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COMPUTATIONAL METHODS FOR REVERSED-FIELD EqUlLfSRlUM* 

J. K. Boyd, S. P. Auerbach, P. A. Willmann, H. L, Berk, and B. McNamara 

Layrence Livermore Laboratory, University of California, 
Livermore, CA 94550 

ABSTRACT 

Investigating the temporal evolution of reversed-fuld equilibrium 

caused by transport processes requires the solution of the Grad-Shafranov 

equation and computation of field-line-averaged quantities. The technique for 

field-line averaging and the computation of the Grad-Shafranov equation are 

presented. Application of Green's function to specify the Grad-Shafranov 

equation boundary condition is discussed. Kill's vortex formulas used to 

verify certain computaticns are detailed. Use of computer software to 

implement computational methods is described. 

INTRODUCTION 

The problem of reversed-fie.'d transport and equilibrium involves 

computating field-line-averaged quantities and solving the Grad-Shafranov 

equation. The methods used are described in the first part of this report and 

the software implementstir-^ in the second part. 

*Work performed under the auspices of the U. S. Department of Energy by the 
Lawrence Liverraore Laboratory under contract number W-7405-ENG-48. 
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The first part describes the technique foi field-line averaging, the 

tri-diagonal solution of the averaged Grad-Shufranov equation, the Incomplete 
Cholesky Conjugate Gradient (ICCC) solution of the two-dimensional 
Grad-Shafranov equation, and the application of Green's function to obtain 
boundary conditions. The computations of field-line-averaged functions are 
verified by using the Hill's voitex, analytic, reversed-field equilibrium. 
Because the use of Hill's vortex is widespread, the analytic formulas for 
pertinent transport and equilibrium functions are presented. Graphs of these 
functions versus flux are also included. These may be compared with other 
equilibria or with a Hill's vortex after it has evolved by transport. The 
second part of this work details the use of subroutines to implement our 
computational methods. The ICCG ir.ethod is generally applicable to problems 
requiring the inversion of a matrix having five or more bands. An efficient 
assembly-language version of the five-band algorithm is available for users of 
the Magnetic Fusion Energy Computer Center's Cray 1 computer. All other 
subroutines are in FORTRAN. Several techniques used to reduce run time to 
one-fourth that for standard FORTRAN are discussed for the ICCG method. 

1. METHODS AND HILL'S VORTEX SOLUTION 

The central equation to be solved is Ampere's law combined with force 

bal.mce in cylindrical coordinates. The general relation is the 

Grad-Shafranov equation, 

A*: = - 4'; r 2 p' - ff . (1) 

The toroidal, magnetic induction is f/r, and p is the pressure. Both p and f 

are functions of •;• where B = Vi|. * '.'6 + fl'O. The poloidal induction, B , is 
2 ?; / 70. The average of CD divided by r i s , 

^ K J - ) = - 4 - p. - f f / ^ , (2) 

where 
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Brackets denote an average over a flux surface. For a general function X, 

«<• M/ft • 
•> P / J p 

An equilibrium is obtained when Eqs. (1) and (2) are self-consistently solved 
subject to constraints on p(j)) and f(ijj) which enforce certain dynamical 
conservation laws. It is then necessary to compute average quantities ( X ) . 
and numerically solve (1) and (2). 

A. FIELD-LINE AVERAGE 

Let [X] = / X df/B ; then..X> is obtained 3S<X)= Ixl/lH- Jt is 
only necessary to compute the m-normalized average. The function x, B , 
and flux, ']>, are specified on a rectangular grid which may be variable. The 
actual [Xl average is calculated along a constant 'i path. On the grid this is 
approximated by examining a grid cell and taking the integration path as a 
straight line between the '•!' intersections of the grid-cell sides. The j-
intersection and the value of X at the intersection are obtained by linear 
interpolation. The value of X/B along the straight-line-integration path 
is taken to be the average of the values at the two intersections. The 
contribution of a grid cell to [Xl is the distance between ;i intersections 
multiplied by the sum of X/B at these two intersections. The factor of 1/2 
is absent because 'I' contours are assumed to be symmetric about z - 0. The 
routine assumes it is only examining grid cells for z greater than zero. The 
value of (X| is finally obtained by summing the contributions from all grid 
cells. 

The procedure just described is a good approximation to [X] except near 
the vortex point, where a ty contour may intersect one side of a grid cell 
twice. To resolve this difficulty ( X ) is defined to be a weighted sum of the 
numerical average and the analytic average obtained by using the Hill's vortex 
formulas described in a later section: 
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CO = e <X> . . + (1 - e ) <X> . . ' x •'analytic 'numerical 

where iji is the flux value at the vortex point. At and near the "ortex v 
point O') is almost entirely the analytical average. For i|' - 'Ji graater 
than -0.2 \\< , / V > I K almost entirely the numerical average. 

B. TRIDIAGONAL SOLUTION OF THF. AVERAGED GRAD-SHAFRANOV EQUATION 

Equation (2) is the average Grad-Shafranov equation, with p and f 
arbitrary functions of i. It is iterated self-consistently with Cq. (1) to 
allow the imposition of a transport-determined flux value at the vortex 
point. To invoke adiabatic-equilibrium changes between transport steps, the 
following two relations are used: 

pty) = Sty>) (3) 

u ' r \ \ dV (4) 

The left hand side of Eq. (2) is differenced in a conservative manner with a 
non-uniform mesh 

'*{<$)• W-VAK ^(^HM" 
•'f'-^h-, (5) 

The spacing between 'J;. , and 'J', is h, , and the spacing between 'l;. 
i|'.+, is h,. The T J functions are given below: 

and 

„ < i > . »i " M * 1 A 
1 h2 (hl h 2 + h 2 h i) 
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,(2) h2 V K 

1 ( h ! h 2 + h2 h l ) 

3) . 2 ("2 " "!)_ K i 
2 \2 h2 + h 2 h j •)! 

The right hand side of Eq. (2) is written below: 

R = - 4- :sv \dV/ ' \ dV / 
* " 2 «& 

dv2 

. J £ * q [49 ifi «. d 2 v ^ 

Define, 

d \ r 2 / dj> 
' L \ l d v d V "* d v

2 /IN 2 d V "" d V 

- «(8f • ^ 
"l h 2 ' »! h 2 

3V \dV/ 7 l \ dV / l \ 2 dV 
^ 16- 4 

z 2 

^ 2 

FN 
"2 hf h 2 • h L h 2 

then, 

R. = (- h, C - h 2 v. 1,1. + (- h a. + h 2 v. U . 
l \ ! i 1 l ' i+l \ 2 I 2 i / l-

Iv h 2)v( h ! - h !h]* i 
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Using Eqs. ( 7 ) , ( 8 ) , and (9 ) in (5) y i e l d s , 

A. ij'. , + B. i);. + C. I|I. = 0 , 
I I + I i I l l - l 

(10) 

where 

A. - T ( 1 ) + T ( 3 ) h* + h, 0. + h? v. 
1 1 l 1 1 i 1 1 

-. -I" K - >!)-'!"-'!"- (\ -,) v^"!)"i 

t . . i ' . u - *! i ! J ) . s, » . - - * : » . 
i i 2 i 2 l 2 i 

,Y-1 Equation (10) is homogeneous, because nonlinear terms such as (di|'/dV) are 
treated as a product of two terms at different iteration levels, 

\ dV ) \dV 7 ( dV ) 
n+1 

Given 'I1 b jundary values at the vortex point and separatr ix, Eq. (10) is solved 

in the usual fashion; 

i+l i i i 

K. C . / A E . + 
l I i 

F . = - A . F , / ( A . E . + B . I 
l - l l i i i i i / 

The function K has a logarithmic singularity at the separatrix. To avgid an 
infinity in the T. function one point from the separatrix, K. , + K. i l+l l 
is replaced by K- + 1; ?, obtained from a fit of interior K values assuming the 
following functional form, 
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K = a V + a2V + /a3V + a 4 V 2 \ J.n / l - v) 

+ T . sin inV /c.V + d.V2^ 

where V is normalized to the separatnx volume, and typically I = k. The 

analytic derivative of this formula is used for dK/dV to obtain a smooth 

function that properly represents the 1/(1-V) s ingular i ty . 

C. 1CCG SOLUTION OF THE GRAD-SHAFRANOV EQUATION 

The Grad-Shafranov equation in cylindrical coordinates is given below in 

Gaussian units , 

r 2 - 7 3r + r r - r r J (n) 

where 

J = c r p' + T^- iV . 

Tne , derivatives of pressure and toroidal flux are obtained by using Eqs. (3) 
and (4): 

p d v l d v i ' b \ d v / d V 2 

2 / 2 \ 2 
4,1 ~ I ±1 <. 1! djj; _ 1 _ d\r 
¥> l d V " # .u2 /I dV 

2 2 As suggested by Grad, d ji/dV is expressed in terras of first derivative 
quantities by using the average equation and (6): 



dv2 dV dV dV ei 

3> 
i6''4 d£ /da 1 d _ \ r 2 

""^IV q dV I dV " 7 T V dV 

V> / 

• •""> ( i f *'"' y?! 

Applying central differences to Eq. (11) on a variable mesh yiilds 

i j 1 + 1,j Lj l j 1-1, j l j l j + l I j l j - 1 

- ^ f . . . r . . J . . 
c i j i j i j 

(12) 

where the c o n f i d e n t s for an r , z mesh a r e given below: 

i j 
2 Ar. - A r . , /R. 

l l + l I 

iK f -K. fh 

- i\hz. - i\z.An.\ 

n.. = <".. 2Ar./R. - Ar. / S . 
I J i j [ l l 1 i ' l 

3 . . - (,.. 2Ar. , /R . + A r . l / S . 
I J l j [ l+ l i 1 1 / i 

Y.. = « . . 2A Z . /T . 
i j IJ J J 
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V . = n.. 2/>z. ,/T. 
JJ ij J +l J 

R. = (Ar.^.l2 Ar. + (Ar. . ] 2 Ar. , i I i+ll 1 \ i-l/ i+l 

S. = r. R. 
l i l 

T. = (Az. , ) 2 . V + (Az. i2 A*. 
J I J*!' J I J"'/ J* 

'>z . = z. - z . . 
J J J-l 

Ar. = r. - r. . . l I l-l 

The solution of the difference Eq. (12) is equivalent to the inversion 
of a matrix having five bands. The solution is obtained using a modification 
of the Incomplete Cholesky Conjugate Gradient Method (1CCG) devised by l>, S. 
Kershaw.'' The problem reduces to finding ^ given A and J in Eq. (13), 

4"' A I' = r J . (13) = - c -

After a lower, upper, triangular decomposition of matrix A, liq. (13) becomes 

J, 2 U <l = - '- rJ . (14) 

The L, D, and U matrices in Eq. (14) are given below: 

i-l 
ji ji ^ jk ki kk (15) 

i-l 
u . . = A, , - y ; L . . u , . D,. , ( i6) 
IJ ij |̂ ! ik kj kk ' 

» u = ( « / • < U> 
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The grid is M by N, and the matrices are M x N by M * N, The fivr point 
difference scheme results in A having five bands. The bands are then: 

L. . = A. . . 
i,i-l i,i-l (18) 

Li (i-M = Ai,i-M 119) 

L.. = A.. - I.. . U. , . D. . . - L. . u U. u . 1). ,J . „ , (2U) n 11 u - 1 1-1,1-1 1-1,1-1 i,i-M i-H,i i-H.i-M 

U.. = L.. 
'l li 

(21) 

U. . = A.. , , 
l.i-M n + 1 (22) 

Ui,i+M " A:.i+M (23) 

It is only necessary to compute L... Eqs. (18) to (23) are used in the 
algorithn beU-w: 

b = rJ - \ 
c 

(24) 

p° = .'J (L D U ) ' T (L D U ) " 1 S° (25) 

(L D U ) " 1 S l, (L D U ) " 1 S l| 

(P . P > 
(26' 

i,i + l i',i ̂  i i (27) 

,i+l „i = S - a A £ (28) 
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(L D U f ' S l + 1 , (L B U)"'1 S 1 + 1 

(I. I) U)"' S l, (L D U ) " 1 S1] 
(29) 

p_ i + 1 - A T ( I . D U ) " T ( L D U ) " 1 ! 1 " * b V . 

rations such .is z = (L D U) S are performed by using tridiagonal 
bark substitution in three steps as follows: 

( 3 0 ) 

Lx = S 

Uy 

Uz 

The algorithm is iterated from Eq. (26) to Eq. (30) unti l the residu.-l 3 is 

sufficiently small. 

The five hand IC(JC method, Eqs. (18) to (30), is a mathematical 

operation and is therefore applicable to other physical s i tuat ions in addition 

to the equilibrium problem. It may also be generalized to cases involving 

nine or more bands in the A matrix. 

D. BOUNDARY CONDITION 

The specification of the solution of Eq. (I) requires a boundary 

condition. A Green's function technique is used to obt.iin the boundary 

condition by summing the flux due to current r ings. Each grid point where the 

current is non-zero is considered to be a current ring. The flux due to a 
3 current ring is given by Eq. (31): 

Hr,z) = JJ dr 1 dz' G ( r \ z\ r , z ) J , (31) 

where 
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G(r', z', r, z) '_" (l - i k 2|K(k) - B(k) 

k 2 = i> r'r 
2 2 ' (r* + r) + (z - z') 

and K(k) and E(k) are elliptic integrals of the first a .id second kind, 
respectively. The analytic formula in Eq, (3D is approximated below: 

•:(i-,i) 
1 /, [J. . G (r. , z., r,z\ + J. , . Gfr. ,, L , 

*f \ ij l i J ) i-l.J \ I"' J ., r.z 

+ J. . , Gfr., z. r,z) + J , . , G(r. ,, 2. ,, r,z\ Ar. A.z- • 

The Green's function, G(r., z., f,z), must be computed for each grid 
point, for all r,z where a boundary condition is required. Because it is 
necessary Lo read G from a disk, the change of the z - I) boundary point is 
monitored during sc'.ution iteration, and all boundary values are recomputed 
only if there is a significant change at z = 0. Because of symmetry the actual 
Green's function used for computation is G(r', 2*, r,2) + C'r', - z', r,z). 

E. ulLL'S VORTEX FORMULAS 

The Hill's vortex model has been used to verify the ICCG solution of 
Eq. (1) and the computation of field-line averages. Relevant transport and 
equilibrium functions are given telow in terms of the Hill model to allow 
comparison with other equilibria or with a Hill's vortex after it has evolved by 
transport, 

The flux is expressed as a polynomial in r and z: 

- f IB v 2 6 2 (32) 

The vortex point radius r , flux at the vortex point i> , and total volume 
within the separatrix, v , may be calculated by using F.q. (32). 



n e > 1 / 2 

v^ 

• .•-M?r 
The volume as ;i function of flux V(!), the average quant i t ies , and their 

derivatives ar^ obtained as trigonometric integrals which arc evaluated 

numerically by using Simpson's rule . For the average functions the following 

relation is used: 

The analytic Hill formulas ^rt given beluu with situll h rxpansions *\ 
1/2 each formula) <-;here b = (1 - i,>/'!' ) . The separat r ix corresponds tt 

b = 1 and the vortex point corresponds to b = 0. 

3V b r1] 

V(,,) = i~ J ,](, C O s ,;. (i - b co-. • ) 1 / 2 ( i n 
in 0 

V(b* 0) * ~ Vs | b 2 + \ 2 b 4 ) (3H) 

dv _ 3 / | Vs r 1 7 

dV ~ ~ 16 * / , , 
v -f (1 b cos n) 1/2 

Qjl o -^ "̂  ' 1° ' 8/2 *v 

# 2 32,̂ 2 t;2 S • ( ( 1 - b c o s D ) ^ 2 

U>) 

(36) 

<!_V = _ _ $ _ ! /• d « * 9 _ (37) 



3V 

d. 2 

* 0) = 
32.2 

2 U" + 128 (38) 

"> 3 i 

C - /!• i d l ^ 
2 dV " 2 

.iV ' ' dV 

(39) 

' • l - ' f l ' S f (40) 

aV \ ' .1 / IdV dV 2 U l ) 

3.2 V s d. r 
;2 nv J 

ib. r * (1 - b cos " ) 
V V U 

3/2 (42) 

1 \ ,, . n . 1 /. 3 2 131 . 4 
l ) ( b ; 0 ) = ^ ( ' + 4 b + W ° (43) 

<>)•$* <$>'&W 
d . l e £ U : (44) 

(1 - b cos " ) 5 / 2 

v s v 

(45) 

r • = — / d" (1 + b cos ••) 
'' .'8 d V J 

0 

2 /u - n\ d - s 3" / , b 

r , ( b ~ 0 ) a _ ^ - _ 

(46) 

(47) 

cos 8 
2, 2 V 

d_ 2 dV d_v 2 ( d j ' i _s 3 1 
d V " ' " # d V 2 " l d V ' F % v b , ^ (l + b c c , 6 ) 1 / 2 

JL__ f dj 
b ^ J ( i + 

,- (48) 



- ! : « -

l , JV d ,- 2 
-.„ • r • (b - 0) = - - - r , 
dV i, d V 2 

- f V- - —'• I ' <• — b 2 I 
dV/ (' 4 - U * 128 | 

(49) 

Lei 

— j - — - - + ^ (I + b cas '•) 
3,11 ' b cos ••) 2 

f B 2 / M d V y

( ) ( 1 + b o o S ' . , l / 2 ( - 2 - 2 , , b 2 , . , 2 ) 
( )0) 

(b •= 0 ) = T IW" g i ( ^ » + 0.38*49 * 0.2 b 2 | (51) 
b 

d / \ \ dV d , / 1 "VV/ '-;v v / h 
1/2 , ,, 2 

•) (S ) 

• / -
J (1 + 

2 ~> 1 1 
(1 + b cos ' 0 (•• - 2y . b s i n ••) 

2(1 H b cos f i ) 1/2 

+ (1 + b cos i:) 1/2 

_JJlh: 2 b,. 
1 + b cos 0 i 

- Zi 'i b s i n 

i lL

:±ij_. 
2 ( 1 + b cos ' • ) ' 

4b Y 'I' s i n v 
(52) 

,2, 
A + H (Ll" I / 2 ii! I'l'JJ^l t sv6> < b - 0 , -S;7<^) ' f Iwj 37(^r"»M ™ 

<•'> - ( * ) ' • 
(54) 
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1 B

2 , = f # f d K + 2 K ^ ' • 
l d V | dV dV 2 

dv 
dV 

( 55 ) 

The magnitude of llie magnetic f i e ld |uj around a flux sur face i s computed by 

o b t a i n i n g the d i s t a n c e along a flux sur face t , and us ing the d e f i n i t i o n of 

B' below. 

2. ; r 
1 + T 

2>2 
• -. .2- t : r 2 4 r * 

1/2 
( 56 ) 

The trigonometric integral [or .'df has an integrable singularity at '• = " 
whi-.'h causes numerical difficulty. To resolve this problem /d( is computed in 
two parts. The first part of the integral is in z, 

1/2 

/ ' , . / 1 + 
m •• 2 \ 2 

( 5 7 ) 

G • 4f 3 * 

•iSi'd in Hqs. (56) and ( 5 7 ) . The second par t of /dp is an angular i n t e g r a l , 

/ ""Tzi'M ii: 
dO 

b cos f) 1/2 
2v,j. b si 1 v 

2 u 
n h\ , (58) 

with 

2 36 r T (b cos " + 1) 
used in Eq. (56). 

Functions given by Eqs, (33) to (58) a*-e plotted in Figs. 1 to 10 for 
three aspect ratios with ty - -1 and r = 1//2. The flux ranges from 
-1 to 0 from the vortex point to the separatrix, and :] is zero at r = 1 and 
z = 0. For all cases B = 8, and 6 = 48 in Eq. (32), Plots with three curves 
labelled A, B, C rafer to Y = 4, 8, and 16, respectively. These values of Y 
correspond to a ratio of radial to axial separatrix distance squared, E, equal 
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of 0.5, 1 and 2. To avoid singularities the range of '.- is restricted to -0.95 
to -0.05. 

Figures la, b, and c are contour plots showing the different geometries 
for thi three E values. Case A, Fig, la, is prolate; case B, Fig. lb, is 
spherical; and case C, Fig. lc, is oblate. 

The volume, V(I|I), is plotted in Fig, 2a. The prolate geometry, case A, 
lias the greitest volume at any value of flux. The oblate case, V, has the 
least volun.e and the spherical case, b, is intermediate between these two 
extremes. The volume derivative of '!', d'|//dV is plotted in Fig, 2b. The 
greatest to least d'l.'/dV occur for the oblate, spherical and proiafe cases, 
respectively. Each curve would plunge to zero at C = 0, tho separatrix, >f 
the plotting range were extended. This sudden change in value is a 
consequence of the logarithmic singularity of K mentioned earlie' and the fact 
K d'I'/dV is proportional to the total enclosed current. Because the total 
current is finite and K is singular, d'i'/dV must go to zero. Figure 2c, 
d jVdV , dramatically illustrates the sudden rate ot change of the slope 
of d'./JV near <,'• = 0, The relative magnitude of <l W d V for the three 
cases is prolate, spherical an;1 oblatt. This is the opposite of the ordering 
for d'/'/df. 

Figure 3a is a plot of (lit ) ('I'). This function goes to infinity at 
2 2 

•:' = (J; and consequently d/dV (1/r ) in Fig. 3b and d'di' '1/r ; in Fig. 3: 
2 2 

rise sharply near | = 0. Figures 3a and 3c show<U/r / and did/ • 1/r • 

are both independent ol E for Hill's vortex. 

Figures 4a, b, and c are plots of K{i;'), dK/dV. and dK/d,'•, respectively. 

The greatest to least value at a given flux occurs for prolate, spherical and 

oblate geometry for each plot. The weak singularity at I'J = 0 is illustrated 

by the rapid increase of dK/dV or dK/diji near i< = 0. Because the poloidal 

field is zero at the vortex point, K = 0 at ,J.> = -1, as shown in Fig, 4a. 

Figures 5a, b, and c are plots of {r ) , d/dV (r ) and d/d'J1 (r ). 
2 2 

Figures 5a and 5c show that (t ) and d/di|)<r ) do not depend on t. This 
is consistent with Eqs. (46) and (48). The greatest to least magnitude of 

2 
d/dV (r ) at fixed :|i occurs for prelate, spherical and oblate geometry, 
respectively. 

Figure 6a is a plot of ' 1/B > as a Eunctior, of flux. Because :B! is 
2 zero at the vortex point ','1/B ) goes to infinity at '.!l = -1 as indicated. 
2 2 

As the proximity of d/dV <(l/B y to zero in Fig. 61 shows, (!/B > is 
relatively constant for -0,8 < ij. < 0. The greatest to least magnitude of 
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2 

• 1/B ,. at constant '.' occurs for prolatp, spherical and oblate geometry, 

respectively. Figure bb shows d/dV %, 1/8' > has a very weak dependency on E. 

Figure 6c shows a crossover point lor d/dij> < 1/B >. For ••': less than -0.2 the 
greatest to least value occurs for oblate, spherical and prolate geometry. 
For , greater than -0.2 the order becomes prolate, spherical and oblate. 

2 Figure 7a shows • B ^with the greatest to least value occurring for 

ohlate, spherical and prolate geometry, respectively. Because JBJ is zero at 
2 the vortex point ;8 > is also zero at (. = -1 as indicated by Fig. 7a. The 

2 existence of a maximum value of <̂ B ) for each E value leads to a crossover 
2 2 

point for J/dV • B , and d/d: . B .as shown in Figs. 7b and 7c. For ''. < -0.11 

the greatest to least value of the derivative occurs for oblate, spherical, 

.'irid prolate geometry, respectively. For :,'•• - -0.11 the order becomes prolate, 

spherical, and oblate-

Figures 8, 9, and 10 are plots of |BJ as a function of distance around a 

flux surface beginning at z - 0 below the vortex point. The main features of 

! B' for Hill's vortex are the positions where |fi! = 0 it the vortex point and 

separatrix, and the |B[ maximums above &nd below the vortex point. On a 

particular flux surface |B( has the same value at the two radial positions at 

z - 0 T'.ie basic feature of |B| shown in Figs. 8, 9, and 10 is the existence 

of tw-j minimums and two maximums around a flux surface. For the prolate 

geometry Fig, S, the spherical geometry Fig. 9, and the oblate geometry Fig. 

10, |B| is plotted for '(.' = -0.8, -0.6, -0.4, and - 1 0 " \ The important 

difference between these plots is the ratio of maximum to minimum |B|, R, 

summarised for various ratios of radial tn axial sepnralrix distance squared, 
E, and flux below. 

E 

0.5 1.0 2.0 

2.84 2.06 1.48 

2.97 2.29 1.58 

3.26 2.31! 1.74 

30.7 20.0 19.8 

-.8 

-.6 

-.4 

-.0001 
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At constant K, K increases as , increases, moving from [he vortex point 
toward the separnlrix. The minimum 'B' exacly on the separatrix is zero, so R 
goes to infinity al ',' = 0. This accounts for the large H values lor . = -(J,0001 
for a fixed value of (lux, R decreases as K increases. The oblate geometry 
lias the smallest values of R. 

11. COMPUTATIONAL IMPLEMENTATION 

A. K1KLD-L1NR AVERAGE 

The I/] operation discussed in Sec. IA is performed by subroutine 
PLINAV. The calling sequence is given below: 

CALL FLINAV (SI, f, IK, 12, 1RI), IRZ, K, Z, UTS, N. X1NT). 

The subroutine computes N averages ol function ¥ and returns value-, in 
array, XINT. runction F is considered to be the entire integrand, i.e., 
//B foe the average of Sec. 1A. Computation proceeds on a rectangular grid 
hounded by Z(i), to Z(IZ) and R(l) to R(iR). Averaging is assumed to he done 
on flux heights symmetric about '• " 0. An explanation of the tailing 
arguments follows: 

1. ST(lRD, IZD) Array of flux values. Averages are performed 
along constant SI heights. (INPUT) 

2 . F(iRD, IZD) Array of function values to be averaged. 
(INPUT) 

5. IR The maximum radial index over which averaging 
occurs. This must be less than or equal to 
IRB. (INPUT) 

4. 1Z The maximum axial index over which averaging 
occurs. This must be less than or equal to 
IZD. (INPUT} 

5. IRD First dimension of arrays F and SI. (INPUT) 

6. IZD Second dimension of arrays F and SI. (INPUT) 
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7. R(IR) Array of radial grid positions. (INPUT) 

S. 1(17.) Array of axial grid positions. (INPUT) 

1. HTS(N) The heights along which averages are computed. 
(INPUT) 

10. N The number of averages to be computed, (INPUT) 

11. XINT(N) Array of average values. (OUTPUT) 

P.. FIVE RANI) ICCG 

Thp solution of Eq. (12) is obtained by using six subroutines SH'MCC, 
CDRia, IJAUa, BACKU, D1NV, and MATMUI.. The user need only call subroutines 
SETICC and COIUCC. Subroutine SETICC is called once to compute band 3 given 
in Eq. (2U) and to compute the initial vectors S and P given by Eqs. (74) and 
(25). Subroutine CORICC performs one loop through the ICCG algorithm given by 
Eqs. (26) to (30). Assume the equation to be solved is 

A x = i , (V)) 

where the five bands of matrix A are as shown in Fig. 11. The z,r grid is 
dimensioned IZDIM by IRDIM as shown in Fig. 12. The main diagonal of matrix A 
has a length equal to the number of grid points, IZDIM times IRDIM. 

Vector x elements then refer to grid points [z(l), R( 1) , . . . z(l), 
K(1RI)IM)|, . . . Iz(2), R(l)i, . . . |z(2), R(IRDIM)]. In other words, x 
consists of consecutive columns of the grid. Before discussing the calling 
arguments of SETICC and CORICC it is necessary to describe the construction of 
Che five bands, and the ^ vector of Eq. (59). The description is given in 
terms of (. ., I''. ., i. ., '.. . and •' . . jf Eq. (12) and grid boundary ij' ij' ij' ij' ij M 6 

values denoted •',- Assume arrays Al, A2, A3, A4, A5, X, and Y are 
dimensioned IRDIM by IZDIM. 
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Band 1 

I n t e r i o r grid p o i n t s , 

Al ( i , j ) = ) . . . 

Band 2 

I n t e r i o r gr id p o i n t s , 

A 2 ( i , j ) = f i + l i j 

i = 2, rRDIM-I 

j s I , IZIHM-1 

AXLS gr id p o i n t s , 

Al ( 1 , j ) = 0 j = 1, UDtM 

Boundary at maximum radia' position, 
Al (1RD1M, j) = 0 j = 1, IZUIM 

lloundary fit maximum a;;ial p o s i t i o n , 

Al ( i , [ZUlM-l) ' 0 i = 2, IRDtM-l 

i = I, IRDtM-I 

i = I, IZIHM-i 

Axis gr id p o i n t s , 

A2 (IRD1M, j ) = 0 j = I , 1ZDIM-L 

Boundary at maximum radial position, 
A2 (IRDIM-1, j) = 0 j = 1, ll'.DIM 

Boundary at maximum axial position, 
A2 (i - 1, IZDIM) = 0 i = 2 , IRUtM-1 

Preroultiply band times axis boundary condition, where 
','b (1, j) = 0, 
A2 (1, j) = 0 j = 1, IZDIK-L 
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Band 3 

A3 ( i , j ) = 1 i = 1, [ROW 

j ! l, izain 

Band 4 

I n t e r i o r gr id p o i n t s , 

A4 ( i , j ) - '• . i = 2, IKDIM 
i j 

j - " [ , IZIJIH 

Axis gr id points , 

A4 ( 1 , j) = 0 j = 1, IZDIM 

Boundary .iL maximum radial position, 
A4 ( IRDIM, j) = 0 j = i, UDfM 

Boundary al maximum axial position, 
A4 li, IZDIM) = 0 i = 2, IRDIM - 1 

The band times the boundary condition is premultiplicd and put on the 
right hand side so, 

A4 (IKUlM-I, j) = 0. j - 1, IZDIM - 1 

Band 5 

Interior grid points, 
A5 (i, j) = "v- i = 2, IKDIM 

j » I, IZDIri 

Axis grid points, 
A5 (1, j) = 0 j = 1, IZDIM 

Boundary at maximum radial position, 
A5 (IRDIM, j) = 0 j * 1, tZDIM 
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The band times the boundary condition is premultip'ied and puL on the 

right hand side so 

A5 (i + 1, LZDM-1) = 0 . i = 1, IRUlM - 2 

Right hand s i d e , 

Y ( i , j ) = ; . . r . J . . i = 2 , IKIJIM - I 
l j l Lj 

j M , IZDIM 

Axis g r i d p o i n t s , 

Y ( 1 , j ) = i f c ( 1 , j , j = 1, I/-DIM 

Boundary at maximum radial position, 
Y (IRDIH, j) = ','b (1II01M, j) j - 1, l/.IHM 

Boundary .U maximum axial position, 
Y (i, IYMIH) = r (i, IZDIM) i - 2, I/DIM - I 

Note the following step of putting band times boundary condition on the riphc 
hand side must he performed |rior to zeroing bands 2, 4. and r>, 

z (IRDfM-l, j) = Y (IRUlM - 1, j) 

Y (IRDIM-1, j) = - A4 (IRDIM-L, j) 
+ Z(TRDIM-1, j) 1 = 1 , IZIHH - 1 

z (i + 1, IZDIM-I) = Y (i + I, IZDIM-1) 
1 = 1 , [RDIM - 1 

Y (i + 1, IZDIM-U = z (i + I, IZDIM-1) 
- A5 (i + 1, IZDIM-1) Y (i + 1 + IRDIH, 
IZDIM-1) i = l , IRDIM-2 
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Tlie calling sequence and arguments for subroutines SETIl'C and CORICC are now 

given: 

CALL SET1CU (Al, A2, A3, A4, A5, B, P, R / T 1 , Tl, UJ, X, Y, MN, H ) . 

Subroutine arguments Al, A2. A3, A 4 , A3, P, R, Tl, T 2 , UJ, X, and V are 

one-dimensional arrays of length MN, where MN is the total number of grid 

points, U D I M times 1RDIM. The band 3 to hand 5 offset is M which would be 

IRD'M for Kig. 12. 

I, - '.. The first five arguments are arrays conta'ii'ng 
bands 1 to 5 having dimension equal to the 
number of grid points of the computational area. 
(INPUT) 

•i. b The numerator of the right side of Eq, (2(J), 

(OUTPUT) 

7. P The vector given by Eq. (25). (OUTPUT) 

K. K The vector given by Eq. 124). (OlVITU!') 

'i. Tl Temporary storage. 

10. T2 Temporary storage. 

II. 1)3 Band 3 given by Eq. (21). (OUTPUT) 

12. X Init:- 1 solution gues-. ..INPUT) 

Li. Y The righ. hand side Eq. (3<J). (INPUT) 

14. MN The number of grid points. (INPUT) 

15. M The number of radial grid points. (INPUT) 

CALL CORICC (Al, A 2 , A3, A4, A3, B, P, R, Tl, T 2 , U3, X, Y, MN, M, E P S ) . 

The arguments for CORI^C are the same as for SET ICC with the following 

exceptions: 

12. X The current solution. 

16. EPS The sum of the squares of residuals. 



-25-

The solution vector X typically is obtained by calling SETICC once and 
then repeatedly calling CORICC until EPS is sufficiently small. 

The five band 1CCG algorithm consumes a large fraction of the 
computational expense of solving the equilibrium problem. To implement ICCG 
efficiently on the Cray 1 computer, we have written subroutines SETICC, 
CORICC, BACla, BACKU, DINV, and MATMUL in assembly language. The FORTRAN 
versions of these subroutines accept any values for MN and M, provided M 
enactly divides MN, mod (MN, M) = 0. The assembly language version has the 
ŝ rne arguments for the user-called subroutines SETICC and CORICC, but it has 
two additional restrictions. The band-offset M must be gr. ier than or equal 
to S and less than or equal to 64, 8 must exactly divide M, mod (M, 8) = 0 and 
mod (MN, 64) = 0. Assembly language versions of these subroutines may be 
written without these restrictions; however, it is not then possible to derive 
the maximum performance from the Cray 1 hardware. The restrictions arise from 
the optimization of two types of do loops. The method chosen to optimize 
these do loops depends on the presence of 64 words in each Cray 1 vector 
register. 

The first type of do loop to be optimized is recursive and tl:v.s prevents 
complete vector'.-.ation by the CFT compiler. 

DO 20 I = MN - M, 1, - 1 
20 X(l) = [Y(I) - A4(I) * X(I + 1) - A5([) * X(I + H)I/AKl) 

Because array A3 is fixed the first optimization is achieved by 
replacing the divide by a multiply with T4(I) = 1.0/A3(I). To allow further 
partial vectorization two temporary arrays are introduced with two inner do 
loops. The innermost loop is vectorizable and the do loop overhead is further 
reduced by introducii.g eight statements for X(J). 

DIMENSION T5(M), T6(M) 
DO 20 I = MN - M, 1, - M 
DO 15 J = I, I - M + 1, - 1 
T5(I + 1 - J) = T4(J) * (Y<J) - A5(J) * X U + M)] 
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15 T6(I + 1 - J) = T4(J) * A4(J) 

DO 20 J = I, I - M + 1 , - 8 
X(J) = T5(l + 1 - J) - T6 (1 + 1 - J) * X(J + 1) 
X(J - 1) = T5 (I + 1 - J - 1) - T6 (I + 1 - J - 11 * X(J) 
X(J - 2) * TS (I + 1 - J - 2) - T6 (I + 1 - J - 2) * X(J - 1) 
X(J - 3) = T5 ([ + 1 - J - 3) - T6 (I + 1 - J - 3) * X(J - 2) 
X(J - 4) = T5 (I + 1 - J - 4) - T6 'I + 1 - J - 4) * X(J - 3) 
X(J - 5) = T5 (I + 1 - J - 5) - T6 (I + 1 - J - 5) * X(J - 4} 
X(J - 6) = T5 (1 + 1 - J - 6) - T6 (I + 1 - J - 6) * X U - 5) 

20 X(J - 7) = T5 (I + 1 - J - 7) - T6 (I + I - J - 7) * X(J - 6) 

Machine language programming permits careful reordering of Che 
instruction sequence, optimal use of parallel processing, and the subsequent 
elimination of temporaries T5 and 16. An overall run time reduction from 4459 
to 997 microseconds is achieved with MN = 4096, M - 64. 

The second type of do loop to be optimized is not vectorizable by CFT as 
written below. 

S = 0 
DO 20 I = 1, N 

20 S = S + X(I) * X(l) 

To permit vectorization this do loop is split into three loops as 
follows. 

DIMENSION TEMP(64) 
S = 0 
DO 5 1 = 1, 64 

5 TEM?(I) = X U ) * X(I) 
DO 15 I = 65, N, 64 
DO 15 J = 1, 64 

15 TEMP(J) = TEMP(J) + X(I + J - 1) * X(I + J - 1) 
DO 30 J = 1, 64 

30 S = S + TEMP(J) 
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Only the last do loop does not vectorize. When the above FORTRAN is 

coded in assembly language, TKHP(I) is eliminated and an overall run time 

reduction from 18S9 to yO microseconds is achieved with N - * 0 % . 

C. BOUNDARY VALUE GREEN'S FUNCTION 

The Green's function is computed hy subroutine GKEhNF. 'he Green's 
function ever the entire grid for a given point is evaluated hy a single call 
to GKEKNF. Symmetry across •/. - 0 is assumed and t lit- Green's function is used 
witli the right hand side ol Eq. (1) so the output ol t.KEr.NF is lG(r', ?.\ i,/.> 

* G(r', - K', r,z)]/r' with G(r', ?.', r,z) given hy Eq. (jl). ;),,. IMSL 
library or an equivalent must bo invoked since this routine requires funrt ions 
MMDKLK and MMDELK In compute elliptic integrals of the first and second kind. 
The calling sequence and explanation of arguments follows. 

CALL GREENF (KK.G, ZFAC, R, 1KD1M, 2, IZDIM, GREENS) 

1. RFAG Radial position r of Eq. (il). (INCUT) 

2. ZFAG Axial position 7. of Eq. (31). ( INPUT J 

"J. R(IRUIM) Radial grid array. (INI'im 

4. tRDIM Number of radial grid points. (INPUT) 

5. 2(IZDIM) Axial grid array. (INPUT) 

6. U D L M Number of axial grid points. (INPUT) 

7. GREENS (IRI)IN, Array of Green's function values divided 
IZDIM) by R for (RFAG, ZFAC) at grid positions 

given by arrays R and Z. Due rn symmetry 
the Green's function at ' I are combined. 

Values of flux are computed by using trapezoidal integration by 

subroutine GREENG. The. current is assumed to be symmetric about Z * 0, so 

the Green's function combined by GREENF is appropriate. The calling 

sequence and arguments foll.iw. 
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CAU, GREENG (HI, GREENS, RUB, XJTHKT, IRD1M, IZMM) 

1. SI Value of flux ar r,z position used to compute 
Croon's function array. (OUTPUT) 

2. GREENS (IRDIM, Array of Green's function values combined for 
IZIlIM) ' z and divided by r as computed by GREENF. 

(INPUT) 

Array of /.rid ce l l areas in square c e n t i m e t e r s . 
HUH(i, j) = [R(i * l) - R ( i ) | 
. |z( i + l ) - z ( j ) | . (INPUT) 

Array of 4" r / c times the c u r r e n t in s t a t a m p s . 
(INPUT) 

RUB ( I K U I M , 
i Z D I M ! 

f, ITIIET 
I I K i l l M , I / . l i M) 

IKUIM 

I''.DIM 

Number of r a d i a l g r id p o i n t s . (INPUT) 

Number of ax ia l gr id p o i n t s . (INPUT) 

riie Green ' s function at z divided by r at a s i n g l e poin t is computed by 

subrou t ine GREENH. For a fixed point KFAC, 'ifAC t h i s is the r o u t i n e 

repi-r i t i v e l v ca l l ed by GREENF to get the Green ' s funct ion over the e n t i r e 

rfriJ. The i . a i l ing sequence and arguments a re below. 

CAM. GREENH (G, RFAG, ZFAC, R, Z), 

1. G l/R |G(R,Z, KFAG, ZFAC) r G(R, - Z, RFAC, 

ZFAC) ] . (OUTPUT) 

2. RFAG Radial position r of Eq. (31). (INPUT) 

3. ZFAC Axial position z of Eq. (31), (INPUT) 

4. R Radial current position. (INPUT) 

i. Z Axial current position. (INPUT) 

A boundary point value is computed by first calling GREENF and then 
calling GREENG with 4" r/c times the current. For a typical 64 * 64 grid 
there are 520,000 Green's function values. 
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D. li ILL'S VORTEX 

The H i l l ' s vor tex formulas a re computed by c a l l i n g s u b r o u t i n e HILLS I . 

Values are communicated through common block HILLV. The c a l l i n g sequence and 

d e f i n i t i o n s of common block elements a re given below, 

COMMON/HILLV/A(45) 

CALL HILLS I 

A(i) Flux value a t which funct ions are d e s i r e d . 
(INPUT) 

A(2> Volume Eq. ( 3 3 ) . (OUTPUT) 

A( i ) diVdV the inve r se of Eq. ( 3 5 ) . (OuTPUT) 

A(4) d z v/( lV 2 Eq. ( 3 9 ) . (OUTPUT) 

A(5) < l / r 2 > Eq. ( 4 2 ) . (OUTPUT). 

A(6) d/dV < l / r 2 > Eq. ( 4 4 ) . (OUTPUT) 

A(7) K Eq. ( 4 0 ) . (OUTPUT) 

A(8) dK/dV Eq. ( 4 1 ) . (OUTPUT) 

A(9) < r 2 > E q . ( 4 6 ) . (OUTPUT) 

A(10) d/dV < r 2 . Eq. ( 4 8 ) . (OUTPUT) 

A ( l l ) <1/B 2 > Eq. ( 5 0 ) . (OUTPUT) 

A(12) d/dV <1/B 2 > Eq. ( 5 2 ) . (OUTPUT) 

A(13) • B 2 > Eq. ( 5 4 ) . (OUTPUT) 

A(14) d/dV <fB2> Eq. ( 5 5 ) . (OUTPUT) 

A(15) 2/3 S Eq. ( 3 2 ) , This is the value of the 
d i s t a n t uniform vacuum f i e l d . (INPUT) 

A(16) C6B/6) 1/2 E ( ] . ( 3 2 ) . Radial p o s i t i o n at which 
i|; = 0 a t z = 0 . (INPUT) 

A(17) 6Y/* Eq. ( 3 2 ) , the r a t i o of r a d i a l to a x i a l 
s e p a r a t r i x d i s t a n c e squared , E. (INPUT). 
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A(18) The number of angular grid points used with 

Simpson's rule to compute functions. (INPUT) 

A( 19) to A(45) Working space. 

111. AVAILABILITY 

A LIB library containing FORTRAN subroutines FLINAV, SET ICC, CORICC, 
DINV, BACKL, BACKU, MATHUL, GREENF, GREENG, GREENH, and HILLS! is obtained 
with the following execute line on tV MFE 7600: FILEM READ .3040 
.PHYSICS EQTRAN. A LIB library containing a binary assembly language 
replacement for SETICC, CORICC, DINV, BACKL, BACKU, and MATMUL is obtained 
with the following execute line on the MFE Cray 1: RFILEM READ .3040 
.PHYSICS BICCC. Library BICCG contains the binary file BICCG2 and the 
assembly language listing \M'.Wi. 
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Fig. 1. Flux as a function of r and 
z with distance scaled to the plasma 
radius: geometry is (a) prolate, 
(b) spherical, and (c) oblate 
corresponding to E values 0.5, 1 and 
2, respectively. 

Fig, 2, Hill's vortex volume-related 
functions versus flux: (a) volume, 
(b) volume derivative of flux, and 
(c) second volume derivative of flux. 
Curves A, B, and C correspond to 
prolate, spherical and oblate geonetry, 
respectively. 



-33-

HT. 

-It 

-0.8 -0.6 -0.4 -0.2 

100 

80 

6 0 -

40 [--

2 0 -

I I 
( b ) _ 

i-
0 

350 
I 

300 f-

CfT- 250 h 
200 I— 
150 j— 
100 
50 
o*-

j I I • - 1 - - f. 
-0.8 -0.6 -0.4 -0.2 

I r - T " • i" r 
(cl 

•0.8 -0.6 -0.4 -0.2 

: 1 
1400-

i ; 

1200 
1000 
800 -
600 
400- . 
200- -

u..l. 
-0.8 

. i i 
-0.6 -0.4 

(a) 

-0.2 

800 ; 

600-
> 

* 4 0 0 u 

_i 
(b) 

200 r I . " I 1 
-0.8 -0.6 -0.4 

6000-

5 0 0 0 ^ 

•9.4000-

^ 3 0 0 0 -

2000-

1000 

-0.2 

I ' 
(c) 

-0.8 -0.6 -0.4 
.-1-
-0.2 

Fig. 3. Hill's vortex surface 
average of (a) 1/r 2, <l/r 2X 0 0 the 
volume derivative of (l/r'X and (c) 
the flux derivative of (l/r ) as a 
function of normalized flux. Curves 
A, B, and C correspond to prolate, 
spherical and oblate geometry, 
respectively. 

Fig. 4. Hill's vortex inductance: 
(a) K, (b) volume derivative of K, 
and (c) flux derivative of K. Curves 
A, B, and C correspond to prolate, 
spherical, and oblate geometry, 
respectively. 
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Fig. 11. Five band matrix structure. 
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Fig. 12. The 2-D grid is dimensioned 
IZDIM in the z direction and IRDIM in the 
r direction. Matrix bands Al to A5 are 
indicated on the finite difference star. 


