
DISTRIBUTION OF THIS DOCUMENT tR i 7 }

D
IS

C
LA

IM
ER

Th
is
 r

ep
or

t 
w

as
 p

re
pa

re
d 

as
 a

n 
ac

co
un

t 
of

 w
or

k 
sp

on
so

re
d 

by
 a

n 
ag

en
cy

 o
f 

th
e 

U
ni

te
d 

St
at

es
 

G
ov

er
nm

en
t. 

N
ei

th
er

 t
he

 U
ni

te
d 

St
at

es
 G

ov
er

nm
en

t 
no

r 
an

y 
ag

en
cy

 t
he

re
of

, n
or

 a
ny

 o
f 

th
ei

r 
em

pl
oy

ee
s, 

m
ak

es
 a

ny
 w

ar
ra

nt
y,
 e

xp
re

ss
 o

r 
im

pl
ie

d,
 o

r 
as

su
m

es
 a

ny
 l

eg
al
 l

ia
bi

lit
y 

or
 r

es
po

ns
i­

bi
lit

y 
fo

r 
th

e 
ac

cu
ra

cy
, 

co
m

pl
et

en
es

s, 
or
 u

se
fu

ln
es

s 
of

 a
ny

 i
nf

or
m

at
io

n,
 a

pp
ar

at
us

, 
pr

od
uc

t, 
or

 
pr

oc
es

s 
di

sc
lo

se
d,
 o

r 
re

pr
es

en
ts
 t

ha
t 

its
 u

se
 w

ou
ld
 n

ot
 i

nf
rin

ge
 p

riv
at

el
y 

ow
ne

d 
rig

ht
s. 

R
ef

er
­

en
ce

 h
er

ei
n 

to
 a

ny
 s

pe
ci

fic
 c

om
m

er
ci

al
 p

ro
du

ct
, 

pr
oc

es
s, 

or
 s

er
vi

ce
 b

y 
tra

de
 n

am
e,
 t

ra
de

m
ar

k,
 

m
an

uf
ac

tu
re

r, 
or
 o

th
er

w
is

e 
do

es
 n

ot
 n

ec
es

sa
ril

y 
co

ns
tit

ut
e 

or
 i

m
pl

y 
its
 e

nd
or

se
m

en
t, 

re
co

m
­

m
en

da
tio

n,
 o

r 
fa

vo
rin

g 
by
 t

he
 U

ni
te

d 
St

at
es
 G

ov
er

nm
en

t 
or
 a

ny
 a

ge
nc

y 
th

er
eo

f. 
Th

e 
vi

ew
s 

an
d 

op
in

io
ns
 o

f 
au

th
or

s 
ex

pr
es

se
d 

he
re

in
 d

o 
no

t 
ne

ce
ss

ar
ily
 s

ta
te
 o

r 
re

fle
ct
 t

ho
se
 o

f 
th

e 
U

ni
te

d 
St

at
es

 G
ov

er
nm

en
t o

r 
an

y 
ag

en
cy

 t
he

re
of

.

HI CD HI < £

O 
(/>

p 
^

- 
Cfl

P 
c+

H
rH
 
0

2
=

3

CD •S o OR
 

(D
 3 CD
 O C 

3 
w

CD e (D -i O O

z CD <T
t-

o FT O o X C/J rt
-

P <rt
-

3 e-t- (D •-S tr
1

CD < CD o o 3 n 3 -t CD 3
o 3 

O
co
 

O H
> 3 <-+ P O 3

D
(0
 i

m
O

to
Z

!-■
►D 1

0
1 to

ox
0

NJ
M

OX
Ut 00 1 1 ox 'O \ t



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image 
products. Images are produced from the best available 
original document.



The PVM System: Supercomputer Level Concurrent Computation 
on a Heterogeneous Network of Workstations

G. A. Geist

Mathematical Sciences 
Oak Ridge National Laboratory 

Oak Ridge, TN 37831-6367

Abstract
The PVM (Parallel Virtual Machine) sytem enables 
supercomputer level concurrent computations to be 
performed on interconnected networks of heteroge­
neous computer systems. Specifically, a network of 13 
IBM RS/6000 powerstations has been used to run su­
perconductor modeling codes at more than 250 Mflops. 
This paper describes the PVM system and two example 
applications running on it.

1 Introduction
Wide area computer networks have become a basic 
part of today’s computing infrastructure. High speed 
networks connect a variety of machines representing 
an enormous computational resource. A team of re­
searchers from Oak Ridge National Laboratory, the 
University of Tennessee, and Emory University have 
developed the PVM (Parallel Virtual Machine) sys­
tem and programming environment to exploit the ag­
gregate computing resources of such a heterogeneous 
network [1],
PVM is designed from the ground up with heterogene­
ity and portability as primary goals. As such it is one 
of the first software systems that allows machines with 
very different architectures and floating point repre­
sentations to work together on a single computational 
task.
PVM enables applications written in either C or For­
tran to spawn off and kill subtasks on other machines 
making up the virtual computer. PVM also enables 
the subtasks to syncronize and to send and receive 
data between themselves. The subtasks in turn can 
spawn off other subtasks. As such almost arbitrary 
control and dependency structures can exist between 
subtasks running under the PVM system.
A common method for using the PVM system is to 
link together several workstations during off hours to 
solve a computational problem that would normally be 
submitted to a mainframe. Initially, networks of Sun3 
and Sun4 workstations were commonly used. With the 
introduction of the IBM RS/6000 workstation, whose 
floating point performance is nearly an order of mag­
nitude higher than a Sun3, mainframe performance

V. S. Sunderam

Department of Math and Computer Science 
Emory University 
Atlanta, GA 30322

was now possible from a single workstation. The IBM 
RS/6000 workstations, in conjunction with high speed 
networks and the PVM software, has demonstrated 
that applications can attain supercomputer level per­
formance in such environments.
The next section describes the basic features of the 
PVM system. To demonstrate the competitiveness of 
PVM, several real applications have been ported to 
this environment. Section 3 will describe two exam­
ple applications that have achieved high performance 
rates. These are an electronic structures application 
and a modecular dynamics application run on a net­
work of workstations.

2 PVM
The PVM system is composed of a suite of user- 
interface primitives and supporting software that to­
gether enable concurrent computing on a loosely cou­
pled network of processing elements. These processing 
elements may be serial computers, vector computers, 
or multiprocessors. Figure 1 shows an architectural 
overview of PVM. The present version of the software 
has been tested with various combinations of Sun3, 
SPARCstation, DECstation, IBM RS/6000, Silicon 
Graphics IRIS, Sequent Symmetry, Alliant FX/8, In­
tel iPSG/‘2, Intel iPSC/860, Thinking Machines CM2, 
and Cray YMP computers. In addition, users can 
port PVM to new architectures by simply modifying a 
generic makefile supplied with the source and recom­
piling.
Besides heterogeneity and portability, PVM has sev­
eral other distinuishing features. The PVM package is 
small (less than 300 Kbytes of C source code) and easy 
to install. It needs to be installed only once on each 
machine to be accessible to all users. Moreover, the 
installation does not require special privileges on any 
of the machines. Using PVM, each user can configure 
his or her own parallel virtual computer, which can 
overlap with other users’ virtual computers. Several 
different network architectures can coexist in PVM. 
For example, Ethernet, a fiber optic network, and In­
ternet can all be a part of a user’s parallel virtual 
computer. In addition, several applications can run 
simultaneously on a single parallel virtual computer.



Computational Grand Challenge

QQQ...q <><><>...

I

T1

Figure 1: Architectural overview of PVM.

The subtasks of an application can be initiated on spe­
cific machines in the user’s parallel virtual computer 
or the user can specify that particular subtasks be ex­
ecuted on a particular architecture. If the user does 
not specify anything, then PVM chooses an appropri­
ate machine in the present virtual computer to initiate 
a subtask.

Application programs can be developed in C or For­
tran using the message passing paradigm. In the mes­
sage passing paradigm, processes communicate with 
each other by explicitly sending and receiving mes­
sages. The language extentions that PVM provides 
to manage the heterogeneous network are straightfor­
ward to use. Typically, programs that have already 
been developed for hypercube multiprocessors can be 
ported to PVM in less than a day.

The user views PVM as a distributed memory com­
puter programmed in C or Fortran with message pass­

ing extentions. The PVM user-interface requires that 
all message data be strongly typed. Support for oper­
ating in a heterogeneous environment is provided by 
routines that selectively perform machine-dependent 
data conversions. All communication between PVM 
processes uses the external data representation stan­
dard (XDR), thus allowing machines with different in­
teger and floating point representations to pass data. 
Other routines in the user interface allow initiation 
and termination of processes across the network as 
well as communication and synchronization between 
processes.
Application programs under PVM may possess arbi­
trary control and dependency structures. In other 
words, at any point in the execution of a concur­
rent application, the processes in existence may have 
arbitrary relationships between each other, and fur­
ther, any process may communicate and/or synchro­
nize with any other. In practice, concurrent applies-



tions are usually more structured. Two typical struc­
tures are the tree and the regular crowd structures. 
The latter term is used to denote computations in 
which each process is identical and exhibits regular 
communication and synchronization patterns. For ex­
ample, regular crowd structures are commonly used in 
the parallel solution of 2-D and 3-D partial differential 
equations.

3 Applications
The PVM system has been used for a variety of appli­
cation codes on different networks, each with a unique 
mix of processing elements. Example applications that 
have been executed under PVM include Oholesky fac­
torization, stochastic simulation of toroidal networks, 
statistical modeling, electronic structures calculations 
for disordered materials, and classical molecular dy­
namics calculations.
The electronic structures code is an implementation 
of the Korringa, Kohn, and Rostocker coherent po­
tential approximation (KKR-CPA) method for calcu­
lating the properties of substitutionally disordered al­
loys [3]. The KKR-CPA method is a completely first 
princples theory of the properties of substitutionally 
disordered materials requiring only the atomic num­
bers of the species making up the solid as input. Our 
implementation consists of 19,000 lines of Fortran 77.
The implementation has a low communication to com­
putation ratio due to the parallelization scheme em­
ployed. The parallel implementation also includes dy­
namic load balancing. Several materials have been 
studied with this code including: NiAl, which is a new 
high strength alloy, MnO, which is a. transition metal 
oxide that is close to the metal/insulator transition, 
and the perovskite superconductor (DagK^JBiOa. 
The computational rates shown in Table 1 were mea­
sured during calculations of the electronic structure 
of this high temperature superconductor. In the 13 
RS/6000 experiment, which executed at 261 Mflops, 4 
model 320’s and 7 model 530’s were physically on the 
same Ethernet, while the remaining 530 and 550 were 
geographically distant and accessed via a T1 link.

Model 32(J Model 530
nproc Mflops nproc Mflops
serial ncr serial 24.4

2 31.3 2 45.9
4 63.1 4 92.2

7 161.9
6(530’s) + 4(320’s) 206.5
7(530’s) + 4(320’s) 226.0

1(550) + 8(530’s) + 4(320’s) 261.0

Table 1: Performance of KKR-CPA code on several 
virtual computers.

Another scientific computing application in which very 
high levels of performance have been achieved us­
ing PVM on a network of workstations is a classical 
molecular dynamics problem. Molecular dynamics is

used to calculate the dynamic properties of liquid and 
solid state systems [2]. Our particular implementa­
tion treats each of the N atoms (or molecules) as a 
point mass, and Newton’s equations are integrated to 
move each atom forward in time. Atoms are allowed 
to diffuse, i.e. each atom’s neighbors change as the 
simulation progresses and only short range forces are 
considered significant.
The parallel algorithm assigns a fixed region of space 
to each processor, which updates the positions of all 
atoms within its box in a given timestep. Atom ve­
locities and force values are exchanged with nearest 
neighbors between each time step. The results of the 
molecular dynamics application for a range of proces­
sors and problem sizes are given in Table 2.

Molecular Dynamics Simulation
PVM Problem Size

RS/6000 procs 5X5X5 8X8X8 12X12X12
I 23“ 146 1030
2 15 91 622
4 12 62 340
8 6 34 184

iPSC/860
procs

i sun
2 22 102 500
4 11 52 252
8 6 27 129

Table 2: Times in seconds for MD simulations on PVM 
and iPSC/860

The table compares the execution times of PVM us­
ing a network of IBM RS/6000’s and the iPSC/860 
hypercube. For small numbers of processors, PVM 
using Ethernet is quite competitive with the hyper­
cube with dedicated channels. Load imbalances be­
came worse on PVM as workstations with different 
computational rates were added to the virtual com­
puter. Nevertheless, it is encouraging to note that the 
PVM system performs well for this application that 
has a high communication to computation ratio.

4 Current Status and Availability
PVM was originally developed at Oat Ridge National 
Laboratory two years ago and was made publically 
available in March of this year. The current version, 
Version 2.2, is available through neilib. For details on 
how to obtain the PVM User.’s Guide or the source 
code, send e-mail to netlibQornl.gov with the mes­
sage: send index from pvm.
A graphical interface called HeNCE is being developed 
on top of PVM. A prototype version of HeNCE is ex­
pected to be available by the end of summer.

References
[1] G. A. Geist and V. S. Sunderam, “Network Based 

Concurrent Computing on the PVM Sysyem,”



Oak Ridge National Laboratory Tech. Report 
(ORNL/TM-11760), January 1991.

[2] S. J. Plimpton, “Molecular Dynamics Simulations 
of Short-Range Force Systems on 1024-node Hy­
percubes,” Proc. Fifth Distributed Memory Com­
puting Conference, ed. D. Walker and Q. Stout, 
IEEE Computer Society Press, pp.478-483, 1990.

[3] G. M. Stocks et. al., “Complete Solution of the 
Korringa-Kohn-Rostoker Coherent Potential Ap­
proximation: Cu-Ni Alloys,” Phys. Rev. Letters, 
Vol. 41, 339, 1978.


