
EGG-NE-I0137 .ii_'_,,,,._,,_,_...,._iC'/_.......,_IDecember 199l

INFORMAL REPORT

• . i°

Idaho VENTURE/PCMANUAL

National A MULTIDIMENSIONALMULTIGROUP NEUTRONDIFFUSIONCODE SYSTEM
Engineering VERSI ON3

Laboratory

Managed A Shapiro
Hl C.'Huria

"" by the U.S
_Department K, W, Cho

.of Energy

i

i

i

L

I_ I1 EII,=G,,,.,,o
i.

:_ Work performed under
' DOE Contract
[' ".... No. DE-A C07- 761D01570

f.!_ DtSTBISUTIQNOFTilI_I;IOCUMENTfSUNLI_ITF.O

EGG-NE--10137

VENTURE/PCMANUAL

)

A MULTIDIMENSIONALMULTIGROUP

NEUTRONDIFFUSIONCODESYSTEM

VERSION3 _ _-_

__ !_

A. SHAPZRO,H C HURZA,K W. CHO _}g¢_'__ a_ _
_, _!_,

_ °_

UNIVERSITY OF CINCINNATI
NUCLEARENGINEERING PROGRAM __ _
CINCINNATI, OHIO 45221 :___

Preparedfor EG&G Idaho,Inc. _ __,_ __ o_
Under Subcontract No. C-87-101212 _ _ _ _B
and theU.S. Departmentof Energy "

UnderContractNo. DE-ACO7-761D01570
Sponsoredby DOEOfficesof EnergyResearchand NuclearEnergy

,/::_,_,, ,, ,._,, _ _

I})STflI_}UTIONOF THISOOCUMENT IS LINLI_IT_

, ,,-_.._-._ . . ,. ,_,, , ,

Table of Contents

Abstract i

Acknowledgement ii

List of Figures iii

VENTURE/PC Code Abstract iv

Getting Started vii

PART I. DESCRIPTION OF CODE SYSTEM 1

l. Introduction 1

2. VENTURE/PC Code System 2

3. Driver 5

5
4. Control Module

5. Input Processor 6

6. Cross Section Processor 6

7. VENTURE Neutronics Module 9
7.1 VENTURE STRUCTURE 9

7.2 VENTURE Subroutines l0

7.3 VENTURE File Requirements I0

7.4 Data Handling Modes 14
15

7.5 Units s " i " " s7 6 Access to Micro cop c Cro s Sections 15

7.7 Fatal Errors 15

7 8 Geometry and Boundary Conditions 16

'7.9 Special Boundary Conditions 16

7.10 Types of Problems Solved 17
7 ii Iteration Procedures 17
• . . 18

7.12 Perturbation Calculations

7 13 The Uncommon Reactor Core Neutronics Problem . • 18

7.14 Space-Energy Rebalance 18

7.15 Adjustable Diffusion Coefficients 19

7.16 Equilibrium Xenon 19

7.17 Temperature Correlation 20

8. EXPOSURE Code Module 20

..................... ii II ,J,J,, ,, ll,_ I_, ,,,, II, , ii,ii., , ,,, Jll, _lli ,,,lllllil, ,I,I,

PART II. DESCRIPTION OF INPUT FOR VENTURE/PC 24

9. Input Structure 24

I0. Control Module Input 26

i0.I Memory Allocation 26

10.2 Using Binary Standard Interface Files as Input. . 27 .
10.3 Calculational Path 28

10.4 Machine Dependent and Miscellaneous Data 29

10.5 Example of Input for Control Module 33

ii. Input for Input Processor 35

12. Standard Interface Files Required by Modules 35

13. SomeExamples of Input Structure 39

13.1 NEW2DXY.INP 39

13.2 NEWBWR.INP 42

13.3 Three Theta-R Cases 44

13.4 Exposure Problem 46

13.5 Using Standard Interface Files on Input 48

14. Relocating Fuel Bundles 50

15. Data Transfer, File Management and Input-Output 50
15.1 Standardized Routines 50

15.2 Input and Output Files 51

15.3 Saving of Standard Interface Files 51

15.4 Scratch and Direct Access Files• 52

15.5 Saving of Standard Interface File in Text Format. 52

16. Correspondence Between DVENTR and DTNINS 53

17. Compiler and Overlay Structure for VENTURE Code 56

• "VIP" 6518 VENTURE/PC Interactive Processor,

REFERENCES 67

APPENDIX I FORTRAN LISTING OF DRIVER 69

APPENDIX IV VENTURE SUBROUTINES 76

APPENDIX III. BURNER SUBROUTINES 86

Abstra_

- VENTURE/PC is a recompilation of part of the Oak Ridge BOLD

VENTURE code system, wl%ich will operate on an IBM PC or compatible

computer. Neutron diffusion theory solutions are obtained for

multidimensional, multigroup problems. This manual contains

information associated with operating the code system. The purpose

of the various modules used in the code system, and the input for

these modules are discussed. The PC code structure is also given.

Version 2 included several enhancements not given in the

original version of the code. In particular, flux iterations can be

done in core rather than by reading and writing to disk, for

problems which allow sufficient memory for such in-core iterations.

This speeds up the iteration process.

Version 3 does not include any of the special processors used

in the previous versions. These special processors utilized

formatted input for various elements of the code system. All such

input data is now entered through the Input Processor, which

produces standard interface files for the various modules in the

code system. In addition, a Standard Interface File Handbook is

included in the documentation which is distributed with the code,

to assist in developing the input for the Input Processor.

i

ACKNOWLEDGEMENT

This work is a recompilation of codes developed at Oak

Ridge over a period of several years. In particular, the excellent

work and reports of D.R. Vondy, T.B. Fowler, and G.W. Cunningham,
%

who developed the original code at Oak Ridge, is hereby

acknowledged and credited. Also, the work of R.D. Odell and others

at Los Alamos resulting in a generalized Input Processor is

acknowledged. This manual is a reorganization of reports received

from the Radiation Shielding Information Center on the BOLD VENTURE

code system.

We also acknowledge the Reactor Physics group at INEL,

in particular, Dr. D.W_ Nigg, for their financial support, and for

beginning the task of developing reactor physics and shielding

codes for the microcomputer.

ii

List q.f_Fic[uer_e__

i. Components of the Computation System 4

2. Calculational Modes of Cross Section Processor 8

3. Calculational Flow for VENTURE Neutronics Module Ii

4. VENTURE Interface Files 12

5. VENTURE Scratch Files 13

6. User Flow Diagram of BURNER Module 22

7. Interface Files required for BURNER Code 23

8, Example of Input Structure 25

9. User Input Instructions to Control Module CONTROL1 30

I0. Example of Input to Control Module 34

ii. Module Control Records and Interface Files 38

12. Input Structure for Two dimensional X-Y Problem 41

13. Input Structure for BWR Assembly Sample Problems 43

14. Input Structure for Three Theta-R Cases 45

15. Input Structure for an Exposure Problem 47

16. Example of Input with Standard Interface files 49

17. VENTURE/PC Overlay Structure 58

18. Subroutines in VENTURE/PC Overlay Structure 60

19. VIP Overlay Structure 66

iii

VENTURE/PC Code Abstract

i. Program Identification VENTURE/PC is a PC version of that part

of the BOLD VENTURS code system developed at Oak Ridge for IBM

mainframes, which includes the Control Module, an Input Processor,

a Cross-Section Processor, the VENTURE neutronics code, and an

Exposure Module which utilizes the BURNER code for depletion

calculations.

2. Functio_ The VENTURE code solves the usual neutronics

eigenvalue, adjoint, fixed source, and criticality search problems.

It treats up to three dimensions, maps power density, and does

first order perturbation analysis at th_ macroscopic cross section

level. The Burner code solves the nuclide chain equations to

estimate the nuclide concentrations at the end of an exposure time,

and also after a shutdown period.

3. Method of SolutioD The VENTURE module applies the Finite-

Difference Diffusion or a simple P1 Approximation. VENTURE uses an

outer-inner iteration scheme with several different data handling

methods. Overrelaxation is applied to the inner and outer

iterations, and succeeding flux iterates may be accelerated with

the Chebychev process. The BURNER code uses a difference

formulation based on average generation rates, or a matrix

exponential formulation to approximate the solution of the coupled

burn-up differential equations, or an explicit solution for simply

" coupled nuclide chains. Space dependence is included by working

with zone averaged fluxes.

iv

4. Related Material A Control Module, Input Processor, and a Cross

Section Processor interface with input files to produce standard

interface files for use by VENTURE and BURNER. Standard interface

files are binary sequential files which follow a prescribed or

standardized format.

5. Bestrictions The code is variably dimensioned, but the data

arrays are limited to 36000 words, or 144000 bytes, to work within

the 640K memory limit of the present DOS operating system.

6. (/9__p__ter The code will work on IBM or IBM compatible

microcomputers working under the DOS operating system.

7. Run_ing T_mes Running times are variable, and very problem and

machine dependent. Many two or one dimensional problems should

complete within 30 minutes on an original IBM PC, and in less than

half that time on AT type machines. Three dimensional problems

should probably be reserved for AT or higher class machines.

8. _amming Languag_ FORTRAN 66 or 77. The program was

originally written in ASA 1966 FORTRAN, but was compiled for the

microcomputer with FORTRAN 77.

9. Operating System The program was compiled under DOS 3.1, and

should run with earlier versions of DOS.

I0. M_achine__Requirements The program requires about 5 megabytes of

disk storage, to hold the executable files and files ge_ _-_ted by

the code. It also requires 640K of memory, and a math co-processor.

v

ii. Author_ss A. Shapiro, H.C. Huria and K.W. Cho

Nuclear Engineering

Mail Location 72

University of Cincinnati

Cincinnati, Ohio 45221

(513) 556-2014

12. References "BOLD VENTURE IV, A Reactur Analysis Code

System, Version IV"

Radiation Shielding Infor_lation Center
p

Oak Ridge National Laboratory

Post Office Box X

Oak Ridge, Tenn. 37831

CCC-459 (Computer Code Collection)

13. Materials Available VENTURE/PC Manual, Standard Interface File

handbook, VIP (Venture Interactive (Input) Processor), VENTURE Code

System, executable files and source decks on 1.2 MB 5 1/4 inch

diskettes.

vi

GETTING STARTBD

VENTURE/PC is a multidimensional, multigroup, neutron

diffusion code system, with provisions for processing cross

sections, and for calculating burnup. VENTURE/PC is a PC

compilation of part of the BOLD VENTURE code system, developed over

several years at Oak Ridge National Laboratory. The conversion to

the microcomputer was done as part of the INEL program for

establishing a PC based reactor physics package.

VENTURE/PC is a very large code system, with many input

options, which makes the code complicated. The executable code

requires almost 3 million bytes for storage, and requires almost

all of the maximum DOS memory of 640K to run. The code was linked

with overlays, with the linked executable file being about 522K,

but file buffers, and the operating system take up most of the

remaining memory within the 640K DOS limit. In addition, the code

comes with an interactive input processor, VIP for VENTURE

Interactive Processor, which requires about 900,000 bytes for

storage. VIP was also linked with an overlay structure to allow it

to run with DOS. Additional disk space must be made available for

files. Thus, to run VENTURE with the interactive input processor,

a subdirectory of about 5 MB will be required. The VENTUREPC code

system was compiled under DOS 3.1 with the Lahey FORTRAN-77

compiler, version 2.22. Overlay linking was accomplished through

the Phoenix PLINK86 Plus overlay linker, version 2.24.

vii

To run VENTURE/PC, the CONFIG.SYS file on the hard disk

root directory should be set for FILES = 50 and BUFFERS = i0. In

addition, to run VIP the ANSI.SYS file from DCS should be placed on

the root directory, and the line DEVICE=ANSI.SYS should be added to

the CONFIG.SYS file. The system should be booted with these

configuration specifications.

Prior to running any problems, the input file for the

problem should be copied to the file VENTURE.INP. The output will

be written to the file VENTURE.OUT. Several sample problems are

given with the code. They all have names with the .INP extension.

They can be copied to the VENTURE subdirectory for checking the

VENTURE operation.

All standard interface files generated during a run are

maintained by name. Text versions of standard interface files are

retained on option in the file named STFILE.TXT, which may be

edited with any good PC editor.

The file F77L.EER is now included with the code package. This

file should be placed on the VENTURE subdirectory, lt will provide

statements associated with FORTRAN errors, such as improperly

formatted input. It is part of the Lahey FORTRAN compiler package.

viii

PART I. DESCRIPTION OF CODE SYSTEM

l.Introduction

VENTURE/PC is an IBM-PC or compatible microcomputer version of

the BOLD VENTURE [i] system of connected codes or modules used to

analyze the core of a nuclear reactor by applying multigroupk

diffusion theory. The code system can analyze i, 2, or 3 dimensions

in various geometries. Variable dimensioning is used throughout the

codes, which allows for any number of energy groups and mesh

points, with the limitation that the problem fit into core memory.

Upscattering as weil as downscattering is accommodated by the

codes. A depletion module is included for burnup calculations.

An important feature of this code system is that each

code module receives input from, and writes output to, standard

interface files. Standard Interface Files (SIF's) are unformatted

binary sequential files which have been specified as to format and

structure by the Committee on Computer Code Coordination [2], or

CCCC. An Input Processor [3] reads standard interface card image

(or ASCII) format, and converts the input to standard interface

files for use by the code modules. Version 3 of VENTURE/PC differs

from previous versions in that all special processors have been

removed from the code system. These special processors were

designed to read formatted input developed for the various code

modules prior to CCCC standardization. All input for the code

modules in version 3 is accomplished through the Input Processor.

A Standard Interface File Handbook which accompanies the

documentation should help significantly in developing the input.

_. VENTURE/PC Code System

The structure of version 3 of VENTURE/PC is shown in Figure i.

It includes a Driver, a Control module, an Input Processor, a Cross

Section Processor, and the two main calculational modules VENTURE

and EXPOSURE.

The Driver reads the input data on the file VENTURE.INP. All

input data must reside on the file VENTURE.INP prior to making a

run. To store multiple input data sets on the same disk, each data

set should have its own unique name. If the data set is to be used

to make a run with VENTUREPC, it should be renamed or copied to

VENTURE.INP. The Driver first calls the Control Module which

initializes a file catalog and a control file. All interface files

are cataloged as to name, unit number and version number, and must

be recorded on the catalog file on unit 09. The standard interface

file CONTRL, which is initialized by the Control Module, contains

records of control information required by the modules for

selecting various options or calculational pathways. It is written

on unit number i0. Upon return from the Control Module, the Driver

calls the other modules in an order specified by the Control

Module.

The primary function of the Cross Section Processor is to

convert isotope ordered cross sections in an ISOTXS file, to group

ordered cross sections in a GRUPXS file, as required by VENTURE.

The VENTURE neutronics module calculates the neutronics of a

problem, while the EXPOSURE module solves the isotopic rate

equations for number density variations associated with fuel burnup

and fission product buildup.

The numbers associated with the modules on Figure 1 are the

input identification numbers for these modules.

USER
INPUT DATA

I

IRESID_NTDRIVERI R_SIDEN_DA_A I

Code M.odu_e_ss

1

INPUT PROCESSOR 1

6

I SECTION PROCESSOR
CROSS

7 I l
VENTURE NEUTRONICS |

L !

13 i

[EXPOSURE I

Figure i. Components of Computation System
(From Reference I)

3. Dr_ver.

The Driver used for VENTURE/PC was established from the

partial FORTRAN version of the Los Alamos Driver given in
L

reference [4]. The detailed FORTRAN listing of the Driver developed

for this work is given in Appendix I. The function of the Driver is

to first call the Control Module, and read that block of data

associated with the Control Module on the input file, VENTDRE.INP.

The VENTURE.INP file is assigned to unit I. This Control Module

data block is then written on unit 5, for the Control Module to

access. This procedure of reading data blocks from the input file,

and overwriting the data on unit 5 is done for all input sections.

Upon return from the Control Module, The Driver calls the input

Processor and/or the VENTURE neutronics module as specified in the

control file. The Input Processor develops all necessary standard

interface files required to run the other modules. The other

modules required by the problem are then called by the Driver in

the sequence given in the control data block.

4. Control Module.

The primary functions of the Control Module are to

initialize the file which catalogs the standard interface files on

unit 9, initialize the standard interface file CONTRL on unit i0,

" set the problem data storage in memory, identify standard interface

files to be used initially, and perform wrap up procedures when a

problem prematurely aborts or when iV finishes the calculation

correctly. The catalog file is referenced by the various modules to

obtain the unit numbers for standard interface files required by

that module. The CONTRL file contains global information records

pertinent to the problem, and a specific record for each

computational module. The individual records on the CONTRL file for

the computational modules are developed by the Input Processor.

Computational modules read the applicable control information on

these records from the CONTRL file when they are accessed.

5. Input ProcessQ_r_=.

The input Processor was developed at Los Alamos [3], and has

the function of converting ASCII or BCD input into Standard

Interface Files. The ASCII or BCD input is structured in the same

manner as the Standard Interface Files. See the "Standard Interface

File Handbook" for a more detailed discussion of Standard Interface

Files and the Input Processor.

6. Cross___e_ctiQn processor,

The Cross Section Processor is documented in reference

[5]. A primary function of this processor is to convert a nuclide

ordered ISOTXS file to a group ordered GRUPXS file required by the

VENTURE neutrorics module. It can also create a nuclide ordered

file from the ORNL CITATION code format, update an existing nuclide

ordered file, and merge two existing nuclide ordered files. The

processor has the capability of creating nuclide mixtures and

macroscopic cross sections in the nuclide ordered format. It can

handle up to i000 energy groups, 500 nuclides and a Legendre

expansion order as high as 20. The capabilities and variations of

6

this processor are summarized in Figure 2. It reads the records

labeled XCPINS and DVRINS on the CONTRL file to determine the path

to follow.

6.1 CITATION cross Sec_t_ons.

The CITATION code [6] was the prcursor to VENTURE, and many

macroscopic cross section sets are available in CITATION format. A
w

Special Processor, DCMACR [i], converts the CITATION macroscopic

cross sections to microscopic cross sections, and writes the

microscopic cross sections on unit 8. The Cross Section Processor

can then process the microscopic cross section set, and convert the

set to a form which can be used by the VENTURE neutronics module.

The code DCMACR is provided as a separate code with the VENTURE/PC

version 3 package. It must be used to process CITATION cross

sections before VENTUREPC is run, and should reside on the same

subdirectory as VENTUREPC.

I

I Start
I

I

Process interface file CONTRL for 1

records labeled XCPINS and DVRINS I

IX(S)=i

IX(5)=0 I 1 IIX(5)=2 "

Update ISOTX$ Convert CITATION Merge two
to ISOTXS ISOTXS

Input: Input: Input:
CXSPRR ver. n "[XC3 CXSPRR ver, n CXSPRR ver. n
ISOTXS ver.n ,LE, CITATION ISOTXS ver. n-I
Output: 0 Output: Output:
ISOTXS ver. n+l ISOTXS ver. n ISOTXS ver. n+l

Create Mixtures
Input:

IX(II).LE.0 CXSPRR ver. n
ISOTXS ver. n
Output:
ISOTXS ver. n+l

I
Edit ISOTXS

IX(23)oLE.0 Input:
ISOTXS ver. n

1
Convert ISOTXS
to GRUPXS

IX(4).LE.0 Input:
ISOTXS vet. n
Output:
GRUPXS ver. n

t
Edit GRUPXS

IX(24).LE.0 Input:
GRUPXS ver.n

i

Note: Ver. n refers to the current latest version at that stage of
processing.

Figure 2. Calculational Modes of Cross section Processor

(from ref. 5)

7. VENTURE Neutron_cu Mod__!!9__.

The VENTURE module calculates the neutronics of a given

problem and is the main module of the code system. Its primary

documentation is reference [5], with VENTURE additions given in

reference [7]. The interested reader can find the details of the

VENTURE code in these references. An outline of the code will be

reproduced here.

7.1VENTURE _5_TRUCTURE_

A flow chart for the calculational procedure is shown in

Figure 3. The necessary macroscopic cross sections and equation

constants must be calculated from the data given in the standard

interface files used for input. After the procedures are

initialized and scratch files prepared_ an outer iteration loop is

started. In criticality problems, the fission source and inscatter

source are then calculated to provide the source term for the inner

iteration. The inner iteration loop is then done for each group,

with accelerated overrelaxation used to speed convergence. The k._

eigenvalue is calculated and the iterated results edited. The

convergence criteria are tested, and if convergence is not

achieved, the outer iteration loop is repeated. If a direct search

problem was specified, the formulation is constructed as an

. eigenvalue problem, with the eigenvalue as a multiplier on the

search parameters of interest (eog., buckling or dimensions, or

" nuclide concentrations). The desired ko, is kept constant. This

eigenvalue multiplier is evaluated upon the completion of the inner

iteration for each energy group. Thus, for direct search problems,

9

the search parameters are estimated after the inner iterations,

without the nezessity of an outer iteration. A loop to upgrade

cross sections is made after the inner iteration, if a direct

search on nuclide concentrations was specified. The indirect search

loop changes cross _ectlons or dimensions after the outer

teration, to effect a change in ko,, until the desired _r_ is

achieved. Thus, in the indirect search analysis, both the search

parameters and k._ are changed, and this can only be done through

an outer iteration. Upon completion of the outer iteration, the

interface files of flux and power density are written, and the

results are edited and updated. If an adjoint problem is required

it is then done, after which perturbation integrals and importance

maps can be generated.

7.2 VENTURE Subroutines.

Tl_e VENTURE subroutines, as taken from reference [5], are

shown in Appendix II. They are grouped together in this Appendix as

to function.

L3 VENTURE_File Re _auirements,

The standard interface files used by VENTURE are shown in

Figure 4, along with the files which can be generated by the code ,0

on option. The scratch files with their associated unit numbers are

shown in Figure 5. Additional information regarding the individual

file records is given in reference [5].

i0

Enter J'

--Problem setup, Initial access to
interface data files.

--[Search Loop]--Macroscopic Cross Section Calculation

--Equation Constant Calculation

" --Initialization Procedure

....... Required Scratch Data File Processing
.... Outer iteration loop

" --Fission source calculation

--Loop over energy groups
--Inscatter Source Calculation (Po, Pl)a
--Inner iteration loop

_--Line overrelaxation
--Chebyshev acceleratiom
--Eigenvalue calculation from a neutron

balance
--Edit iterative results

--[Direct search return to upgrade cross
sections]

--Convergence test on outer iteration

--[Indirect search return]
--Return for residue calculation

(one sweep of equations)
--Write interface files

(flux, power density)
--Edit results (neutron balance, flux,

power density, neutron density)
--[Update interface files for Direct Nuclide

Concentration Search]
--Succeeding Adjoint Problem return

--Perturbation Integrals, Z Importance Maps

Ii 1
" The inscatter source calculation is normally done outside the
inner iteration loop; however, in one data handling mode this
source is calculated inside the inner iteration loop to minimize
data transfer.

Figure 3. User Flow Chart, VENTURE Finite-Difference
Diffusion Theory Neutronics Code Block, (from ref. 6)

ii

VENTURE Interface Files

Interface _ Files Us_

GRUPXS - Group ordered microscopic cross sections

GEODST - Geometry Description

NDXSRF - Nuclide to cross section referenciDg data

ZNATDN - Zone nuclide atomic densities

SEARCH - Search data (required only for search)

FIXSRC - Fixed source (required for a fixed source problem only)

RTFLUX - Total neutron flux (if supplied and for successive cases)

ATFLUX - Total adjoint neutron flux (if supplied)

RZFLUX - Zone average total neutron flux (for successive cases)

In'_erf_ceData__iles Generated by 0.__

RTFLUX - Total neutron flux

ATFLUX - Total adjoint flux

RZFLUX - Zone average total neutron flux

PWDINT - Point power density

GEODST - Geometry description upon dimension search

NDXSRF - Nuclide to cross section referencing data upon dimension
search

ZNATDN - Zone nuclide atomic densities upon concentration search

FIXSRC - Fixed source result

PERTUB - Regular, adjoint flux integrals

RSTRTR - Data for prob].em restart

FISSOR - Special fixed source data

Figure 4. VENTURE Interface files (from ref. 5)

12

S_G_t__Files by Unit Number

21 Macroscopic scattering cross sections

f

22 Principal macroscopic cross sections

23 (Direct Access) Equation coupling constants in space, normally
not used

24 (Direct Access) Total neutron flux

27 (Direct Access) Flux copy

28 (Direct Access) Flux copy

29 (Direct Access) Del dot J times volume (current in the Pl sense

40 (Direct Access) Equation constants

41 Fixed source

42 Fission source

43 Total source

44 Neutron balance data

45 Miscellaneous b

46 Miscellaneous

47 Search data, misc.

b By miscellaneous is meant thai: these files are generally used to
store different information at different stages of a calculation,

but the required storage space is usually not large relative to

those for which requirements are given in detail.

Figure 5. VENTURE Scratch Files (from ref. 5)

13

7.=4 DataHar_

There are several different methods of storing the necessary

flux and coupling constant data built into the VENTURE code module.

These are:

__i_ Stored Mode_ In this mode, all data necessary to

complete a calculation is stored in memory. There is little if any ii _

data transfer between disk files and memory. This mode can only be

used for small problems with few space-energy points.

Space $_o_e_ Mode. This is the preferred mode for

problems of moderate size, which should apply to most problems

which can be run by VENTURE/PC. The equation constants, flux

values, and the necessary source values to complete a one group

inner iteration for the flux values at each mesh point are seared

in memory. To obtain source values, the flux values and scattering

data must be read from disk files between iterations.

Mu_tirow Stored Mode. This is a data handling technique

for two dimensional problems. Data for only several rows of fluxes

for a single group are stored in memory, thereby reducing the

memory required to complete an inner iteration.

Multiplane Stored Mode. In this mode, data for several

planes of a three dimensional problem are stored in memory. Storing

equation constants and source values for n planes, and flux values

for n+2 planes, allows inner iterations to be done for n planes,

with one access of equation constants, one access of old flux

values, and one transfer of new flux values for each plane of the

problem.

14

One Row Stored Mode. For large three dimensional

problems with many space points, it may be necessary to limit the

data in memory to that required to complete an inner iteration for

a single row. Storage is allocated for the necessary five rows of

flux values and equation constants to complete the inner iteration.

This method applies only to three dimensional problems, and is slow

due to the many disk transfers required to complete a problem.

7.5 Units.

Dimensions are in centimeters, nuclide densities in

atoms/barn-cm, microscopic cross sections in barns, and macroscopic

cross sections in cm -I.

7.6 Access to Microscopic cross Sections.__

Except for nuclide concentration searches, the microscopic

cross sections and nuclide densities are accessed only once. All

subsequent calculations use macroscopic cross sections which are

calculated in the beginning.

7.7 Fatal Errors.

Fatal errors are of the following types:

Error Number 666 - error encountered in processing

interface data files;

. Error Number 444 - data transfer errors;

Error Number 555 - other interpreted errors and

system errors.

15

7.8 Geometry an_ Boundary Conditions.

The one dimensional geometries available are the slab,

infinitely high cylinder, and sphere. The two dimensional

geometries include X-Y, R-Z, Theta-R, equilateral triangle, T, and

equilateral hexagon, H. Three dimensional geometries include

X-Y-Z, Theta-R-Z, T-Z, and H-Z. Left boundary conditions include

zero flux, reflected, extrapolated, and repeating. Right boundary

conditions are zero flux, reflected, extrapolated, repeating, and

rotational symmetry conditions. For multidimensional problems,

additional column and plane boundary conditions must be specified,

the latter required for three dimensional problems.

7.9 Special Bo%n_ryconditions.

VENTURE allows for some special boundary conditions. These

include 90 ° and 180 ° rotational symmetry for slab and rectangular

geometries, and 120 ° and 60 ° rotational symmetry for corresponding

triangular coordinates. Rotations are keyed to the right hand or

third side of these geometries. See reference [5] for additional

details.

16

7.10 _pes__of Problems Solved.

VENTURE can solve the following types of neutronics problems:

1 - Usual Eigenvalue Problem.

2 - Fixed Source Problem

3 - Adjoint Flux Problem

4 - Direct Buckling Search

5 - Direct Reciprocal Velocity Search

6 - Direct Nuclide Concentration Search

7 - Indirect Searches - Concentrations and Dimensions

7-i! Iteration PrQcedure$_

Solutions to eigenvalue and search problems are done through

the usual inner-outer iteration procedures. Overrelaxation is

applied to speed convergence. Chebyshev polynomials are utilized to

obtain overrelaxation coefficients. The eigenvalue is estimated

after each outer iteration as the ratio of the total production

rate to loss rate. A very detailed discussion of the rather

complicated acceleration techniques utilized in VENTURE is given in

reference [5].

17

7.12 Perturbation Calculations.

VENTURE provides information associated with perturbation

calculations. Given forward and adjoint flux solutions, the

derivative of k._ with respect to each zone cross section and

diffusion constant are calculated and edited on option. The zone

integrals of volume times the product of the flux and its adjoint

are written on an interface data file for future use. Pointwise

importance maps of vZ_, Za, and their differences are edited_ In

addition, the cI_ange in k._ produced by 100% changes in cross

section are calculated. Also, the effect of uncertainties in cross

section are generated.

7.13 The Uncommon React or_CoreNeutronics Prob!em_

For stability studies, the dominant higher harmonic solution

is needed. A procedure has been implemented in VENTURE to remove

the fundamental contribution to the iterated solution after each

outer iteration, leaving the dominant higher harmonic. This can be

done for both forward and adjoint distributions. See reference [7]

for additional details.

7._4 Space-_ner_uy_ Rebalanqg__

Space-energy rebalance has been incorporated as an option for

accelerating outer iteration convergence. It can be applied to one

dimensional slab (X), cylindrical (R), or spherical (R) geometry;

two dimensional X-Y or cylindrical R-Z geometry; and three

dimensional X-Y-Z geometry. Rebalance cannot be applied to problems

with internal black absorbers, or zone dependent fission spectra.

18

Problems applying rebalance must be run in the "space stored" mode.

Additional information on rebalance is given in reference [7].

7.15 Adjustable D_ffusion CQe_ficients.

The diffusion coefficients call be adjusted in all zones as

follows:

Di = _I + _2Dz,zK,Z

where _ and _2 are input values, and Dz,z is the calculated

diffusion coefficient for group K and zone Z. This may be applied,
,r

e.g., if data is available on the increase in diffusion coefficient

produced by heterogeneity.

7._6 Equilibrium Xenon.

Equilibrium Xenon concentration bas been programmed into

VENTURE, and may be used on option. The effects of equilibrium

Xenon can then be evaluated without the need to use the small

exposure time steps required to build Xenon to its equilibrium

value. This saves computer time and money. Reference [7] has

additional information associated with equilibrium Xenon.

19

7_!7 Tem_p_eralture Correlation.

VENTURE and EXPOSURE include a temperature correlation for

microscopic cross sections, so that temperature effects on

reactivity can be evaluated. This requires two sets of microscopic

cross sections at each of two reference temperatures. The

correlation is as follows:

tan'1 [a(T-TI)/(T2-TI)]

a(T) = a(T1) + [a(T2)-_(TI)]
tan-1(_)

where _ and the reference temperatures T1and T2 must be given.

8. EXPOSUP_E Code Module.

The code module for exposure calculations is the BURNER

code [8]. Input for the EXPOSURE module is accomplished by

generating the EXPINS record on the CONTRL file, and the standard

interface file EXPOSE generated by the Input Processor. The EXPINS

record and the Standard Interface File EXPOSE are given in the SIF

Handbook.

Three techniques are used to solve the burnup equations:

the matrix exponential method, the average generation rate method,

and the explicit chain equation method. The methods differ by the

numerical approximation techniques used to solve the coupled burnup

equations. The average generation rate method uses the average

precursor concentration over the time step in the precursor

generation or production term. The matrix exponential method arises

from expanding the exponentials in the solutions of the first order

differential equations associated with burnup. The expansion order

is carried out to the number of isotopes in the chain, in order to

2O

account for all the nuclide couplings in the chain. The explicit

c1_ain equation method directly evaluates the solutions of the

burnup equations for simple chain coupling, without making

numerical approximations.

The matrix exponential method is recommended for complicated

couplings in the nuclide chain, while the average generation method

is recommended for simple chains. The full matrix exponential

method requires about three or more times the computation when

compared to the average generation method. The explicit chain

method requires the most computational effort.

The BURNER code uses zone dependent fluxes and cross sections,

so burnup as a function of core position can be evaluated.

A flow diagram for the BURNER code is shown in Figure 6. The

subroutine listing for the code is given in Appendix III. The

standard interface files associated with BURNER are shown in Figure

7. The primary zone exposure calculations require the availability

of the following files: CONTRL; NDXSRF; GRUPXS; EXPOSE; RZFLUX; and

ZNATDN.

21

ENTER

----ACCESS KEY INFORMATION FROM INTERFACE FILES

----ALLOCATE STORAGE, SELECT INPUT/OUTPUT

, PREPARATORY PROCESS INTERFACE DATA

-------SELECTIVE DOCUMENT EDITS

........CALCULATE SPECIFIC REACTION AS NEEDED

LOOP OVER ZONES, SUBZONES

RENORMALIZE POWER LEVEL

_SPECIAL EDITS

-LOOP OVER EXPOSURE TIME STEPS

EDITS, WRITE INTERFACE FILES

CALCULATE SHUTDOWN (see inset)
.....LOOP OVER ZONES, SUBZONES

------SPECIAL EDITS

........LOOP OVER SHUTDOWN TIMESTEPS

EDIT RESULTS, WRITE INTERFACE FILES

RETURN FOR FINE SCALE, POINTWISE CALCUlaTION

------EDITS, WRITE INTERFACE FILES

EXIT

I MATRIX EXPONENTIAL

AVERAGE GENERATION RATE

EXPLICIT CHAIN -I(all or supplemental) [

INSET

Fiqure 6. User Flow Diagram of BURNER Module
(from ref. 8)

22

_xterna! _a'ta_Fj_es A_essed in BURNE_

CONTRL (read only) Instruction records EXPINS, DVRINS,
and PROINS

NDXSRF (read only) Nuclide referencing data, and
nuclide concentration assignment
data

GRUPXS (read only) Microscopic cross section data-group
ordered

EXPOSE (read only) Basic exposure data

" RZFLUX (read only) Zone ave[ag 9 flux - also flux values

@t seleqteq points fort_ geometryInaeDenaent calcula on tl_
modified)

ZNATDN (read/write) Nuclide concentrations (zone and
subzone)

PTATDN (read/write) Nuclide concentrations (at selected
points)

EXPOHT (read/write) Continuously updated integrals of
exposure condi_lons

ZNTEMP (read only) Temperature data (zone and subzone)

QNATDN (write only) Nuclide coDcentr@tions leaving the
zones ana suDzones _or the
continuous fueling model (same form
as ZNATDN)

ZNPOWD (write only) Power density data (zone and
subzone)

GEODST (read only) Zone class data, - also compl@te
qeometry, proqesslnq for .a geome_r Y
aepenaent ca_culatlon at selectea
polnts

RTFLUX (read only Regular total flux - for a geometry
dependent calculation at selected
po].nts

Figure 7. Interface Files Required by BURNER code
(from ref. 8)

23

PJ_7_J_L_ _DESCRI_N_ _INPt]T FOR V__

9_ Input ._truct_re.:

The input consists of two main sections, i.e, the Control

Module section and the Input Processor section. The input blocks

associated with each input section begins with a header card, which

contains the name of the input section, and terminates with an END +

card. An example of the input structure is shown in Figure 8. The

first input section is always associated with the Control Module,

which must be called first by the Driver to initialize the catalog

file and the interface file CONTRL. The CONTRL file is referenced

by all the modules for control information. The first card of the

Control Module data contains an equal sign followed by the name of

the Control Module, in this case "=CONTROL1" since CONTROL1 is the

present name assigned to the Control Module. The Control Module

input is formatted, so care must be used in placing the input data.

The next input section is that of the Input Processor. The Input

Processor will write standard interface files from free format card

image or ASCII files written to comply with the standard CCCC file

structure. A "STOP" card exists before the "END" card of the Input

Processor.

24

" =CONTROL1

CONTROL MODULE DATA

END
INPUT PROCESSOR

INPUT PROCESSOR DATA

STOP
END

Figure 8. Example of Input Structure

25

10Control Module _I_

The user input instructions for the initial block of

data on the input file associated with the Control Module is shown

in Figure 9. The name of the present version of the Control module

as developed at Los Alamos [4] is "CONTROL1" and must be on card 1

following an equal sign. This input is automatically inserted by

the interactive input processor, VIP, supplied with the code, and

is therefore not required when the interactive input processor is

utilized to generate an input file.

_0.A_Memory Allocati9/!

After the title card, the first record on the third card (or

record) is the me_,ory allocation for the data of the problem. The

maximum data memory that can be accommodated for the PC versi.on of

VENTURE is 36000 words (or 144000 bytes), and this is the default

value used in VIP for running the code. Smaller memory allocations

can be used, but not higher, since, otherwise, the 640K memory

limit of DOS would be exceeded. IT IS ADVANTAGEOUS TO USE THE

MAXIMUM MEMORY ALLOWABLE, since then if the problem dimensions

permit, flux files used for iteration will be written as arrays in

core. In addition, if there is still sufficient memory, source and

other data files will be contained in core. The use of core for

data storage and retrieval, significantly speeds the iteration

process, as compared to disk storage and retrieval. There are

times, however, when reducing the data storage allocation will help

26

run a problem that may not rum with tbr_ _,_aximum data storage. This

is a result of the dependence of the data handling mode on the

storage allocation. The data handling mode determines whether data

is stored in memory or on disk, and, therefore, changes with the

" data memory allocation. Some problems may not run with the data

handling mode associated with the maximum storage allocation. As an

example, direct access file records may be larger than the Lahey

compiler allows (i.e., 32 kilobytes) with the data handling mode

associated with the maximum storage allocation, but these record

lengths would be less than the maximum with a data handling mode

associated with a smaller storage allocation. Thus, if a problem

doesn't run with the maximum storage allocation, adjusting the

allocation to a lower value which changes the data handling mode

may help.

For application to computers otl]er than those limited by the

640K DOS limit, core storage can be increased by increasing the

dimension of the data container array, designated by "A", in the

FORTRAN of the DRIVER module. This container array is presently

0

dimensioned at 36000 words. For larger core computers, increasing

this dimension will allow larger problems to run within core, and

greatly speed convergence. Of course, recompilation would be

necessary to change the container array dimension.

10.2 Using B__ Standard I_terfac@_Files as Input.

The parameter IP7 in columns 37 to 42 on record 3 must be set

greater' than zero if an interface data file is to be used as input.

27

In particular, if an interface data file such as an ISOTXS or

GRUPXS file is to be input, IP7 must be set to 1 or higher. This

option would be used, for example, if a GRUPXS file was generated

in a previous run, and is to be used in the present run. The names

of the interface files to be used as input are given by the

parameter H(I) on record 5. Each interface fi].e has a 6 letter

name, and is stored as a double word containing 8 bytes, i.e., as

REAL*8.

10.3 Calculational Path.

The calculational path is defined by the sequence of numbers

on the next, or fourth record. This sequence is associated with the

numbers assigned to the modules on Figure 1. This data record

defining the calculational path is crucial for the proper operation

of the modules in the code, and must be constructed with care and

a good understanding of how the modules interact with each other.

Interface files must be available to the modules as required when

they are called.

28

i0,4 Machine Dependent aDd...Misce_laneous.Data.

Data associated with processor time is not applicable to

VENTURE/PC, since such data is machine dependent, and is designed

for an IBM mainframe installation. Default values of zero should be

used for such input, as IP5 on record 3. Several data locations

have been reserved by the originators of BOLD VENTURE for future

use, and should be left blank or assigned a zero value.

29

RECORD COLUMNS REFERENCE TYPICAL USE

NUMBER (FORMAT) NAME _ ENTRY

1 1 = PRECEDES CONTROL MODULE

NAME.

1 2-9 CONTROL1 CONTROL MODULE NAME

2 (12A6) TITLE THE RUN TITLE CARD

3 1-6 IPI 36000 PRIMLY MEMORY ALLOCATION

FOR DATA (NOTE: 36000 CAN
BE USED FOR ALL PROBLEMS

PROVIDED 640K OF MEMORY IS

AVAILABLE.)

3 7-12 IP2 0 RESERVED

3 13-18 IP3 0 RESERVED

3 19-24 IP4 0 NA

3 25-30 IP5 0 NA

3 31-36 IP6 0 NA

3 37-42 IP7 ADDITIONAL INPUT IS

INCLUDED TO PRESENT

INTERFACE DATA FILE

IN]_ORMATION, IF > 0

3 43-48 IP8 A MODUI2%R NUMBER. DATA

FILES WILL BE SAVED
AFTER EACH ACCESS OF

MODULE NUMBERED IP8

3 49-54 IP9 RESERVED

3 55-57 IPI0 0

3 58-60 IPII 0

FIGURE 9. USER INPUT INSTRUCTIONS TO CONTROL MODULE CONTROL1

3O

RECORD COLUMNS REFERENCE TYPICAL USE

NU___E__R IFORMAT _ NAME

3 61-63 IPI2 1 INITIALIZE INTERFACE DATA

FILE TABLE INITIALIZATION
OPTION

0 - USE SEEK DEFAULT

TABLE (SETS UP 15
INCLUDING CONTRL

" AS THE FIRST) b
> 0 - SET UP THIS MANY

FROM THE LIST OF

" WHICH CONTRL IS THE
FIRST

3 64-66 IPI3 0 OPTION ON REINITIALIZATION

OF INTERFACE DATA FILE

TABLES FOR ANY SUBSEQUENT
ACCESS OF THE INPUT

PROCESSOR AFTER THE FIRST

0 - NO ACTION (LEAVE AS
IS)

> 0 - RETAIN THIS MANY

(PLUS CONTRL)

3 67-69 IPl4 0 EDIT LEVEL FOR CONTROL

MODULE PRIMARILY FOR

DEBUGGING IF > 0

3 70-72 IPI5 0 _RIMARY TERMINATION

OPTIONS

4 (2413) IM(I) STRING OF INTEGERS PRESENTING

THE CODE MODULE NUMBERS TO DEFINE

THE CALCULATIONAL PATH, TERMINATING
WITH A BLANK ENTRY. A LOOP OVER A
SUBSTRING OF TWO OR MORE CODE

MODULES IS DEFINED BY A NEGATIVE
NUMBER WHICH IS THE NUMBER OF

PREVIOUS ENTRIES INCLUDED IN THE

LOOP, AND THE NEXT ENTRY IS THE

NUMBER OF PASSES THROUGH THE LOOP.

FIGURE 9. USER INPUT INSTRUCTIONS TO CONTROL MODULE CONTROL1 (cont.)

31

5 (9(2X,A6)) H(I) THIS IS A STRING OF INTERFACE
DATA FILE NAMES. TERMINATION OF

EACH SET OF NAMES IS WITH A

BLANK 8 COLUMN FIELD, OR AN ENTRY
"X" IN THE LAST COLUMN OF A

SEPARATED 8 COLUMN FIELD. THIS

PROVIDES NAMES OF FILES MADE

AVAILABLE FROM A PREVIOUS RUN. d

6 (A3) END NORMAL DATA BLOCK TERMINATOR.

b These files are CONTRL(10), GRUPXS(II), GEODST(12), NDXSRF(13),

ZNATDN(14), SEARCH(15), RSTRTR(16), RTFLUX(17), ATFLUX(18),

RZFLUX(19), PWDINT(20), CXSPRR(30), ISOTXS(31), ISOTXS(32),

FIXSRC(33). The numbers in parenthesis are the logical unit numbers

assigned to the files. The two ISOTXS files are required for the

application of temperature effects.

d IPl2 should be i. Assignment of unit numbers is in increasing

order beginning with unit ii.

FIGURE 9. USER INPUT INSTRUCTIONS TO CONTROL MODULE CONTROL1

(cont.)

32

!0.5 Example of Input for Con_Kol Modu_e_

An example of input for the Control Module is shown in

Figure i0. The memory allocated for data in this problem is 15000

words. The "i" on card 3 in column 63 indicates that only one

initial entry will be made on the catalog file, that entry

associated with the file CONTRL, which must always be available.

The sequence of numbers on card 4 indicate the order of the modules

to be accessed. The numbers are associated with the module number

assignments on Figure i. For this problem, the Input Processor,

designated number i, will be accessed first. The VENTURE code is

labeled number 7, is then called. The Input Processor must generate

all of the standard interface files required by the VENTURE

neutronics module. The final "0" on card 4 indicates that no

additional modules will be called.

33

:CONTROL1

TWO DIMENSIONAL,NON SEPARABLEWATERREAC_R PROBLEM

15000 0 0 0 0 0 0 0 0 0 0 i 0 0 0
170

END

Figure i0. Example of Input to Control Module

34

!!. !rip!Lt for Input _rocegsor.

After the Control Module input is processed, additional input

must be available for the Input Processor. The primary function of

the Input Processor is to create interface files entirely from card

input. The card input follows a structure similar to the structure

associated with the interface files themselves, and uses free

format. Blanks are recommended between data entries, but other than

that the data can reside anywhere on a record or card. See the

Standard Interface File Handbook for details associated with using

the Input Processor to generate input data.

_2. Standard Interface Files Required by MQdules.

The standard interface files required by the various

modules are shown in Figure ii. Figure II is an extremely

important figure for the proper understanding of input to

VENTURE/PC. It shows the necessary control records on the file

CONTRL, and indicates which standard interface files are required

to run the various modules, and which files may be written by the

various modules. Thus, this figure contains invaluable information

associated with setting up a calculational pathway. Figure Ii

should be referred to when determining VENTUREPC input.

The first Standard Interface File produced by the Input

Processor must be the CONTRL file. The Control Module requires the

PROINS and DVRINS recor_s on the CONTRL file in that order, and

these records must be the first records written on the CONTRL File.

Refer to the Standard Interface File Handbook for details of the

CONTRL file and the records for this file. The PROINS and DVRINS

35

records are global in nature, and are required for all runs with

VENTURE/PC. Additional records which are problem dependent must be

placed on the CONTRL file. If the Cross Section Procesor is

required, the XCPINS record must be written on the CONTRL File. The

DTNINS record is required to run the VENTURE neutronics module, so

would be required for all neutronics problems. If an exposure or

burnup problem is to be run, the EXPINS record is required for the

BURNER module. After the PROINS and DVRINS records, the other

records can appear in any order on the CONTRL file.

Additional Standard Interface Files are required by the Cross

Section Processor, VENTURE neutronics module, and the Exposure

Module. If the Cross Section Processor reads CITATION microscopic

cross sections, or updates existing ISOTXS files, or merges ISO_XS

files, or is used to create mixtures, the CXSPRR Standard Interface

File (SIF) is required (see Figure I). If, on the other hand, the

Cross Section Processor is used only to edit an existing ISOTXS

file, or convert an existing ISOTXS file to a GRUPXS file, or edit

a GRUPXS file, the CXSPRR SIF is not necessary.

In addition to the control information given on the DTNINS

record for VENTURE, other important information must be made

available to run a multigroup diffusion code like VENTURE. All

cross sections must be in group ordered form, so a GRUPXS file is

required. The geometry must be specified, the mesh spacing set up,

and the boundary conditions must be given. Thus, a GEODST SIF is

necessary. Cross sections must be identified and assigned to

mixtures, and mixtures must be asigned to zones. This is

accomplished through the NDXSRF SIF. In addition, the atomic

36

densities of the isotopes in mixtures assigned to zones must be

given. Thus a ZNATDN SIF is required for VENTURE. The manner in

which number densities of isotopes are calculated for VENTURE is

discussed in section VII of the SIF Handbook.

' If a burnup problem is run, in additiion to the EXPINS record

on the CONTRL file, the EXPOSE SIF must be made available to the

BURNER module. This is in addition to other SIF!s produced by

VENTURE, which is run prior to BURNER.

37

Module No. Name of Required Required Written Ref.
Record in on on

File CONTRL Option Option

CONTROL PROINS (any) (any) 1
DVRINS

INPUT 1 (any) (any) 1,8
PROCESSOR

CROSS 6 XCPINS ISOTXS GRUPXS GRUPXS 2

SECTION CXSPRR ISOTXS .

PROCESSOR

VENTURE 7 DTNINS GEODST RTFLUX RTFLUX a 2

NEUTRONICS NDXSRF ATFLUX ATFLUX

ZNATDN RZFLUX RZFLUX

GRUPXS FIXSRC FIXSRC

RSTRTR RSTRTR

SEARCH PWDINT

ZNTEMP PERTUB

FISSOR

ZNPOWD

GEODST

EXPOSURE 13 EXPINS EXPOSE PTATDN PTATDN

NDXSRF ZNTEMP QNATDN

ZNATDN GEODST b ZNATDN
GRUPXS TRIGOM b ZNPOWD

RZFLUX EXPOHT EXPOHT a
CFHIST CFHIST •

RTFLUX

"May be created if it does not exist
_Will be used if it exists

Figure ii. Module Control Records and Interface Files

(From ref. i)

38

13. Som_L Exampl_s of_Input_str/!G_t__

Examples of input structure, including the structure for the

sample problems [9], will be given in a format which will provide

the calculational path given in the Control Module input, and the

Standard Interface Files and control records generated by the Input

Processor. The details of the files can be examined by viewing the

sample problem input provided with the code package. From the point

of view of learning the input, however, it is best to give and

explain the basic structure without the file details.

_3,1 _EW2DXY.INP - The input structure for the revised two

dimensional X-Y problem is shown in Figure 12. The Control Module

input indicates that the Input Processor is to be called first,

followed by the VENTURE neutronics module. This is indicated by the

calling sequence I 7 0 in the Control Module data, where the "0"

indicates the end of the problem. These numbers correspond with the

module numbers given on Figure 1. The Input Processor must generate

all the files required by the VENTURE neutronics module for this

problem. The control records on the Standard Interface File CONTRL

are generated first.. All of these records are considered to be lD

Records. The PROINS record is always given first, and always

followed by the DVRINS record. The DTNINS record provides the

control information for the VENTURE neutronics module and follows
°

the other two records which are used for global information. The

• CONTRL file always ends with a blank record designated by 6 blanks

between asterisks. VENTURE needs the following additional SIF's to

proceed with the calculation: GRUPXS for cross sections; GEODST for

geometry specifications; NDXSRF for cross section referencing; and

39

ZNATDN for zone atomic densities. These are al] deve3oped through

the Input Processor. The Input Processor always concludes data

input with a STOP card followed by an END card.

4O

=CONTROLI

TWO DIMENSIONAL, NON SEPARABLE WATER REACTOR PROBLEM
36000

7 0
END
INPUT PROCESSOR
0V CONTRL
ID PROINS
iD DVRINS
lD DTNINS
iD * * 0.0 100R 0 100R
0V GRUPXS
OV GEODST
OV NDXSRF
0V ZNATDN
STOP
END

Figure 12. Input Structure for Two Dimensional X-Y Problem.

41

.!_,2 NEWBWR.IN__ - The input structure for the revised BWR assembly

X-Y analyses is shown in Figure 13. This data combines the 12 X 12

and 24 X 24 cases given separately in previous versions of

VENTURE/PC. The Control Module indicates the following sequence for

calling modules: 1 6 7 1 7 0. Thus, the Input Processor (i) is

called first, followed by the cross Section Processor (6), and the

VENTURE neutronics module (7). These are followed by the Input

Processor (1) and VENTURE module (7) to run the second problem.

CITATION cross sections were used for this problem. The CITATION

cross sections must be processed by the separate DCMACR code to

convert macroscopic cross sections to microscopic and write them on

unit 8. The DCMACR processing must be done on the same subdirectory

as the VENTURE code.

The control records are generated on the CONTRL file by the

Input Processor. These include, as always, the global records

PROINS and DVRINS in that order. The XCPINS control record is

required for this problem, since the Cross section Processor is

used to process the CITATION cross sections and convert them to

GRUPXS form. Then, of course, the DTNINS file is required to run

the VENTURE module.

The CXSPRR Standard interface file is also necessary for this

problem, since CITATION cross sections are processed.

In addition to cross sections, VENTURE also needs the GEODST,

NDXSRF and ZNATDN files.

The same cross sections are used for the second problem, but

different GEODST, NDXSRF arld ZNATDN files are required. Thus, the

Input Processor is rerun to generate the new files.

42

=CONTROL1

36000

1 6 7 1 7 0

END

INPUT PROCESSOR
0V CONTRL

lD PROINS

lD DVRINS
lD XCPINS

lD DTNINS

lD * *
0V CXSPRR

0V GEODST

0V NDXSRF

0V ZNATDN

STOP

END

INPUT PROCESSOR

0V GEODST

0V NDXSRF

0V ZNATDN

STOP

END

Figure 13. Input Structure for BWR Assembly Sample Problems.

43

13.3 Three Theta-R Cases - The input for three theta-R cases run in

succession is shown in Figure 14. The calling sequence is 1 6 7 1

7 1 7 0, indicating that the Input Processor is called first,

followed by the Cross Section Processor and the VENTURE neutronics

module, which completes the first problem. The remaining two

problems require the Input Processor and VENTURE module in that

order called twice, once for each problem.

This problem also uses CITATION cross sections. The Input

Processor first writes the necessary records on the CONTRL file.

These include: PROINS, DVRINS, XCPINS and DTNINS, as in the

previous problem. The CXSPRR Standard Interface File must be

written for the Cross Section Processor to convert CITATION cross

sections for use by VENTURE. The GEODST, NDXSRF and ZNATDN files

must be written for VENTURE. The Input Processor is called twice

more, in between calls to VENTURE, to write new GEODST, NDXSRF and

ZNATDN files to run the remaining two problems.

44

-_3m

==

=CONTROL1
36000

1 6 7 1 7 1 7 0
END

INPUT PROCESSOR

0V CONTRL

lD PROINS

lD DVRINS

lD XCPINS

. lD DTNINS

ID * *

0V CXSPRR

0V GEODST

0V NDXSRF

OV ZNATDN

STOP

END

INPUT PROCESSOR

0V GEODST

0V NDXSRF

0V ZNATDN

STOP

END

INPUT PROCESSOR

OV GEODST

0V NDXSRF

0V ZNATDN

STOP

END

INPUT PROCESSOR

0V EXPOSE

STOP

END

Figure 14. Input Structure for Three Theta-R Problems.

45

13_4 ExPOsure Prob!em__. - An input structure for an exposure problem

is shown in Figure 15. In this problem the calling sequence is:

1 6 1 7 13 7 13 7 13 7 0. The Input Processor (i) is called to

write the CONTRL file, followed by the Cross Section Processor (6)

required to convert an ISOTXS file to a GRUPXS file, followed by

the Input processor again to write the EXPOSE Standard Interface

File required by the BURNER module, followed by the VENTURE (7)

neutronics module which calculates the flux for the BURNER inodule

(13) and the initial burnup step, afterwhich The VENTURE and BURNER

modules are alternated for the number of burnup steps desired (3 in

the example shown). The Input Processor first writes the PROINS and

DVRINS control records which are always required, lt then writes

the XCPINS record for the Cross Section Processor, the DTNINS

record for the VENTURE module, and the EXPINS record for the BURNER

module. It also writes the ISOTXS file which is converted by the

Cross Section Processor to a GRUPXS file, and the three additional

Standard interface Files required by VENTURE, ioe., the GEODST,

NDXSRF, and the ZNATDN files. In addition, it is called again to

write the EXPOSE file required to run the BURNER module.

46

=CONTROL1

REFERENCE CALCULATION FOR DPT SAMPLE PROBLEMS
36000

1 6 1 7 13 7 13 7 13 7 0
END

INPUT PROCESSOR

0V CONTROL

lD PROINS

lD DVRINS

lD XCPINS

lD DTNINS

lD EXPINS

lD * *

0V ISOTXS
0V GEODST

0V NDXSRF

0V ZNATDN

STOP

END

INPUT PROCESSOR

0V EXPOSE

STOP

END

Figure 15. Input Structure for an Exposure Problem.

47

_3.5 Using Standard Interface _i_@s on Input.

if Standard Interface Files are available on the VENTURE

subdirectory, they can be used directly without using the input

Processor to generate them. This is accomplished through the

Control Module, as previously explained (Section 10.2). An example

for running a VENTURE problem with all of the necessary SIF's
4

available, i.e. GRUPXS, GEODST, NDXSRF and ZNATDN is shown in

Figure 16.

48

=CONTROL1

- EXAMPLE OF VENTURE RUN WITH NECESSARY INTERFACE FILES AVAILABLE

36000 1 1
7 0

GRUPXS GEODST NDXSRF ZNATDN X
END

Figure 16. Example of Input with Standard Interface Files

49

14. Relogating F._el Bundles,

In version 2 of VENTURE/PC, the special processor DENMAN was

used to change mixtures assigned to zones or subzones, and to

change nuclide concentrations, which in effect could be used to

simulate core bundle reshuffling. In version 3, however, all

special processors have been removed, including DENMAN. Fuel

reshuffling can be simulated, however, by using the Input Processor

to overlay and change the NDXSRF and ZNATDN standard interface

files.

_5_Data Transfer, File Manageme_nt andInpu__Output.

Data transfer and file management are accomplished with

standardized routines which are used by all code modules and

subroutines.

15.__Standa_dized Routines.

The standardized subroutines and their functions are:

_ - Transfers data from disk to memory.

- Transfers data from memory to disk.

O_ - Basic input-output management. Opens and closes

files, and differentiates between sequential and

direct access files. Only scratch files can use

direct access. Direct Access Files cannot be named

with the Lahey compiler used.

- Maintains file catalog, keeping track of file

name, unit number, and version number.

Subroutines often call SEEK to establish the

unit number for a given file.

5O

15.2 Input and0utput Files.

The input to run a given problem must be on a file named

VENTURE.INP, which is assigned unit number one. The Driver

overwrites the input for the various modules, i.e., the input

between the header card and END card, on unit 5, and all data is

read from this unit. This file on unit 5 has been named

VENTURE.TMP. All output is written on unit 6, in the file labeled

VENTURE.OUT, so the output can be read by editing this file. The

_s quite extensive, so the VENTURE.OUT file should be editedoutput _

prior to printing. A condensed output file is written on unit 99,

which provides file management and data access information. This

file has been labeled CONDENSE.OUT.

!5,3 Saving of standard Interface Files_

The standard interface files generated during a run are saved

with their name, so they may be used in subsequent runs. These

include, with their usual unit number assignments:

CONTRL - Unit I0

GRU_2__ - Unit ii

GEODST - Unit 12

NDXSRF - Unit 13

_NATDN - Unit 14

SEARCH - Unit 15

RSTRTR - Unit 16

. RTFLUX - Unit 17

ATFLUX - Unit 18

[/_Z__ - Unit 19

PWDINT - Unit 20

51

CXSPR_ - Unit 30

SOTX - Unit 31

!SOTXS(_ - Unit 32

FIXSRG - Unit 33

_5.4 Scratch and Direct Access Fi199__.

Other files which are generated during a run are named VENTNO,

where the NO is the unit number of the file. Thus, VENT36 is a file

generated during the run on unit 36. These files are deleted at the

end of a successful run, but will appear on the disk in the case of

an aborted run. Direct access files are not saved.

The general assignment of files is as follows:

Unit 09 - Catalog File

Unit i0 - CONTRL file

Units 21-29 and 40-69 -- Scratch files

Units 10-20 and 30-39 and 70 - 97 - Standard

Interface Files

Unit 98 - Control module instructions

!_.___Savi_r_L_of Standard Inter___ce File inText Format.

If the selection was made to save results as formatted data

(see parameter IX(60) of DTNINS input), the results will be on a

file named STFILE.TXT, for Standard Files in text format.

52

:16_ Corresponden_eBetw_enDVENTR and DTNIN_

The control information for the VENTURE neutronics code could

be input through the special processor DVENTR in version 2 of

VENTURE/PC. The same information is included in the DTNINS control

record, and is input through this record in version 3 of

VENTURE/PC. The correspondence between the input parameters in

• DVENTR and DTNINS, taken from reference [i] is shown in Table 16.1.

53

Table 16.1 Correspondence Between DVENTR and DTNINS Parameters

DVENTR DTNINS DVENTR DTNINS DVENTR DTNINS

Input Record Input Record Input Record
Sec.001 Sec. 001 Sec. 001

,.,,,,L, . ,,, , ,, - ,,u , ,. , ,,,, 1.u ,,,-., ! ,, ," ,,, , ,, , '.,, , , , '',_ , ---, ,

RRXI XX(1) ICXI IX(4) IXEI IX(32)..... _, , , , . , ,,......

RRX2 XX(2) ICX2 IX(5) IXE2 IX(33)

RXX3 XX(3) ICX3 IX(lo) _XE3 IX(35)

RXX4 XX(4) ICX4 IX(6) IXE4 IX(3S)
- • _ , ' _= :::_....... " - , ,J , t J ,, • J ,f_ __ L __

RXX5 XX(5) ICX5 IX(9) IXE5 IX(39)
..-.--+ .._ , ,,,,, , , ,,,,, , _

RXX6 XX(6) ICX6 TX(S) T+XE6 IX(40)
,,,., ,,, ,,, ,_,,, , + .,., ,,,..... --_

RXX7 XX(14) ICX7 IX(2) IXE7 IX(41)

RXX8 XX(9) ICX8 IX(26) IXE8 IX(42)

RXX9 XX(I0) ICX9 IX(23) IXE9 IX(37)
.... _ ,. ,,, ,, , , ,, , | , ,,, ,, ,

RXXl0 XX(8) ICXI0 IX(22) IXEIO IX(31)
,, ,+ ,. , ,,, , , ,.,, ,, , , ,,,,,,

RXXII XX(ll) ICXII IX(21) IXEll IX(29)
, ,, ,, ,,, ,,,, ,, ., ,, ,,___ ,, ____J,,,,, , , , ,,, , , ,,, ,,,,,,,, i, ,,,, _.. ,

RXXI2 XX(12) ICXl2 IX(20) IXEI2 IX(30)
11,J, n : i,+, , ,,, - tt , i --+ ii t , ,J _ i t ,1111 111,i

RXX13 XX(13) ICXl3 IX(27) IXEI3 IX(61)
: + ,,_ , , ,, ,, ,,,,L _ i , ,,,,,,.,, ,, ,.,

RXX14 XX(15) ICXl4 IX(25) IXEI4 IX(62)
, J , ,, , ,,,, , j, , , ,,,t_ ',L_,' ' '"' '" ' ' ' ' ' '

_xx!5...... XX(_6) Icxls _x(24) [x_is Ix(sl)
RXXI6 XX(7) ZCXl6 IX(12) IXEI6 IX(58)

.......... , ... ,., , + ,,, ,,

RXX17 ICXI7 IX(17) IXEI7 IX(53)

RXXI8 ICXI8 IX(18) IXEI8 IX54
,, --- - _ ,......, . ,,.L.+r:_

ICXI9 IX(19) IXEI9 IX(52)
__ , ,,,, , ,,, , j,, ,, ,

ICX20 IX(16) IXE20 NO
LL ' ' ' -- -- :------ ::i _ =

Icx21 _x(_3) IXE2_ IX(8_)

mcxam mx(m4) mxmmm mxC4s)

ICX23 IX(15) IXE23 IX(59)
,,, ,., , .,, _,, , , , ,, ., , , ,u_ , ,.

ICX24 IX(70) IXE24 IX(60)
. . ,, _,,,, ..:._=::.--+ _ + ,,.. • • ,,, ,, ,,,_ , ,, •

54

Table 16.1 Correspondence Between DVENTR and DTNINS Parameters
(continued)

_ !i. u< ,., . . _=::-;-;;::_ - [_, -- ,' J 'J""","" "_ _"_'! " :_!;_ "!',,i<_;_ . -,_,: ,- _".:'.::,',.q_-_<;.""_','_"m _'_"_"__

DVENTR DTNINS DVENTR DTNINS DVENTR DTNINS

Input Record Input Record Input Record
Sec. 002 Sec. 002 Sec. 002

, ,,,,,,i L,,,, .J', • , ,, J..........

RXXNI XX(19) IXCNI IX(ll) IXENI IX(46)
__ I llll I ___ I i Iii Illll I -- - i li illl I I _l : :

I
RXXN2 XX(20) IXCN2 IX(7) IXEN2 IX(47)
, ,,, ,,',, , I i _ , _ _ ,,,.. , ,, ,,,,,,, ,,,,, _ ,, ,,,,,,,,, , , ,, ,

. RXXN3 XX(21) IXCN3 IX(7J) IXEN3 IX(48)

RXXN4 XX(22) IXCN4 IX(74) IXEN4 IX(55)
-._ , ,, L ' '' ' ' --- "'"1 ,_ , , , , --.-- , ,,............ ; _ "= . u , ,, ,,,

rxxn5 xx(23) XCN5 ?5) t x ,n5 28)
,, , , ,, ,,, , , _, ,,,, ,, L _ i, ,

RXXN6 XX(24) IXCN6 IX(76) IXEN6 IX(34)
,,,,,, ,,,, J , , ,, ,, , ,,,_ . .,, ,,,,,, , , , :: ,,,,,,,, ,:

RXXN7 XX(25) IXCN7 IX('77) IXEN7 IX(36)
, _ , ,,.,, L__ , , _:: -_ ,,, ,,,, .L , , L "_ , , - ,,,, ,

RXXN8 XX(26) IXCN8 IX(78) IXEN8 IX(43)
,,,,, ,, , , ,,, , i,,, ,,,, , ,, "

RXXN9 XX(27) IXCN9 IX(79) IXEN9 IX(44)
,,,,,,, ,,..... :,, ,, ,,, . , ,,, _ ,,, , --- , ,

RXXNI0 XX(28) IXCN10 IX(80) IXEN10 IX(49)
,,,,, _u ,,, , ,,, . • ,,,,, ,i ,,, ,,, , ,, ,

RXXNII XX(29) IXCNll IXENII IX(50)
, ,, .,, i . .. , ,, , _ - ,, , i ,,

RXXN12 XX(30) IXCN12 IX(82) IXEN12 IX(56)
1_J,, ,. ,, , ,. , _.. -- :_ , ,, ,,,,,, , . ,

IXCNI3 IX(83) IXENI3 IX(57)

IXCN14 IX(84) IXENI4 IX(63)

IXCNI5 IX(85) IXENI5 IX(64)
--- , ,,,, , L ,

IXCNI6 IX(86) IXENI6 IX(65)
, . ,,, J , ,

IXCN17 IX(87) IXENI7 IX(66)
,, , ,,, L ,, i __ , , , , , , " ,,,, , ,, ,, , - "-

IXCN18 IX(88) IXENI8 IX(67)

IXCNI9 IX(89) IXENI9 IX(68)
......... -_,,_J ,, ,,, , -• ,,,, ,,,,iJ , , , , , ,, , ,, :

IXCN20 IX(90) IXEN20 IX(69)
...... , ,, u ,, , , , ,, ,, ,,,

IXCN21 IXEN21
, , , , j,,,.... , ,,...............

IXCN22 IXEN22
, ,, , ,J ,, ,,,,,, , ,, , ,,,,,, ,,JI ,, ,, _.._, , , , , L .,', ,

IXCN23 IXEN23
•-_,-- ' , '1 , • , ,u

' IXCN24 . IXEN24
_i'J,J'L " J : ; "- .: : _" '_"' ' ' ' "' < "

55

iLCompii_r__nd_erl___Struc_ure fQ_._VENTURE Code.

The VENTURE/PC code modules were obtained from the BOLD

VENTURE code system by downloading ;the source files from a

mainframe tape to a PC via modem. The source codes were edized, and

the subroutines extracted and combined with the BRIEF PC Editor

[I0], and compiled with the Lahey Fortran 77 compiler [ii].

The executable file for VENTURE/PC requires 3 million

bytes, so cannot be run within the 640K of DOS without overlay. The

PHOENIX86 Plus [].2] overlay linker was used to reduce the size of

the runtime code to about 540K. This overlay linker allows for

several levels of overlay. The overlay structure is such that only

subroutines which call each other, or depend on each other, are in

memory simultaneously, while the others reside on disk waiting to

be called. When they are called, they overlay the existing routines

in memory. In this manner, large codes can be run within memory

restrictions. The overlay structure for VENTURE, as taken from the

PLINK86 input, is shown in Figure 17. Files which are on the same

line in this figure, are in memory simultaneously. This is the case

for the DRIVER and VENTNEUT, for example, and for the subroutines

VENT and IONO. The DRIVER and VENTNEUT are in the root, and are

always in memory. Files which are in the same sections, but on

different lines, overlay one another in memory. Thus, CONTROL1 and

INPROSER do not reside in memory together, but overlay each other.

Sections which are indented, reside in another level of overlay,

and require their parent file in memory. Thus, in using the Input

Processor, INPROSER must be in memory along with the root files

DRIVER and VENTNEUT, but the files CGE, CIO, CGR etc., car, overlay

56

each other as they are called by INPROSER. Actually, the file names

shown on the figure consist of more than one subroutine which were

compiled together, and which must be in memory together since they

call each other. The subroutines assigned to the various names of

" Figure 17 are shown in Figure 18. Figure 18 can be compared with

Appendix II and III which define the subroutines for VENTURE and

BURNER, respectively.

In addition to overlaying code, the PLINK86 overlay linker

provides an option to overlay data segments [13]. When this option

was selected, the container array for data could be increased from

16000 words to 36000 words. This is a very significant increase,

and allows for much larger problems to be run.

57

OUT VENTURE

FILE DRIVER3,VENTNEUT
LIBF77L
LIB OVERLAY

OVERLAY F77LCODE,F77LDATA
BEGIN SECTION FILE CONTROL1

SECTION FILE INPROSER
BEGIN SECTION FILE CGE

SECTION FILE CIO
SECTION FILE CGR
SECTION FILE CIS
SECTION FILE CFX
SECTION FILE CCX
SECTION FILE CTF
SECTION FILE CRZ
SECTION FILE CDL
SECTION FILE CEX
SECTION FILE CZN
SECTION FILE CRF

END
SECTION FILE CROSPROS

BEGIN SECTION FILE ITI
SECTION FILE CTI
SECTION FILE M2I
SECTION FILE MIX
SECTION FILE IXS
SECTION FILE XSC
SECTION FILE GXS

END

SECTION FILE VENT,IONO
SECTION FILE SGX
SECTION FILE COR
SECTION FILE MAC
SECTION FILE COC
SECTION FILE ORL
SECTION FILE PHI
SECTION FILE COP
SECTION FILE COM
SECTION FILE OUT

BEGIN SECTION FILE MUE
SECTION FILE DOI
SECTION FILE FOI
SECTION FILE FO2
SECTION FILE FO3
SECTION FILE FO4
SECTION FILE FO5
SECTION FILE FO6
SECTION FILE FOU

END

Figure 17. VENTURE Overlay Structure

58

SECTION FILE EDI,DARE
SECTION FILE SAV
SECTION FILE PER

BEGIN SECTION FILE PET
SECTION FILE JET

END
SECTION FILE EXPOSURE
BEGIN SECTION FILE BIN
SECTION FILE BZI
SECTION FILE BUR

BEGIN SECTION FILE OEX
BEGIN SECTION FILE OFI

SECTION FILE OMO
BEGIN SECTION FILE ZON

SECTION FILE PON
END

END
SECTION FILE OXP

BEGIN SECTION FILE EXH
SECTION FILE QXP

END
SECTION FILE EDE
SECTION FILE OOW

END
SECTION FILE FOL
SECTION FILE BPN

BEGIN SECTION FILE BPA
SECTION FILE BPB
SECTION FILE BPC

END
SECTION FILE PUR
END

END;

" Figure 17. VENTURE Overlay Structure (Cont.)

59

SUBROUTINE COMBINATIONS USED FOR LINKING VENTURE/PC

CQN2ROLI - CONTROL1, INTL, NORM, CFIL, DLET, PUTF, TABL,
WCTL. WRAP

DRIVER - GABY, FERR, RITE, SEEK, RCVI, STOR, SKER, PRTH,
PRTT, PRTI, PRTR, PRTD, CMPI, CMPH, CRITr UROC,

CLOSFI, CSCRCLO

INPROSE__ - INPROSER, ABEL, CDINP, CAIN, KEEP, FBSAM, STOW,

INCHEK, INCHKD, ERMESG, GENRD, CDINPT, ERRMSG,

READHM, DCODNC, INTERP, REPEST, SETFMT

VENTNEUT - VENTNEUT, DIFF, DOPC

- CGEODS, CNDXSR, CZNATD

CIO - CISOTX

- CGRPXS

- CISOGX

- CFXSRC, CSEARCH, CSNCON

- CCXSPR, CVENTR, CPRINT, CISOGR

- CTFLUX, CCURNT, CAFLUX

- CRZFLUX, CPERTU, CPWDNT, CFISOR

- CDLYXS, CBRKXS, CWORTH, CANSIN, CDACIN

- CEXPOS, CZCONC, CRODST

CZN - CZNTMP, CZNPOW, CEXPOH, CPTATD

- CRFUEL, CTRIGM

Figure 18. Subroutines in VENTURE/PC Overlay Structure

6O

£

I_TI - ITII, ITI2

_TI - CTII, CTI2, CTI3, CHOL

M2___$I- M2II, M212

M___ - MIX1, MIX2, MIX3, MIX4, MIX5, MIXC

IX__SS- IXSl, IXS2

__ - XSCI, XSC2, XSC3, XSC4, XSC5_

- GXSI, GXS2

INDVEN________- INDVENTR, INTL, INPI, VONT

_E___ - GEOM, GOMN

-REGD

TRF - TRIF, HEXF

- THKD, VOLS, MSHP

- KOMP, KMOT

OVL - OVLY, MOSH, OVLP

- SSET

GOM - GOMA

D_- DENS

- GDNA

SES - SETS

- SEAR

" GM___Q- GOMI, GOM2

Figure 18. Subroutines in VENTURE/PC Overlay Structure

(continued)

61

ZN____ZNDI, ZND2

NDRI, NDR2

C___ - CTLI

V__- VENT

I__QJ!Q- IONO

S__G_ - SGX0, SGXI, SGX2, SGX3, SCAL_

CO_Q_ - CORE, CORI, CORP, GNAM, CORD, CORB, DDSP, DASM, JPRT,
RBLA, RBLB

- MAC1, VZT2, MACA, MACB, MAC2, MAC3, MAC5, CHDM, MAC4,
MAC6, SERM

- CON1, CON2, CON3, CKCT, CON4, CON5, CON7, CON9, GEOQ,
MSH0, NRCF, MSHI, MSH3

- ORLX, ORLA, ORLB, ORLC, ORLD, ORLE, ORLF, LAXP, LAXR,
BATO, ORLR, CON6, RCOV

P__ - PHIA, PHI1, PHI2, PHI3, PHI4, PHI5, PHI6, EDBN, SDBN,
PHI7, TOIP, QDBN, RDBN, GRXP, PAN1, PAN2

- ADNI, ADN2, ADN3, DCID, DSDF, DIMS, DIM1, DIM2, CMES,
CHVL, ALDS, DIM3, ZVRV, CRGV, FLRD, FLMH

- COMC, LCAL, FLXR, FXSR, BSQV, AJNT, REVl, PROS, ZIO3,
FEFS, CORR, IFTD, ONES, TWOS, TRES, HSTI, HST2, HST3

O__US - OUTR, BALC, ZINS, CHBF, CHEV, RDAB, XTRP, JUSB, ATED,

FFGG, RDUE, RELX, PSOR, SSOR, FSOR, FLUX, LTRG, BHAV,
OELX, NEWB

- MUEX, ETR1, ETR2, SGDA

- DOIN, RRES, WRES, PREC

- FOUl, SOU1, PO[J1, INR1, LOU1, LEKI

- FOU2, SOU2, POU2, INR2, LOU2, LEK2

- FOU3, SOU3, POU3, INR3, LOU3, LEK3, RBLI, RBL2, RBL3,
RBL4, RBL5

F__O_i- FOU4, SOU4, POU4, INR4, LOU4, LEK4, QDUE, QELX, SOUX,
JIC4

Figure 18. Subroutines in VENTURE/PC Overlay Structure
(continued)

62

_F_O__5- FOU5, SOU5, POU5, INR5, LOU5, LEK5, JIC5

- FOU6, SOU6, INR6, DELX

FOU - FOUX, SOUY, POUX, INRX, LOUX, LEKX, SOUZ, JICX

- SAVl, SAV2, SAV3, SAY4, SAVS, SAV6, SAV7

___ - PERO, RTUB, MRPT, QOUT, BBBI, BBB2, EASU

__D__ - EDIT, POUT, NB_IL, SOBL, FISS, FLXW, BSQS, PNDN,

. PTVL, PTZF, JINT, PNDI, PND2, PND3, PND4, PND5

PET - PERT, TUFY, LIFE, DAFA, MAPS, PMAP

- JERT, JUFY, JIFE, JAFA, JAPS, JMAP, JGET

THE NEXT SET OF SUBROUTINES ARE ASSOCIATED WITH EXPOSURE:

- BINP, GNZC, BRN7, BRN4, BGXS, BZTI, BRNF, BRNW, ZJC2,

ZJCY, ZIGY, EPFD, BRNX, HQUE, SKNU

- BZIN, DEEF, CMOV, BRNS, BRN3, BRNZ, BRNTs BZT2, BRNA,
BRND, BRRF, PRRF

- OFIX, BFIX

O__ - OEXP, POWL, ARRI_ ZCRI, PARI, BRNO

- BURN, BRNY, ZNAW, ZZPD, AUXE, TPNE

ZON - ZOND, ZZPF, ZONI, POWP

Q_O - OMOV, BMOV

- PONI, PPOE, QNAW, QNAT

Q__ - OXPH, CPHI, ECHK, ESET, FLUE

- EXPH, REHT, CPH2, EPH2
#

Q_ - QXPH, QPTD, QFLU, QEHT, CPH3, EPH3

- EDEP, EDED, ETAB

Q OW - OOWN, DOWN

Figure 18. Subroutines in VENTURE/PC Overlay Structure (cont.)

63

- FOUL

BPN - BPIN, PTNS

- BPIA, PTAT, PGEO, GCHK, MSHK, VOLP, PLOC, PRN3, REOR,
CHEK, MSHO, MSHI, MSH3, NRCF

[_ - BPIB, ZFMP, ZFM3, ZFMV

BPC - BPIC, PRNZ, PRNT, PZT2, PRNA, PRND, BRPF, PRPF, PRNS

- PURN, PRNY, PFIX, POWN, PNAW, PDST

Figure 18. Subroutines in VENTURE/PC Overlay Structure

(continued)

64

18VE_NTURE/PClnt_eractive Proc_ssor,"VIP".

An interactive input processor is included with the

code. The processor, called VIP for VENTURE INTERACTIVE PROCESSOR,

was written in FORTRAN and compiled with the Lahey FORTRAN-77

" compiler, version 2.22. The processor is rather large, utilizing

about 900,000 bytes, and, therefore, required overlaying during the
m

linking process. The overlay structure for the VIP executable

program is shown in Figure 19.

The processor prompts the user for the input, and should

be reasonably self explanatory. Reviews of the input are provided

after each major section, at which point erroneous input can be

corrected.

65

OUT VIP
FILE VIP

LIB C:\LAHEY\F77L
LIB OVERLAY

OVERLAY F77LCODE,F77LDATA
BEGIN SECTION FILE CONTRLU,CONTRL2

SECTION FILE GRUPXS
SECTION FILE ISOTXS
SECTION FILE GEODST
SECTION FILE NDXSRF
SECTION FILE ZNATDN
SECTION FILE SEARCH 4
SECTION FILE EXPOSE

END;

Figure 19. VIP Overlay Structure

J

66

i. "BOLD VENTURE IV, A Reactor Analysis Code System, Version IV",
RSIC Computer Code Collection, CCC-459, Radiation shielding
Information center, Oak Ridge National Laboratory, June, 1984.
This reference provides the extensions made to the previous version
of BOLD VENTURE. It also provides the updated input requirements.

2. R. Douglas O'Dell, "Standard Interface Files and Procedures for
Reactor Physics Codes, Version IV", LA-6941-MS, Los Alamos
Scientific Laboratory, September, 1977.

. An excellent description of the purpose and format of Standard
Interface Files and DOE code standardization.

"i_SIP-III,3. Bosher, G.E., Odell, R.D., Resnik, W.M, A
Generalized Processor for Standard Interface Files" LA-6280-MS,
Los Alamos Scientific Laboratory, April, 1976.
A description and discussion of the Los Alamos Input Processor for
converting card image format to Standard Interface Files.

4. Vondy, D.R., Fowler, T.B., Cunningham, G.W., Petrie, L.M., "A
Computation System for Nuclear Reactor Core Analysis", Oak Ridge
National Laboratory, ORNL-5518, April,].977.
A description of the system and codes used with VENTURE for nuclear
reactor core analysis.

5. Vondy, D.R., Fowler, T.B., Cunningham G.W., "VENTURE: A Code
Block for Solving Multigroup Neutronics Problems Applying the
Finite Difference Diffusion Theory Approximation to Neutron
Transport, Version II" ORNL-5062/RI, Oak Ridge National Lab, Nov. , •

1977.

An earlier version of VENTURE, but the most definitive report on
the VENTURE neutronics module, providing a detailed account of the
theory and equations associated with the code.

6. Fowler, T.B., Vondy, D.R., Cunningham, G.W., "Nuclear Reactor
Core Analysis Code: CITATION", ORNL-TM-2496, Rev. 2, July, 1969
The precursor code to VENTURE.

7. Vondy, D.R., Fowler, T.B., Cunningham, G.W._ "The Bold Venture
Computation System for Nuclear Reactor Core Analysis, Version III',
Oak Ridge National Lab, ORNL-5711, June, 1981.
Essentially the same as reference i, but given as an Oak Ridge

" report rather than as a Computer Code Collection.

' "Exposure Calculational Code8. Vondy, D.R. and Cunningham, G.W.,
Module for Reactor Core Analysis: BURNER", ORNL-5180, Oak Ridge
National Lab., Feb. 1979.
A description of, and the theory used, in the BURNER code module
for isotope depletion and production.

67

9. Vondy, D.R. and Fowler T.B., "Reference Test Problems for the
VENTURE Neutronics and Related computer Codes", ORNL/TM-5887,
Oak Ridge National Lab, August, 1977.
A listing with input for VENTURE sample problems.

I0. "BRIEF, Basic Reconfigurable Interactive Editing Facility, Vet
2", Underware Inc., 84 Gainsborough St., suite 103W, Boston, Mass.,
02115.

An excellent PC Editor for code development and editing.

ii. "F77L FORTRAN 77 Language System, Vet 2.22", Lahey Computer
Systems, Inc., P.O. Box 6091, Incline Village, Nv. 89450-6091,
(702)s31-2s00.
A very excellent FORTRAN compiler, providing rapid compilation and
running.

12. "PLINK86PLUS Overlay Linker, Vet 2.24", Phoenix Technologies
Ltd, 320 Norwood Park South, Norwood MA. 02062 (800)344-.7200.
A multilevel overlay linker for PC's.

13. Nigg, D.W., INEL, EG&G Idaho Inc., Personal Communication

68

APPENDIX I

FORTRAN LISTING OF DRIVER

69

CDRIVER FORTRAN VERSION OF THE DRIVER
C
C

C PRIMARY DATA USE BY THE DRIVER
C

C IC(1) COUNT OF ACCESSES OF THE CONTROL MODULE,
C SET 0 FOR SUBSEQUENT CASE, -i FOR TERMINATION
C IC(2) - It(6) STOP RETURN NUMBERS ALLOWED FOR CODE MODULE ACCESSES
C IC(7) TASK COMPLETION FLAG, DRIVER SETS ZERO IF SUCCESSFUL
C IC(8) INSTRUCTION TO DRIVER TO T[_NSFER USER INPUT DATA "
C SET TO 0 FOR SUCCESSFUL TRANSFER
C IC(9) COUNT OF SUCCESSFUL CODE MODULE TASK COMPLETIONS
C IC(10) RESERVED
C

C AC(l) NAME OF CONTROL MODULE
C AC(2)-AC(6) NAMES OF CODE MODULES TO BE ACCESSED
C AC(7) RESERVED FOR FUTURE DRIVER CONTROL

C AC(8) LATEST INPUT DATA HEADER (NAME OF SPECIAL PROCESSOR)
C AC(9)-AC(IO) RESERVED FOR FUTURE DRIVER CONTROL,
C
C

PROGRAM DRIVER

REAL*8 AC,BLANK,CMODNM,C8,END
REAL*8 HNCTL,RCD

REAL*8 TITLE,FILEIN,FLN,GONOR,GLN,DDN,RSTKA,WSTKA,RSTKB,WSTKB
LOGICAL LUNIT
REAL*8 MODNAM

INTEGER*2 IC,JP,JD
C

COMMON/KEK/ MEMORY

COMMON/CDATA/ AC(40), IC(80), JP(72), JO(48)
COMMON/VCTRL/ HNCTL,RCD(100),ICD(100)

C

COMMON/CINPT/TITLE(24),FILEIN(72),FLN(72,5),GONOR(100),GLN(72,5),
*DDN(103),RSTKA,WSTKA,RSTKB,WSTKB,
*NFLN(5),IX(15),IZ(201),NZ(900),NE(72),NVR(72,5),MVERS(100),
*MEDUM(100),MMODD(100),NFNO,NMOD

C

DIMENSION A(36000)
DIMENSION C8(I0)

C

DATA BLANK/' '/
DATA END/'ENDI/
DATA EQ/'='/

C
C

IOINP = 1
IOUT = 6
IOFIVE = 5

OPEN(IOINP, FILE='VENTURE.INP',BI_NK='ZERO')
OPEN(IOUT, FILE='CONDENS.OUT')
OPEN(IOFIVE,FILE='VENTURE.TMP,)
WRITE(IOUT,1000)

7O

INANE = 0

CALL VNAM_ (IOUT, INANE)
INANE = 1

DO I00 N = 1,40
lC(N) =0

IC(N+40) = 0

AC(N) = BI_ANK
i00 CONTINUE

GO TO 103

. i01 CONTINUE

IC9 = IC(9)

DO 102 N = i,I0
. IC(N) = 0

AC(N) = BLANK
102 CONTINUE

IC(9) = IC9
103 CONTINUE

WRITE(IOUT,1005)
C

C READ CONTROL MODULE NAME

READ(IOINP,1001,END=II5) X,CMODNM
WRITE(IOUT,IO06) CMODNM
IF(X.NE.EQ) GO TO 114
AC(l)= CMODNM

REWIND IOFIVE
C

C ZEAD CONTROL MODULE DATA
104 CONTINUE

READ(IOINP,1004,END=II3) C8
WRITE(IOUT,1005) C8

IF(C8(1).EQ.END) SO TO 105

WRITE(IOFIVE,1004) C8
GO TO 104

105 CONTINUE

ENDFILE IOFIVE

REWIND IOFIVE
106 CONTINUE

IC(1) = IC(1)+I

IF(IC(1).EQ.I) CALL GABY(IP,ID,IC,AC)

**C

C ACCESS CONTROL MODULE HERE USING THE OPERATING SYSTEM LOADER,
C COMMUNICATING THE COMMON DATA BLOCK CDATAC

**
IF(IC(1).LT.0) GO TO iii

IF(IC(1).EQ.0) SO TO i01
, IC8 : IC(8)

CALL VNAME(IOUT,INAME)
DO 400 IMD=I,NMOD

NZMOD = NZ(IMD)

IF(NZ(IMD).LT.3.) THEN

71

C READ INPUT OR SPECIAL PROCESSOR NAME.

INQUIRE(UNIT=IOFIVE,OPENED=LUNIT)

IF(.NOT.LUNIT) OPEN(IOFIVE,FILE='VENTURE.TMP')

READ(IOINP,1004,END=II0) C8

WRITE(IOUT,1005) C8

AC (8) = CS(1)
MODNAM = C8(I)

IF(IC8.EQ.2) AC(2) = C8(I)
REWIND IOFIVE

C

C READ INPUT OR SPECIAL. PROCESSOR DATA

107 CONTINUE

READ(IOINP,1004,END=II0) C8

WRITE(IOUT,1005) C8

IF (C8(1).EQ.END) SO TO 108

WRITE(IOFIVE,1004) C8
GOTO 107

108 CONTINUE

ENDFILE IOFIVE

REWIND IOFIVE

IC(8) = 0
109 CONTINUE

IC(7) = 0
ENDIF

GO TO (210,220,230,400,400,260,270,280,290,400,310,320,330,

* 400,350,400,400,400,390,400) NZMOD
210 CALL CLOSFI

CALL INPROSER(A,MEMORY)
GO TO 400

220 CONTINUE

GO TO 400

230 CALL FILEDTOR

GO TO 40O

260 CALL CLOSFI

CALL CROSPROS(A,MEMORY)
GO TO 400

270 CLOSE(3)

CLOSE(5)

CLOSE(9)

CLOSE(98)
CALL CLOSFI

CALL VENTNEUT(A,MEMORY)

IF(IMD.NEuNMOD) THEN
CALL CLOSFI

CLOSE(23)

CLOSE(24)

CLOSE(27)

CLOSE(28)

CLOSE(40)

OPEN(5,FILE='VENTURE.TMP',BLANK='ZERO')
ENDIF

GO TO 4OO

280 CALL VALENEUT

72

GO TO 400

290 CALL CLOSFI

CALL REACRATE(A,MEMORY)
GO TO 400

310 CALL VANCNEUT

GO TO 4OO

320 CALL CNTRODPO

GO TO 4OO

• 330 CALL CLOSFI

CALL EXPOSURE(A,MEMORY)

CLOSE(23)

. CLOSE(24)

CLOSE(27)

CLOSE(28)

CLOSE(40)
GO TO 400

350 CALL PERTUBAT(A,MEMORY)
GO TO 400

390 CALL FUELMANG

400 CONTINUE

**

C

C ACCESS CODE MODULES HERE USING THE OPERATION SYSTEM LOADER -

C (MODULE NAMES ARE AC(2) THROUGH AC(6) UP TO A BLANK) ,

C ADD 1 IC(9) FOR EACH SUCCESSFUL MODULE ACCESS,

C IF THE RETURN STOP NUMBER FROM AN ACCESSED MODULE AC(N) EXCEEDS

C THE ALLOWED VALUE IC(N), IC(7) IS SET TO THE RETURNED NUMBER AND
C THE CONTROL MODULE IS ACCESSED WITHOUT FURTHER CODE MODULE

C ACCESSES.

C

GO TO 115

ll0 CONTINUE

WRITE(IOUT,1008)
GO TO 116

iii CONTINUE

WRITE(IOUT,1009)
GO TO 116

113 CONTINUE

WRITE(IOUT,1007)
GO TO 116

114 CONTINUE

WRITE(IOUT,1003)
• GO TO 116

115 CONTINUE

WRITE(IOUT,1002)
. 116 CONTINUE

CALL DELFIL

STOP

C

i000 FORMAT(' FORTRAN DRIVER FOR A MODULAR CODE SYSTEM FOR TESTING

i001 FORMAT(AI,A8)

73

--__

1002 FORMAT(' NORMAL END OF RUN - EOF IN INPUT STREAM')

1003 FORMAT(' NO ''='' PRECEDING THE CONTROL MODULE NAME')
1004 FORMAT(10A8)

1005 FORMAT(10A8)

1006 FORMAT(' CONTROL MODULE NAME = ',A8)

1007 FORMAT(' END FILE READING CONTROL MODULE DATA')

1008 FORMAT(/' END FILE ENCOUNTERED READING INPUT')
1009 FORMAT(' DRIVER INSTRUCTED TO TERMINATE')
I010 FORMAT(2413)

i011 FORMAT(A6)
END

SUBROUTINE VNAME(IOUT,INAME)

C Printing the header page
IF(IN_dE.EQ.0) THEN

WRITE(*,100)
RETURN

ENDIF

WRITE(IOUT,100)
i00 FORMAT(

***t,
28X, ,,/i,
38X, ,,/

48X,'* V V EEEEE N N TTTTT U U RRRR EEEEE PPPP CCCCC *'!i

58X,'* V V E NN N T U U R R E P P C C *'/

68X,'* V V E NNN N T U U R R E P P C *'/

'* V V EEEE N N N T U U RRRR EEEE PPPP C *'/
78X, __

88X,'* V V E N NNN T U U R R E P C *'/

98X,'* V V E N NN T U U R R E P C C *'/

18X,'* VV EEEE_ N N T UUUUU R R EEEEE P CCCCC *'/tW
28X, ,,/

'* VERSION 3 0 *'!38X, • /
eW

48X, ,,/

58X,'* DEVELOPED FOR THE *'/
tW

68X, ,,/

78X,'* INEL REACTOR PHYSICS PC CODE SYSTEM *' !i
sW

88X, ,,/tW
98X, BY THE *,/sW
18X, ,,/

28X,'* NUCLEAR ENGINEERING PROGRAM *'/

38X,'* UNIVERSITY OF CINCINNATI ,,/

48X,'* H. C. HURIA_ A. SHAPIRO, AND K. W. CHO *'/

58X,'* (Under Subcontract C87-I01212) ,,/
lW

68X, ,,/
tW

78X, ,,/ .

II0 FORMAT(lH])

WRITE(IOUT,II0)
RETURN

END

CGABY CONTROL MODULE ENTRANCE ROUTINE, TYPICAL GABY i0

C GABY 20

SUBROUTINE GABY (IP, ID, IB, AB) GABY 30

C GABY 40

74

q

INTEGER*2 IC,JP,JD,IB,IP,ID GABY 50

REAL*8 AC,AB . GABY 60
COMMON/MEM/ MEMORY

COMMON /CDATA/ AC(40), IC(80), JP(72), JD(48) GABY 80

DIMENSION IP(1), ID(1), IB(1), AB(l) GABY i00

C GABY 120
DO I00 I=i,40 GABY 130

AC(I) = AB(I) GABY 140

• IC(I) = IS(I) GABY 150

IC(I+40) = IB(I+40) GABY 160
i00 CONTINUE GABY 170

. DO ii0 I=i,72 GABY 180

JP(I) = IP(I) GABY 190
Ii0 CONTINUE GABY 200

DO 120 I=i,48 GABY 210

JD(I) = ID(I) GABY 220
120 CONTINUE GABY 230

C GABY 240
C GO TO THE MAIN PROGRAM OF THE CONTROL MODULE GABY 250

CALL CONTROL1

GABY 260

C GABY 270
C RETURN ROUTE FROM THE MAIN PROGRAM GABY 280

DO 130 I=i,40 GABY 290

AB(I) = AC(I) GABY 300

IS(I) = IC(I) GABY 310

IB(I+40) = IC(I+40) GABY 320

130 CONTINUE GABY 330

C GABY 340

C RETURN TO THE DRIVER GABY 350

RETURN GABY 360

END GABY 370
CC

75

APPENDIX IV

VENTURE SUBROUTINES

(from reference 5)

jr
J

76

_HE ACCESS, C0_TROL, AND GENERAL PURPOSE ROUTINES

MAIN ENTRY POINT TO NEUTRONICS CODE BLOCK.

CALLS ERRSET, TIMER, DOPC, IONO, VENT, DRIV
IONO ASSIGNS INPUT/OUTPUT UNIT NUMBERS
VENT ACCESSES CODE BLOCK CONTROL INFORMATION

CALLS SKER, FERR
DRIV PASSES INFORMATION TO THE CONTROLLER ROUTINE

. ALLOCATES CORE STORAGE

CALLS GETCOR, ROXX, ROXY, DIFF, DOPC, FRECOR
DIFF CONTROLS THE CALCULATION

, CALLS CORE, MAC1, CON1, PHIA, ORLX, COMC, LCAL, FLXR,

FXSR, BSQV, AJNT, PROS, DOPC, OUTR, DSDF, DCID,

DIMS, AJDS, FLRD_ ADNI, EDIT, SAVI, PERT, JERT,
FERR, TIMER

CORE DETERMINES STORAGE REQUIREMENTS AND DATA HANDLING MODES.

CALLS CORI,CORP, GNAM, CORD, CORB, DDSP, DASU, SKER, JPRT,
FERR.

DASU SETUP DIRECT ACCESS FILES

EASU SETUP DIRECT ACCESS FILES

CALLS DOPC, FERR

TIMER" SERVICE ROUTINE FOR COMPUTER TIME, ETC.
STOR SERVICE ROUTINE FOR MOVING DATA IN MAIN MEMORY

SKER FILE MANAGEMENT RELATED ERROR MESSAGES

FEaR ALL OTHER FATAL ERROR MESSAGES

KEEP* DUMMY ROUTINE USED TO OUTFOX THE OPTIMIZING COMPILER

THE INPUT/OUTPUT RQUTINES

DOPC INITIALIZES, OPENS, AND CLOSES DATA FILES
ENTRY ROXY COMMUNICATES DATA ARRAYS

CALLS SEEK,. RITE, DEFILE, CLOSDA, (FBSAM AND ENTRIES)

RITE DATA TRA/_SFERMANAGERAND WRITES DATA (FORTRAN WRITE) -CALLED BY
MOST ROUTINES.

ENTRY REED READS DATA (FORTRAN READ) - CALLED BY MOST
ROUTINES

ENTRY ROXX" COMMUNICATES DATA ARRAYS

CALLS CRIT, CRED, (FBSAM, AND ENTRIES)
SEEK INTERFACE DATA FILES MA/_AGER

CALLS RITE, REED
CRIT* ASSEMBLY LANGUAGE ROUTINE FOR CORE TO EXTENDED CORE DATA

TRANSFER (SEE SECTION 203 FOR THE FORTRAN EQUIVALENT)
ENTRY CRED EXTENDED CORE TO CORE DATA TRANSFER

- DEFILE" ASSEMBLY LANGUAGE ROUTINE TO EXECUTE THE FORTRAN DEFINE FILE

TATEMENT USING PROBLEM DEPENDENT VARIABLES (OPENS DIRECT ACCESS
FILES) - ACCESSES SYSTEM ROUTINE IHCEDIOS

. CLOSDA* ASSEMBLY LANGUAGE ROUTINE TO CLOSE DIRECT ACCESS FILES

FBSAM" LOCAL I/O ROUTINE USED ALONG WITH THE I/O PACKAGE TO PRODUCE
SPECIAL CAPABILITY

THE...CALCULATIO_.. OF MACROSC.Qp.Ic. cRoss SECTI__QO_[_

MAC1 CONTROLS MACROSCOPIC CROSS SECTION CALCULATION

CALLS MACA, MACB, MAC2, SCAL, MAC3, MAC5, CHDM, MAC4, MAC6, SKER,
FERR

MACA INITIAL PROCESSING OF GRUPXS

CALLS STOR

MACB CHECK NAMES AND CLASSES ON NDXSRF AND GRUPXS FOR AGREEMENT .
MAC2 CALCULATE MACROSCOPIC PRINCIPAL CROSS SECTIONS

SCAL LOCATES POSITION OF SCATTERING RECORDS ON GRUPXS

MAC3 CALCULATE MACROSCOPIC SCATTERING CROSS SECTIONS

MAC5 ADJUST DIFFUSION CONSTANT AND SCATTERING DATA FOR P1 CALCULATION.
CHDM CHECK DIMENSION SEARCH DATA

CALLS SKER

MAC4 CALCULATE MACROSCOPIC SEARCH DATA

MAC6 EDIT MACROSCOPIC CROSS SECTIONS

THE.._AL.CULATION OF EOUATION CONSTANT_

CON1 CONTROLS EQUATION CONSTANT CALCULATION

CALLS MSHO,NRDF,MSH1,CON2, GEOQ, CON3, MSH3, CKCT, CON4, CON5,

CON7,CON9, STOR, SKER,FERR
MSHO SETUP COARSE MESH PARAMETERS FOR lD AND 2D CASES

NRCF CONVERT REGION ASSIGNMENTS BY COARSE MESH TO FINE MESH

MSHI CALCULATE FINE MESH DISTANCES

CON2 SETUP BOUNDARY CONSTANTS AND BUCKLING

GEOQ CHANGE FROM 3D YO 2D CASE

CON3 RESTRUCTURE MACROSCOPIC DATA AND ZERO ROD CROSS SECTIONS

CALLS NROD, STOR
MSH3 EDIT FINE MESH DISTANCES

CKCT SETUP INDEXING FOR DIFFUSION CONSTANTS

CON4 CALCULATES LEAKAGE CONSTANTS

CALLS NROD, BNDY

CON5 CALCULATES LEAKAGE CONSTANTS (TRIAGONAL)
CON7 CALCULATES LEAKAGE CONSTANTS (HEXAGONAL)
CON9 CALCULATES ZONE VOLUMES FROM REGION VOLUMES AND DETERMINE ZONE

WITH MAXIMUM NU-SIG-VOL

CALLS NROD

NROD FUNCTION TO DETERMINE INTERNAL BLACK ABSORBER ZONES

BNDY FUNCTION TO CALCULATE NON-RETURN LEAKAGE CONSTANT

78

THE INITIALIZATION.PROCES_

ORLX CONTROLS ITERATIVE PROCESS PARAMETER INITIALIZATION

CALLS ORLA,ORLB, ORLC, ORLD, ORLE, ORLF,BATG, ORLR, CONG, FERR,
RCOV

ORLA LOCATES A REFERENCE POINT IN MESH TO USE AS A BASIS FOR

INITIALIZATION PROCEDURES (2, 3-O PROBLEMS ONLY)
CALLS KEEP

ORLB DETERMINES AN ENERGY DISTRIBUTION FUNCTION FROM EQUATION ONSTANTS

AT THE REFERENCE POINT (2, 3-D PROBLEMS ONLY)
CALLS KEEP

ORLC SETUP I-D EQUATION CONSTANTS ALONG THE ROW CONTAINING THE

' EFERENCE POINT (2, 3-D PROBLEMS ONLY)
CALLS KEEP

ORLD SETUP DATA FOR THE I-D INITIALIZATION CALCULATION

(2, 3-D PROBLEMS ONLY)
CALLS NROD

ORLE SETUP CROSS SECTIONS FOR THE I-D INITIALIZATION CALCULATION

(2, 3-D PROBLEMS ONLY)

ORLF SOLVES THE I-D PROBLEM FOR INNER AND OUTER ITERATION BEHAVIOR

(2, 3-D PROBLEMS ONLY)

CALLS LAXR, LAXP

BATG CALCULATES OVERRELAXATION COEFFICIENTS AND INNER ITERATIONS AND

HEBYSHEV PARAMETER AND SETS DEFAULT OPTIONS (2, 3-D PROBLEMS
ONLY)
CALLS LUCK

ORLR BYPASS INITIALIZATION DURING SEARCH OR PERTURBATION ONLY

CALCULATIONS (2, 3-D PROBLEMS ONLY)
RCOV RECOVERS DATA FOR SUCCESSIVE NEUTRONICS PROBLEMS

LAXR LINE RELAXATION FOR I-D INITIALIZATION PROBLEM

LAXP POINT RELAXATION FOR I-D INITIALIZATION CALCULATION
MUCK FUNCTION TO LOCATE REFLECTED BOUNDARY

LUCK FUNCTION TO DETERMINE MESH DEPENDENT PARAMETER FOR LAMDA

CONG PREPARE MACROSCOPIC CROSS SECTIONS AND OTHER DATA FOR ITERATIVE
PROCESS

PHIA CONTROLS FLUX INITIALIZATION

CALLS PHIIr PHI7, PHI2, PHI3, FERR
PHI1 INITIAL FLUX IS CONSTANT

CALLS NROD
4

PHI7 INITIAL FLUX IS SYNTHESIZED FROM THE RESULT OF THE I-D

NITIALIZATION CALCULATION (2, 3-D PROBLEMS ONLY)
CALLS SDBN, TOIP, NROD

TOIP SIMPLE LINEAR INTERPOLATION

PHI2 INITIAL FLUX IS AFUNCTION OF SPACE AND ENERGY

CALLS EDBN, SDBN, NROD
EDBN CALCULAT_ _ ENERGY DISTRIBUTION FUNCTION

a

79

SDBN CALCULATE SPATIAL DISTRIBUTION FUNCTIONS

PHI3 PROCESS INITIAL FLUX FROM FLUX INTERFACE (MAY BE EXPANDED TO NEW
MESH EXCEPT FOR HEXAGONAL GEOMETRY)

CALLS PHI4, PHI5, PHI6, GRIP, PAN1, PAN2, NROD, SKER
PHI4 ID FLUX EXPANSION

PHI5 2D FLUX EXPANSION

CALLS PBND, PC2D
PHI6 3-D FLUX EXPANSION

CALLS PBND, PC2D, PC3D
GRXP GROUP EXPANSION

PAN1 TRIANGULAR EXPANSION ON PLANES
4

,PAN2 TRIANGULAR EXPANSION BETWEEN PLANES

PBND FUNCTION TO DETERMINE ARTIFICIAL FLUX POINT

PC2D FUNCTION TO DETERMINE ARTIFICIAL CORNER POINT - 2D

PC3D FUNCTION TO DETERMINE ARTIFICIAL CORNER POINT - 3D
CALLS PC2D

THE ITE__ATIVE PROCESS

COMC UTILITY SUBROUTINE

LCAL CALCULATES STARTING ADDRESSES IN DATA ARRAY
CALLS FERR

FLXR OBTAINS INITIAL FLUX

FISR OBTAINS A FIXED SOURCE
CALLS SKER

BSQV SEARCH CALCULATION UTILITY ROUTINE

AJNT SETS UP INPUT/OUTPUT FILES FOR THE ADJOINT PROBLEM
CALLS REVI

REVl PROCESSES SCATTERING DATA FOR ADJOINT PROBLEM
PROS SETS UP INPUT OUTPUT FILES

CALLS ZIO3, FEFS
ZIO3 PROCESSES PRINCIPAL CROSS SECTIONS

FEFS SETS INITIAL FLUX TO FIXED SOURCE WHEN FIXED SOURCE
LT 0

DSDF CALCULATES INDIRECT NUCLIDE SEARCH CHANGE EIGENVALUE
DCID CONTROLS SEARCH CALCULATION EXIT OPTIONS

DIMS CALCULATES DIMENSION SEARCH CHANGE FACTOR

ADJS CONTROLS DIMENSION SEARCH CHANGES

CALLS DIM1, DIM2, DIM3

DIM1 READS COARSE MESH MODIFIERS FROM SEARCH INTERFACE FILE

DIM2 CONTROLS COARSE MESH AND VOLUME CHANGES - WRITES NEW GEODST

CALLS CMES, CRGV

DIM3 CONTROLS CHANGE ZONE VOLUMES - WRITES NEW NDXSRF INTERFACE •
CALLS ZVRV

ZVRV CHANGES ZONE VOLUMES

FLRD READS GEODST FOR FINAL EDIT OF MESH - DIMENSION SEARCH 4
CALLS FLMH

CHES CHANGES COARSE MESH

CRGV CALCULATES REGION VOLUMES FROM POINT VOLUMES
CALLS CHVL

8O

CHVL CHANGES REGION VOLUMES

FLMH EDITS FINAL MESH - DIMENSION SEARCH
OUTR OUTER ITERATION CONTROLLER

CALLS DOIN, ZINS, FSOR, SSOR, FLUX, PSOR, JUSB, BALC, ITRP,

WRES, PREC, MUEX, CHEV, ETR1, ETR2, ATED, SGDA, FERR
BALC NEUTRON BAlaNCE EQUATION ,
ZINS CALCULATES THE DIRECT SEARCH PROBLEM EIGENVALUE

CHBF CHEBYSHEV ACCELERATION ROUTINE

' CHEV CHEBYSHEV ACCELERATION ROUTINE

RDAB CALCUIATES ROD ABSORPTIONS

LTRG CALCULATES IN-LEAKAGE FOR TRINAGULAR GEOMETRY

, ITRP ASSESSES FLUX CONVERGENCE

CALLS FFGG, BHAV
BHAV CALCULATES ITERATIVE CONVERGENCE PARAMETERS

JUSB OVERRELAXATION COEFFICIENT CONTROL

ATED EDITS ITERATION DATA

FFGG CALCULATES FLUX EXTRAPOLATION FACTORS

RDUE RESIDUE ESTIMATE OF THE MULTIPLICATION FACTOR

RELX SOLVES FOR THE FLUX VALUES ALONG A ROW AND OVERRELAXES THEM

OELX SOLVES FOR THE FLUX VALUES ALONG A ROW NO OVERRELAXATION

NEWB CALCULATES NEW OVERRELAXATION FACTORS

FSOR FISSION SOURCE CALCUlaTION CONTROLLER

CALLS FOUl, FOU2, FOU3, FOU4, FOU5, FOU6
SSOR SCATTERING SOURCE CALCULATION CONTROL

CALLS SOU1, SOU2, SOU3, SOU4, SOU5, SOU6
PSOR P-I SCATTERING SOURCE CALCULATION CONTROL

CALLS POUI, POU2, POU3, POU4, POU5
FLUX INNER ITERATION CONTROL

CALLS INR1, INR2, INR3, INR4, INR5, INR6, INRX, BHAV
MUEX EXTRAPOPLATION PARAMETER PROCESSING

ETR1 SINGI_ ERROR MODE FLUX EXTRAPOLATION

ETR2 DOUBLE ERROR MODE FLUX EXTRAPOLATION

SGDA SAVES AND RETRIEVES DATA DURING DIRECT NUCLIDE SEARCH

DOIN FLUX CALCULATION UTILITY ROUTINE

RRES READS RESTART FILE

WRES WRITES RESTART FILE

PREC CALCULATES ONE-DIMENSIONAL SWEEP PARAMETERS

ADNI CONTROLLER FOR UPDATING ATOMIC DENSITIES

ADN2 UPDATES ATOMIC DENSITIES

ADN3 EDITS ATOMIC DENSITIES

INR1 INNER ITERATION CONTROL (I ROW STORED MODE)

CALLS LOUI, RDUE, RELX, LEKI, CHEV, OELX, NEWB
LOUI IN-LEAKAGE CALCULATION

' FOUl FISSION SOURCE CALCULATION

SOU1 SCATTERING SOURCE CALCULATION

POU1 P-I SCATTERING SOURCE CALCULATION

6 LEKI OUT-LEAKAGE CALCULATION

81

INR2 INNER ITERATION CONTROL (ALL DATA STORED MODE)

CALLS LOU2, RDUE, RELX, LEK2, CHEV, RDAB, OELX, NEWB
FOU2 FISSION SOURCE CALCULATION

LOU2 IN-LEAKAGE CALCULATION

SOU2 SCATTERING SOURCE CALCULATION

POU2 P-1 SCATTERING SOURCE CALCULATION

LEK2 OUT-LEAKAGE CALCULATION

INR3 INNER ITERATION CONTROL (SPACE PROBLEM DATA STORED MODE)

CALLS LOU3, RDUE, RELX, LEK3, CHEV, LTRG, RDAB, OELX, NEWB
LOU3 IN-LEAKAGE CALCULATION

FOU3 FISSION SOURCE CALCULATION
SOU3 SCATTERING SOURCE CALCULATION

POU3 P'I SCATTERING SOURCE CALCULATION

LEK3 OUT-LEAKAGE CALCULATION

INR4 INNER ITERATION CONTROL (MULTIPLE PLANE DATA STORED MODE)

CALLS LOU4, QDUE, QELX, LEK4, SOUX, JiC4, CHEV, LTRG, RDAB, NEWB
LOU4 IN-LEAKAGE CALCULATION

LTRG SPECIAL IN-LEAKAGE CALCULATION FOR TRIANGULAR GEOMETRY
FOU4 FISSION SOURCE CALCULATION

SOU4 SCATTERING SOURCE CALCULATION

POU4 P-I SCATTERING SOURCE CALCULATION

LEK4 OUT-LEAKAGE CALCULATION

JIC4 DEL DOT J CALCULATION

QDUE ACCESSES RESIDUE CALCULATION

CALLS RDUE

QELX ACCESSES FLUC CALCULATION

CALLS RELX, OELX

INR5 INNER ITERATION CONTROL (MULTI-ROW STORED MODE)

CALLS LOU5, RDUE, RELX, LEK5, JIC5, CHEV, OELX, NEWB
LOU5 IN-LEAKAGE CALCULATION

FOU5 FISSION SOURCE CALCULATION

SOU5 SCATTERING SOURCE CALCULATION

POU5 P-I SCATTERING SOURCE CALCULATION

JIC5 DEL DOT J CALCULATION

LEK5 OUT-LEAKAGE CALCULATION

INR6 CONTROLLER ROUTINE FOR THE SPECIAL I-D PROCEDURE
CALLS CHEV

FOU6 FISSION SOURCE CALCULATION

SOU6 SCATTERING SOURCE CALCULATION

DELX LINE RELAXATION WITHOUT OVERRELAXATION

INRX INNER ITERATION CONTROL (MULTI-LEVEL DATA TR_SFER MODE)

CALLS LOUX, RDUE, RELX, LEKX, SOUZ, JICX, CHEV, RDAB, OELX,
NEWB

82

LOUX IN-LEAKAGE CALCULATION

FOUX FISSION SOURCE CALCULATION

SOUY SCATTERING SOURCE CALCULATION
SOUZ SCATTERING SOURCE CALCULATION

POUX P-1 SCATTERING CALCULATION

LEKX OUT-LEAKAGE CALCULATION

JICX DEL DOT J CALCULATION

h[EDIT ROUTINF_

EDIT CONTROLS EDITS

CALLS NBAL, PNDN, FLXW, PERT, BSQS, FISS, JINT, PTVL, PTZF
CORP EDIT PROBLEM DESCRIPTION

GNAM EDIT GEOMETRY AND CHECK FOR VALIDTY

CORD EDIT MAJOR PROBLEM PARAMETERS

JPRT CALCULATES PERTURBATION STORAGE REQUIREMENTS

CORB EDIT BOUNDARY INDICATORS AND CHECK FOR VALIDTY

DDSP EDIT SYMBOLIC PARAMETERS FOR DISK SPACE (IBM 360 JCL)

JINT CALCULATES AND EDITS ADJOINT ZONE FLUX RESULTS

POUT PRINTS FLUX, POWER DENSITY, NEUTRON DENSITY
NBAL PRINTS NEUTRON BALANCE

CALLS SOBL, SKER

SOBL CALCULATES NEUTRON BALANCE SCATTERING DATA

FISS WRITES FISSION SOURCE INTERFACE (FISSOR)
CALLS SKER

BSQS CALCULATES BUCKLING IN 3-D PROBLEMS
PNDN CALCULATES POWER AND NEUTRON DENSITY

CALLS POUT, SKER
PTVL GETS DATA FOR SUBROUTINE PTZP

PTZP WRITES FLUX FOR 2 ZONES ON RZFLUX FOR DEPLETION

FLXW WRITES FLUX INTERFACE DATA FILE

CALLS POUT, SKER
SAVI SPECIAL DATA OUTPUT IN BCD FORM

CALLS SAV2, SAV4, SAV6

SAV2 SPECIAL DATA OUTPUT IN BCD FORM (GEODST)
CALLS SAV3

SAV3 SPECIAL DATA OUTPUT IN BCD FORM (GEODST)

SAV4 SPECIAL DATA OUTPUT IN BCD FORM (PWDINT)
CALLS SAV5

SAV5 SPECIAL DATA OUTPUT IN BCD FORM (PWDINT)

SAV6 SPECIAL DATA OUTPUT IN BCD FORM (RTFLUX)

CALLS SAV7

• SAY7 SPECIAL DATA OUTPUT IN BCD FORM (RTFLUX)

83

P P 0 '

QOUT EDITS SPACE POINT IMPORTANCE MAPS

RTUB WRITES INTERFACE FILE PERTURB
CALLS SKER

MRPT CALCULATES CHANGE IN KEFF DUE TO SIGMAS

PERO EDITS PERTURBATION INTEGRALS

BBB2 PERTU}[BATION UTILITY ROUTINE
BBBI PERTURBATION UTILITY ROUTINE

(FOR ALL EXCEPT ONE ROW STORED MODE)
JBET PERTURBATION CONTROL

CALLS JAFA, JIFE, ,JOFY, PERO, JAPS, RTUB, QOUT, SKER, JGET
JAFA SETS UP INPUT/OUTPUT FILES FOR PERTURBATION CALCULATION
JIFE CALCULATES BASIC PERTURBATION INTEGRALS

JOFY CALCULATES TRANSPORTPERTURBATION INTEGRALS

CALLS BBBI,BBB2

JAPS ,CALCULATES SPACE POINT IMPORTANCE MAPS
CALLS JMAP

JMAP CONTROLS EDIT OF IMPORTANCE MAPS

CALLS QOUT

JGET GETS DCONS (FOR 1-ROW STORED MODE)
PERT PERTURBATION CONTROL

CALLS DAFA, LIFE, TUFY, PERO, MAPS, RTUB, QOUT, ,,_K_JR
DAFA SETS UP INPUT/OUTPUT FILES FOR PERTURBATION INTEGRALS
LIFE CALCULATES BASIC PERTURBATION INTEGRALS

TUFY CALCULATES TRANSPORT PERTURBATION INTEGRALS

CALLS BBBI, BBB2

MAPS CALCULATES SPACE POINT IMPORTANCE MAPS
CALLS PMAP

PMAP CONTROLS EDIT OF IMPORTANCE MAPS

CALLS QOUT

SPECIAL. ROU_/2_"

GETCORE ASSEMBLY LANGUAGE ROUTINE TO ALLOCATE CORE DYNAMICALLY FOR THE
VARIABLY DIMENSIONED ARRAYS AT RUN TIME

FRECORE ASSEMBLY LANGUAGE ROUTINE TO FREE CORE ALLOCATED BY GETCORE
ERRSET SUPPLIES THE LEVEL OF ERROR STOPS TO THE SYSTEM

84

LABELED COMMON BLOCKS

CNTRL

VCTRL

MGMTIO

IOUNT

AFLUY

AOSUB

LIMITS

ADRES
FSWAP

DEASU

COMSAM

USRID

" NOT USED BY VENTURE\PC

85

APPENDIX III.

BURNER SUBROUTINES

(FROM REF. 8)

86

_URNER,SUBROUTINE DESCRIPTION

ANOR DETERMINE NORM OF MATRIX

ARRI SUM INVENTORY AND REACTION RATES (ABSORPTION,
FISSION, PRODUCTION, AND CAPTURE (N,G)) BY
ABSOLUTE NUCLIDE

AUXE WRITE CONDENSED EDIT

BFIX NORMAL EXPOSURE CALCULATION
BGXS PROCESS NEXT-TO-LATEST GRUPXS

BINP INITIAL INTERFACE PROCESSING (NDXSRF, GEODST,
GRUPXS, AND EXPOSE) AND DATA PREPARATION

BMOV CONTINUOUS FUELING EXPOSURE CALCULATION

BPIA CONTROL GEOMETRY (GEODST) AND POINT FLUX RTFLUX)

PROCESSING FOR POINT CALCULATION (METHOD i)
BPIB CONTROL POINT FLUX (RZFLUX-MODIFIED) PROCESSING

FOR POINT CALCULATION (METHOD 2)

BPIC INITIAL DENSITY PREPARATION, COMPUTE REACTION
RATES AND SETUP STORAGE FOR POINT EXPOSURE AND
SHUTDOWN CALCULATION

BPIN CONTROL SETUP FOR POINT EXPOSURE AND SHUTDOWN

BRCI OBTAIN EXPOSURE CONTROL INFORMATION FROM
INTERFACE CONTROL

BRDS SETUP DYNAMIC DATA STORAGE SPACE

BRNA COMPUTE SPECIFIC REACTION RATES FOR ABSORPTION,

FISSION, NU-FISSION, (N,G), (N,A), (N,P), (N,2N),
(N,D), AND (N,T)

BRND EDIT SPECIFIC REACTION RATES

BRNF SETUP INTERNAL CROSS-REFERENCING INFORMATION FOR

ABSOLUTE NUCLIDE, NUCLIDE CLASS, AND ZONE CLASS
BRNO PREPARE AND EDIT FINAL SUMMARY TABLE

BRNS DETERMINE STORAGE REQUIRED AND MODE OF SOLUTION

AND INITIALIZE DIRECT ACCESS UNITS IF NEEDED

BRNT PRE-WRITE DIRECT ACCESS UNITS IF NEEDED

BRNW EDIT CONTENTS OF EXPOSE FILE - CHECKS DECAY,
YIELD, AND MATRIX DATA FOR ERRORS

BRNX SETUP DECAY CONSTANTS AND CORRESPONDENCE BETWEEN
DENSITY AND EXPOSURE DATA

BRNY EDIT ATOM DENSITIES

BRNZ PROCESS ZNATDN AND WRITE INITIAL DENSITIES ON

SCRATCH ONE ZONE/SUBZONE AT A TIME
BRNI OVERALL CALCULATION CONTROL

BRN3 PROCESS RZFLUX AND WRITE ZONE AVERAGE FLUX ON
. SCRATCH ONE GROUP AT A TIME - PERFORM INITIAL

POWER ADJUSTMENT

BRN4 CHECK NUCLIDE NAMES AND CLASSES FRPM 2 SOURCES

BRN7 COPY PRINCIPAL CROSS SECTIONS FROM GRUPXS TO
SCRATCH

87

BRPF COMPUTE SPECIFIC REACTION RATE FOR FISSION IN

ENERGY RANGES OF FIELD DATA FOR POINT CALCULATION

BRRF COMPUTE SPECIFIC REACTION RATE FOR FISSION IN

ENERGY RANGES OF YIELD DATA

BURN CONTROLS EXPOSURE AND SHUTDOWN CALCULATION

BZIN ADDITIONAL INTERFACE PROCESSING (RZFLUX AND

ZNATDN) AND COMPUTE REACTION RATES AND SETUP
STORAGE FOR EXPOSURE AND SHUTDOWN CALCULATION

BZTI DETERMINE IF ZNTEMP EXISTS AND CHECK INPUT DATA ,

BZT2 PROCESS TEMPERATURES FROM ZNTEMP

CHEK DEBUG FLUX CHECK FOR POINT CALCULATION (METHOD i)
CMOV CHECK NUCLIDE SET REFERENCES FOR CONTINUOUS

FUELING MODEL

CMPH COMPARE 2 HOLLERITH ARRAYS

CMPI COMPARE 2 INTEGER ARRAYS

CPHI COPY ONE SET OF EXPOHT DATA FROM ONE UNIT TO

ANOTHER

CPH2 EDIT ONE SET OF EXPOHT DATA

DEEF SETUP AND CHECK INPUT PARAMETERS FOR CONTINUOUS

FUELING MODEL

DOEX EXPOSURE BY VARIOUS METHODS

DOPC SCRATCH FILE DATA TRANSFER MANAGEMENT FOR SPECIAL

ACCESS METHODS (NOT SEQUENTIAL)
DOSH SHUTDOWN BY VARIOUS METHODS

DOWN SHUTDOWN CALCULATION

ECHK CHECK NEUTRON ENERGY GROUP STRUCTURE

EDED EDIT SECONDARY ENERGY DEPOSITION DATA FROM EXPOSE

EDEP SETUP FOR SECONDARY ENERGY DEPOSITION EDITS

EPFD SET DEFAULT VALUE FOR ENERGY/FISSION AND

ENERGY/CAPTURE IF NECESSARY
EPH2 EDIT MAXIMUMS AND SYSTEM TOTALS OF EXPOHT DATA

ESET ' DETERMINE WHICH ENERGY GROUP NUMBER IS CUTOFF AND
FRACTIONAL PART FOR FLUENCE CALCULATION

ETAB CALCUL;ATE AND EDIT SECONDARY ENERGY DEPOSITION

EXPH SETUP AND CONTROL FOR WRITING INTERFACE EXPOHT

FERR WRITE FATAL ERROR MESSAGE AND STOP

FLUC FUNCTION TO DETERMINE (FLUX)*(EXPOSURE TIME)
CONSTANT

FLUE SUM ZONE FLUX OVER RANGE OF GROUPS SPECIFIED

FOUL EDIT MONITORING INFORMATION

GCHK CHECK FOR IMPLEMENTED GEOMETRY FOR POINT

CALCULATION (METHOD I)
GNZC OBTAIN ZONE CLASSES FROM GEODST

HQUE CHECK FOR UNIQUENESS IN LIST OF HOLLERITH NAMES "
ISTR FUNCTION TO ASSIGN A REAL VARIABLE TO AN INTEGER

VARIABLE LOCATION WITHOUT TYPE CONVERSION

88

IX2D FUNCTION TO DETERMINE SUBSCRIPTS OF A TWO_

DIMENSIONAL ARRAY, GIVEN DIMENSIONS AND POSITION
IN ARRAY

IX3D FUNCTION TO DETERMINE SUBSCRIPTS OF A THREE

DIMENSIONAL ARRAY, GIVEN DIMENSIONS AND POSITION
IN ARRAY

JAGY AVERAGE GENERATION RATE SOLUTION FOR EXPOSURE

JAOD SETUP OFF-DIAGONAL MATRIX ELEMENTS FOR MATRIX

EXPONENTIAL AND AVERAGE GENERATION RATE SOLUTIONS

(EXPOSURE)
JENY SETUP MATRIX EXPONENTIAL SOLUTION FOR EXPOSURE

JUCY EXPLICIT CHAIN SOLUTION FOR EXPOSURE

LAGY AVERAGE GENERATION RATE SOLUTION FOR SHUTDOWN

LAOD SETUP OFF-DIAGONAL MATRIX ELEMENTS FOE MATRIX

EXPONENTIAL AND AVERAGE GENERATION RATE SOLUTIONS

(SHUTDOWN)

LEGP FUNCTION TO COMPARE (LT,EQ,GT) TWO REAL NUMBERS
WITHIN EPSILON

LEMY SETUP MATRIX EXPONENTIAL SOLUTION FOR SHUTDOWN

LUCY EXPLICIT CHAIN SOLUTION FOR SHUTDOWN

MAIN INITIALIZE INPUT/OUTPUT UNITS
MEIT MATRIX EXPONENTIAL SOLUTION

MEMA ,MATRIX EXPONENTIAL - ELIMINATE NUCLIDES ASSUMED

TO BE IN EQUILIBRIUM

MEPA MATRIX EXPONENTIAL - COMPUTE DENSITIES FOR

NUCLIDES IN EQUILIBRIUM
MESA MATRIX EXPONENTIAL 1 TERM METHOD

METS MATRIX EXPONENTIAL - TRANSPOSE MATRIX ELEMENTS
MNRP LOCATE SMALLEST POSITIVE VALUE IN AN ARRAY

MSHK CHECK COARSE MESH DATA FROM GEODST FOR POINT

CALCULATION (METHOD I)
MSHO SETUP COARSE MESH PARAMETERS FOR I-D AND 2-D

GEOMETRIES FOR POINT CALCULATION (METHOD l)
MSHI CALCULATE FINE MESH DISTANCES FOR POINT

CALCULATION (METHOD I)
MSH3 EDIT FINE MESH SPACING FOR POINT CALCULATION

(METHOD i)
NXRP LOCATE LARGEST POSITIVE VALUE IN AN ARRAY

NRCP CONVERT REGION ASSIGNMENTS FOR COARSE MESH

INTERVALS TO REGION ASSIGNMENTS FOR FINE MESH

INTERVALS FOR POINT CALCULATION (METHOD i)

OEXP EXPOSURE CALCULATIONS (FOR OVERLAY CONVENIENCE)
OFIX _ORMAL EXPOSURE CALCULATION (FOR OVERLAY

• ,_ CONVENIENCE)

89

OMOV CONTINUOUS FUELING EXPOSURE (FOR, OVERLAY
CONVENIENCE)

OOWN SHUTDOWN CALCULATION (FOR OVERLAY CONVENIENCE)
PARI EDIT START AND END OF STEP INVENTORY AND REACTION

RATES BY ABSOLUTE NUCLIDE

PDPT CALCULATE POWER DENSITY

PDST POWER DENSITY STATISTICS FOR POINT CALCULATION
PFIX POINT EXPOSURE CALCULATION

PGEO PROCESS GEODST GEOMETRY FILE FOR POINT ,

CALCULATION (METHOD I)
PLOC LOCATE POINTS WITHIN SELECTED ZONES AND COMPUTE

POINT VOLUMES FOR POINT CALCULATION (METHOD I)
PNAW WRITE POINT NUCLIDE DENSITIES ON INTERFACE FILE

PTATDN FOR POINT CALCULATION

PONI EDIT FEED AND DISCHARGE RATES IN KG/DAY
POWL ACCUMULATE POWER AND LOCATE MAXIMUM POWER DENSITY

POWN POINT SHUTDOWN CALCULATION

POWP ACCUMULATE POWER ALONG PATH FOR CONTINUOS FUELING
MODEL

PPOE EDIT POWER, ACTINIDE FEED RATE, AND EXPOSURE BY
ZONE PATH AND SUBZONE PATH FOR CONTINUOUS FUELING
MODEL

PRNA COMPUTE SPECIFIC REACTION RATES FOR ABSORPTION ,
FISSION, NU*FISSION, (N,G), (N,A), (N,2N), (N,D),
AND (N,T) FOR POINT CALCULATION

PRND EDIT SPECIFIC REACTION RATES FOR POINT
CALCULATION

PRNS DETERMINE STORAGE REQUIRED AND MODE OF SOLUTION

AND INITIALIZE DIRECT ACCESS UNITS IF NEEDED FOR,
POINT CALCULATION

PRNT PRE-WRITE DIRECT ACCESS UNITS IF NEEDED FOR POINT
CALCULATION

PRNY EDIT ATOM DENSITIES FOR POINT CALCULATION

PRNZ SETUP INITIAL DENSITIES FOR POINT CALCULATION

PRN3 PROCESS RTFLUX AND WRITE SELECTED POINT FLUXES ON

SCRATCH ONE GROUP AT A TIME FOR POINT CALCULATION

(METHOD i)

PRPF EDIT SPECIFIC REACTION RATE FOR FISSION IN ENERGY

RANGES OF YIELD DATA FOR POINT CALCULATION

PRRF EDIT SPECIFIC REACTION RATE FOR FISSION IN ENERGY
RANGES OF YIELD DATA

PRTD PRINT DOUBLE PRECISION ARRAY
PRTH PRINT HOLLERITH ARRAY

PRTI PRINT INTEGER ARRAY

PRTR PRINT REAL ARRAY

9O

PRTT PRINT HOLLERITH TITLE

PTAT OBTAIN REFERENCE ZONE NUMBERS FROM PTATDN IF IT

EXISTS FOR POINT CALCULATION (METHOD i)
PTNS DETERMINE NUCLIDE SET AND INITIAL DENSITY INDEX

(ZONE OR SUBZONE) FOR POINT CALCULATION
PURN CONTROLS POINT EXPOSURE AND SHUTDOWN CALCULATION

PZT2 PROCESS TEMPERATURES FROM ZNTEMP (POINT

.J CALCULATION)

QNAT WRITE INTERFACE FILE QNATDN

QNAW WRITE INTERFACE FILE ZNATDN (CONTINUOUS FUELING

EXPOSURE)
REED ENTRY IN RITE - DATA TRANSFER (EXTERNAL DEVICE TO

MEMORY)
REHT CALCULATE REACTION RATE TYPE DATA FOR EXPOHT

REOR CHANGE VOLUME AND LOCATION DATA ORDER FOR POINT

CALCULATION (METHOD I)

RITE DATA TRANSFER (MEMORY TO EXTERNAL DEVICE)
ROXX ENTRY IN RITE - SPECIAL ADDRESS INITIALIZATION

ROXY ENTRY IN DOPC - SPECIAL ADDRESS INITIALIZATION

RSTI FUNCTION TO ASSIGN AN INTEGER VARIABLE TO A REAL

VARIABLE LOCATION WITHOUT TYPE CONVERSION

SEEK INTERFACE FILE MANAGEMENT

SERM WRITE UNTERFACE FILE PROCESSING ERROR MESSAGE

SKER WRITE SEEK RELATED ERROR MESSAGE AND STOP

SKNU DETERMINE NUCLIDES IN SUPPLEMENTAL EXPLICIT

CHAINS NOT TO BE TREATED WITH MATRIX EXPONENTIAL

OR AVERAGE GENERATION RATE METHODS

STOR MOVE ARRAY Y TO ARRAY X

TIMER MULTI-PURPOSE ROUTINE TO PROVIDE CPU TIME, CLOCK

TIME, CPU TIME REMAINING, I/O COUNT REMAINING,

COMPUTER MODEL, JOB NAMEr DATE AND TIME
INFORMATION

TPNE EDIT POWER NORMALIZATION FACTORS, EXPOSURE

SUBSTEP TIMES, AND SHUTDOWN SUBSET TIMES
VOLP COMPUTE REGION VOLUMES AND ZONE VOLUMES FROM

POINT VOLUMES FOR POINT CALCULATION (METHOD i)

(DEBUG ONLY)
XEQC INITIALIZE AN ARRAY Wi[TH A CONSTANT
XEXC MULTIPLY ARRAY X BY A_CONSTANT

XEYC MOVE DATA FROM ARRAY Y TO ARRAY X AND MULTI[PLY
BY A CONSTANT

XPYC ADD ARRAY Y MULTIPLIED BY A CONSTANT TO ARRAY X

9_

P ' III lr 'ii,,,i_,,, rpi_id,,_J1'l,Ii _' fl _,

ZCRI SUM BY ZONE CLASS ABSORPTIONS BY NUCLIDE CLASS,

FISSILE ABSORPTIONS, FERTILE CAPTURES, FISSILE
DESTRUCTION RATE, AND FISSILE INVENTIRY

ZFMP PROCESS RZFLUX (MODIFIED) FOR ZONE NUMBERS AND

POINTS PER ZONE FOR POINT CALCULATION (METHOD 2)
ZFMV DUMMY VOLUME AND LOCATION DATA FOR POINT

CALCULATION (METHOD 2)

ZFM3 PROCESS RZFLUX (MODIFIED) AND WRITE POINT FLUXES ..

ON SCRATCH ONE GROUP AT A TIME FOR POINT

CALCULATION (METHOD 2)

ZIGY SETUP INTEGRATION RANGE FOR FISSION REACTION RATE
ZNAW WRITE INTERFACE FILE ZNATDN

ZOND EDIT ATOM DENSITIES FOR ONE ZONE /SUBZONE
ZONI ACCUMULATE MASS RATES IN KG/SEC

ZUCY CHECK AND EDIT EXPLICIT CHAIN DATA
ZUCZ DETERMINE MAXIMUM EXPLICIT CHAIN LENGTH

ZZPD EDIT ZONE POWER DENSITY AND WRITE INTER/'ACE FILE
ZNPOWD

ZZPF CALCULATE ACTINIDE FEED RATE (KG/SEC) BY PATH FOR
CONTINUOUS FUELING MODEL

92

