-

(=

€
(0]
a
+>
€
<H
% 00
€
o
€ u
O d
I3
m x
M o
(o]
O
o)
R
0 o
n
o 6
|ﬁ|mo —
M
< 3
m O
7w €
o @
Wo
o
®» o
€=
O HH
2 d
o
<) O
F
—
IH
(4]

'J0019Y) Adud3de Aue 10 JUSWIUIDAOL) S9JB)S PajIu()
oY) JO 9SOY) JOJ[JOI IO e)s A[ILIESSO0U JOU Op Uiy passoidxd sroyyne jo suorurdo pue
SMAIA O] 'Joa1oy) AoudSe Aue IO JUOWIUISAOL) SIJeIS Paju) 9y Aq SuLIoAR] IO ‘UOnEpUSW
-W003I “JUSWIASIOPUd S)1 A[dwIl JO 9)MNSUO0d AJIIESSII0U JOU S0P ISIMIOYIO IO ‘IOIN)OBJNUBUT
SIeWOpEI) ‘QWeu 9pel} AQ 01AIdS 10 ‘ssad01d ‘yonpoid [erorowuod o110ads Aue 0) uIdIdy doud
-19J9Y sy paumo Apejearrd oFuLyyur jou pnom asn sy jey) sjudsaidar 10 ‘pasoosip ssadoid
10 9onpoid ‘smyeredde ‘uoneuwojur Aue jo ssaupnjosn 1o ‘ssoudjo[dwiod ‘Aoeinooe oy) I10J Aiq
-1suodsar 10 Aypiqer [e39] Aue sownsse 10 ‘parduur 1o ssaidxo ‘AQuerrem Aue soyew ‘sodkordwo
1191 Jo Aue Iou ‘JooIoy) AoudSe Aue JOU JUSWIUIOAOD) S9JBIS PAIUN) IOYHON JUSUIUIOAOLD)
soJe)S pajtun) oY) Jo Aoudde ue Aq parosuods jiom Jo junoode ue se paredord sem jrodar siyj,

HHIVIOSIA

DISTRIBUTION OF THIS DOCUMENT tR i ~

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available

original document.

The PVM System: Supercomputer Level Concurrent Computation

on a Heterogeneous Network of Workstations

G. A. Geist

Mathematical Sciences
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6367

Abstract

The PVM (Parallel Virtual Machine) sytem enables
supercomputer level concurrent computations to be
performed on interconnected networks of heteroge-
neous computer systems. Specifically, a network of 13
IBM RS/6000 powerstations has been used to run su-
perconductor modeling codes at more than 250 Mflops.
This paper describes the PVM system and two example
applications running on it.

1 Introduction

Wide area computer networks have become a basic
part of today’s computing infrastructure. High speed
networks connect a variety of machines representing
an enormous computational resource. A team of re-
searchers from Oak Ridge National Laboratory, the
University of Tennessee, and Emory University have
developed the PVM (Parallel Virtual Machine) sys-
tem and programming environment to exploit the ag-
gregate computing resources of such a heterogeneous
network [1],

PVM is designed from the ground up with heterogene-
ity and portability as primary goals. As such it is one
of the first software systems that allows machines with
very different architectures and floating point repre-
sentations to work together on a single computational
task.

PVM enables applications written in either C or For-
tran to spawn off and kill subtasks on other machines
making up the virtual computer. PVM also enables
the subtasks to syncronize and to send and receive
data between themselves. The subtasks in turn can
spawn off other subtasks. As such almost arbitrary
control and dependency structures can exist between
subtasks running under the PVM system.

A common method for using the PVM system is to
link together several workstations during off hours to
solve a computational problem that would normally be
submitted to a mainframe. Initially, networks of Sun3
and Sun4 workstations were commonly used. With the
introduction of the IBM RS/6000 workstation, whose
floating point performance is nearly an order of mag-
nitude higher than a Sun3, mainframe performance

V. S. Sunderam

Department of Math and Computer Science
Emory University
Atlanta, GA 30322

was now possible from a single workstation. The IBM
RS/6000 workstations, in conjunction with high speed
networks and the PVM software, has demonstrated
that applications can attain supercomputer level per-
formance in such environments.

The next section describes the basic features of the
PVM system. To demonstrate the competitiveness of
PVM, several real applications have been ported to
this environment. Section 3 will describe two exam-
ple applications that have achieved high performance
rates. These are an electronic structures application
and a modecular dynamics application run on a net-
work of workstations.

2 PVM

The PVM system is composed of a suite of user-
interface primitives and supporting software that to-
gether enable concurrent computing on a loosely cou-
pled network of processing elements. These processing
elements may be serial computers, vector computers,
or multiprocessors. Figure 1 shows an architectural
overview of PVM. The present version of the software
has been tested with various combinations of Sun3,
SPARCstation, DECstation, IBM RS/6000, Silicon
Graphics IRIS, Sequent Symmetry, Alliant FX/8, In-
tel iPSG/2, Intel iPSC/860, Thinking Machines CM2,
and Cray YMP computers. In addition, users can
port PVM to new architectures by simply modifying a
generic makefile supplied with the source and recom-
piling.

Besides heterogeneity and portability, PVM has sev-
eral other distinuishing features. The PVM package is
small (less than 300 Kbytes of C source code) and easy
to install. It needs to be installed only once on each
machine to be accessible to all users. Moreover, the
installation does not require special privileges on any
of the machines. Using PVM, each user can configure
his or her own parallel virtual computer, which can
overlap with other users' virtual computers. Several
different network architectures can coexist in PVM.
For example, Ethernet, a fiber optic network, and In-
ternet can all be a part of a user’s parallel virtual
computer. In addition, several applications can run
simultaneously on a single parallel virtual computer.

Computational Grand Challenge

QQQ...q

O35

Figure 1. Architectural overview of PVM.

The subtasks of an application can be initiated on spe-
cific machines in the user’s parallel virtual computer
or the user can specify that particular subtasks be ex-
ecuted on a particular architecture. If the user does
not specify anything, then PVM chooses an appropri-
ate machine in the present virtual computer to initiate
a subtask.

Application programs can be developed in C or For-
tran using the message passing paradigm. In the mes-
sage passing paradigm, processes communicate with
each other by explicitly sending and receiving mes-
sages. The language extentions that PVM provides
to manage the heterogeneous network are straightfor-
ward to use. Typically, programs that have already
been developed for hypercube multiprocessors can be
ported to PVM in less than a day.

The user views PVM as a distributed memory com-
puter programmed in C or Fortran with message pass-

ing extentions. The PVM user-interface requires that
all message data be strongly typed. Support for oper-
ating in a heterogeneous environment is provided by
routines that selectively perform machine-dependent
data conversions. All communication between PVM
processes uses the external data representation stan-
dard (XDR), thus allowing machines with different in-
teger and floating point representations to pass data.
Other routines in the user interface allow initiation
and termination of processes across the network as
well as communication and synchronization between
processes.

Application programs under PVM may possess arbi-
trary control and dependency structures. In other
words, at any point in the execution of a concur-
rent application, the processes in existence may have
arbitrary relationships between each other, and fur-
ther, any process may communicate and/or synchro-
nize with any other. In practice, concurrent applies-

tions are usually more structured. Two typical struc-
tures are the tree and the regular crowd structures.
The latter term is used to denote computations in
which each process is identical and exhibits regular
communication and synchronization patterns. For ex-
ample, regular crowd structures are commonly used in
the parallel solution of 2-D and 3-D partial differential
equations.

3 Applications

The PVM system has been used for a variety of appli-
cation codes on different networks, each with a unique
mix of processing elements. Example applications that
have been executed under PVM include Oholesky fac-
torization, stochastic simulation of toroidal networks,
statistical modeling, electronic structures calculations
for disordered materials, and classical molecular dy-
namics calculations.

The electronic structures code is an implementation
of the Korringa, Kohn, and Rostocker coherent po-
tential approximation (KKR-CPA) method for calcu-
lating the properties of substitutionally disordered al-
loys [3]. The KKR-CPA method is a completely first
princples theory of the properties of substitutionally
disordered materials requiring only the atomic num-
bers of the species making up the solid as input. Our
implementation consists of 19,000 lines of Fortran 77.

The implementation has a low communication to com-
putation ratio due to the parallelization scheme em-
ployed. The parallel implementation also includes dy-
namic load balancing. Several materials have been
studied with this code including: NiAl, which is a new
high strength alloy, MnO, which is a. transition metal
oxide that is close to the metal/insulator transition,
and the perovskite superconductor (DagK”JBiOa.
The computational rates shown in Table | were mea-
sured during calculations of the electronic structure
of this high temperature superconductor. In the 13
RS/6000 experiment, which executed at 261 Mflops, 4
model 320’s and 7 model 530’s were physically on the
same Ethernet, while the remaining 530 and 550 were
geographically distant and accessed via a T1 link.

Model 32(J Model 530
nproc Mflops nproc Mflops
serial ncr serial 244

2 313 2 459

4 63.1 4 92.2

7 161.9
6(530%s) + 4(320’s) 206.5
7(530’s) + 4(320's) 226.0

1(550) + 8(530's) + 4(320's) 261.0

Table 1: Performance of KKR-CPA code on several
virtual computers.

Another scientific computing application in which very
high levels of performance have been achieved us-
ing PVM on a network of workstations is a classical
molecular dynamics problem. Molecular dynamics is

used to calculate the dynamic properties of liquid and
solid state systems [2]. Our particular implementa-
tion treats each of the N atoms (or molecules) as a
point mass, and Newton’s equations are integrated to
move each atom forward in time. Atoms are allowed
to diffuse, i.e. each atom’s neighbors change as the
simulation progresses and only short range forces are
considered significant.

The parallel algorithm assigns a fixed region of space
to each processor, which updates the positions of all
atoms within its box in a given timestep. Atom ve-
locities and force values are exchanged with nearest
neighbors between each time step. The results of the
molecular dynamics application for a range of proces-
sors and problem sizes are given in Table 2.

Molecular Dynamics Simulation
PVM Problem Size

RS/6000 procs 5X5X5 8X8XE8 12X12X12
I 23« 146 1030
2 15 91 622
4 12 62 340
8 6 34 184

iPSC/860
procs

1 sun
2 22 102 500
4 11 52 252
8 6 27 129

Table 2: Times in seconds for MD simulations on PVM
and iPSC/860

The table compares the execution times of PVM us-
ing a network of IBM RS/6000’s and the iPSC/860
hypercube. For small numbers of processors, PVM
using Ethernet is quite competitive with the hyper-
cube with dedicated channels. Load imbalances be-
came worse on PVM as workstations with different
computational rates were added to the virtual com-
puter. Nevertheless, it is encouraging to note that the
PVM system performs well for this application that
has a high communication to computation ratio.

4 Current Status and Availability

PVM was originally developed at Oat Ridge National
Laboratory two years ago and was made publically
available in March of this year. The current version,
Version 2.2, is available through neilib. For details on
how to obtain the PVM User.’s Guide or the source
code, send e-mail to netlibQornl.gov with the mes-
sage: send index from pvm.

A graphical interface called HeNCE is being developed
on top of PVM. A prototype version of HeNCE is ex-
pected to be available by the end of summer.

References

[1]1 G. A. Geist and V. S. Sunderam, “Network Based
Concurrent Computing on the PVM Sysyem,”

2

—_—

Oak Ridge National Laboratory Tech. Report
(ORNL/TM-11760), January 1991.

S. J. Plimpton, “Molecular Dynamics Simulations
of Short-Range Force Systems on 1024-node Hy-
percubes,” Proc. Fifth Distributed Memory Com-
puting Conference, ed. D. Walker and Q. Stout,
IEEE Computer Society Press, pp.478-483, 1990.

G. M. Stocks et. al, “Complete Solution of the
Korringa-Kohn-Rostoker Coherent Potential Ap-
proximation: Cu-Ni Alloys,” Phys. Rev. Letters,
Vol. 41, 339, 1978.

