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ABSTRACT 

Thermal conductivity measur'ements on ethanol vapor are reported 
. . 

as a function of temperature (329-419K) and pressure (100-1800 torr). 
. . 

The thermal conductivity versus pressure plots at constet temperature 

exhibit strong upward curvature at the lower temperatures and nearly 

linear increases at the higher temperatures. This enhancement in the 

thermal conductivity is, indicative of the presence of a .dimeric species 

and one or more larger clusters in the vapor. ,*: . , Analysis .:--+ ..3a... L of the ..- data gave 

best fits for monomer-dimer-tetramer and monomer-dimer-hexamer models. 

The resulting thermodynamic parameters for the association reactions in 

-1 
the monomer-dimer-tetramer model are: -AH2 = 3.70 kcal mol , -ASZ = 16.36 

-1 fl: -AH4 = 22.15 kcal mol , -AS4 = 74.65 cal rnol 
-1 ,-I cal mol 

Quantum mechanical evidence indicates that the tetramer is the most 

-1 probable associated species larger than the dimer. 
. i 



I.' INTRODUCTION 

There have been a l a r g e  number of experimental s t u d i e s  of  

alcohol  vapors which i n d i c a t e  t h a t  associated hydrogen bonded s p e c i e s  

e x i s t  i n  ' the vapor. l  ' I n .  a  study of methanol vapor from t h i s  labora tory2,  . 
. 

' 

t h e  thermal conduct iv i ty  isotherms exhibi ted a s t rong  upward curva tu re  a s  

; a funct ion  of pressure.  It was found t h a t  t h e  methanol therinal .conduc- 

t i v i t y  d a t a  could be f i t  very well  assuming the  presence of a  t e t r amer ic  

associa ted  spec ies  i n  add i t ion  t o  the  monomer. . . 

I n  t h i s  paper we repor t  thermal conduct iv i ty  measurements on . ' 

. . 

ethanol  vapor i n  t h e  temperature range 329-419 K and at pressures  ranging 

from 100-1800 t o r r .  A t  t h e  lower temperatures (up t o  -360 K) t h e  i so-  

therms exh ib i t  upward curvature  with increas ing p ressure  s i m i l a r  t o  t h a t  

of methanol. However, a t  h igher  temperatures t h e  e thano l  isotherms 
..*. r a .  LT?. c :,. .... .> . 

showed e s s e n t i a l l y  l i n e a r  . increases  with pressure.  A l l  of  t h e  e thanol  . ' ' 

thermal conduct iv i ty  isotherms were f i t  q u i t e  well  us ing  t h e  B u t l e r -  

Brok,aw theory394 assuming the  presence of a  dime,r and one h i g h e r  assoc- 

i a t e d  spec ies  i n  add i t ion  t o  the  monomer. I n  s e c t i o n  11; d e t a i l s  of  t h e  
. . 

thermal conduct iv i ty  measurements on ethanol  a r e  given,  In '  s e c t i o n  I11 

t h e  d a t a  i s  f i t .  t o  t h e  Butler-Brokaw theory assuming v a r i o u s  p o s s i b l e  . . 

associa ted  species .  F i n a l l y ,  i n  sec t ion  I V  the..the*odynamic q u a n t i t i e s  

of the  associa ted  species  a r e  discussed.  

. . I1 . EXPERIMENTAL METHOD 
. . 

The thermal conduct iv i ty ,  A ,  'of e thano l ' vapor  was measured as  a  

funct ion  of pressure  a t  e igh t  temperatures (329, 337, 347, 357, 367, 377, 405 

and 419 K). A l l  t he  measurements were made with a t h i c k  h o t  wi re  c e l l  



usinn a r e l a t i v e  technique i n  which the  c e l l  was c a l i b r a t e d  wi th  high 
- .  

p u r i t y  reference  gases ( e . g .  N2, A r ,  Kr). De ta i l s  of  t h e  appara tus , .  

experimental procedure, and reference  gas thermal c o n d u c t i v i t i e s  have been 

given i n  o the r  pub l i ca t ions .  5 3 6  The reagent grade e thanol  sample (ob- 

ta ined from U.S. I n d u s t r i a l  Chemicals Company) was d r i e d  and degassed 

i n  v a c a o ' p t i b r  t o  use. Due t o  t h e  so-called "temperature-jump" e f f e c t ,  
7 

no d a t a  w e r e  recorded a t  pressures  below 100 t o r r .  

For t h e  c e l l  used i n  t h i s  s tudy,  t h e  measured c e l l  v o l t a g e s ,  V ,  

a t  cons tant  input  c u r r e n t ,  were empir ica l ly  found t o  be r e l a t e d  t o  t h e  

r e fe rence  'gas ehemal conductivi~ies by the r e l a t i o n  . . 

V= A + B / X  ; (1)  

where A and, B a r e  cons tants  dependent only on the  temperature.. . ~ k c a u s e  

of  t h i s  l i n e a r  r e l a t i o n s h i p ,  i t  was s u f f i c i e n t  t o  c a l i b r a t e  t h e  c e l l  w i th  ~*,:. ..L*=" .. >_.. . .  ,<*: i .- ~ 

only two gases (N2 and Ar) i n  order  t o  determine A and B: W e  e s t i m a t e  . ,, 

t h a t  t h e  absolute  e r r o r  i n  t h e ' c a l c u l a t e d  conduct iv i t ies .  is less t h a n  1% 

and the  r e l a t i v e  e r r o r  l e s s  than 0.5%. The experimental thermal conduc- 

t i v i t y  d a t a  f o r  ethanol  a r e  l i s t e d  i n  Table I and p l o t t e d  i n  Fig ,  1. 
. . 

There have been r e l a t i v e l y  few experimental s t u d i e s  o f  t h e  
. . .  

thermal conduct iv i ty  of ethanol  vapor,. ,  The compilation of Touloulci.an, 

L i l ey  , and ~ a x e n a ,  g ives  recommended values of the  thermal conduc.tivi t g  

a t  p = 1 atm. based on the  experiments of shushpanov9., Thes.e v a l u e s  a r e  
. . 

c o n s i s t e n t l y  4% lower than our r e su l t s . ,  A more recent' experimental  s tudy 

by Foz , Banda, and ~ a s i a l O  repor t  values fo r  ethanol  vapor a t  384 K which 

a r e  only c a .  1% lower than values ext rapola ted  from our da ta .  



111. DATA AFALYSIS 

The thermal conduct iv i ty  of an assoc ia t ing  gas  can be expressed 

where Xf i s  the  thermal conductivi ty of a frozen (non-reacting) composi-.. 
. . 

t i o n . o f  a l l  the' vapor species ,  X c  i s ,  t he  enhancement o f  t h e  thermal 

conduct iv i ty '  due t o  " c o l l i s i o n a l  t rans ' fer  ," and XR i s  ' the  c o n t r i b u t i o n  t o  

t h e  thermal conduct iv i ty  from ' the  t r anspor t  of a s s o c i a t i o n  e n t h i l p y  i n  a  . ' . . 

thermal g rad ien t .  Generally, X f  and X c  a r e  very weakly dependent on 

pressure ,  whereas, X R  i s  s t rong ly  dependent on p ressure  i f  t h e r e  a r e  

associa~ed species the  vapur. 

A general  expression f o r  X R  when t h e r e  are assoc ia ted  s p e c i e s  

present  i n  t h e  vapor has  been given by But l e r  and ~ r o k a w 3  and is .  d i s -  

cussed i n  d e t a i l  elsewhere .4 An approximate equation f o r  XR when t h e r e  
. . ....u".. .. ... 

d'd,:. . :. .... 

a r e  only small amounts of associa ted  species  present  i s  g iven by 

where n  i s  the  c l u s t e r  s i z e ,  T i s  t h e  temperature i n  degrees Kelvin, pD1, 

i s  the  pres'sure-binary d i f f u s i o n  c o e f f i c i e n t  , R i s  t h e  gas  cons tan t ,  K, 
. . 

i s  the  equi l ibr ium c o n s t a n t  f o r  n~+&, AH,., i s  t h e  a s s o c i a t i o n  . 
, 

r e a c t i o n  enthalpy change,.and p l  i s  t h e  p a r t i a l  p ressu re  of t h e  monomer, 

Equation (3') i n d i c a t e s  t h a t  t h e  e f f e c t  on t h e  the rmal ' conduc t iv i ty  of  t h e ,  

presence of a  small amount of d imer . (n=2)  i n  t h e  vapor is  a  nea r ly  l i n e a r  

inc rease  i n  the  thermal conduc t iv i ty -wi th  pressure  a t  cons tan t  temper- 

a t u r e ' ( p ~ l n  i s  pressure  independent).  Equation ( 3 )  a l s o  i l l u s t r a t e s  t h e  

dependence of .XR which leads t o  the  upward curva tu re  of  conduc- 



t i v i t y  versus pressure  p l o t s  when the re  

. . 

i s  a  s u f f i c i e n t  concentra t ion  

of higher polymers (n>2) present .  

The experimental isotherms fo r  e thanol ,  shown i n  Fig.  1, change 
. . 

i n  o v e r a l l  shape with temperature i n  a  very in teres ' t ing  manner. The 
. . 

1ower.temperature isotherms show s t rong upward curva tu re  i n d i c a t i v e  of a 
. . 

polymeric species  l a r g e r  than the  dimer. ' A t  t h e  h igher  temperatures,  . 

however, t h e  isotherms inc rease  l i n e a r l y  with pressure  i n d i c a t i v e  of a 

dimeric con t r ibu t ion  t o  XR. Thus, i n  l i g h t  of t h e  above d i scuss ion ,  i t  

q u a l i t a t i v e l y  appears t h a t  the re  a r e  indeed a t  l e a s t  two a s s o c i a t i o n  . '  

r e a c t i o n s  occurring simultane'ously i n  ethanol  vapor. The temperature 

dependence of t h e  terms i n  Eq. (3 )  apparently cause t h e  d i n e r i c  r e a c t i o n  

t o  dominate the  thermal conduct iv i ty  enhancement a t  high temperatures and 

. .  t h e  h igher  polymer t o  dominate a t  low teinperatures:. I n  o r d e r  . t o  f i t  t h e  

. ... ..& . . '9'"' , . 
ethanol  vapor thermal conduct iv i ty  d a t a  t o  Eq. (-2.1, va lues  f o r  pDkIL, A,., . ' 

and A f  a r e  necessary.  We now proceed t o  expla in  how equat ions  f o r  t h e s e  
, . .  

q u a n i t i t i e s  were obtained.. 

The pressure binary d i f f u s i o n  c o e f f i c i e n t  product ,  pDkR, can be  

expressed i n  terms of the  monomer s e l f  d i f f u s i o n  c o e f f i c i e n t  by t h e  

semi-empirical r e l a t i o n 2  

pDhe = p o l l  [ ( k  + e)/2kIL] 1/2[2/(k113 + . . Q ~ / ' ) I ~ .  . . ( 4 )  

The term. ? D l 1  i s  .evaluated2 from t h e  experimental gas v i s c o s i t y  repor ted  

by Touloukian, Saxena, and ~ e s t e n n a n s l l  and the  Lennard-Jones p o t e n t i a l  

~ a r a m e t e r s l ~ ,  E/K = 391 K and o = 4.455;. The r e s u l t i n g e q u a t i o n  f o r  ., 

pDll i s  

5 2  -1 -1 
10  pDll = 0.001582ST + 0.039428T ( c a l  cn  s e e  ) ( 5 )  

The Af and X c  terms a re  somewhat pressure  dependent and must b e  



included i n  t h e  complete d a t a  analys is .  In  c a l c u l a t i n g  t h e s e  terms f o r  

ethanol  vapor the  assumption i s  made t h a t  the  equi l ibr ium composition can be  . 

represented i n  terms of a  monomer-dimer mixture only, i , e . ,  t h e  p a r t i a l  

. '  pressures  of the  h igher  polymers a r e  n e g l i g i b l e  compared t o  t h e  monomer o r  ' 

. 

. . 

dimer. This assumption w i l l  be seen t o  be j u s t i f i e d  by' t h e  f i n a l  r e s u l t s .  . 
. . 

Using the  scheme out l ined i n  Ref. 6 and t h e  experimental  hea t  . - 

capac i ty  repor ted  by Touloukian and ~ a k ;  ta13, t h e  r e s u l t i n g  equa t ion  . for. . ' ~ f .  

where X 1 i s  the  value  of t h e  thermal conduct iv i ty  a t  zero  p r e s s u r e  and .is 
. . 

taken t o  be a  f i t t . i n g  parameter f o r  each isotherm. A t  357 K t h e  Xf term . . 

c o n t r i b u t e s  a  1.1Z'decrease i n  t h e  t o t a l  thermal conduc t iv i ty  over  one 

atmosphere. This i s  small compared t o  the  ca. ,J8,%2i,ncrease observed. . . .-. . . . 
. . 

The A c  term, a l s o  obtained using t h e  scheme o u t l i n e d  i n  Ref. 6 

(using t h e   enn nard-  ones p o t e n t i a l  parameters 'given' p rev ious ly )  ,. is given 
- .  

with p  i n  atmosphere and T i n  Kelvin. The A t e e  c o n t r i b u t e s  an  i n c r e a s e  of  
C 

ca. 0.9% over a  pressure  range of one atmosphere. This is again  smal l  
. . 

compared t o  the  experimental ly observed inc rease  and a l s o  n e a r l y  cance l s  t h e  

e f f e c t .  

Using a  l e a s t  squares f i t t i n g  procedure descr ibed i n  d e t a i l  i n  Ref. 

5 the  measured thermal conduct iv i ty  d a t a  a t  - a l l  e i g h t  temperatures were 

f i t  simultaneously t o  Eq .  (2 )  with X R  given by the' complete Butler-Brokaw 

?,f defined by E q .  (61, and hc d e f i n e d b y  E q .  (7). I n  t h e  

equation f o r  AR t he  associa ted  spec ies  assumed present  were t h e  dimer an& 



.one - h i g h e r  polymer (35n58). The v a r i a b l e s  i n  t h e  f i t t i n g  procedure  were AH*'. 

K2, A H n y  Kn,  and t h e  e i g h t  \ va lues  (one f o r  each i so therm) .  

The r e s u l t s  f o r  t h e  monomer - dimer - n-mer f i t s  a r e  l i s t e d  i n  

Table 11. The s tandard  dev ia t ions  i n d i c a t e  t h a t  t h e  b e s t  f i t s  were ' ob ta ined  

by t h e  monomer-dimer-t e t ramer and t h e  monomer-dimer-hexamer models. . 30th of  

t h e s e  f i t s  a r e  e s s e n t i a l l y  i n d i s t i n g u i s h a b l e  and a r e  r ep re sen ted  by t h e  s o l i d  

l i n e s  i n  F ig .  1. These f i t s  do a good job  i n  r e p r o d u c i n g ' t h e  da t a .  a t  bo th  

h igh  and low temperatures .  The .l-2-5, 1-2-7, and 1-2-8 f i t s  a r e  v'ery s i m i l a r  

t o  t h e  1-2-4 and 1-2-6 f i t s ,  bu t  wi th  s l i g h t l y  l a r g e r  s t anda rd  d e v i a t i o n s .  

The 1-2-3 model g i v e s  t h e  poores t  f i t  with t o o  much c u r v a t u r e  a t  h i g h  temper- 

a t u r e s  and t o o  l i t t l e  cu rva tu re  a t  low temperatur.es. Addi t ion  df a second 

h i g h e r  polymer (n>2) t o  t h e  models d i d  n 6 t  produce a s i p n i f i c a n t l y  b e t t e r  f i t  
. . 

t han  t h a t  found from t h e  1-2-4 o r  1-2-6 models. 

IV. DISCUSSION 

The thermodynamic q u a n t i t i e s  ob ta ined  f o r  t h e  v a r i o u s  polymeriza- . ' 

t i o n  r e a c t i o n s  a r e  given i n  Table 11. Note t h e  r e l a t i v e  cons tancy  o f  t h e  

d i rner iza t ion  thermodynamic parameters AH2 and AS2 from t h e  1-2-n f i t s ,  

n > 3. The reason f o r  t h i s  is  t h a t  t h e  f i t t i n g  procedure e x t r a c t s  t h e  dimer- 

i z a t i o n  thermodynamic d a t a  mainly from t h e  h igh  temperature d a t a  where t h e r e  

i s  l i t t l e  c o n t r i b u t i o n  from t h e  h i g h e r  polymer a s s o c i a t i o n  r e a c t i o n s .  

Due t o  t h e  e s s e n t i a l  equiva lence  i n  q u a l i t y  o f  t h e  v a r i o u s  1-2-n 

f i t s  f o r  n>3,  we cannot d e f i n i t i v e l y  conclude t h a t  only one p a r t i c u l a r  n-mer 

i s  r e s p o n s i b l e  f o r  t h e  thermal conduc t iv i ty  enhancement. C e r t a i n l y  t h e  

a c t u a l  phys i ca l  p i c t u r e  i s  one i n  which many d i f f e r e n t  polymers e x i s t  i n  t h e  

vapor and one cannot s e p a r a t e  t h e i r  c o n t r i b u t i o n s  t o  t h e  thermal  c o n d u c t i v i t y  . . 

i n  t h e  d a t a  a n a l y s i s .  However, t h e  r e ' s u l t s  i n  Table 11 a l low us  t o  s e t  d e f i n -  



i t i v e  upper . l i m i t s  t o  t h e  concen t r a t ion  of t h e  a s s o c i a t e d  s p e c i e s ,  n  = 

3,4 ,5 ,6 ,7 ,8 .  In  o t h e r  words, t h e  b e s t  f i t  v a l u e s  o f '  Kn a t  any tempera ture .  i n  
. . 

. . 
t h e  experiment a1 range r ep re sen t  t h e  l a r g e s t  p o s s i b l e  v a l u e s  cons i ' s ten t  w i t h  

t h e  thermal c o n d u c t i ~ i t y  d a t a .  . 'Table I11 l i s t s .  t h e  maximum mole f r a c t i o n s  o f  

. . 
t h e s e  s p e c i e s  a t  100°C and 1 atm. pressure .  . . 

. . 

Our thermodynamic r e s u l t s  f o r  t h e  e thano l  t e t r a m e r  a r e  s i m i l a r . t o  . .  . 

those  obta ined  i n  t h e  s t u d y ' o f  t h e  thexkal  conduc t iv i ty  o f  methanol vapor2 

where t h e  b e s t  f i t  was obta ined  assuming t h e  presence of a  tetramer: The 

thermodynamic parameters  f o r  t h e  methanol and e thano l  te t ra rner  are s i m i l a r .  

S ince  no thermal conduc t iv i ty  d a t a  f o r  methanol were measured a t  h i g h  temper- 

a t u r e s  (where t h e  dimer dominates t h e  f e a t u r e s  of t h e  i so the rms) ,  no  thenno- 

dynamic v a l u e s  were obta ined  f o r  t h e  methanol. dimer. 

Our thermodynamic q u a n t i t i e s  f o r  t h e  s thano1 dimer and t e t r a m e r  are 

c l o s e  t o  t hose  obta ined  from analyses  of second v i r i a l  c o e f f i c i e n t  d a t a  o f  

e thano l  vapor.  Analysis  of t h e  h e a t  capac i ty  d a t a  of  e t h a n o l  by ~ a r r o w l ~ '  

gave -AH* = 3.40 k c a l  mol-1, -AS = 16.57 c a l  kol-1K-l, -p4 = 24.8 k c a l  
2 

mol-l, -AS4 = 81.45 c a l  t ~ o l - ~ K - l .  S imi l a r  r e s u l t s  were ob ta ined  i n  ~ P V T  ; 

s tudy  by Kretschmer and wiebe.15 

Theore t i ca l  ab i n i t i o  molecular  o r b i t a l  c a l c u l a t i o n s  by cu r t i s s ,16  

' i n d i c a t e  t h a t  f o r  a  s e r i e s  of methanol polymers, t h e  l a r g e s t  i n c r e a s e  i n  
. . 

binding  energy occurred i n  t h e , t e t r a m e r i c  spec i e s .  This  appa ren t ly  o c c u r s  

due t o  favorable  hydrogen bonding geometry i n  t h e  c y c l i c  t e t r a m e r i c  s t r u c t u r e .  

Since e thano l  i s  v e r y  s i m i l a r  t o  methanol ( t h e o r e t i c a l  c a l c u l a t i o n s  by ~ u r t i s s l 7  

on t h e  e thano l  dimer r e s u l t e d  i n  a b ind ing . ene rgy  . . e s s e n t i a l l y  e q u a l  t o  t h e  

methanol d imer) ,  one might expect a  s i m i l a r  t r end  i n  t h e  c a s e  o f  c l u s t e r s  o f  



ethanol molecules. These t heo re t i c a l  r e s u l t s  lend t o  support  t h e  presence . 

. . 

of a tetramer i n  ethanol vapor. 

V . CONCLUSIONS . . . . . . 

The following conclusions can be drawn from t h i s  s tudy of associa-  

t i o n  i n  ethanol vap0.r. . .  . 

(1) The ' enhancement of the' ethanol vapor thermal conduct ivi ty  due 

t o  vapor phase associa t ion i s  s imi la r  t o  metllano1 vapor. Both show s t eep  
. . 

. . 
upward curvature i n  the  lower temperature isotherms. 

(2) Because of the  l i n e a r i t y  of the  pressure  dependence a t  h igher  

temperatures, thermodynamic data  f o r  the  ethanol dimerization reac t ion  could 

-1 . . -1 -1 
be deduced. These a r e  -AH2 = 3.70 kcal mol , - A S  = 1 6 . 3 6  c a l m 0 1  K 

2 

(from the  1-2-4 f i t ) .  .W - zr -- 

(3)  Data analysis  ind ica tes  t h a t  one o r  more assoc ia ted  spec ies  

l a rge r  than t he  dimer e x i s t  i n  ethanol vapor. Although we a r e  n o t  ab l e  t o  

determine exact ly  which of these  spec ies  e x i s t ,  upper l i m i t s  t o  t h e  a c t u a l  

. amounts present a r e  reported.  Quantum mechanical c a l cu l a t i ons  on methanol 
' 

lead us t o  conclude t h a t  the  tetramer is the  most l i k e l y  species .  Our 

-1 
measurements lead t o  a value of -AH = 22.15 kca l  mol and -AS4 = 74.65 c a l  

4 
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, TABLE 11: Resu l t s  of ~ o n o m e r  - ~ i m e r  - 'n-mer F i t s  t o  the. Ethanol  

Thermal Conduct iv i ty  Data. 

a b a b 
St  and ard -AH2 -AS -AHn -AS, 

n  Devi a t  i o n  

a kcal  mol-I 

c a l  m o l - l ~ - l  

A v a l u e s  f o r  t h i s  f i t  a r e  4.11, 4.31, 4.54, 4.73, 5.00, 5.29, 
1 

5.'91, and 6.39 i n  o rde r  of i nc reas ing  temperature.  Uni t s  are 

10-5 c a l  cm- l sec - l~ - l .  



. . .  

TABLE 111. Maximum Concent ra t ions  of Ethanol  ~olymefs at  373 K 
, . 

and One Atmosphere P re s su re .  . 

Maximum ( C H ~ C H ~ O H ) ,  
. . 

n Mole F r a c t i o n  



Fig. 1: The thermal conductivity of ethanol vapor versus the total ' 

pressure at (a) the four lowest temperatures and (b) the 

four highest temperatures. The solid lines represent the 
. . . . . . 

results of a least squares fit to the data at all eight 

temperatures assuming either a monomer-dimer-tetrakr model 

, . 
or a monomer-dimer-hexamer model. . . 



PRESSURE IN TORR , . 

Fig. la 



PRESSURE IN TORR 

Fig.  lb 


