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COMPUTATIONAL METHODS FQR REVERSED-FIELD EQUILIBRIUMK

J. K. Boyd, 5. P. Auverbach, P. A. Willmann, H. L, Berk, and B. McNamara

Lawrence Livermore Laboratory, University of California,
Livermore, CA 94550

ABSTRACT

Investigating the Lemporal evolution of reversed-fiald equilib:ium
caused by trausport processes requires the solution of the Grad-Shafranov
equation and computation of field-line-averaged guantities. The technique for
field-line averaging and the computation of the Grad-Shafranov equation are
presented. Application of Green's function to specify the Grad-Shalranov
equation boundary condition is discussed. Hill's vortex formulas used to
verify certain computaticns are detailed. Use of vomputer software to

implement computational methods 1s described.

INTRODUUTION

The problem of reversed-fie!d transport and equilibrium involves
computating fiela-line-averaged quantities and solving the Grad-Shafranov
equation. The methods used are described in the first part of this report and

the software implementatic~ in the second part.

*ork performed under the auspices of the U. S. Department of Energy by the
Lawrence Livermore Laboratory under contract number W-7405-ENG-48,
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The first part describes the techaique for field-line averaging, the
tri-diagonal solution of the averaged Grad-Shufranov equation, the Incomplete
Cholesky Conjugate Gradient (ICCG) solution of the two-dimensional
Grad-Shafranov equation, and the application of Green's function to obtain
boundary conditions. The computations of field-line-averaged functions are
verified by using the Hill's vortex, analytic, reversed-field equilibrium.
Because the use of Hill's vortex is widespread, the analytic formulas for
pertinent transport and equilibrium functions are presented. Graphs of these
functions versus flux are also included. These may be compared with other
equilibria or with a Hill's vortex after it has evolved by tramspart. The
second part of this work details the use of subroutines to implement our
computational methods, The ICCG method is generally applicable to problems
requiring the inversion of a matrix having five or more bands. An efficient
assembly-language version of the five-band algorithm is available for users of
the Magnetic Fusion Energy Computer Center's Cray 1 computer. All other
subroutines are in FORTRAN. Several rechniques used to reduce run time to

one-fourth that for standard FORTRAN are discussed for the ICCG merhod.

1. METHODS AND HILL'S VORTEX SOLUTION

The central equation to be solved is Ampere's law combined with force
balance in cylindrical coordinates. The general relation is the

Grad-Shafranov equation,

R U Tl (1

The toroidal, magnetic induction is f/r, and p is the pressure, Both p and f

are functions of v where B = W, o« V6 + V0, The poloidal induction, BP, is

Ui, 0. The average of (1) divided by r° is,
d [d\N_ ., 1
W ( JV> = -4"p £f rz s (2)

where

o 12
(55,
r



=-3-

Brackets denote an average over a flux surface. For a general function ¥,

N d’ 4.
184 VN fx B / f B .
P P

An equilibrium is obtained when Eqs. (1) and (2) are self-consistently solved
subject to constraints on p(j) and f(¥) which enforce certain dynamical
conservation 1aws.l [t is then necessary to compute average quantities( Y.

and numerically solve (1) and (2).
A, FIELD-LINE AVERAGE

Let [x] = § ¥ dE/Bp; then - X3 is obtained as ¢()x = Ix]/[1]. It is
only necessary to compute the un-normalized average. The function ¥, BP,
and flux, ), are specified on a rectangular grid which may be variable. The
actual [X| average is calculated along a constant u path. On the grid tais is
approximated by examining a grid celi and taking the integration path as a
straight line between the ¥ intersectiuns of the grid-cell sides. The }
intersection and the value of X at the intersection are obtained by linear
interpolation. The value of X/Bp along the straight-line-integration path
is taken to be the average of the values at the two intersections. The
contribution of a grid cell to [X] is the distance between | intersections
multiplied by the sum of X/Bp at these two Intersections. The factor of 1/2
is absent because | contours are assumed to be symmetric about z = 0. The
routine assumes it is only examining grid cells for z greater than zero. The
value of (X]| is Finally obrained by summing the contributions from all grid
cells.

The procedure just described is a good approximation to [X] except near
the vortex point, where a ¥ contour may intersect one side of a grid cell
twice. To resolve this difficulty (¥) is defined to be a weighted sum of the
numerical average and the analytic average obtained by using the Hill's vortex

formulas described in a later section:
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!
t{l-e) (X

B
G0 = e :
% numerical ’

<X>analytic

where wv is the flux value at the vortex point. At and near the »ortex
point ¢ ¥ 5 is almost entirely the analytical average. For i - Wv graater

than -0.2 mv, ¥y is almost entirelv the numerical average.
B. TRIDIAGONAL SOLUTION OF THE AVERAGED GRAD-SHAFRANOV EQUATION

Equation (2) is the average Grad-Shafranov equation, with p and f
arbitrary functions of 7. It is iterated self-consistently with Iq. (1) to
allow the imposition of a transport-determined flux value at the vortex
point. To invoke adiabatic-equilibrium changes between transport steps, the

following two relations are used:

Ay
P(v}w) = S(u») (%) y (3)
i qlp) @
TORES g} Eg _ (4)
LS
r

The left hand side of Eq. (2) is differenced in a comservative manner with a

non~uniform mesh

d {ooag)_ [0 () z)” (3)(2_ 2y _ (0 (],
av (Kﬁ)‘(Ti R "i+1+lTi by h1) R

2.,
' (Ti T )*1-1

The spacing between $i_ and Wi is hy, and the spacing t:tween wi and

‘ 1
P, is hy. The TEJ) functions are given below:

1+1
2
: gx.ﬂ ‘)

T: [ Y A

2 2 )
h2 (hl h2 + h2 hl

—

—

~
=
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) 2
(3 2 ("2 h1)"1
U A Y R Y R
(i} by« 5 hl)
The right hand side of Eq. (2) is written below:

-1

T gw)" ] (4 dy
Ro= -4 g (dV orvs (g ) 2
dv
1
4 . 2. 2/ .
Serafayar, g o\ e (6)

Define,
(7)
v, o= |47 ; (8)
1
theu,

i [(hl * hz) o (hi - h;) \)i] oo (%)
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Using Egqs. (7), (8), and (9) in (5) yields,

Ai wi+1 + Bi wi + Ci wi-l =0 , (10)
where
A.=T$1)+T‘3)h2+h 0,+h2\1.,
i 1 i 1 171 1 i
i (31(.2 2)_ (z)_,m_(
B1 = T1 n2 hl Ti l’i h1 + hZ} 01 + (h + h )\/l ,
L2 () AN
T TR T Ty

Equation (10} is homogeneous, because nonlinear terms such as (dlb/dV)Y_1 are

treated as a produ.t of two terms at different iteration levels,
& L (qg)“ ")
dv) dv v '
Given ! biundary values at the vortex poiat and separatrix, Eq. (10) 1s sclved

in the usual fashion:

i, = E, 1 + .
Yl 1 bi Fl !

i
[E]

WU RSN

Fiol

i

- A Fi/(Ai E, ¢ ai) .

The function K has s lsgarithmic singularity at the separatrix, To avoid an
(n
1

is replaced by Ki+1/2’ obtained from a Fit of interior K values assuming the

infinity in the T function one pcint from the separatrix, Ki+1 + Ki

following fuactional form,
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2
K=aV+al+ (a3V+a4V>9,n (1 -v)

2

+ z sin j1V (CJ.V + dj\lz) ,
j=l

where V is normalized to the separatrix volume, and typically £ = 4. The

analytic derivative of this formula is used for dR/dV to cbtain a smooth

function that properly represents the 1/{1-V) singularity.

C. [1CCG SOLUTION OF THE GRAD-SHAFRANOY EQUATION

The Grad-Shafranov equation in cylindrical coordinates is given below in
]

Gaussian units,

.2 - 2
ol ah A 40
‘_L_ln_—q-_--:-——r_] , (11)
4.2 rar . 2 [
dr ng
where

J=crp'+ Z%; ffr

Tie | derivatives of pressure and toroidal flux are obtained by using Eqs. (3)
and (4):
- y-2
._gg(s@)'ﬂ 5 (1) a
TR VT ERPT W

As suggested by Grad, d w/dv is expressed in terms of first derivative

quantities by using the average equation and (6):

RSt et vom e |

Sreiee
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d% ady . ds (dy\"

= 'ﬁﬁ“'"zw(s%)

av

L

67_4 IERNVAlE
N av D
2

dy;

D=K+4ryS$ (EV + lbn ji;

Applying central differences to Eq. (1l) on a variable mesh yizlds

o ! 3 . + 2} i

[ Lt S e, . f.. ., S L
i) 1+l,] ij i) "i-1,] i] "1j+l 1] 1=l
(12}

where the coc ficients for an r,z mesh are given below:
[ lfr - e I/R

* l(“i J - (A‘m]zl/si

. I
- Z[f\aj - /\zj+1]/l'jl

n

‘:ij IZAri/Ri - (Ari)Z/si]

i 2
i &ij [ZAriﬂ/Ri + (Ari) /si‘

Y., =6, 22T,
1] J ]
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The solution of the difference Eq. (12) is equivalent to the inversion
of a matrix having five bands. The solution is obtained using a modification
of the Tncomplete Cholesky Conjugate Gradient Method (IGCG) devised by b, .

?
Kershaw,” The problem reduces to Finding ? given A and J in Eq. (13),

b==-=1xq) . (13)

"=

After a lower, upper, triangular decomposition of matrix 4, ¥q. {13) becomes

i
LU=~ . (14)
The L, D, and U matrices in Eq. (14) are given below:
i-1
.= A, - LU
L T Ay k’; bi Ui D (15)
i-1
”ijzAij‘k; Fik Y D e
_ -1
p..=(u,.) . (17

]
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The grid is M by N, and the matrices are M X N by M X N, The five point

difference scheme results in A having five bands. The bands are then:

Ui ia

Ui iem

= A

A

i,i-1

tie1 Vis1, e

s

[+l

.

iLieM

It is only necessary to compute Lii'

algorithm beloew:

r) -

I

SaonT wow”

1

S0

O it T b iem Vi i Yiewyien

Eqs. (18) to (23) are used in the

wow st wow? sj

R
- c
0_

p o=

i

2t =

wi+1 Ui
Si+l - Si

(', Y

(18}

(19)

(z1)

(22)

(23)

(260

(27

(28)
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. l(L s st wo 5“1]

bl = >__..i...i.>.<,.....__.__._._i.,. ,i 3 , (29)
l(l.nu) $, (LD W s]

Pt wow s e (30)

-ations such as z = (LD U)—l ' are performed by using tridiagonal

bark substitution in three steps as follows:

1

Lx = § \
by = x ,
Uz =y

The algorithm is iterated from Eq. (26) to Eq. (30) until the residus) 3' is

sufficiently sma!l

The five band ICCG method, Eqs. (18) to (39), is a mathematical
operation and is therefore applicable to other physical situations in additicn
to the equilibritm problem. It may also be generalized to cases irvolving

nine or more bands in the A matrix.

D. BOUNDARY CONDLTION

Tre specification of the solution of Eq. (1) requires a boundary
condition. A Green's function technique is used to obtain the boundary
condition by summing the flux due to current rings. Each grid point where the
current is non-zero 1s considered to be a current ring. The flux due to a

current ring3 is given by Eq. (31):
Pr,2) = _[./ dr' dz' G6(¢', z', r,z2) J , (31)

where



L1

(r* + )"+ (2~ z')2

and K(k) and E(k) are elliptic integrals of the first 22d second kind,

respectively. The analytic formula in Eq. (31} 1s approximated below:

“(r,e) 1% lZJ Ijij G(ri, zj, r,z) + Ji-l,j C(ri-l' 'z.j, r,z)

U UL NIRRT LAY r’z)] hry bz

The Green's function, U(ri, zj, v,z), must be computed for each grid
point, for all r,z where a boundary condition is required. Because it is
necessary to read G from a disk, the change of the z = D boundary point is
monitored during sclution iteration, and all boundary values are recomputed
only if there is a significant change at z = 0. Because of symmetry the actual

Green's function used for computation is G(r', 2z', r,2) + G(r', - 2', r,2).
E., HkILL'S VORTEX FORMULAS

The Hill's vartex mm‘lell+ has been used to verify the ICCG solution of
Eq. (1) and the computation of field-line averages. Relevant transport and
equilibrium functions are given telow in terms of the Hill model to allow
comparison with other equilibria or with a Hill's vortex after it has evolved by

transport.
The flux is expressed as a polynomial in r and z:
2 P
TR S VIR
v 3 ( Yz gt . (32)

The vortex point radius Ty flux at the vortex point $v, and total volume

within the separatrix, Vg, may be calculated by using Eq. (32),
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i (38

r ={= 5
v U]
.ot

Y 5T s

T /2

v = 87+ (#)

s ! {

The volume as a function of flux V(!), the avcrage quantities, and their
derivatives are obtained as Lriponometric integrals which are evaluated
aumerically by using Simpson's rule. For the average functions the following

relation is used:

U L S,
Bp A (2 4 g e - % rA)l/2

The analytic Hill formulas sre given beluw with small b expansions fhew o

each faormula) vhere b = (1 - m/wv)l/z. The separatrix corresponds to

b = | and the vortex point corresponds to b = 0.

IV b il
V(o) = = - f di cos - {1 - b con )”2 (43
2»’r 0
Vb s 0) =y (bz v %2 bl‘) ()
8,2 s
Ey= —l‘:%y_s f.n __—-_cill__....____ (J’))
dy 16 "y 0 (1 -b cos D)l/z
%(bz0)=--}5—1’—5(1+%) (36)
d 8»",-2 qu

dy _ s 1 '/" o5 §
dv. s L f 4 ¢ —_ (37)
! ,3 b () (1 -b cos 0)3[2



Yprg) s -8 {3,105 2

d——V(b\O)'y,g,Zlﬁ*ﬂBb) (38)

d, e

2 32

Ao fdey 4

e dv) ] (39)

dv av

. 2 d. .

o) v g : (o
9

dR o, 20 e, 44y (1)

oV ! 3 dv av d‘z

- V N
1 32 s d. f d
Y= - = = LR T (42)
<;2> o, 2 ML b cos
v v
) Co ] 3.2 13l 4 .
<—§>(b 0)'—2(1+Zb+mo’ (43)
r . r
v
2 9.7 v 2
V - i I i
DR G N i R
r dv r 4. T b (1 = bcos )
v v 0
d /1 PV 25] 2)
COTERE T
r V r
S v

s = L f d (1 +bcos *)1/2 (46)
co= dv
)
0
v 2
2 N _d s ¥ _ b
.t . (b 0)-3’-(?-—‘_(1 16) (47)
' 8
¢ 2wt o 8 ’2 Ys3 ) f Beos o
AR R B v D o+
d 4 an s awv b8 (1 +0b cns 9)1/2
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PV
u 4 gv d 2 d. 5 3 1 1 152
o (bx0) =~ = (—) .—-—~(,—+-—b) (49)
dv "V dv | 4 ql ."-8. 4 128
v
Let
7
= e —————— e m L t
“{1 +b cos ) (L bcos ™,
LN, (2_)1“ N S (H0)
BZ - v 0 (1+hb Los’)l“ (’Z -2, b2 sihZ )
v
\ Lo . 7
LN o =2‘-(5;) S (2T gy v 0.2 b (51)
2 e dav ¢ 2
B b
d,(l_s cavd, S1N _(2_)”2(1)
)
dv HZ W 32 h ) v
J R S
7
(1+bcose) 4 zie blain®)?
0 v
| 2
----- < (1'1--""*1/—2 ('_, - rv b osin )
2(1 + b cos ) !
1
+ (1 + b cos 11)1/2 2 Lo '——/—J—V—-, cos
2 {1l +bcoso)
26730 I L2, . .
- el Jo— i - W i fi
T e R 2brl lobYIvstn dr (52)

1/2
d 1 dv | \ Ay ) -4,7496
(b"o):‘—— iy + = ( ~ 1+ 0.4 b (5")
T <“Bz> a0 <2 AR (v W K

2, _ (b
<B>-(dv)\<, (54)

-
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) 2
I TTIE SRNTR
w B (dv) Wt R o (55)

The magnitude of the magnetic field B! around a flux surface is computed by
obtaining the distance along a flux surface ¢, and using the definition of

"B' below.

TV 12
B = (3—2 ! %) ‘e (" - -%r“) : (56)

The trigonometric integral for “df has an integrable singularity at » = -
which causes numerical difficulty, To resolve this problem [d( is computed in

two parts. The {irst part of the integral is in z,

; 1/2
(2,‘ LI r2 - - r4)

f t4
! 1 QU
R I IR~ i o
RN

with

vl a (t-ﬁ)%:ﬂ"z 6
r 1772 772 3! ¢

ased in Eqs. (50) and (57). The second part of fdf is an apgular integral,

¢ )

2
: 1
/ & = - ___l_l./_ij __.__-,._qq____l_/.z, (CZ -y, bl sin’ i 2 , (38)
; (2¢F) 7 (1 + b cos [)
1

r =§—B(bcos"+1)

used in Eq. (56).

Functions given by Eqs. (33) to (58) ave plotted in Figs. 1 to 10 for
three aspect ratios with lbv = ~] and r, = 1/¥2Z. The flux ranges from
-1 to 0 from the vortex point to the separatrix, and | is zero at r = | and
z = 0. For all cases = B, and § = 48 in Eq. (32), Plots with three curves
labelled A, B, C refer to y = 4, 8, and 16, respectively. These values of Y

correspond to a ratio of radial to axial separatrix distance squared, E, equal



e

of 0.5, 1 and 2, To avoid singularities the range of ' is restricted to -0.95

to -0.05,
Figures la, h, and ¢ are contour plots showing the different geometries

for the three £ values. Case A, Fig, la, is prolate; case B, Fig. lb, is

spherical; and case C, Fig, lc, is oblate.
The volume, V(), is plotted in Fig, 2a. The prolate geometry, case A,

has the greatest volume at any value of flux. The oblate case, U, has the

least volume and the spherical case, B, is intermediate between these two

extremes. The volume derivative of ¥, dl/dV {s plotted in Fig, ?b. The

greatest to least db/dV occur for the oblate, spherical and prolate cases,
= 0, the separatrix, °f

respectively. Each curve would plunge to zero at @

the plotting range were extended. This sudden change in value is a

consequence of the logarithmic singulavity of K mentioned earlier snd the fact

K d¥/dv is proportional to the total enclosed current. Because the total

currcat is finite and K is singular, d¥/dV must go to zero. Figure 2c,
dzp/dvz, dramatically illustrates Lhe sudden rate or change of the slape
of dt/dV near & = 0, The relative magnitude of dszdvt for the three

cases is prolate, spherical and oblate. This is the opposite af the orderiug

for dit/av,
Figure la 1s a plot of (1/1'2) (). This functicn goes to infinity at
{ = U; and consequently d/dV <l/rz> in Fig, 3b aad d/dv /l/rz, in Fig. 3

rise sharply near | = 0. Figures 3a and 3¢ show <l/r2j and d/dt'fL/rzv _

are both independent of E for Hill's vortex.
Figures 4a, b, and ¢ are plots of K(t), dk/dV. and dK/d/', respectively.
The greatest to least value at a given flux occurs for prolate, spherical and

oblate geometry for each ploi. The weak singuiarity at ) = 0 {s 1llustrated y

by the rapid increase of dK/dV or dk/d¥ near * = 0. Because the poloidal

field is zero at the vortex point, K = 0 at # = -1, as shown in Fig, 4a.
Figures 5a, b, and ¢ are plots of <r2>, d/av (fzb and d/db (rz}-

Figures 5a and 5c show that {rz) and d/dp <r2> do not depend on E. This

is consistent with Eqs. {46} and (48). The greatest to least magnitude of

d/dv (rz> at fixed y occurs for prclate, spherical and oblate geometry,

T
-] |
5

respectively,
Figure ba is a plot of tl/B2> as a function of Flux. Because 'B' is

“mmey

. 2 P -
zero at the vortex point <1/B”) gaes to infinity at h = -1 as indicated.

As the proximity of d/dV (1/32> to zero in Fig. 6 shows, (?/BZ) is

relatively constant for -0,8 < 1 < 0. The greatest to least magnitude of

O P AAiott e i e
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-I/BZ, at constant 7 occurs for prolate, spherical and oblate geometry,

7
respectively. Figure bb shows d/dV - 1/B*, has a very weak depesdency on E.

Figure 6c shows a crossover point tor d/dy 41,’]32")_ For ' less than -0,2 the
greatest to least value occurs for oblate, spherical and prolate geometry.
For , greater than -0.2 the order becomes prolate, spherical and oblate.
Figure 7a shows sz;;with *he greatest to least value occurring for
oblate, spherical and prolate geometry, respectively. Because (B! is zero at

the vortex pointa\BZ} is also zero at | = -1 as indicated by Fig. 7a, The
existence of a maximum value of (BZ> for each € value leads to a crossover
soint for d/dv 'BZ‘,and d/d; 3 »as shown in Figs. 7b and 7¢. Focr < -0.11
the greatest to least value of the derivative occurs (or oblate, spherical,

and prolate geometry, respectively. For y » ~0,11 the order becomes prolate,

spherical, and oblate.

Figures 8, 9, and 10 are piots of \B! as a function of distance around a
{lux surface begirning at z = 0 below the vortex point, The main features of
[8" for Hill's vortex are the positions where Bl = 0 at the vortex point and
separatrix, and the |B| maximums above and below the vortex point. On a
particular flux surface |B| has the same value at the two radial positions at
220 Tue basic Feature of |B| shown in Figs. 8, 9, and 10 is the existence
of Lwy minimums and two maximums around a flux surface. For the prolate
geometry Fig, 8, the spherical geometry Fig. 9, and the oblate geometry Fig.
10, fo is plotted for f = -0.8, ~0.6, ~0.4, and -lO_h. The important
difference between these plots is Lhe ratic of maximum to minimum |B[. R,
summarized for various rutios of radial to axial separatriz distance squared,

E, and flux below.

E
0.5 1.0 2.0
-.8 2,84 2,06 1.48 ?
-.6 2,97 .29 1.58
-.4 3.2¢ 2,38 1.74




-9~

At constant K, R increases as , increases, moving from lhe vortex point
toward the separatrix. The minimunm |/ exac*ly on the separatrix is zero, so R
poes to infinity at v = 0. This accounts for the large K values tor , = -0,000],
For a fixed value of {lux, R decreases as E increases. The ohlate geometry

has the smallest values of R.
I1.  COMPUTAT[UNAL IMPLEMENTATIUN
A.  FLELD-LINE AVERAGE

The {7) operation discussed in Sec. IA is pecformed by subroutine

FLINAV. The calling sequence s given bolow:
CALL FLINAV (81, F, IR, 12, [RD, 1RZ, R, Z, HTS, N. XINT},

The subroutine computes N averages of [unction F and returns values in
arrav, XINT. cunction F is considered to be the entirv inteprand, 1.0,
//Bp for the average ol Sec. lA. Computation proceeds nn a rectangular grid
bounded by Z(i), to Z(1Z) and R(1) to R(iR). Averaging is assumed tn he done
on flux heights symmetric abont z = 0. An explanation of the calling

arguments fotlows:

L. STCIRD, 1ZD) Array of flux values. Averages are performed
along constant S$I heights., (INPUT)

2. F(iRp, 12ZD) Array of function values ro be averaged.
(INPUT)
3, IR The maximum radial index over which averaging

occurs. This must be less than or equal to
IRD. (INPUT)

4, 12 The maximum axial index over which averaging
occurs. This must be less than or equal to
I1ZD.  (INPUT;

5. IRD First dimension of arrays F and SI. (INPUT)

6, 12D Second dimension of arrays F and $I. (INPUT)

—i T
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7. RCIR) Array of radial grid positions. (INPUT)
g, 2012) Array of axial grid positions. (LNPUT)
9, HTS(N) The heights along which averages are computed.
(INPUT}
0. N The number of averages to be computed, (INPUT)
1l.  XINT{N) Array of average values. (OUTPUT)

%. FIVE BAND ICCG

The solution of Eq. (12) is obtained by using six subroutines SEII1CC,
CORICL, BAUKL, BACKU, DINV, and MATMUL. The user need only call subroutines
SETILC and CORICC,  Subroutine SETICC is called once to compute band 3 given
in Eq. (2U) and to compute the initial vectors S and P given by Eqs. (74) and
(25). Subroutine CORICC performs one loop through the ICCG algorithm given by

Egs. 126) to (30). Assume the equation to be solved is

(99)

where tie five bands of matrix A are as shown in Fig. 11. The z,r grid is
dimensioned TZDIM by [RDIM as shown in Fig. 12. The main diagonal of matrix A
has a length equal to the number of grid points, IZDIM times IRDIM.

Vector x elements then refer to grid peints [z(1), R(1) , . . . =z(i),
ROLROIM) L, « . . {2(2), RCLME, « o o {2(2), ROTRDIM)|. Tn other words, x
consists of consecutive columns of the grid. Before discussing the calling
arguments of SETICC and CORICC it is necessary to describe the construction of
the five bands, and the y vector of Eq. (59). The description is given in

terms of (ij’ Foo, v, .., and }i‘ of Eq. (12) and grid boundary

(SRS R )
values denotec +b' Assume arrays Al, A2, A3, A4, A5, X, and Y are

dimensioned IRDIM by IZDIM.
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Band 1

Interior prid points,
Al (i, j) = el i =12, IRDIM-1
3 =1, 1ZplM-1

Axls grid points,
AL (1, j) =0 j= L, 1401

Boundary at maximum radia! position,

Al (IRDIM, j) =0 j =1, 120IM

Boundary at maximum azial poesition,

Al {1, [2bIM-1) = 0 1= 1, (ROIM-1
Band 2

Interior grid points,
(1. 1) = . ) 1 = B
A2 {1, ) |1+1,J 1= 1, IRDIM-1
i= 0, IZbiM-y

Axis grid points,

A2 (IRDIM, 30 = 0 =1, 1ZpIM-1
Boundary at maximum radial position,

A2 (IRDTM-1, j) = 0 j =1, LM
Boundary at maximum axial position,

A2 (1 -~ 1, 1ZIDIM) = 0 1=2, [ROIM-L

Premultiply band times axis boundary condition, where
¢b (1, 3) =0,
A2 (1, j) =0 1=1, IZDIN-1



qind 3

-22-

A3 (4, 9) = 1

Band &

a4 (i, ])= '

Interior grid points,

1]

Axts grid points,

A (1, 3) =0

Boundary at maximum radial position,

A6 CIRDIM, j) = 0

Boundary al maximum axial position,

Ab (i, 1Z2DIM) = 0

The band times the boundary condition is premultiplied and put on the

right hand side so,

A CLRUIM-1, §) = 0.

Band 3

Interior grid points,

Axis grid points,

a5 (1, ) =0

Boundary at maximum radial position,

AS (TRDIM, j) =0

"

2'

[RDIM
1ZD1M

IRDIM
LZDIM

LZDIM

LZDIM

IRDIM ~ |

LZDIM - 1

[RDTM

1ZDIM

1ZDIM

14D
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The band times the boundary condition is premultip!'ied and put on the
right hand side so

AS (1 + 1, LZDIM-1) = 0. =], IRUIM - 2

Right hand side,

Y (i, §)= " e d., is 2, IDIM - )
1)t 1]

o= 1, LZbIn
Axis grid points,
VL A 1= 1, 1ibiy
Boundary at maximum radial position,
Y (IRDIM, j) = ﬂb (LRDIM, ) ] 1, LADIM
Boundary ai maximum axial position,
RSP UL VR S A ) i= o Lty - )

Note the [ollowing step of sutting band times boundary condition on the righe

hand side mist e performed ,rior to zeroing bands 2, 4. aumi 5,

1

z (LRDIM=1, j) = ¥ (IRDIM - 1, )

U
]

Y (IRDIM-1, 3J a4 (IRDIM-1, })

+ z(TRDIM=1, j) 1

N

1, 1bIM -

1}

z (i + [, [20IM-1) = Y (i + [, IZpiM-1)

i=1, IRDIM - ¥

Y (i+ 1, 1ZDIM-1) = z (1 + 1, 1ZDIM-1)
- A5 (i + 1, 12DIM-1) Y (i + 1 + IRDIM,
1Zb1M-1) i

n

1, IRDIM-2
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The calling sequence and arguments for subroutines SETILC and CORICC are now

given:
CALL SETICU (Al, A2, A3, A4, AS, B, P, thfl, T2, U3, X, Y, MN, M),

Subroutine arguments Al, AZ A3, A4, A5, P, R, Tl, T2, U3, X, and ¥ are
one-dimensional arravs of lepgth MN, where MN is the total number of grid
points, LZDIM times LRDIM. The band 3 to band 5 otfset is M which would be
IREM for Fig. 12,

- . The first {ive arguments are arrays conta’ning

bands 1 te 5 having dimension equal to the
number of grid points of the computaticnal area.

(TNPUT)

h. B The numerator of the right side of Eq. (26},
(ouTPUT)

7. P The vector given by Eq. (25). (ouTrUT)

K. R The vector given by Eg. (25).  (0UTPUT)

9. Tl Temparary storage.

10. T2 Temporary slorage.

I, 1K} Band J given by Eq. {(21). {OUTPUT)

il X [nit:-" solution guess. o INPBI)

13, Y The righ. hand side Eq. (39). C(INPUT)

l4. MN The number of grid points. (INPUT)

3. M The number of radiai grid points. (INPUT)

CALL CORLCC (Al, A2, A3, A4, AS, B, P, R, T, T2, U3, X, Y, MN, M, EPS).

The arguments for CORLLC are the same as for SETICC with the following

exceptions:

12. X The current soiution.

16. EPS The sum of the squares of residuals.
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The solution vector X typically is obtained by calling SETICC once and

then repeatedly calling CORICC until EPS is sufficiently small.

The Five band 1CCG algorithm consumes a larpge fraction of tre

computational expense of solving the equilibrium problem. To implement 1CCG

efficiently on the Cray 1 computer, we have written subroutines SETICC,

CORTCC, BACKL, BACKU, DINV, and MATMUL in assembly language. The FORTKAN

versions of these subroutines accept any values for MN and M, provided M

exactly divides MN, mod (MN, M) = 0. The assembly language version has Che

same arguments for the user-called subroutines SETICC and CORICC, but it has

two additional restrictions. The band-offset M must be gr. cer tham or equal

to 8 and less than or equal to 64, 8 must exactly divide M, mod (M, 8) = 0 and

mod (MN, 64) = 0. Assembly language versions of these subroutines may be

written without these restrictions; however, it is not then possible to derive

the maximum performance from the Cray 1 hardware. The restrictions arise from

the optimization ol two types of do loops. The method chosen to optimize

these do loops depends on the presence of 64 words in each Cray 1 vector

register,
The first type of do loop to be optimized is recursive and thes prevents

complete vector :ation by the CFT compiler.

DO 20 [ = MN ~M, L, - 1

20 (1) = [Y(I) ~ AG(D) » X(1 + 1) - AS(IL) * X{1 + M)]/A3{D)

Because array A) is Fixed the first optimization is achieved by
replacing the divide by a multiply with T&(1) = L.0/A3(I). To allow further
partial vectorization two temporary arrays are introduced with two inner do

loops. The innermost loop is vectorizable and the do loop overhead 1s further

reduced by introduciig eight statements for X(J).

DIMENSION T5(M), T6(M)
DO20I=MN~M, L, -M

DO1SJ=1,1-M+1], -1

TSI + 1 - J) = T6(J) * {¥(3) - A5(J) * X(J + ¥))

———
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15 TO(I + 1 - J) = T4(J) * A4(J)
D020J=1,1-MM+1,-8

XD =1L+ 1-3)-T6(L+1-1J)
TB(l+1-J-1)

X(J
X(J
X(J
X{J
X(J
X(J
20 X(J

1)
3]
3)
4)
5)
6)
7

TS5 (I +1-
TS (L + 1 -
TS(T + 1 -
T5 (T +1 -
TS {1 +1 -
T5(L+1-

J
J
J
J
J

J

- T6 (I
- T6 (I
- T6 (I
-T6 1
- T6 (I
- T6 (I
- T6 (1

- D
- 1)
-3
- 4)
- 5)
- 6)

%

*

*

*

X(J)

X(J
X(J
X(J
X(J
X(J
X(J

Machine language programming permits careful reordering of the

-1
- 2)
- 3)
- 4)
-5)
- 6)

instruction sequence, optimal use of parallel processing, and the sybsequent

elimination of temporaries T5 and T6.

An overall run time reduction from 44539

to 997 microseconds is achieved with MN = 4096, M = 64,

The second type of do loop to be optimized is not vectorizable by CFT as

written below.

S =

0

DO 201 =1, N
20 5=5+x{I)* X(1)

To permit vectorization this do loop is split into three loops ac

TEMP(J) + X(T + J-1)*X(1L+J-1)

follows.

DIMENSION TEMP(64)
§=0
DO 5T=1, 64

5 TENP(1} = XK{I1} * X(I)
DO 15> [ = 65, N, 64
DO 15 J =1, 64

15 TENP(J) =
DO 30 J =1, 64

30 § =8 + TEMP(J)

fx
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Only the last do loop does nol vectorize. When the above FORTRAN 15
coded in assembly language, TEMP(I) is eliminated and an gverall run time

reduction From 1859 to Y0 microscconds 1s achicved with N = alY6,

C. BOUNDARY VALUE GREEN'S FUNCTION

The Green's function is computed by subroutine GREENF. The Greea's

function over the entire grid for a given point is evaluated by a single call
Lo GREENF.  Symmctry across z = O is assumed and the Green's fanction 1s used
with Lhe right hand side af Fq. (1) so the output af GKEENE 15 [G(r', 2",
The IMSL

road

60", -t )]/t owith GOr', o2, ryz) given by Eq. (310,
library or an equivalenl must be invoked since this roatine requires functions
MMDELK and MMDELE Lo compute elliptic integrals of the firsc and second kind.

The calling sequence and explanation of arguments fotlouws,

CALL CREERF (RFtC, ZFAC, R, LRDIM, 4, [ZDIM, CREENS)

1. RFAC Radial position r of Eq. (31). (INPUT)
2. ZFAC Axial position Z of Eq. (31), (CINPUT)
3. RCIRDIM) Radial grid array. (INPUT)

4. LRDIM Number uf radial grid porats, (INPUT)
5. 2(1Zh1IM) Axial grid array. (INPUT)

b, T17ZDIM Number of axial grid points. (INPUT)

7. GREENS (IRDIN, Array of Green's function values divided
12DIM) by R for (RFAC, ZFAC) at grid positions
given by arrays R and Z. Due ro symmetry
the Green's function at ' Z are combined.

Values of flux are computed by using trapezoidal integration by
subroutine GREENG. The current is assumed to be symmetric about Z = 0, s0
the Green's function combined by GREENF is appropriate. The calling

sequence and arguments follow,

PR T R,
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CALL GREENG (SI, GREENS, ROB, XJTHET, IRDIM, [ZDIM).

I, sl Vatue of flux ar r,z position used to compute
Greea's function array. (OUTPUT)

2. GREENS (IRDIM, Array of Green's function values combined for
121 EM) ‘2 and divided by r as computed by GREENF.
{ INPUT)
b RDB (TRDINM, Avray of 2rid cell areas in square centimeters.
1Z01M} KOBCL, i) = [RCE + 1) - R(DD]
c 120+ 1) - 20, CINPUT)
“o NITHET Array of 4 rf/c times the current in statamps.
CIRDIM, TZ0GIM) (INPUT)
Yoo IRDIN Number of radial grid points. (INPUT)
h.o LIy Number of axial grid points. (INPUT)

The Lreea's funclion at  z divided by r at a single point is computed by
subroutine GREENH. For a Fixed point RFAC, ZFAC this is the routine
repetitively called by CREENF to get the Green's function over the entire

arid. The calling sequeace and arguments are below.

CALL GREENH (G, RFAC, ZFAC, K, 2).

. ¢ I/R |G(R,Z, RFAC, ZFAC) + G(R, - Z, RFAC,
ZFAC)) . (OUTPUT)

2. RFAC Radial position v of Eq. (31). (INPUT)

3. IFAC Axial position 2 of Eq. (31}, (INPUT)

4. R Radial current position. (INPUT)

5, 2 Axial current position. (INPUT)

A boundary point value is computed by first calling GREENF and then
calling GREENG with 4" rf/c times the current. For a typical 64 X 64 grid

there are 520,000 Green's function values.
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The Hill's vortex formulas are computed by calling subroutine HILLSL.

Values are communicated through common hlock HILLY.

The calling sequence and

definitions of common block elements are given below.

COMMON/HILLV/A(45)
CALL HILLSI

ACi)

A(Y)
A(10)
A(1D)
A(12)
a(13)
a(14)

A(1S5)

a(16)

AQ17)

Flux value at which functions are desired.
(INPUT)

volume Eg. (33). (OUTRUT)
d;/dV the inverse of Eq. (3%). (QUTPUL)
alifav? gq. (39).  (OUTPUT)
C1/ed) gq. (42).  (oUTPUT)

dfdv <1/e2) Eq. (44). (OUTRUT)

K Eq. (40). (OUTRUT)

dk/dV Eq. (41). (oUTPUT)

ey eq. (46). (QUTPUT)

dfdv 2. Eq. (48). (oUTPUT)
(1/8%y Eq. (50). (OUTPUT)

d/dv (1/82> Eq. (52). (OUTPUT)
82> Eq. (54). (OUTPUT)

d/dv ¢(B%) Eq. (55). (OUTBUT)

2/3 5 Eq. (32), This is the value of the
distant uniform vacuum field. (INPUT)

(68/8)1/2 gq, (32). Radial position at which
=0 atz=0. (INPUT)

6Y/8 Bq. (32), the ratio of radial to axial
separatrix distance squared, E. (INPUT).

Henaadie s
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A(18) The number of angular grid points used with

Simpson's rule to compute functions. (INPUT)

A(19) to A(45) Working space.

1L, AVAILABILITY

A LIB library containing FORTRAN subroutines FLINAV, SETICC, CORICC,
DINV, BACKL, BACKU, MATMUL, GREENF, GREENG, GREENH, and HILLSL is obtained
with the [ollowing execute line on the MFE 7600: FILEM READ .3040
JPHYSICS EQTRAN, A LIB Library containing a binary assembly language
replacement for SETICC, CORLCC, DINV, BACKL, BACKU, and MATMUL is obtained
with the {ollowing execute line on the MFE Cray 1: RFILEM READ .3040
.PHYSICS BICCG, Library BICCG contains the binary f[ile BICCGZ and the

assembly language listing 11CCGZ.
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Fig. 11, Five band matrix structure.
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r direction., Matrix bands Al to A5 are

indicated on the finite difference star.
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