX, RDUE, RELX, LEKX, SOUZ, J1CX, CHEV, RDAB, OELX,
NEWB

82



LOUX IN-LEAKAGE CALCULATION

FOUX FISSION SOURCE CALCULATION
souy SCATTERING SOURCE CALCULATION
souz SCATTERING SOURCE CALCULATION
POUX P-1 SCATTERING CALCULATION
LEKX OUT-LEAKAGE CALCULATION
J1CX DEL DOT J CALCULATION
THE ERIT ROUTINES
EDIT CONTROLS EDITS
CALLS NBAL, PNDN, FLXW, PERT, BSQS, FIss, JINT, PTVL, PTZF
CORP EDIT PROBLEM DESCRIPTION
GNAM EDIT GEOMETRY AND CHECK FOR VALIDTY
CORD EDIT MAJOR PROBLEM PARAMETERS
JPRT CALCULATES PERTURBATION STORAGE REQUIREMENTS
coRrB EDIT BOUNDARY INDICATORS AND CHECK FOR VALIDTY
DDSP EDIT SYMBOLIC PARAMETERS FOR DISK SPACE (IBM 360 JCL)
JINT CALCULATES AND EDITS ADJOINT ZONE FLUX RESULTS
POUT PRINTS FLUX, POWER DENSITY, NEUTRON DENSITY
NBAL PRINTS NEUTRON BALANCE
CALLLS SOBL, SKER
SOBL CALCULATES NEUTRON BALANCE SCATTERING DATA
FISS WRITES FISSION SQURCE INTERFACE (FISSOR)
CALLS SKER
BSQS CALCULATES BUCKLING IN 3-D PROBLEMS
PNDN CALCULATES POWER AND NEUTRON DENSITY
CALLS POUT, SKER
PTVL GETS DATA FOR SUBROUTINE PTZP
PTZP WRITES FLUX FOR 2 ZONES ON RZFLUX FOR DEPLETION
FLXW WRITES FLUX INTERFACE DATA FILE
CALLS POUT, SKER
SAV1 SPECIAL DATA OUTPUT IN BCD FORM
CALLS SAV2, SAV4, SAV6
SAV2 SPECIAL DATA OUTPUT IN BCD FORM (GEODST)
CALLS SAV3
SAV3 SPECIAL DATA OUTPUT IN BCD FORM (GEODST)
SAV4 SPECIAL DATA OUTPUT IN BCD FORM (PWDINT)
CALLS SAV5
SAVS SPECIAL DATA OUTPUT IN BCD FORM (PWDINT)
SAVE SPECIAL DATA OUTPUT IN BCD FORM (RTFLUX)
CALLS SAV7
SAV7 SPECIAL DATA OUTPUT IN BCD FORM (RTFLUX)

83



THE PERTURBATION ROUTINES

QouT EDITS SPACE POINT IMPORTANCE MAPS
RTUB WRITES INTERFACE FILE PERTURB
CALLS SKER
MRPT CALCULATES CHANGE IN KEFF DUE TO SIGMAS
PERO EDITS PERTURBATION INTEGRALS
BBB2 PERTUFBATION UTILITY ROUTINE
BBB1 PERTURBATION UTILITY ROUTINE
(FOR ALL EXCEPT ONE ROW STORED MODE)
JBET PERTURBATION CONTROL
CALLS JAFA, JIFE, JOFY, PERO, JAPS, RTUB, QOUT, SKER, JGET
JAFA SETS UP INPUT/OUTPUT FILES FOR PERTURBATION CALCULATION
JIFE CALCULATES BASIC PERTURBATION INTEGRALS
JOFY CALCULATES TRANSPORT PERTURBATION INTEGRALS
CALLS BBBLl,BBB2 :
JAPS CALCULATES SPACE POINT IMPORTANCE MAPS
CALLS JMAP
JMAP CONTROLS EDIT OF IMPORTANCE MAPS
CALLS QouT
JGET GETS DCONS (FOR 1-ROW STORED MODE)
PERT PERTURBATION CONTROL
CALLS DAFA, LIFE, TUFY, PERO, MAPS, RTUB, QOUT, SKER
DAFA SETS UP INPUT/OUTPUT FILES FOR PERTURBATION INTEGRALS
LIFE CALCULATES BASIC PERTURBATION INTEGRALS
TUFY CALCULATES TRANSPORT PERTURBATION INTEGRALS
CALLS BBBEl, BBB2
MAPS CALCULATES SPACE POINT IMPORTANCE MAPS
CALLS PMAP
PMAP CONTROLS EDIT OF IMPORTANCE MAPS
CALLS QouT
SPECIAL ROUTINES®
GETCORE ASSEMBLY LANGUAGE ROUTINE TO ALLOCATE CORE DYNAMICALLY FOR THE
VARIABLY DIMENSIONED ARRAYS AT RUN TIME
FRECORE ASSEMBLY LANGUAGE ROUTINE TO FREE CORE ALLOCATED BY GETCORE
ERRSET SUPPLIES THE LEVEL OF ERROR STOPS TO THE SYSTEM

84



LABELED COMMON BLOCKS

CNTRL
VCTRL
MGMTIO
IOUNT
AFLUY
AOSUB
LIMITS
ADRES
FSWAP
DEASU
COMSAM
USRID

* NOT USED BY VENTURE\PC

85



APPENDIX III.
BURNER SUBROUTINES

(FROM REF.8)

86



BURNER SUBROUTINE DESCRIPTION

ANOR
ARRI

AUXE
BFIX
BGXS
BINP

BMOV
BPIA

BPIB
BPIC
BPIN
BRCI
BRDS
BRNA
BRND
BRNF

BRNO
BRNS

BRNT
BRNW

BRNX

BRNY
BRNZ

BRN1
BRN3

BRN4
BRN7

DETERMINE NORM OF MATRIX

SUM INVENTORY AND REACTION RATES (ABSORPTION,
FISSION, PRODUCTION, AND CAPTURE (N,G) ) BY
ABSOLUTE NUCLIDE

WRITE CONDENSED EDIT

NORMAL EXPOSURE CALCULATION

PROCESS NEXT-TO-LATEST GRUPXS

INITIAL INTERFACE PROCESSING (NDXSRF, GEODST,
GRUPXS, AND EXPOSE) AND DATA PREPARATION
CONTINUOUS FUELING EXPOSURE CALCULATION

CONTROL GEOMETRY (GEODST) AND POINT FLUX RTFLUX)
PROCESSING FOR POINT CALCULATION (METHOD 1)
CONTROL POINT FLUX (RZFLUX~MODIFIED) PROCESSING
FOR POINT CALCULATION (METHOD 2)

INITIAL DENSITY PREPARATION, COMPUTE REACTION
RATES AND SETUP STORAGE FOR POINT EXPOSURE AND
SHUTDOWN CALCULATION

CONTROL SETUP FOR POINT EXPOSURE AND SHUTDOWN
OBTAIN EXPOSURE CONTROL INFORMATION FROM
INTERFACE CONTROL

SETUP DYNAMIC DATA STORAGE SPACE

COMPUTE SPECIFIC REACTICN RATES FOR ABSORPTION,
FISSION, NU-FISSION, (N,G), (N,A), (N,P), (N,2N),
(N,D), AND (N,T)

EDIT SPECIFIC REACTION RATES

SETUP INTERNAL CROSS~REFERENCING INFORMATION FOR
ABSOLUTE NUCLIDE, NUCLIDE CLASS, AND ZONE CLASS
PREPARE AND EDIT FINAL SUMMARY TABLE

DETERMINE STORAGE REQUIRED AND MODE OF SOLUTION
AND INITIALIZE DIRECT ACCESS UNITS IF NEEDED
PRE-WRITE DIRECT ACCESS UNITS IF NEEDED

EDIT CONTENTS OF EXPCSE FILE - CHECKS DECAY,
YIELD, AND MATRIX DATA FOR ERRORS

SETUP DECAY CONSTANTS AND CORRESPONDENCE BETWEEN
DENSITY AND EXPOSURE DATA

EDIT ATOM DENSITIES

PROCESS ZNATDN AND WRITE INITIAL DENSITIES ON
SCRATCH ONE ZONE/SUBZONE AT A TIME

OVERALL CALCULATION CONTROL

PROCESS RZFLUX AND WRITE ZONE AVERAGE FLUX ON
SCRATCH ONE GROUP AT A TIME - PERFORM INITIAL
POWER ADJUSTMENT

CHECK NUCLIDE NAMES AND CLASSES FRPM 2 SOURCES
COPY PRINCIPAL CROSS SECTIONS FROM GRUPXS TO
SCRATCH

87



BRPF
BRRF

BURN
BZIN

BZT1
BZT?2
CHEK
CMOV

CMPH
CMPI
CPH1

CPH2
DEEF

DOEX
DOPC

DOSH
DOWN
ECHK
EDED
EDEP
EPFD

EPH2
ESET

ETAB
EXPH
FERR
FLUC

FLUE
FOUL
GCHK

GNZC
HQUE
ISTR

COMPUTE SPECIFIC REACTION RATE FOR FISSION IN
ENERGY RANGES OF FIELD DATA FOR POINT CALCULATION
COMPUTE SPECIFIC REACTION RATE FOR FISSION 1IN
ENERGY RANGES OF YIELD DATA

CONTROLS EXPOSURE AND SHUTDOWN CALCULATION
ADDITIONAL INTERFACE PROCESSING (RZFLUX AND
ZNATDN) AND COMPUTE REACTION RATES AND SETUP
STORAGE FOR EXPOSURE AND SHUTDOWN CALCULATION
DETERMINE IF ZNTEMP EXISTS AND CHECK INPUT DATA
PROCESS TEMPERATURES FROM ZNTEMP

DEBUG FLUX CHECK FOR POINT CALCULATION (METHOD 1)
CHECK NUCLIDE SET REFERENCES FOR CONTINUOUS
FUELING MODEL

COMPARE 2 HOLLERITH ARRAYS

COMPARE 2 INTEGER ARRAYS

COPY ONE SET OF EXPOHT DATA FROM ONE UNIT TO
ANOTHER

EDIT ONE SET OF EXPOHT DATA

SETUP AND CHECK INPUT PARAMETERS FOR CONTINUOUS
FUELING MODEL

EXPOSURE BY VARIOUS METHODS

SCRATCH FILE DATA TRANSFER MANAGEMENT FOR SPECIAL
ACCESS METHODS (NOT SEQUENTIAL)

SHUTDOWN BY VARIOUS METHODS

SHUTDOWN CALCULATION

CHECK NEUTRON ENERGY GROUP STRUCTURE

EDIT SECONDARY ENERGY DEPOSITION DATA FROM EXPOSE
SETUP FOR SECONDARY ENERGY DEPOSITION EDITS

SET DEFAULT VALUE FOR ENERGY/FISSION AND
ENERGY/CAPTURE IF NECESSARY

EDIT MAXIMUMS AND SYSTEM TOTALS OF EXPOHT DATA
DETERMINE WHICH ENERGY GROUP NUMBER IS CUTOFF AND
FRACTIONAL PART FOR FLUENCE CALCULATION
CALCUL;ATE AND EDIT SECONDARY ENERGY DEPOSITION
SETUP AND CONTROL FOR WRITING INTERFACE EXPOHT
WRITE FATAL ERROR MESSAGE AND STOP

FUNCTION TO DETERMINE (FLUX)*(EXPOSURE TIME)
CONSTANT

SUM ZONE FLUX OVER RANGE OF GROUPS SPECIFIED
EDIT MONITORING INFORMATION

CHECK FOR IMPLEMENTED GEOMETRY FOR POINT
CALCULATION (METHOD 1)

OBTAIN ZONE CLASSES FROM GEODST

CHECK FOR UNIQUENESS IN LIST OF HOLLERITH NAMES
FUNCTION TO ASSIGN A REAL VARIABLE TO AN INTEGER
VARIABLE LOCATION WITHOUT TYPE CONVERSION

88



IX2D

IX3D

JAGY
JAOD

JENY
JUCY
LAGY
LAOD

LEGP
LEMY
LucCy
MAIN
MEIT
MEMA
MEPA
MESA
METS
MNRP
MSHK
MSHO
MSH1
MSH3
NXRP
NRCP

OEXP
OFIX

FUNCTION TO DETERMINE SUBSCRIPTS OF A TWO
DIMENSIONAL ARRAY, GIVEN DIMENSIONS AND POSITION
IN ARRAY

FUNCTION TO DETERMINE SUBSCRIPTS OF A THREE
DIMENSIONAL ARRAY, GIVEN DIMENSIONS AND POSITION
IN ARRAY

AVERAGE GENERATION RATE SOLUTION FOR EXPOSURE
SETUP OFF-DIAGONAL MATRIX ELEMENTS FOR MATRIX
EXPONENTIAL AND AVERAGE GENERATION RATE SOLUTIONS
(EXPOSURE)

SETUP MATRIX EXPONENTIAL SOLUTION FOR EXPOSURE
EXPLICIT CHAIN SOLUTION FOR EXPOSURE

AVERAGE GENERATION RATE SOLUTION FOR SHUTDOWN
SETUP OFF-DIAGONAL MATRIX ELEMENTS FOE MATRIX
EXPONENTIAL AND AVERAGE GENERATION RATE SOLUTIONS
( SHUTDOWN )

FUNCTION TO COMPARE (LT,EQ,GT) TWO REAL NUMBERS
WITHIN EPSILON

SETUP MATRIX EXPONENTIAL SOLUTION FOR SHUTDOWN
EXPLICIT CHAIN SOLUTION FOR SHUTDOWN

INITIALIZE INPUT/OUTPUT UNITS

MATRIX EXPONENTIAL SOLUTION

MATRIX EXPONENTIAL - ELIMINATE NUCLIDES ASSUMED
TO BE IN EQUILIBRIUM

MATRIX EXPONENTIAL -~ COMPUTE DENSITIES FOR
NUCLIDES IN EQUILIBRIUM

MATRIX EXPONENTIAL 1 TERM METHOD

MATRIX EXPONENTIAL - TRANSPOSE MATRIX ELEMENTS
LOCATE SMALLEST POSITIVE VALUE IN AN ARRAY

CHECK COARSE MESH DATA FROM GEODST FOR POINT
CALCULATION (METHOD 1)

SETUP COARSE MESH PARAMETERS FOR 1-D AND 2-D
GEOMETRIES FOR POINT CALCULATION (METHOD 1)
CALCULATE FINE MESH DISTANCES FOR POINT
CALCULATION (METHOD 1)

EDIT FINE MESH SPAZING FOR POINT CALCULATION
(METHOD 1)

LOCATE LARGEST POSITIVE VALUE IN AN ARRAY
CONVERT REGION ASSIGNMENTS FOR COARSE MESH
INTERVALS TO REGION ASSIGNMENTS FOR FINE MESH
INTERVALS FOR POINT CALCULATION (METHOD 1)
EXPOSURE CALCULATIONS (FOR OVERLAY CONVENIENCE)
WNORMAL  EXPOSURE CALCULATION (FOR OVERLAY
CONVENIENCE)

89



OMOV

OOWN
PARI

PDPT
PDST
PFIX
PGEO
PLOC
PNAW
PONI
POWL
POWN
POWP

PPOE

PRNA

PRND

PRNS

PRNT

PRNY
PRNZ
PRN3

PRPF
PRRF
PRTD
PRTH

PRTI
PRTR

CONTINUOUS FUELING EXPOSURE (FOR. OVERLAY
CONVENIENCE)

SHUTDOWN CALCULATION (FOR OVERLAY CONVENIENCE)
EDIT START AND END OF STEP INVENTORY AND REACTION
RATES BY ABSOLUTE NUCLIDE

CALCULATE POWER DENSITY

POWER DENSITY STATISTICS FOR POINT CALCULATION
POINT EXPOSURE CALCULATION

PROCESS GEODST GEOMETRY FILE FOR POINT
CALCULATION (METHOD 1)

LOCATE POINTS WITHIN SELECTED ZONES AND COMPUTE
POINT VOLUMES FOR POINT CALCULATION (METHOD 1)
WRITE POINT NUCLIDE DENSITIES ON INTERFACE FILE
PTATDN FOR POINT CALCULATION

EDIT FEED AND DISCHARGE RATES IN KG/DAY
ACCUMULATE POWER AND LOCATE MAXIMUM POWER DENSITY
POINT SHUTDOWN CALCULATION

ACCUMULATE POWER ALONG PATH FOR CONTINUOS FUELING
MODEL ‘

EDIT POWER, ACTINIDE FEED RATE, AND EXPOSURE BY
ZCNE PATH AND SUBZONE PATH FOR CONTINUOUS FUELING
MODEL

COMPUTE SPECIFIC REACTION RATES FOR ABSORPTION ,
FISSION, NU*FISSION, (N,G), (N,A), (N,2N), (N,D),
AND (N,T) FOR POINT CALCULATION

EDIT SPECIFIC REACTION RATES FOR POINT
CALCULATION

DETERMINE STORAGE REQUIRED AND MODE OF SOLUTION
AND INITIALIZE DIRECT ACCESS UNITS IF NEEDED FOR
POINT CALCULATION

PRE-WRITE DIRECT ACCESS UNITS IF NEEDED FOR POINT
CALCULATION

EDIT ATOM DENSITIES FOR POINT CALCULATION

SETUP INITIAL DENSITIES FOR POINT CALCULATION
PROCESS RTFLUX AND WRITE SELECTED POINT FLUXES ON
SCRATCH ONE GROUP AT A TIME FOR POINT CALCULATION
(METHOD 1)

EDIT SPECIFIC REACTION RATE FOR FISSION IN ENERGY
RANGES OF YIELD DATA FOR POINT CALCULATION

EDIT SPECIFIC REACTION RATE FOR FISSION IN ENERGY
RANGES OF YIELD DATA

PRINT DOUBLE PRECISION ARRAY

PRINT HOLLERITH ARRAY

PRINT INTEGER ARRAY

PRINT REAL ARRAY

90



o)

PRTT
PTAT

PTNS

PURN
PZT2

QNAT
QNAW

REED

REHT
REOR

RITE
ROXX
ROXY
RSTI

SEEK
SERM

SKER
SKNU

STOR
TIMER

TPNE
VOLP
XEQC
XEXC
XEYC

XPYC

PRINT HOLLERITH TITLE

OBTAIN REFERENCE ZONE NUMBERS FROM PTATDN IF IT
EXISTS FOR POINT CALCULATION (METHOD 1)
DETERMINE NUCLIDE SET AND INITIAL DENSITY INDEX
(ZONE OR SUBZONE) FOR POINT CALCULATION

CONTROLS POINT EXPOSURE AND SHUTDOWN CALCULATION
PROCESS  TEMPERATURES FROM  2ZNTEMP  (POINT
CALCULATION)

WRITE INTERFACE FILE QNATDN

WRITE INTERFACE FILE ZNATDN (CONTINUOUS FUELING
EXPOSURE)

ENTRY IN RITE - DATA TRANSFER (EXTERNAL DEVICE TO
MEMORY ) :

CALCULATE REACTION RATE TYPE DATA FOR EXPOHT
CHANGE VOLUME AND LOCATION DATA ORDER FOR POINT
CALCULATION (METHOD 1)

DATA TRANSFER (MEMORY TO EXTERNAL DEVICE)

ENTRY IN RITE - SPECIAL ADDRESS INITIALIZATION
ENTRY IN DOPC - SPECIAL ADDRESS INITIALIZATION
FUNCTION TO ASSIGN AN INTEGER VARIABLE TO A REAL
VARIABLE LOCATION WITHOUT TYPE CONVERSION
INTERFACE FILE MANAGEMENT |

WRITE UNTERFACE FILE PROCESSING ERROR MESSAGE
WRITE SEEK RELATED ERROR MESSAGE AND STOP
DETERMINE NUCLIDES IN SUPPLEMENTAL EXPLICIT
CHAINS NOT TO BE TREATED WITH MATRIX EXPONENTIAL
OR AVERAGE GENERATION RATE METHODS

MOVE ARRAY Y TO ARRAY X

MULTI-PURPOSE ROUTINE TO PROVIDE CPU TIME, CLOCK
TIME, CPU TIME REMAINING, I/O COUNT REMAINING,
COMPUTER MODEL, JOB NAME, DATE AND TIME
INFORMATION :

EDIT POWER NORMALIZATION FACTORS, EXPOSURE
SUBSTEP TIMES, AND SHUTDOWN SUBSET TIMES

COMPUTE REGION VOLUMES AND ZONE VOLUMES FROM
POINT VOLUMES FOR POINT CALCULATION (METHOD 1)
(DEBUG ONLY)

INITIALIZE AN ARRAY WITH A CONSTANT

MULTIPLY ARRAY X BY A CONSTANT

MOVE DATA FROM ARRAY Y TO ARRAY X AND MULTI[PLY
BY A CONSTANT

ADD ARRAY Y MULTIPLIED BY A CONSTANT TO ARRAY X

91

L T O LU B A NI S R U T R LR AT T L S L]

' AR



ZCRI

LZFMP
ZFMV

ZFM3

ZIGY
ZINAW
ZOND
ZONI
ZUcy
ZUCZ
2ZPD

ZZPF

SUM BY ZONE CLASS ABSORPTIONS BY NUCLIDE CLASS,
FISSILE ABSORPTIONS, FERTILE CAPTURES, FISSILE
DESTRUCTION RATE, AND FISSILE INVENTIRY

PROCESS RZFLUX (MODIFIED) FOR ZONE NUMBERS AND
POINTS PER ZONE FOR POINT CALCULATION (METHOD 2)
DUMMY VOLUME AND LOCATION DATA FOR POINT
CALCULATION (METHOD 2)

PROCESS R2ZFLUX (MODIFIED) AND WRITE POINT FLUXES
ON SCRATCH ONE GROUP AT A TIME FOR POINT
CALCULATION (METHOD 2)

SETUP INTEGRATION RANGE FOR FISSION REACTION RATE
WRITE INTERFACE FILE ZNATDN

EDIT ATOM DENSITIES FOR ONE ZONE /SUBZONE
ACCUMULATE MASS RATES IN KG/SEC

CHECK AND EDIT EXPLICIT CHAIN DATA

DETERMINE MAXIMUM EXPLICIT CHAIN LENGTH

EDIT ZONE POWER DENSITY AND WRITE INTERFACE FILE
ZNPOWD

CALCULATE ACTINIDE FEED RATE (KG/SEC) BY PATH FOR
CONTINUOUS FUELING MODEL

92









