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Abstract

This work is concerned with theoretical and experimental aspects
of the generalized dynamics of nuclear spin and spatial coordinates
under magnetic-field pulses and mechanical motions. Specific goals
include: a description of the interaction of spins with a quantized
radiation field; the design of multiple-pulse sequences for the
averaging of all linear and bilinear spin operators; schemes for
heteronuclear decoupling of spins in multi-level systems; methods for
the removal of anisotropic spin interactions in orientationally
disordered solids.

The main text begins with an introduction to the concept of
"fictitious"” interactions. A systematic method for construction of the
fictitious spin-1/2 operators is given. The interaction of spins with a
quantized-field is described using this formalism.

The concept of the fictitious interactions under the irradiation
of multiple pulses is utilized to design sequences for selectively
averaging linear and bilinear operators. Relations between the low-
field sequences and high-field iterative schemes are clarified. These
relations and the transformation properties of the spin operators are

exploited to d~.2lop schemes for heteronuclear decoupling of multi-



level systems. The resulting schemes are evaluated for heteronuclear
decoupling of a dilute spin-1/2 from a spin-1 in liquid erystal samples
and from a homonuclear spin-1/2 pair in liquids.

A relation between.the spin and the spatial variables is
discussed. The transformation properties of the spin operators are
applied to spatial coordinates and utilized to develop methods for
removing the orientational dependence responsible for line broadening
in a powder sample. Elimination of the second order quadrupole effects,
as well as the first order anisotropies is discussed. It is shown that
various sources of line broadening can effectively be eliminated by
spinning and/or hopping the sample about judicicusly chosen axes along

with appropriate radio-frequency pulse sequences.
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CHAPTER iI. Fundamental Phenomena and Tools

I1.1. Introduction

What is remarkable about nuclear magnetism is that it continues
to be a fertile source of fundamental physical phenomena and at the
same time it has found an enormous number of applications in fields
such as physics, chemistry, biology, and medicine to name a few. A
reason for the versatility of NMR may be due to the fact that nuclear
spin dynamics can be described with relative ease, although accurately
with standard quantum mechanics: the difference between energy levels
is quite small even at high magnetic fields, so the high temperature
approximation is usually possible except for some extraordinary
circumstances; in addition, a semiclassical description for the spin-
radiation interaction .s adequate under most experimental conditions.
The simplicity along with accurate predictions has made a great variety
of sophisticated experiments possible. In short, NMR is a field which
enjoys a happy marriage betweeu the fundamentals and applicationms.

Accordingly, in this Dissertation an attempt has been made to
incorporate the duality: the fundamentals and applications. However,
because AE°At > # + 0, the focus will be paid only on 1limited aspects
of this vast field: in the following sections of this chapter some
basics on the nuclear spin itself and the spin Hamiltonian are
discussed. Then in Chapter II, a simple model for the interaction of a
spin with an electromagnetic field is described on a consistent full-

quantum mechanical footing. The rationale behind the inclusion of the



chapter is not merely to provide a balanced exposition on the spin
dynamics with the fundamentals and applications to abide by the
principle of duality mentioned above, but also to be pragmatic:
Although the basic nature of this chapter may be considered to be on
the fundamental side, it is hoped that it will find some applications
in cases which require microscopic treatment. NMR, being a branch of
general spectroscopy, can ke described on a universal dynamical footing
applicable to all branches of spectroscopy. Thus the full quantum
mechanical analys: : of nuclear spin-electromagnetic radiation
interaction may find applications in, for example, optical
spectroscopy, or vice versa. Also it is hoped that some benefits will
result as by-products from the treatment itself.

Later chapters deal with more complicated systems: there are many
spins in the system, interacting with each other and sujeect to much
more complicated external perturbations. Most relevant to this
Dissertation is the removal of unwanted term(s) from the Hamiitonian
while keeping the desired term(s) as intact as possible, by modulating
the spatial and/or the spin parts of the Hamiltonian with mechanical
motions, or radiofrequency pulses or with a combination of the two.

Chapter 111 deals with the design of multiple pulse sequences for
solids under general interactions: the sequences developed for high
field Hamiltonians have to deal with only the truncated part of the
Hamiltonian. Hence, it is necessary to devise a generalized scheme for
sequences to be used for averaging the Hamiltonian at low static
magnetic fields, because the Hamiltonian contains full untruncated

interactions. The sequences for these low (and zero) fields may also



have important applications for high field experiments, where pulse
imperfections produce terms that appear in the low field Hamiltonian
which were absent in the original high field Hamiltonian. Also the
transformation properties of these various terms may be useful for
designing some experiments, and this will be discussed in a later
chapter. Other possible applications include homo and heteronuclear
spin decoupling by applying multiple pulses.

Chapter IV discusses iterative schemes frequently used in NMR in
commection with the multiple-pulse sequences developed in Chapter III.
However, in this chapter the pulses will no longer be considered idzal:
the radiofrequency field srength is of the same order as the internal
error terms, and furthermore they may have amplitude imbalance and
phase shift errors as well. So a goal of this chapter is to show the
relationship between the schemes for the low field multiple pulse
sequence design and the iterative schemes especially developed for
modern decoupling experiments for a single-spin case. The similarities
as well as the differences between the two methods will be analyzed,
and the result of the analysis will be utilized to extend the
decoupling schemes to treat the two-spin case, where bilinear spin
operator terms as well as linear terms have to be dealt with.

The first discussion given in Chapter V is on the criteria of
the heteronuclear decoupling for multi-level systems. The decoupling
schemss developed in Chapter IV along with other schemes will be
evaluated by applying the criterion for liquid crystal samples. Then it
will be discussed in detail how to design composite pulses and put them

together in a sequence for the heteronuclear spin decoupling in liquids



in the presence of homonuclear interactions. Various comparisons will
be made on these schemes using both simulation and experiment.

In the chapters thus far the modulation schemes are aimed at
affecting the nuclear spin coordinates. In Chapter VI, external
perturbations will be applied on the spatial degrees of the freedom of
the Hamiltonian. The major goal is to achieve highly resolved resonance
lines in powder samples. Although the pulsed NMR techniques are quite
versatile and powerful in many instances, they cannot be used for
extracting the isotropic chemical shifts; because in the presence of
high magnetic fields the spin part of the chemical shift Hamiltonian is
proportional te I,. Censequently, the radiofrequency pulses can not
distinguish the isotropic part from the anisotropic part. Therefore
carefully designed mechanical motions affecting the spatial part of the
Hamiltonian are used to deal with the problem. A theoretical background
for dealing with the various anisotropies which cause the broadening of
the resonance lines will be given and some experimental possibilities
will be discussed.

Finally some useful relationships and data too lenthy to include

in the main text are compiled in Appendices.

1.2. The Nuclear Spin and the Hamiltonian

I.2.A. The Nuclear Spin

A very fundamental property of a nucleus is its intrinsic spin

angular momentum. The concept of the intrinsic spin angular momentum



(or simply the "spin") of the electron was proposed by Uhlenbeck and
1

Goudsmit™ to explain the appearance of two closely spaced lines of the
D line in a sodium spectrum. The electron may be regarded as a charged
sphere spinning around one of its axis. Then by anmalogy to classical
electromagnetism the intrinsic angular momentum may arise from such
motion. Thus the name "spin" was given to the intrinsic angular
momentum. But the simple classical model turmed out to be untenable.
Dynamical variables may be (first-)quantized by replacing the
corresponding classical mechanical quantities by appropriate operators.
In the classical limit # + O the spin reduces to zero. So the spin has
no classical analog of the classical mechanics, and thus there is no
explicit operator form for it. Dirac later showed in his relativistic
quantum mechanical treatment tha“ the spin arises naturally.2 However,
the thecry of Dirac does not hold for other elementary particles, and

the value of the spin of each particle has been experimentally

determined. The elementary particles of concern in this Dissertation

are nuclei.

1.2.B. The General Form of the Spin Hamiltonian

Since the spin Hamiltonian has been detailed many times in

standard texts,3'4 monographs,5

and theses, no exhaustive discussion on
it will be given here. Only some points which will be wutilized
extensively in later chapters are given.

The spin Hamiltonian of interest to this work consists of the

Zeeman (Hz), radiofrequency (Hrf), chemical shift (HCS), dipole (HD),



quadrupole (ﬂQ), and indirect coupling (#;) interaction terms. #; and
ﬂrf may be regarded as external Hamiltonians and the rest as the
internal Hamiltonians. The decomposition, however, is not unique. For
example, when transformeQ to the rotating frame, certain parts of H:,
more specifically, the resonance offset (Hoff) term is considered as an
internal Hamiltonian. Conversely. when the second averaging6 condition
is met, the resonance offset term may be rc.garded as a new "Zeeman”
term and hence may be considered to be an external part of the spin
Hamiltonian. Therefore, the terms "internal"™ or "external™ should be
used in accordance with the particular situation under consideration.
In the laboratory frame (LAB) each indiviiual {intermal)

interaction term in Hz, ”CS' ﬂb, HQ and #; may in general be written as

¥ -182, i-zcs, 0 Q J. (1.1)
Bere
R - -r 1 HA
1: : CS
yr B : D (1.2)
_Q _§ . Q
61(21-1) :

A 2 J

v and y' are the magnetogyric ratios, 7 the shielding tensor, B the

dipole coupling tensor, V the electric field gradient tensor.



'A’*-ﬁo . Z, CS

i* :D,J (1.3)
1 : Qi
Alternatively, the Hamiltonian can also be written as
¥=R1 (1.4)
where ¥ is constructed from the direct product of T and X&:
Taﬁ - IaAﬂ' {1.5)

R and T represent the spatial and the spin part of the Hamiltonian
respectively except for the cases of A = Z and CS. These tensors can be

either Cartesian or spherical. Thus

][ - Za’ﬂ RG,BT a (alﬁ - x!le) (1'6)

or

2 2 P
# = 2;-0 };w g G R o Ty 1.7

The Cartesian tensor form provides some useful physical insights which
will be discussed in section I.2.C. The spherical tensor form is useful
when rotations or other unitary transformations are involved. It is the

form which has been used extensively by Haeberlen and Waugh7 for the
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description of the spin-lattice relaxation in periodically perturbed

systems.

I.2.C. The Analogy between the Spin and Spatial Parts of the

Hamiltonian

The Hamiltonian in Eq.(1.6) expressed in terms of Cartesian
tensors will now be used to point out an analogy between the spatial
and the spin parts. The analogy is general. However, it is most
striking for quadrupole and dipole interactions. ﬂb and 7, have quite
similar structures and the quadrupole interaction is more general in
the sense that it has the asymmetry parameter(n). So Hb will be
considered here as a representative case without the loss of
generality.

It can be shown (the proof is given in Appendix 1) that a second
rank Cartesian tensor Aaﬁ may be regarded as a direct product of two

vectors

Aqp = Polg (a,p- x,y, or z ) (1.8)

where Po and 9 are components of vectors B and a. Hence Raﬁ can be
written as a product of components of two vectors iuiﬁ" quite
analogous to the fact that Taﬁ is expressed as a product of two angular
momentum operators IaIﬁ" Therefore, there is a one-to-one
correspondence between spin and spatial parts of the Hamiltonian.

The general analogy can be made more explicit for the simple case
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Figure 1.1 Laboratory coordinate system and polar angles # and ¢

of the axis of the symmetry of a axially symmetric quadrupole.
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of =0 (this includes dipole interactions). In this case because of
axial symmetry only the principal axis of symmetry is important and the
Hamiltonian may be expressed in terms of the two polar angles # and ¢

shown in Fig.l.l. Thus (apart from a constant factor)

1 2 2 .2 3. -ig
HQ ~ {2 (3cos 0-1)(31z 1) + 251n9 cosO(IzI++I+Iz)e

3 i [ 3 . 2,..2 -2i¢ _2 2i4
+ 2sinﬂcosO(IzI_+I_Iz)e + zsin 9(I+e +I"e" ")} (1.9)
The two vectors 1 and I’ making up the tensor R are now identical to

each other and are parallel to the symmetry axis of the quadrupole. The

unit vector along this direction has the following components

x = sinf cos¢é

y = sinf sin¢g (1.10)

z = cosf

Then HQ may be written as
#_ o~ -% (322 -1)(31%-1%) -3zx(11.41.1 ) -3yz(L I +1 1)
Q 2 z ZX Xz yz zy

3,2 2.2 .2
-3xy(Iny+Iny) -E(x -y )(Ix-Iy). (1.11)

Thus we can now clearly see the close analogy between spin and spatial
parts, and it will be fully exploited in designing the experiments to

be discussed in Chapter VI.



I.2.D. Some Useful Properties of the Spherical Tensors

An irreducible tensor operator xl of rank £ has (2£+1)

components, which under a coordinate rotation R, satisfy

t )
RA, R -ZnA P (&)

' Tim' Tm'm
£-=0,1, 2,...

m=- £, £-1, ..., -2

vhere Déﬁ? are Wigner rotation matrices.

11

(1.12)

Some useful commutation relationships between Apn and the angular

momentum operators are:

[ To» Agp ] = o Apy
[ 14, Ayn ] = # [12{2027) - n@D}]? Ay

For £ = 1 and Ay, = I~ Egs.(1.13) and(l.14) reduce to

m
[ 10, Tyn ] =% 11y

[14,10] = - 15

Principle axis system (PAS)

(1.13)

(1.14)

(1.15)

(1.16)
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The relationship between the spatial part R of the Hamiltonian in

the LAB and § in the PAS can be expressed using Eq.(1.12)

(£) )
R.E-m = Zn' p.ﬂ-m' D-m-m' @, (1.17)

where ' is the solid angle relating the two frames. Pog = 0 (m = 2)
for A = D,Q. pgg - -J31aiso and m = 1 term corresponds to the
antisymmetry component, which has no effect on the first order spectra

and thus is usually ignored.
I.3. Remarks

It should be remembered that these internal Hamiltonian terms are
scalar quantities as evidenced by Eq.(1.1) or Eq.(1.4). Thus they have
the isotropic symmetry, and this is the property which the zero-field
NMR methods capitalize on. In zero field the Hamiltenian is orientation
independent, so a single-crystal-like spectrum is obtained from a
powder sample. Once an external field is applied, the spin components
orthogonal to the applied field undergo rapid motion, and the isotropic
symmetry under rotation is broken. (However, the symmetry broken this
way is different from the "broken symmetry” occurring in the condensed
phases such as ferromagnets. In such cases there exist intrinsic
alignments of spins even if there is no external field present. If the
external field is present, even spins in a normel phase (paramagnet)
line up parallel to the field and this is not an intrinsic property of

the spin system.)
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Line broadening is removed by isotropic motion of the molecules
in liquids provided by the nature. However, in solids the motion must
be provided by the experimenter either by pulses to affect the spin
part, by mechanical motions to affect the spatial part, or a

combination of the two.
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CHAPTER II. Full Quantum Mechanical Treatment of the Spin-

Radiation Interaction.

I1.1. Introduction.

Chapter I focused on the nuclear spin and general form of the
internal Hamiltonian. This chapter will concentrate on the dynamics of
the interaction of spins with electromagnetic radiation. The second
quantization method! 2 is highly useful for those systems in which the
number of particles in a given state changes, and the production and
disappearance of particles of a given species occurs. Thus for
describing the spin-radiation interaction the second quantization method
is frequently employed. One feature that arises in the method of second
quantization is the concept of "fictitious” particles.3 The concept is
found in many branches of physics dealing with many-particle systems.
The idea behind the concept is to transform the "coupled" or complicated
real system to some "uncoupled” (or at least less strongly coupled)
"fictitious” system, so that they may become amenable to calculation.
Some familiar examples include: the separation of an otherwise
unsolvable two-body system into a non-interacting center of mass system
and a reduced mass system, the transformation of a coupled harmonic
oscillator into uncoupled normal coordinates, the Hartree-Fock method
for calculating electronic energy, and phonons for describing vibrations
in crystal lattice. The replacement of a time-dependent Hamiltonian with
a fictitious time-independent "average" Hamiltonian has been a powerful

tool for multiple-pulse techniques in NHR.4'5 The concept of fictitious



? 2>

ho hm

XBL 8711-5975

Fig .2.1 Two prozesses of a spin-1/2 and electromagneic field
interaction. The spin is excited or de-excited by

absorbing or emitting a photon respectively.

15
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spin-1/2 has been used with eminent success in dealing with multiple-
quantum transitions.6'7'8

In this section a few simple model cases of interaction of a spin
with radiation will be given, following closely the discussion given by

Pines.9

I1.2. The Second Quantization Treatment of a Spin-1/2 (Fermion)

Interacting with a Quantized-Field.

A. The Hamiltonian

Consider first a two-level system generated by placing a spin-1/2
in a large static magnetic field. Next the spin is made to interact with
a field oscillating with a single mode such that only the two processes
depicted in Fig. 2.1 occuxr, that is non-linear couplings are ignored.
The energy level [2> is assumed to be higher than [1> with a difference
in frequency given by wy - wy = wy. Finally introduce creation and
annihilation operators ij and C: (j=1,2) for the spin, and af and a for

J

the radiation respectively. Then the total Hamiltonian may be written as

Hn]is+HR+ﬂSR

- t t | .2 P tat
h(wlClcl +w20202) + hwa'a + 2 (aCZC1 + a CICZ)' (2.1)

where A is a spin-radiation coupling coastant and the zero point energy

is ignored.



Table 2.1 Complete set of orthogomal basis functions

in the occupation number formalism.

N Inl,nz, ...... ,nH >
0 }0,0,0, - > =}
1 |1,0,0,-°>,|0,1,0,->,]0,0,1"*>,-"""

2 |1,1,0-°>, |1,0,1,-">,|0,1,1-">,--""

17



18

B. Is a Single Particle too many?

A question arises, however, whether ﬂSR given in Eq.(2.1) is equal

to
- B t tet
B 2[aclc2 +a °1C2]' (2.2)

In other words, whether operators satisfy commutation rules
ty -
[ 01 . 02 ] 0 (2.3)
and
(e, c,1-0. (2.4)

It is perfectly clear that when there is a system consisting of many

identical particles, the following commutation or anticommutation rules

must apply:
t ty
{ Cj . Ck } = Cj . Ck } 0
(fermions) (2.5)
fya
{ Cj , Ck } sjk .
and
[a; .o 1=[al,al1-0 2.6)
(bosons)
t
[ aj ;8 ] = ij.

However, what if there is only one particle in the system to begin with?
Is there any commutation rule at all for this case? To answer the
question, the complete set of basis functions in the occupation number
formalism is given in Table 2.1. The number of states M depends on the

system. For example M — = for a hydrogen atom or a harmonic
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oscillator, but there are only two energy levels for a spin-1/2. The

number N varies depending on the processes occurring in the system. For

example,

c.c.c.clcl 0,0,1,0, > (N =1)
172737270 e

- t .- -
01020302| 1,0,1,0," > N=2)

= CIC203| 1,1,1, > (N =13

- Clcz| 1,1, > (N = 2)

- ¢ 1,0,0,-> (N = 1)

=]0,0,0," "> (N =0)

where the signs involved in the process are temporarily ignored. It can
be clearly seen that the number of particles varies from zero to three.
Now return to the problem of a spin-1/2, a two-level system. The
complete set of basis functions in the occupation number space and the
number of particles associated with each function is given in Table 2.2.
It can easily be seen from the table that the number of particles (in
this case fermions) wvaries as 0 < N < 2. It is clear that these are not
the real particles but fictitious particles. Furthermore in the second
quantization formalism even though we started with one real fermion,
there can be a variable number of fictitious particles during the
process, depending on the number of states and the type of interactions
involved. In the above case of interaction where the total number of
particles is conserved, the variation of the number of fictitious

particles may be likened to injecting test particles to facilitate the



Table 2.2 Complete basis set for the two-level system of

a spin-1/2.
No. of
_particles basis
0 ] 0> : the vacuum state
1 | 1,05, {0,1>

2 j1,1>

20
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caleculation and removing them at the end of the calculation. In some
sense, the above method is reminescent of the method of Lagrangian
multipliers. To be more specific, consider the variational equation as

an example:10

5{ &le] - yN} - o,‘ (2.7)

where €[p] denotes an energy functional of electron density, and

N[o] - I o (D) &% (2.8)
is the total number of electrons in the system. Here, the electron
density is varied even though the total number of particles is a
constant. Back to the case of the spin-1/2 interacting with the
radiation, the conservation of the number of particle should be relaxed

during the calculation. Otherwise, operators CIC2 and CIC1 appearing in

Eq.(2.2) would be meaningless: If N = 1 is rigidly required throughout

the calculation, then
cle1,00 =cllo,1> -0 (2.9)
2°1 2 ’ )

The first equality hclds because of the conservation of particle number
and the second equality is due to the fact that no more than one

particle (fermion) may occupy a state. Similarly,
t -t -
c1c2| 0,1> c1| 1,0> = 0. (2.10)

However, 1f the condition is relaxed during the calculation,
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clejo,1> -clloo> -|1,00

N=1

>N=0—>N=1

c;cl| 1,0> = c;| 0,0> =|0,1>

N=1—>N=0—>RN=1

czc{| 0,1>=C|1,1> =|1,0>

A
N-1—>N=-2—>N=1

c,cl 10> = ¢ 1,1> =] 0,1>

N=1—>N=2—>N=1

So, one can see that the operators cause the transitions between states
| 1> and | 2>. It is also confirmed that the number of fictitious
particles changes as 0 < N < 2 during the process, and that it is
conserved at the end of the calculation.

The spin-1/2 just discussed is not an isolated example where there
are a number of fictitious particles even if there is only one real
particle. Another example easily found is a harmonic oscillator in the

mode k with the energy given by

E(nk) - (nk + %)ﬁw . = 1,2,.... (2.11)

Eq.(2.11) can either be interpreted as the energy level associated with
quantum number ny of a real harmonic oscillator or as the energy of a
system of e fictitious particles in the k-th state, all excited by

fiwy /2, thus given the name "elementary excitations”.ll The fictitious
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particles satisfy either the anticommutation rules or the commutation

rules depending on whether the real particles are fermions or bosons.
C. Connection to the Spin Angular Momentum Operators

The Hamiltonian in Eq.(2.1) will now be transcribed into a more
familiar form by transforming it back to the coordinate representation
from the occupation number representation. To do this it first should be
noted that the matrix element should be identical in both

representations:

0y = <$,1 0| $> = <10 0% R PR (2.12)

Here 0 is an one-particle operator. Since there is only one spin-1/2 in
the system, operators representing many-particle interactions need not
be considered. (4,) are one-particle wave functions. 0°°C is the
corresponding operator in the occupation number representation. Then it

can be shown that
0°°° - Zm o_clc (2.13)
p mom

where Omn represents the matrix element of the operator in the
coordinate representation. As an application, consider the following

operator given in the occupation number representation

0°°¢¢ - 5 (c"c + c"cl) (2.14)
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With Eq.(2.13) the corresponding matrix 0 can be found as

0 | 4 4
& |0 2
¢ iz o

which is identical to the matrix representation of I, for a spin-1/2.
With the same procedure the following set of identities for spin-1/2

operators is found

t t
1.3 (c G, + C,Cy)

i

t t
I, = -3(6iCy - CyC) (2.15)
1ot t
I, =3 (CiC - CyC,).

Note that because of the anticommutation rules for fermions

occ
0

2 ( 2 ( C16 - G

t ty 1 e . ¢t -i
C C,+¢C C2) ( c;C C C1 ) 1Iy. (2.16)
With the above operators it is possible to recast the Hamiltonian

given by Eq.(2.1) as
¥ = hogl+ hwa'a + Bar, + a'1 ), (2.17)

where I =I, + in. Eq.(2.17) then is the full quantum mechanical

Hamiltonian for the spin-radiation interaction, and one can recognize it

to be ideutical to the Jaynes-Cummings mode112 (JCM) in which rotating
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wave approximation is made. The JCM has been one of the most examined

models in quantum optics_13-14.15

IT.3. Spin-1 Operators in the Second Quantization Method

Spin-1 operators can also be expressed in terms of particle
creation and annihilation operators applying the method discussed above.
It suffices here to state that in this case because the spin-1 is a
boson, C and ct operators satisfy boson commutation rules and to give a

representative example:

occ 1 ,.t t t t
0 - 75 (C1C2 + C1C2 + C2C3 + C2C3). (2.18)

The corresponding matrix representation for 0 is then

0 1//2 0 Lfo Lo Lfo o0

0=1|1//2 0 1/)2 -75100+7§oo1

- 0o 1//2 o 0 0 O 010
- 1/2(1}1"2 + 1}2('3) -1, (spin-1) (2.19)

where the definition of fictitious spin-1/2 operatorse"7 has been used.
For concreteness, a set of basis operators for the spin-1 expressed in

terms of C and c! operators is listed in Table 2.3.

I1.4. Average Hamiltonian Treatment of the Spin-Quantized

Radiation Interaction.




Table 2.3 Basis operators for a spin-1

I, = 27'/%(cle, + clc, + cleg + clcy)

t
1

i 27'/%(-clc, + clc, - cle, + clc,)

—~
1

CICI - C;Cs

1 272 (-clc, + clc, + clc, - clc,)

2
1

= 27'/%(clc, + clc, - clcqy - clcy)
37" (clec, - 2cic, + clcy)

Q; = clc,

Q., = cfc,.

O O
N
]

26
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A. The Time-Independent Fictitious Hamiltonian

The Schrddinger equation for the simple model Hamiltonian given by

Eq.(2.17) can be solved exactly and the solution is provided by Jaynes

and Cummings.12
- +

E + hw(ntl/2) * & J(M)z + Az(nﬂ) (2.20)
with

fo = w - wy (2.21)

b4 - [ A[ntl sind + Aw conﬂn]l nl, -> (2.22)

+ [A n+l cosf_ - Aw sind ]In,+>
n n

and

¢ - [A ntl cosf - Aw sind ]|n+1,->
n- n n

- [A n+l sind  + Aw cosan]| n,+>, (2.23)

where |n,+> is the state with n quanta in the field with the spin "up"

and |n+1,-> is the state with n+l quanta with the spin "down". Thus

afal n> = n| n> (2.24)
and
1] &> = 3172 &> (2.25)
8, satisfies
n+l
tan an - T (2.26)

and € is given by
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¢ - J(Aw)2 + 22 (m1) . (2.27)

Eigenfunctions ¢, are mixtures of eigenfunctions of the unperturbed

Hamiltonian

#y = - ho(I, + ata) (2.28)

and the perturbation due to the interaction of the spin and the
radiation causes the transition between the two states | ntl,-> and
l n,+>,

Although there exists the exact solution for this simple model
Hamiltonian, in general ome is forced to resort to approximate
sclutions. With the anticipation of extending the treatment to general
cases an approximate solution based on the Average Hamiltonian Theory
(AHT) will be presented. AHT, a variant of the time-dependent
perturbation theory, has been quite successful for dealing with many
dynamical phenomena encountered in NMRl6 and recently in quantum optics
as well.17 The basic idea of AHT is to replace a time-dependent
Hamiltonian by a fictitious time-independent "average™ Hamiltonian.

We first transform the system into a rotating frame defined by
t
Uo - exp[-iwt(Iz + a a)). (2.29)

Then the Hamiltonian given by Eq.(2.17) becomes
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2} t
= -htwl, + 75 (al, +a'1), - (2.30)

where Aw = w - wy. Now suppose "ﬂSR">>"”off"' vhere # ¢ is the offset

Hamiltonian and the "size" of g Hamiltonian is defined by16'18
3 = Tr[TfZ]l/z. (2.31)

Then the offset Hamiltonian transformed into a second interaction frame

may be written as

% t
Hope() = U o(t) -hAwl U (£, (2.32)

where

U_c(t) - exp[-;;t][s!{] - exp[-it%(a1+ + aTI-)]. (2.33)

Our goal is then to find the time-independent Average Hamiltonian

# such that
i= ift s, ! '
Urf exp(-;ﬂt) - Urf J exp(-; IO A(t Hdt ), (2.34)

where J is the Dyson time-ordering operator.19 ¥ is usually expanded as

a power series, in which the first two terms are given by
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=(0) 1lr 3
f - ;Io #(t)de

(2.35)

(1) _ __ifr. [t Feey Fce
" = 5 OdtIIOI dtz[ﬂ(tl),ﬂ(vz)].

However, explicit calculation of ioff with U.¢ given by Eq.(2.33) shows
that it does not yield functions having closed forms, so the average
Hamiltonian terms become difficult to calculate.It therefore is
necessary to find a picture in which the exponential of Eq.(2.33)

becomes a single term, to which the next section is devoted.
B. The Fictitious-Spin Operators

With a slight rearrangement one gets

(al, +a'1) = (atah1 + 1(a-af)1y (2.36)

and may be tempted to find some function ¢(a,aT) such that

(a+aT)Ix+ i(a-aT)Iy = D(1, cosp + I sing) (2.37)

where D is a constant. The quantity in the parenthesis on the right-hand
side is

e-i¢Iz Ix ei¢Iz - Ix cosg + Iy sing, (2.38)

and the constant D may be obtained from


http://calculate.lt
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< (arah)? + {1(a-ah} I n> - 4| (0 + D> =2 (2.39)

Then ¢(a,af) has the following form

R |
é(a,al) = cos”1 2 +2) (2.40)

2|n + %

or

t
#(a,aly = sin’l @ -23) (2.41)

2ln + %

Thus in a frame transformed by exp(-i$I,) the exponent in Eq.(2.33)

becomes a single term:

ty .
al_ +all_ > 2|n +% I, (2.42)

where the prime denotes the new frame.

However one can easily verify that a and at resulting from

Eqs.(2.40) and (2.41) are

a= |ntl/2 e1¢
al- n+l/2 e 14 (2.43)

and they satisfy

aal = afa = n+l/2, (2.44)

instead of satisfying the usual boson commutation relations. In the next
section the reason for this inconsistency will be discussed and a

correct transformation will be given.
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C. The Phase of the Quantized Radiation

The definition of the phase of the quantized radiation is not

unique. The requirements the quantum phase of the radiation must satisfy

are:

1) The quantum phase and the number of photons in the radiation field

must satisfy the uncertainty rule
2) It must correspond to the classical phase in the classical limit.

A definition of a and al operators including the quantum phase is

given byl'20

a=]n+l ei‘

al- | n Rt L | n+l . (2.45)

The exponential operators satisfy
i -ié -1 ¢ -1
e ¢ [l n+1] aa “nﬂ } 1 (2.46)

and

n+1 8 (2.47)

The righthand side of Eq.(2.47) can be simplified as follows: If

Eq.(2.46) is true,
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e 18 i 14 id - el eif (2.48)

With a slight rearrangement the above equation becomes

] (S P | I (2.49)
Since the operators on the left-hand side of the parenthesis rannot be

zero, the quantity within the parenthesis must be zero, in contrast to a

claim in the literature.?l As a matter of fact, for any photon state
Zn cJ n>,

11 -
al——7a Zn cnl n> Zn <, | o>. (2.50)

It follow that exp(ii‘] is rigorously an exponential function.
After some algebra it can be shown that the following uncertainty
rule between the phase and the number of photons in the field holds:
An A$ = k, (2.51)
as is given in standard texts on quantum mechanics.22
The reason for the inconsistency of the definitions given by

Eq.(2.43) can now be explained. To show this first rearrange Eq.(45),

the correct quantum mechanical definition of a and at:

a+al = [In—-i-l + J’E ]cos é+1 [j—n Fﬁ ]sin é (2.52)

and

i[a - aT] - [ n+l+ Iﬁ—]sin é + i[I;I_- Iﬁ—]cos ¢

-[ n+l+ Jn—]cos(¢-’2—'] + 1[j— jm ]sin[¢-’5']. (2.53)

The above equations show that the two quantities are orthogonal to each

other. However, it is not possible to assign a definite phase and the
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number of photons simultaneously because of the uncertainty principle.
By contrast, the definitions for a and at operators given by Eq.(2.43)
demands a definite knowlege of the phase and the photon number. As a
result, the number of photons in the field ( J(n+1/2) ) is incorrect.
The correct number of photons can be shown to be (n+l), with the one
extra photon being responsible for the spontaneous emission. In the
classical limit n>>1, the difference between the number (n+1/2) and the
quantum mechanical number (n+l) is immaterial. The next section will

show how to find a correct quantum mechanical transformation.

D. The Fictitious Spin-1/2 Operators for the Spin-

Radiation Interaction

By analogy to the procedure given in Sec.B, ﬂ n,+>,|n+1,->} will
be chosen as the complete basis set for the coupled two-level system.
Fictitious spin-1/2 operators for the coupled system of the spin and

radiation may be constructed by utilizing the identity

A

T-Z,m|2>T2m<m| . (2.54)

Then there results a new set of operators £, Iy, and 2,
2 - 1/2( n,+><n+l,-| + n+l,-><n,+)),
2, =-1/2(| n,+><n+l,-| - | n+l,-><n,+ ), (2.55)

2, - 1/2( n,+><n,+ | - | n+1,-><n+1, 4 ).
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vhich can esily be shown to satisfy the commutation rules for the

angular momentum operators:

[ox .2, ] =12, ,
[2y .2, ] =12 . (2.56)
[2, . 2, ] =18, .

Furthermore,

zi - L-];(I'n,+><n,+' + o1, -><ntl,-| ) - }, (2.57)

vhere the closure relation
| n,4><n,+| + | n#l,-><n+l,- | = 1 (2.58)
is used for the second equality. Similarly,

2 2

1 5
LR (2.59)

It follows that the operators can be regarded as fictitious spin-1/2
operators. Finally, we can relate these operators to a, al and the

original spin-1/2 operators, by using Eq.(2.54) and the matrix elements

<n+1,-laIJ n,+> =0

<o, alt | m1,-> -0

<n,4 aI+| ntl,-> = Jf(nt+l)
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<ntl, | a1 | n,4> = J(ne1) (2.60)

<n#+l, -| Izl n+l,-> = -%

<n,H Izl n,+> = %

Thus the following set of fictitious spin-1/2 operators results

1 t
Ex - m(al_._ + a I_)

-i 1»
Ey - m(al*_ - a I_) (2.61)

2 =1
z z

and it is easy to verify that these are the correct set of fictitious
spin-1/2 operators. Implicit in Eq.(2.61) is that the total excitation

number operator23

A

N=-ala+ 1 (2.62)

is a constant for the spin-radiation interaction Hamiltonian given by
Eq.(2.30), because both al, and 311_ conserve ﬁ. Consequently, ﬁ must
commute with both the unperturbed Hamiltonian and #igp. The commutation
can easily be shown. Furthermore, it can be shown that the numerical
value of ﬁ 1s equal to (ntl/2) as follows:

(i) Spin "up"

The corresponding state must be | n,+>. Thus

<+l 1, |+ =172



and
<n | 318| n> - n.
Therefore, the expectation number of ﬁ is equal to n+l/2.
(ii) Spin "down"
The state is | n+l,->, so

< |1, |->=-1/2,

<n+1| afal n+l> = n+l

and thus

A

<N> = 1/2.
E. The Transition Probability
With the fictitious spin-1/2 operators Ba {a = x,y,2z) the
"switched" Hamiltonian given by Eq.(2.32) can easily be calculated. From

now on #i will be set equal to 1 and the subscript "off" will be

suppressed for convenience. Thus

- ol e () (2.63)

- Aw[!zcosxj(n+l)t + Iysinxj(n+l)t].

The first two terms in the average Hamiltonian then becomes
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#0 . Xj?%:f;?{l sind/(n+l)r + 2 {1- cosk](n+1)r}

2D _ (bw)2 sinAJ(n+1)r) (2.64)

A](n+1) 1 - A/ (n+l)r

Suppose the spin is continuously irradiated and measurements are made at

time t such that
AJ(n4l)t = 2mx (m = 0,1,2,...), (2.65)

then the average Hamiltonian terms become

#9020 (2.66)
and

z(1)_ (Aw)

R VT (2.67)

The evolution operator in the interaction picture may thus be

approximated as

U(e) = e‘itf\«/(n+1)2x e'itﬁ(m* J_I(l)]

(Aw) (2.68)

e-it{AJ(n+1) + _7——_,\ tatD)
We also assume the initial state is | n,+>. The state at time t is then

f(t)> = u(t)| n,+
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- cosht | n,+> - 1 sing® | e, ->, (2.69)
where
(bw)?

0= 2J/(n+l) + m (2.70)

The transition probability 1s thus

2
P = | <n+l, ] ¥(e)> 2 = sin’ %[A,/(n+1) + ﬁ“’(—r)lm , (2.71)

while upon using Eqs.(2.20)-(2.27) the exact solution 1s found to be

2
P = ; (n+§) sin2 % { Az(n+1) +(Aw)2}%/2 (2.72)
(Aw)” + AT (nt+l)

When A/(n+1)>>Aw, which is implicit in the transformation given by

Eq.(2.34), to a good approximation

2
A7 (n+l)
e =1, (2.7%)
)2 + 22(n41)
and
{ A2 (01 + (Aw) 2 }1/2 - AJ(n+1){1 + %[ﬂ%ﬁ]z} (2.74)

Then Eq.(2.72) reduces to

2 1 ()’ ] (2.75)

t
p = sin E[AJ(IH':L) + 3 U(M—l)
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which is identical to the approximate solution, Eq.(2.71).

A comparison between the semiclassical and quantum mechanical

23,24

transition probabilities establishes the correspondence

A/ (n+l) < > w. .

In the next section the theory will be extended to include double-

quantum transitioms.

F. The Double-Quantum Transition

A simple three-level system is generated by placing a spin-1 in

the static field. The energy scheme is depicted in Fig. 2.2. The

9

Hamiltonian can be shown to be” with a slight modification

¢

¥=wl +
z

X Q + wala +j;—(a1+ +al1) (2.76)

Q’z -

(93]

where the basis operators for the spin-1 in Table 2.3 have been used,

along with wig + wy3 = 2wy and woq - wyg = 2wq.

In the frame defined by Eq.(2.29) the Hamiltonian becomes
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[1>

XBL 8711-5974

fig. 2.2 Three-level diagram for a spin I = 1. The original energy
levels are determined by the Larmor frequency w,, and
they are perturbed by the quadrupole interaction. wq is

the quadrupole coupling constant.
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ﬂ-%wQQz +fpal, +all ). (2.77)

Supposing that wq >> A/(n+l), we may transform to a second interaction

frame, where the switched -Hamiltonian is given by

7 - ol At it -iw tQ
Q ﬁ(a+a I+ 7-2-(a a )1y e Q z (2.78)
With wQT = 2o (m =~ 1,2,...) and after some algebra using the

commutation relations among the basis operators for the spin-1 given in

Table 2.3 one can show that

#0. 0, (2.79)

and

2
A° 2 t2
= '%(a Q, -2y, (2.80)

ﬁ(l)

where terms leading to non-conservation of the total number of particles
are ignored. The identical result can also be obtained by an operator
perturbation method.? One thus can see that the double-quantum

transition is associated with the application of al and al? operators.

II.5. Remarks

In this chapter it was shown that simple cases of a spin
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interacting with the electromagnetic field can be treated on a
consistent full-quantum mechanical footing, by employing the second
quantization method and a correct transformation which yields
fictitious-spin operators. The AHT, a tool widely used in treating many
complex dynamical phenomena in NMR, is also employed to deal with the
fully-quantum mechanical cases with, to a good approximation, identical
results. As a result, it is possible to make a connection between
semiclassical and quantum mechanical quantities such as the field
strength and the number of photons in the field.

The direct appearance of photon creation and annihilation
operators in the expressions may allow one to "see" the spe:ztroscopic
dynamics microscopically. The treatment, hopefully, will cast some light
on schemes that require such a microscopic observation. Especially, it
may be of help to clarify the relation of NMR to quantum opties, in
which the use of quantized radiation field is a common practice. In fact
much of the development of optical spectroscopy has capitalized on the
close analogy to NMR, and some sophisticated NMR techniques have
benefited from developments in quantum optics. A possible application of
the above treatment may be to analyze the spin dynamics during multiple
pulse and multiple quantum experiments.

In most routine NMR experimental conditions it is possible to
create enormous number of photons in a unit frequency range with low
power due to the smallness of the frequencies involved in these
transitions and high accuracy of frequency generated. Thus in these
conditions the classical limit n — = is applicable with virtually no

errors. Consequently, in the discussions to follow the spontaneous



emission will be neglected and the magnitude w) and the phase ¢ of the
radiation will simultaneously be assigned.

The convention for the direction of pulses adopted in this
Dissertation is as follows: According to classical mechanics the

equation of motion of a spin magnetic dipole moment is given by

d-’ - -
d—t-'rpXB. (2.81)

The moment is related to angular momentum by

=1 (2.82)

and the Hamiltonian for the interaction of the spin and B is

H=-73B=-1BTwmo?. (2.83)
1f

B - slﬁ, (2.84)
then

¥ = ol,. (2.85)

Consequently, when the term "x pulse"™ is used it means that the pulse is
applied in such a way that the direction of the pulse field is along the
positive x axis. Thus the pulse is associated with the rotation operator

R, = exp(-itw,1,) (2.86)

and the rotation is clockwise if y is positive.
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CHAPTER III. Orchestration of Multiple-Pulses in 15-Dimensional Spin

Space in Solids.

I11.1 Introduction‘

This and later chapters will concentrate on more complicated
systems: the system consists of many interacting spins, and they are
under much more complicated external perturbations. Nearly all modern
NMR experiments are performed in the time-domain; that is the external
perturbations are applied such that the (internal) spin Hamiltonian is
made appear time dependent. Provided that the time-dependence is fast
enough, the modulated internal Hamiltonian can be time-averaged. With
variety of external perturbations the experimenter can in principle
make the spin Hamiltonian into any form he desires. This chapter
concentrates on the multiple-pulse technique for the selective removal
of various terms in the Hamiltonian. External perturbations are thus in
the form of radio-frequency pulses and are applied on the spin
coordinates, which are then time-averaged. The pulses can be either
"hard" or "soft", the former nearly approximating the §-funtion and the
latter being windowless.

Magnetic-field pulses cause the spin to nutate about the
direction of the axes along which the pulses are applied. From the
transformation properties of various spin operators under these
rotations some useful informations can be extracted. Especially, one of
the goals of the high-field iterative schemes is the removal of various

spin operators with low-power rf fields. In such condition the
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resonance offset can cause the pulse to deviate strongly from the ideal
pulse, and as a result variety of linear and bilinear terms are
created. Same spin opertors appear in the low static field and
multiple-pulse sequences_for the removal of these spin operators can
thus shed some light on the design of the high-field iterative schemes.
In Chapter VI discussed is the averaging of various anisotropies by
mechanical motions. It will be shown in the chapter that the
transformation properties of the spin operators are also useful for the

design of schemes for the averaging of these anisotropies.

I1T1.2 The Spin Hamiltonian

One of the simplest multiple-pulse sequences is the WHH-4
sequence1 designed to remove the homonuclear dipolar Hamiltonian in

high field. The secular dipolar Hamiltonian may be written as

D =+ = .
Hoe = §i>1 Dy GIgLyr, - 'L, (3.1
where
12 2 3,
Dii =27 A(1 - 3 cos 011 Y/ Iy (3.2)

is a dipole coupling constant. The dipole Hamiltonian can be averaged

to zero utilizing
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+ HD +7[D - 0, (3.3

and the WHH-4 sequence satisfies Eq.(3.3). Of course, the WHH-4
sequence is not the shortest sequence that satisfies Eq.(3.3), since
the three-pulse sequence (xyX) also satisfies Eq.(3.3). At any rate,
these sequences all generate the same configurations
{(X,Y,2),(Y,2,X),(Z,X,Y)} ignoring the sign, which is immaterial for
quadratic terms. But what if there are more terms than those given in
Eq.(3.1)? How many and which configurations are needed to remove all
these terms? To answer these questions let us first write down the
Hamiltonian that includes all possible linear and bilinear spin
operators. The Hamiltonian can be obtained by piacing a system of spins
I in a static magnetic field which is too low to truncate dipole-dipole
or quadrupole interactions. Thus it may be written as

# - 7t1 + 7{2 + Hp(t)

- Hint + ilp(t). (3.4)

Here
- -), 7. (l-0,)B 3.5
# Z vy I-1 1 ”j) 0 (3.5)

contains terms linear in spin vaiable with o denoting the chemical

shift tensor. In contrast, the terms in

-

ﬁz - }S’k Ij‘ Cjk. K (3.6)
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are bilinear in spin variable for which ]k corresponds to the dipole
interaction with a coupling tensor cjk and j=k corresponds to

quadrupole interaction with a coupling tensor ij. Finally,

denotes the pulsed magnetic field. For convenience, the coordinate
system chosen is the laboratory system.

The evolution operator given by
' L
u(e) = Uexp(-ij';dt #(t)) (3.8)
may be separated into two parts

u(t) = Up(t)uint(t)

- Uexp(-ijg ac’ #(t)) Uexp(-ifg at #_.(t)) (3.9)

as discussed in Appendix 2. The "switched" Hamiltonian is

-~

-t
Him:(t) Up(t) 7[1m: Up(t). (3.10)

Assuming the cyclicity of Up(t) at time t = t,, the cycle time, one can
novw calculate the average Hamiltonian -7 + %51 & . For
simplicity, only the zeroth-order term will be considered. It is worth

noting here that the density matrix p can be expanded in terms of
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N = (21+1)2 basic operators. For example,

p(t) = E;-X,y,z aa(t)Ia + aol (3.11)

for I=1/2. For 1 = 1 there are eight basic hermitian operators,
traceless and independent of each other. One such set of commonly
encountered basis operators is given in Table 2.3. Also from the form
of internal Hamiltonian given by Eq.(3.4), it can be noted that the
same basic operators can be used to expand the internal Hamiltonian.

Thus, with the following shorthand notations

A=T, ,
ja

AA =TI, 1 1,3 1,1
jaka / j Kk’

AB =1, 1 +T1,1 |, 3.12
ja'kg * 13p'ka (3.12)

(A=B, A,B=X,Y, or Z; amB, a,Bf=-x,y, or z)

the internal Hamiltonian may be written as

# - ZZaJAA + }j,k},«,sbjm“‘ (3.13)

The time-dependent switched Hamiltonian given by Eq.(3.10),

corresponding to the form for p, is then

#(t) - ZEAaJA(t)A + Z'kZ'BbjkAB(t)AB. (3.14)
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Another way of writing Eq.(3.10) is to consider Hp(t) causing the time-
dependence of the spin operators. The latter viewpoint is adopted for
this chapter. The reason is that in the latter viewpoint the trajectory
of the spin operators can easily be visualized, and this is of great
use in designing certain experiments. In Chapter V these transformation
properties will be fully exploited. However, the feasibility of
monitoring the trajectory is due to the fact that there is no big
offset term in the Hamiltonian. If there is an offset Hamiltonian with
a size comparable to that of ¥ , it becomes very difficult to follow
the trajectories and the form given by Eq.(3.14) is highly useful. This
viewpoint will be exploited in the section on spin-decoupling problem

in liquids. Thus, the form of iint to be used in this chapter is

ﬁinét) - Z}Aaﬁx(c) + Z'kEP’BbjmK(t)ﬁ(t), (3.15)

with

A(e) = u;(c) AT (6), ete. (3.16)

ITT.3 Transformation Properties of the 55:in Opertors

In general, in the three-dimensional space spins can be rotated
through any angle around any axis through the origin. These rotations
then constitute a three-dimensional rotation group.2 Here, though, only
90° rotations generated by pulses along three orthogonal axes x, y, and
z are considered so that they constitute the octahedral group 0. The

group 0 has the axes of symmetry of a cube: three axes of the fourth



Table 3.1 24 configurations accessible in a right-handed

coordinate system and operatons to reach them.
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Configuration Operation*
Xy z 1
¥y zXx X z
ZxXYy zZx
Xzy Xzz,z2zXx
yXz z
ZyX y
yxz z
Zy X X2zXx,XZX,2zx2z,2X72Z
Xzy X
Zyx y
XZy X
Yyx2z XXZ, zXX
Xy z X X
ZXxy z X
¥yzx X z
yzX Xz
Xyz X z
ZXy zZx
ZXy zZX
yzXx Xz
Xyz z z
Xzy Xxzz,z2zX
yxz XXz, ZXX
ZyX XZX, XzX,ZXZ,z2Xz

* ) <
Operations are given in

notation: a = (w/Z)a.

chronological order with the following
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e H H H

n+1

Hn B Hﬁ,n(t) + Hint

XBL 8711-5968

Fig.3.1 Schematic diagram showing the nth piecewise-constant

Hamiltonian in the rotating frame.
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order, four axes of the third order, and six axes of the second order.
There are 24 elements which are divided into five classes: E, eight
rotations C,; and c§, six rotations C, and C:, three rotations Cz, and
six rotations C,. The switched Hamiltonian tranforms subject to these
operations in the group. Table 3.1 lists all these 24 configurations
accessible in the right-handed coordinate system.

When rotations are made using pulses having finite widths, it is
no longer possible to use the interaction frame Hamiltonian sandwiched
between pulses. Thus it is necessary to consider the transformation of
each operator during each pulse. To this end, first consider the
rotating frame Hamiltonian consisting of the internal part (ﬂint) and
Hrf'

#f =
Hrf,n(t) + %in

o (3.17)

tl
during a pulse as is drawn schemetically in Fig.3.1l. n represents the
n-th section of the sequence. The evolution operator for an n

piecewise-constant pulse sequence is given by Eq.(3.9), and as usual

may be approximated as

(0, (D)
U(r) =0__(r) e " @5+ 74 ) (3.18)
rf
with
Z2O_ 17 ot
=21 UL(e) K U (t)dt, etc. (3.19)

Eq.(3.19) can be decomposed into n integrals

t. .
2(0) 1\ n [k ¢
- r§;<-1jtk_lurf(t) H, o U g(o)de. (3.20)
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Table 3.2 Zeroth order average of linear and blinear operators

during a n/2 pulse.

Pulse Linear operators
Iy I,
+ x . (2/1)(Iy¥lz) (2/n)(Iz¥Iy)
ty (2/7) (I,%1,) Iy (2/7)(1,¥%1,)
tz (2/w)(1x¥1y) (2/x7) (1y%1,) I,
Bilinear Operators

xY* YZ X XX Yy zz
+ x XYFZX +(YY-22) (ZXXY) X (YY+ZZ) /2¥2YZ (YY+ZZ)/2+2YZ
ty Xyiyz YZ¥2X  *(ZZ-XX) (XX+ZZ)/242ZX YY (ZZ+XX) /272ZX
Tz £(XX-YY)/2 YZ+2ZX  ZXFYZ  (XX+YY)/2F2XY  (XX+YY) /212XKY 2Z

*The following notations are used:

XY = (Iny.+Iny.)2/n, XX = IxIx" and cyclic permutations.
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It may further be rewritten as

#0)- lzku" (c, ) rk uf, o #, v (et u_e ) (3.21)
T rfV'k-17 JO “rf,k int rf,k rf' k-1
where e =t - te 1 and Urf,k(t) denotes kth pulse. Eq.(3.21) dictates
that the integration over the trajectory during the pulse must be
performed, while transformations due to pulses up to the (k-1)th
segment in the sequence can be considered to occur instantaneously.

If the configuration a for a linear term transforms into a'
(a#a’), it is said that the "transition"3 from a to a’ has occurred and
the average of the linear term during the transition is (2/71)(ata’). If
the rotation axis is along the direction a, a stays invariant and
during the pulse one has a "stationary" point. In table 3.2 are listed
time averages of various operators during a 90° pulse.

In NMR (although it is equally applicable to other spectroscopic
methods)4 the rotations of a spin has frequently been described via a
vector representation on the unit sphere. The trajectory of the
magnetization vector in particular has been extensively used to model
coherent and incoherent processes. Here an extension will be made to
include all nine basic operators, and it will be utilized to describe
the transformational behavior of all operators subject to sequences of
pulses. It is particularly useful for discussing windowless sequences
where averaging over trajectories is performed. Fig.3.2 is a vector
representation of nine basis operators and the trajectories they travel
under rotations around coordinate axes. Linear operators have a direct
correspondence to unit vectors pointing at respective "vertices", where

the coordinate axes and the unit sphere intersect. Bilinear gquadratic



@

(b)

XBL B72-9572
Fig.3.2 Vector representation of the (a)linear and (b)bilinear

spin operators. Curves denote the trajectories the

operators folle . under rotations about the coordinate axes.
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terms XX, YY, and ZZ have the same correspondence to the vectors except
that two opposite points on the sphere are identical. Bilinear cross
terms point at the midway between two adjacent coordinate axes. Again
points on the opposite sides of the sphere are equivalent.

If the rotations are made about the coordinate axes, the
trajectories of the linear terms and bilinear quadratic terms would be
certain segments of the great circles. The trajectories of the bilinear
cross terms would be confined to circles with a radius 1//2, when only
one component changes during the rotation, while they will be segments
of great circles when the rotation axes are orthogonal to the direction
of the operators.

With these tools is now possible to achieve various objectives

such as averaging out the ZZ term.

(i) Z term

In high field, because of magnetic field inhomogeneity the spin
isochromats undergo rapid dephasing. The Inhomogeneity, which is
proportional to Z, can be removed by pulse sequences such as the Carr-
Purcell sequence. By a series of » pulses (or equivalently, two
Jjuxtaposed two x/2 pulses), the Z term in the interaction frame is
periodically inverted: Z, Z, Z, Z,.... Thus the average is zero. Note
that the ideal Carr-Purcell sequence generates the "perfect echo". It

is obtained whenever

#0) L L 2D o o0 (3.22)



because then

(1) = u(r)put(r) = e e o 400, .
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23)

1t is also possible to generate the perfect echo with a condition less

stringent than Eq.(3.22), namely if either

[ %

foe + PO 1 =0 (3.
or
[ Kint » £(0) ] -0, 3.
because then
p(r) = Ur)p0)ut (r) = poywl(r) = (0). 3

For the Carr-Purcell case, the initial density operator and the

internal Hamiltonian are
p(0) = Iz QA
and

ﬂimt - SwIz. (&)

The switched internal Hamiltonian resulting from the Carr-Purcell

sequence 1is
INORE. Sl 3

with the sign depending on time. In this case Eqs.(3.24) and (3.25)

wvell as Eq.(3.22) is satisfied since

[ %(e), (e ) | = o. (3

24)

25)

.26)

.27)

.28)

.29)

as

.30)
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The heteionuzlear irte=srction, after truncation, is proportional
to I,S,. As long as y; and g are sufficiently different for the pulses
to affect only one spin species, the heteronuclear interaction can be
removed by the same sequence. The removal of the Z term requires two
configurations 1if & pulsés are employed.

With windowless sequences, any stationary point a is to be
removed by adding another stationary point -a. As given in Table 3.2 a
transition gives an average (2/«)(at+a’) which is incommensurate with a
and a', so it must be treated separately from stationary points. The
number of times that a appears in transitions must be equal to the
number of times -a appears. A minimum number of four x/2 rotations (or

two n votatioms) is required to remove the Z term.

(ii) All three linear terms

In zero-field experiments, it is difficult to attain the perfect
zero-field because of a residual field and in general it has all three
components. So the spin-residual field interaction term may be written

as

# -al +al +al. (3.31)
Tes XX Yy z' Z

It therefore is necessary to remove all three linear terms to obtain
the true zero-magnetic field. With § pulses a minimum of four
configurations, for example {(x,y,2z),(x,¥.2),(X,¥,2),.(X,y.2)} is
required. These configurations are reached by the sequence of =
rotations with equal delays between pulses:(-xx-ny-nx-ny-)n. The
sequence then is an zero-field analog of the Carr-Purcell sequence.

However, in this case the perfect echo cannot be obtained because the
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Fig. 3.3 Trajectories of the three linear spin operators under
The operators are eliminated by the sequence

simultaneously. Small circles are stationary points.
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Hamiltonians at different times do not commute with each other or with
the initial density operator. For example, the Hamiltonian after the
first pulse is a, I, - any - a,I, an it in general does not commute
with a, I, + any +a,l,.

The removal of all three terms with a windowless pulse sequence
is much more complicated. It involves both stationary points and
transitions. A minimum of 16 x/2 rotations (or eight » rotations) is
Yy y). In Fig.3.3 the trajectories of three linear terms under the above

sequence is shown.

(iii) 2Z term

As discussed at the beginning of this chapter, with & pulses a
minimum of three configuratioms, eg. ((x,y,2),(y,z,x),(z,x,¥)}, is
required to make the ZZ term vanish via the isotropic average

X +YY + 2Z -0, (3.32)
since they cannot be inverted. The WHH-4 sequence is an example which
satisfies Eq.(3.32). Incidentally, these three configurations also
remove other quadratic terms YY and XX via Eq.(3.32). Therefore, in
general, for any sequence to average the quadratic terms to zero it
must average them over a multiple of three configurations.

A windowless anlog of the WHH-4 is the BLEW-6 sequence.3 For
quadratic terms aa, a transition aa + BB has the average Hamiltonian
(aa+8B)/2 + (1/x)aB if avf and aa if a = 8. For the ZZ term the
transition ZZ + aa has the average Hamiltonian

#% - [(a,2)2/2 + az/x (a =x,y) (3.33)
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Fig. 3.4 A trajectory over which the ZZ term is averaged out.
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whereas for aa = ZZ
#0 -2z . (3.34)
I1f pulses are to be applied only along the x, y, X, and ¥ directions
Eq.(3.34) is irrelevant. The first term in Eq.(3.33) is a quadratic
term and therefore must be averaged to zero via Eq.(3.32), whereas the
second one is a cross term and must be balanced by a term proportional
to -aZ. These two averaging requirements are independent of each
other, so a multiple of six steps is required to make #9) o vanish.
One such a trajectory is shown in Fig. 3.4.
It is observed that:
(a) To ensure the isotropic averaging, Eq.(3.32), a trajectory
must traverse x, y, and z = *1 equal number of times, and
(b) Each quarter segment of a great circle must be balanced by an
adjacent segment of the same circle.
There are eight trajectories equivalent to the one shown in Fig.3.4,
associated with eight octants. There are six different ways of covering
‘the trajectory in Fig.3.4. In terms of the notation of Burum et.al.d
these are
(ZX) (XY) (¥X) (XZ) (ZY) (¥Z)
(ZX) (XY) (Y2) (ZX) (XY) (YZ)
(ZX) (XY) (YX) (XZ) (2Y) (YZ)
(ZX) (XY) (YZ) (ZX) (XY) (YZ)
(ZY) (YX) (XZ) (ZX) (XY) (YZ)
(ZY) (¥YX) (X2) (ZX) (XY) (YZ)
all with a scaling factor equal to 2/5/3x, identical to BLEW-6

sequences., Overall there are 8x6 —~ 48 sequences that are equivalent to
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BLEW-6 sequences.

(iv) Other bilinear terms

Other quadratic terms XX and YY are also removed via the
isotropic average if § pulses are used. The configurations
((X,Y,2),(Y,Z,X),(Z,X,Y)) can be reached either by pairs of 90°
rotations around the coordinate axes or by 120° rotations around the
cube body axes.

Terms XX and YY are simply obtained from ZZ by 90° rotations
around x or y axes respectively. Thus to average XX, for example, with

windowless sequence one notes

7(0) 1.t
ﬂzz -0 = J'oup,ét) 27 Up.it)dt

- P*I’ rul ot xxru (opf acp
Y. y p.zt Ty

, 3.35
0 'yop,z y ( )

y

where Py is a 90° rotation around y axis. Therefore, the trajectory of

XX(t) that satisfies

#0_ |r 4t -
ﬂxx Io Up,x(t) XX Up,x(t) dt = 0 (3.36)
may be obtained from

u =P U Pt.
p'x )' p'z y

(3.37)
Thus the removal of any one of the three quadratic terms is simply
related to the others and basically involves the same procedure. The

removal of all three quadratic terms involves two stationary points
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XX ,YYy.,2Z

XBL 872-9569

Fig. 3.5 Trajectory the three billinear operators XX, YY, and ZZ

traverse under the windowless sequence (x y 2)2.
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(b)
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Fig. 3.6 Trajectories of the three linear spin operators under
the 12 pulse sequences (a) (Y x y i)s and (b) (xy X y)s.
The average of I, under the first sequence is along the
(1 1 1) axis, while it vanishes under the second

sequence.
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even though the same number of six steps are needed and Fig.3.5 shows
one such trajectory, resulting from the sequence (xyz)z.

A cross term is to be removed by adding an inverse. In any
configuration (a,B8,7) the number of negative cross terms is either zero
or two. In other words, it is an even number. Thus a multiple of four
configurations is requi?ed to remove all three cross terms. The removal
of all six bilinear operators requires therefore at least 12
configurations. The corresponding 12-pulse sequence is a zero-field
analog of the WHH-4 sequence. If a windowless sequence is employed, 24
90° pulses are needed to remove all six bilinear terms, corresponding
to BLEW-6 sequence for high field.

The use of 12-pulse sequences will be discussed in connection to
decoupling experiments in a later chapter, and they deserve some more

discussion which is given in the next section.

I11.4 The 12-pulse seguences

There are three types of 12 90°-pulse sequences which are zero-
field analogs of the high-field WHH-4 sequence. The first group
contains z and Z pulses as well as pulses along x and y axes. A few
examples are

(xyzxy 2)2,

(Z Vi x)2, and

<l
®
N

<

N|

(yzZxyz x)2.

The remaining two types of sequences have a common structure of



<

™|

<l

=i

<

1

Table 3.3 Averaging of linear and bilinear operators under

- =3
(Y x y X) sequence.

X Y z X Yz ZX XX-YY YY-ZZ 2ZZ-XX
-2 Y X -YZ XY -ZX 22-XX YY-XX XX-ZZ
-z X Y ZX -XY -YZ2 2Z-XX XK-YY YY-ZZ
Y X Z -XY -ZX YZ YY-XX XX-ZZ ZZ-YY
Y z X Yz ZX YX YY-zZZ ZZ-KX XX-YY
-X Z Y -ZX Yz -XY XX-2Z ZZ-YY YY-XX
X -Y Z XY -YZ -ZX XX-YY YY-2Z ZZ-XX
Z -Y X -¥YZ -XY ZX 2Z-YY YY-XX XX-2Z
Z X Y ZX XY YZ ZZ-XX XK-YY YY-22
Y X z -XY ZX -YZ YV-XX XX-ZZ ZZ-YY
Y -z X Yz -ZX -XY YY-2Z ZZ-XX XX-YY
X -z Y -ZX -YZ XY X{-2Z ZZ-YY YY-XX
X Y z XY Yz 22X XX-YY YY-2Z ZZ-XX
0 051;;7;0 0 0O 0 0 0

S = 1//3

I = (1x+1y+1z\/J3

73
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Table 3.4 Summary of averaging of operators for windowless

sequences

Sequence® X Y Z XY YZ ZX XX-YY YY-ZZ ZZ-XX

(xyxy) > o1, ;0 o o o -u¥
yxy)® 14970 0 0 0 0  4A_jqq -2A59 -2A_qq; Group
(xyxy)® 01,300 0 0 0 -6A)4; 2454, 245, (a)
(xyxy)® 1337 0 0 0 0 0  4Ayq; -24yy; -2A1q,

.......................................................................

(Xyxy) 0 01,0 0 0 0 0 -6A1_17 6Ay.11
(xXyxy)*® 0 01;;,, 0 0 o0 0 -6A1;_7 6Ay7.; Group
(xyxy) 0 01,74 0 0 0 © -6A177  6A177 b)
(xyXy) 0 0I;;,7 0 0 0 0 -6A_111 6A_111

* . .
Only representative sequences in each group are given.
0.0 = (I, + I, + 1,)/3, ete.

#
Ay = (Iny + 1,15 + I31,)/12, etc.

y
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(a B a' ﬁ')3, with a and B being orthogonal and applied along +x or ty
axes. a may or may not be equal to a’'. So is with g and B8'. These have
intimate connection to the broadband decoupling sequences to be
discussed in the next chapter. Two representative pulse sequences, one
from each group, are (¥ i y i)3 and (x y X y)3, and corresponding
trajectories for linear terms are given in Fig.3.6.

It can easily be seen that for the sequence (§¥ x y 5)3, I, - Iy
= 0and I, = S I;y;. The scaling factor S is 1//3 for the § pulse case
and 4/(x/3) for the windowless case. The averaging for this sequence is
shown in Table 3.3. For the sequence (x y X y)3, I, - T& = 0 and Ty -5
I.91.10 with § = 1//3 and 1//3(2/%x+1/2) for § and windowless cases
respectively. Table 3.3 also lists configurations reached during the
sequence. The average v.lues of various terms resulting from windowless
sequences are summarized in Table 3.4.

It is interesting to note that the average value of quadratic
terms aax - 88 (e, = X, ¥y, or z) all have the same form (af + By + vya)
if the trajectory of the nonvanishing linear term is in an octant
spanned by (a B8 v). It is also seen that even though each 12-pulse
windowless sequence does not remove the bilinear terms, it is possible
to do so by combining two suitably chosen sequences such as (X y x
y)3(x y x ?)3, thus creating the desired 24 configurations as discussed
in the previous section. However, no two sequences from group (b) can
make all the bilinear term vanish. However, it can be shown that 36-
pulse sequences such as

GryxzyzN3ixzx 2

can make all bilinear terms vanish. For clarity, a few examples of



Table 3.5 Average values of operators resulting for group (b)

sequences

X Y Z XY vz ZX X-YY Yy-zZ ZZ-XX

Gowo® o o 13;; 0 0 o0 0 -6* 6
(Xzxz)® 0 I;;; 0O 0 0 O -6 6 0
(Zyzy)® I;11 O O 0 0 0 6 0 -6
Gx® 0 0 I.434, 0 0 O 0 -6 6
(xzxz)° 0 -I;470 0 0 0 -6 6 0
(Zyzy)® -I1.4.41 0 0 0 0 O 6 0 -6

#Same as in Table 3.4,

*
Aaﬁ7 is suppressed for simplicity.



sequences with average values of operators are listed in Table 3.5.

In order to see the relationship between 12-pulse sequences and

high-field iterative pulse schemes, it is necessary to have a brief

review on the latter, which is the subject of the next chapter.
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CHAPTER IV, Iterative Schemes in NMR

IVv.1. Introduction

In NMR iterative schemes have been widely used ranging from the
design of error compensated pulses for broadband excitation to selective
multiple-quantum excitation. There are several extensive reviews
available.l-® Consequently this chapter will focus on only some limited
aspects of the iterative schemes: basic ideas behind broadband
decoupling schemes such as the HLEV,7 and the Waugh schemes® for single-
spin cases. Then an extension will be made to take the homonuclear spin-
spin coupling into consideration.

In previous chapters the assumption has been made that the pulses
are much stronger than internal Hamiltonian termzs. Mathematically, it
corresponds to

M#; e llee <1, (4.1)
where t, is the cycle time of the sequence. Even for windowless
sequences experimental results on high field dipole-coupled systems9
show that the 90° pulses with widths up to 6 psec were successful before
the quality of the experimental results degraded. That corresponds to
approximately 40 kHz for proton decoupling field strength. However,
there are many samples which are polar or ionic so that the "lattice" of
the sample absorbs the energy from the decoupling field. The heat thus
generated in the sample not only damages the sample but also causes

decoupling field inhomogeneity via thermal expansion of the decoupler

coil, The temperature effect will be discussed in more detail later in a
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section on spin-decoupling in liquids.

In order to achieve better resolution spectrometers with higher
fields are being used. This means that the spread of chemical shifts to
be decoupled is bigger. ansequently, the goal of modern decoupling
schemes is to decouple broader bandwiths with minimal expenditure of
deccupler power.

As the lower decoupler level 1s used, the magnitude of the
resonance offset term becomes comparable to that of the decoupling
field. Using AHT with the offset term included in the internal
Hamiltonian would quickly become inaccurate as Aw/w, gets bigger. For
this reason, it 1s desirable to consider the offset term as an
additional external field. In the next section a closer look at this

external Hamiltonian is given.

IV.2. Offset-incorporated Pulses

When there exists an offset with a size comparable to that of
¥.¢, the total Hamiltonian for the perturbing field may be written as

”1 - mxz + w21x, (4.2)

where the decoupling field B, is assumed to be applied along the

rotating frame x-direction and w, = y;B,. The actual rotation due to the

effective Hamiltonian ”1 is

A

1 ﬁ* * t a 1
n’ - W n’
= 2 p =
- tp( AwIz + w21x ). (4.3)

where t is the pulse width. The magnitude and the direction of the
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Fig. 4.1 The direction and the magnitude of the effective field

resulting from the rf pulse and the resonance offset.
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field is shown in Fig.4.1. Eq.(4.3) may be rewritten as

w,I
n'I ﬁ - p IA“ + w + 2°x
lAw + w IAw2 +w§
-t e, (cose 1, + sins 1)
- tp w, exp(iOIy] Ix exp(-iDIy), (4.4)
where
tanfd = Aw/w,. (4.5)
Eq.(4.4) can further be reduced to
*
nl g = wztp sech exp(iBIy] Ix exp(-iOIy]
- B sech exp(i01 ) I_ exp(-101 ). (4.6)
y % y
Hence, if ﬂrf is applied along x-direction such that
A - watp, (4.7)
the net rotation angle is
* e w ’ 4.8
B - wy tp = B sec (4.8)

and the rotation axis is

~ A A

n =i cosfd + k sind. (4.9)
More generally, when the pulse is applied along an axis rotated by a

phase angle ¢, the evolution operator for describing the net rotation is
*A
UB;#) = exp(i8n'T)
_ eiBIy ei¢Iz e-iﬁIx e-i¢1z e-iBIy. (4.10)

In practice w, is not equal to the nominal decoupler level wg. In terms
of nominal quantities labeled with the superscript "o", the actual

rotation angle can be written as
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E

fw

g5 = 8" 2L seco = p°[1+ =2 secs, (4.11)
“2 “2
where
fw, = w, - wy. (4.12)

IV.3. 1Iterative Schemes for Linear Operators

Because the effective angle ﬁ* is different from the nominal
value ﬂo and the net rotation axis is not along the direction of the
original pulse, it becomes very difficult to visualize the net effect of
the sequence of such pulses. This is largely due to the Aw term and also
partly due to pulse imperfectlions such as éw,. Thus I+ is important to
design a scheme to offset the effect of these causes of pulse
imperfection, and this is the main goal of designing composite pulses.

Now suppose a composite pulse R is designed such that the net
effect of R is an approximate inversion of z-magnetization over a wide
range of Aw:

RV 1, R~ - 1,. (4.13)
Then RR( = ¢) is an approximate cycle in the sense that

clic=1,. (4.14)
T3 common operations for constructing more highly compensated cycles
are phase shift and cyclic permutation of a certain segment of the
sequence to the either ends of the sequence. The phase shift by 180° is
an operation which inverts the phases of all constituent pulses, and is

denoted as €. It can be shown3'8 that C leaves the net rotation angle



83

and the z-component of the rotation of the rotation axis unchanged but
reverts x- and y-components of the rotation axis. Thus, provided that
the z-component is very small, € is nearly the opposite rotation of C. A
sequence CP generated by cyclically permuting R, an approximate 1800,
nearly inverts the z-compénent of the rotation axis provided that it is
predominantly bigger than x- and y- components.

Linear spin operators can be averaged out by using these
operations, and Fig.4.2 shows a systematic cancellation scheme. In
Fig.4.2.(a), the big resonance offset term is shown. The effect is
approximately removed by the composite 180° pulse R. In (b), RR is thus
a cycle with rotation axis almost in the x-y plane. Then RR is combined
with RR in (c) to give the rotacion axis along z (MLEV-4). Then RRRR,
which is obtained by cyclically permuting a R and which approximately
inverts the z-components, is added to give a net rotation axis
predominantly in the x-y plane (MLEV-8), part (d). Finally, a phase
inverted B8-pulse cycle is added to cancel x-y components, leaving only a
small z-component (MLEV-16). MLEV-4 is the first member of the family of
the MLEV sequences which has vanishingly small rotations. Hence it makes
the linear I, operator in

ﬂint - (J 8,01, (4.15)

vanish, thereby leading to heteronuclear decoupling.

IV.4 Connection to the Average Hamiltonian Theory

The switched Hamiltonian iint resulting from the irradiation on

the I spin with the composite pulse R in general has all three
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Fig. 4.2 Diagrams showing cancellation of errors by systematic

concatenation of sequences related to each other by phase
shifts and permutation of parts of the sequence. In (c)

6 denotes a very small angle.
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components

ﬂint - Jsz{a(t)Ix + b(t)Iy + c(t)Iz}, (4.16)

where a(t), b(t), and c(t) are constants. The average Hamiltonian is

H_o- JSz(aIx + I + ch], (4.17)
where a, b, and ¢ are time-independent constants and are not in general
time-averages of a(t), b(t), and c(t). The quantity in the parenthesis
in Eq.(4.17) has the same form as the residual field appearing in zero-
field experiments. As discussed in Chapter III, it can be removed with a
minimum of four configurations such as those obtained by applying the
zero-field analog of the Carr-Purcell sequence, ('“x'”z"x'”z')n'

For the case of MLEV-4 sequence RRRR, the total average

Hamiltonian is

=(0) 1fx t= inlz -inlz
i 4 ”int +R ﬂintk +e ?linte
inlzt = -ix1z
+e R ﬂintRe }. (4.18)

with #; . given by Eq.(4.17).

In general the composite 180° pulse can be written as

R = o-101z -inlx eiO'Iz' .19)
where # and #‘' are offset dependent. In other words, the rotation &axis
is on the x-y plane and the phase may vary depending upon the offset.
With the assumption that Eq.(4.19) holds exactly, Table 4.1 is drawn up
to show the cancellation of terms. a' and b' are in general different
from a and b due to Eq.(4.19).

For the zero-field sequence (-nx-n -x_-x -)n shown in Fig.4.3(a),

zZ "X "'z

the corresponding average of the Hamiltonian is
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(a)
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XBL 8711-5869
Fig. 4.3 Pulse sequences for the removal of linear terms. (a) A
four pulse sequence to remove the terms to zeroth order.

(b) Expanded sequence to re:nve the terms to first order.
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7(0)_ -1

X

1

1 -1 -1 -1 -1 -1
4[}[ + L ¥ wx+ L # L + x LI # “x’zﬂx]' (4.20)

Because n_n_, = x,n_ and with the third and fourth term switched,

zZ'X X'z

Eq.(4.20) can be reduced to

=(0 1 -1, - -1 -1 -1
ﬂ( ) . Z[ﬂ + ﬂkx + L ﬂnz torw ﬁkxﬂz . (4.21)

which is equivalent to Eq.(4.18), since in zero-field the phase does not
enter and thus x, is equivalent to R.

Making ﬁ;;% = 0 can be achieved by symmetrizing the sequence,
which is shown in Fig.4.3(b). As is discussed previously, R is
equivalent to zero-field x,. Then the second half of the eight-pulse
sequence, (-x,-x,-%, -7 -) can be obtained from the original four-pulse

sequernce b ermuting a x_ to the right end of the sequence, i.e.
Yy P g X (-4 q

ﬂ-l(ﬂ AAXIN =X XRX ., (4.22)
X "xzxz''x Z Xz X

In the high-field language, Eq.(4.22) can be shown to reduce to

R(RRRR)R - = RRER. (4.23)
Hence the eight-pulse sequence is equivalent to the MLEV-8 sequence. The
procedure can be carried out further to show that 16 steps are needed to
average out the second order average Hamiltonian term which contains
coefficients such as a2b, ab2, b2c, etc. Showing the cancellation is
straightforward, but will not be discussed in more detail.

While some connections have been made between high-field
iterative schemes and zero-field multiple-pulse methods, the difference
should also be noted. Firstly, the generalized Hamiltonian with the form
given by Eq.(4.17) is a result of the pulse sequence rather than the
original Hamiltonian. The original high-field Hamiltonian commutes with

I,, and thus is invariant to phase shifts. By contrast, the original
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low-field Hamiltonian originationg from the residual field does not
commute with I, . This remark is true also for the Hamiltonian including
bilinear terms.

Secondly, the connection was possible only for the §-function
pulse cases. It should be.reminded that for the case of windowless
sequences, a minimum of 16 configurations is needed to average out the
linear terms to zeroth order, rather than four configurations. Hence it
is difficult to make a connection between the high-field iterative
schemes and the zero-field multiple pulse sequences. The most important
difference arises, however, from the fact that the time-averaging of the
coefficients of Eq.(3.14) is in general different from that of the
switched spin operators given by Eq.(3.15). Except for some special
cases such as discussed in the last few paragraphs the sequences for
averaging the the basis spin operators are not the same as those for the
coefficients of the spin operators. Furthermore, the sequences designed
for decoupling spins in liquids and liquid crystals use low decoupler
power to avoid excessive sample heating, so the arguments for the &§-
function pulses are not suitable for these cases.

Finally, the design of multiple pulse sequences requires detailed

calculation of terms appearing in the Magnus expansion,10

whereas the
modern decoupling schemes use certain machinary which guarantees better
averaging, without detailed calculations as the sequences are expanded
iteratively.

The iterative schemes for heteronuclear spin-decoupling developed

to date are aimed at removing an isolated I-5 spin pair. However, in

decoupling heteronuclear spins there are cases when interactions between
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homonuclear spins need to be removed as well. Schemes for the single
spin cases are found to be inefficient in decoupling when there are
homonuclear couplings. Therefore, the development of schemes for
averaging linear and and bilinear operators is necessary, and it is the

subject of the next seztion.

IV.5. Schemes for Removing Linear and Bilinear Operators

A. The construction of basic sequences

When there are bilinear terms, operations such as phase shift and
cyclic permutation commonly employed in single-spin decoupling do not
behave as simple rotations. Detailed average Hamiltonian calculation may
be employed to design a highly compensated sequences. However,the
calculation, considering that low rf-field is used, can quickly become
unwieldy as one goes to higher order calculations.

A method to obviate these complicated calculations and obtain a
scheme for averaging both linear and bilinear operators is to decompose
the total propagator into rf part and the perturbation:

U(t) = Urf(t)Uv(t). (4.24)

The discussion on the specific form of U ¢ is deferred to a later
section. Here it suffices to state that Urf is a some broadband
composite pulse without phase gradient. To be more explicit, Eq.(4.24)

can be written as
ue) = U_(r) Jexp(-1f" ol ¢y U (¢ at’) (4.25)
rf P70 “rf int “rf ' :

The exact form of U,(t) given by the second exponential in Eq.(4.25) may
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not be known, but in general it can be expressed as a single exponential
with the exponent expanded in terms of basis operators. 1If ﬂint contains
a homonuclear coupling term between two spins I, and I, as well as the
offset and heteronuclear coupling terms, the basis operators span a 15-
dimensional space: six aséociated with linear operators and nine
bilinear operators.

Now suppose the total evolution operator is composed of a product

of n evolution operators having a same duration r:

U(nr) = Urf,n(')Uv,n(') """ Urf,l(r)UV,l(f)' (4.26)

Also suppose that the evolution operator for a composite pulse with an
overall phase ¢ = 0 can be written as

U (r) = Urf,O(f)Uv,O(f)' (4.27)
Then with the notation

¢, = exp(-i¢1,), (4.28)
the evolution operator associated with a pulse having a phase ¢ becomes

U,(r) = U

4 rf,¢(f) Uv,o(’)

T .t
= U g 4(n) Uexp(—ijlo Upe o(8) Hy oo U ((6) dt)
- ¢1 U (r) ¢ x
z rf,0 z
r .t ot 1
ﬂexp(-ifo ¢z Urf,O(t) ¢z ﬁint ¢z Urf,D(t) ¢z dt]‘(4'29)

Since #;, . is a high field Hamiltonian,

[ 1, , Hpe 1 =0, (4.30)

and Eq.(4.29) reduces to
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U (r) = 8] U (1) ¢ 6] Texp(- IO rg,008) Hp Upp o(0) dt)g,

t t
- {¢z N ¢z}{¢z U, 5 () ¢z}. (4.31)

In passing, it is worth noting that Eq.(4.30) does not hold for the
zero-field Hamiltonian. So the present approach can not be used for
zero-field multiple-pulse calculations.

At any rate, each element of Eq.(4.26) is simply related to U, by
the phase shift ¢,- The evolution operator U(nr) can now be rearranged
such that the total evolution operator due to the rf-field Hamiltonian

appears on the left :

1) U U U
tf,4 v, T4, V.4,

- g gy ® { u® Dy { p®-1)

p=1

(n)
oA N | I . (4.32)

where J is the time-ordering operator,

(n)

Upg = Urf,¢n Urf,¢1 , (4.33)
and

=~ -1 tyu (p 1)

UV,¢ Ut u, ¢ { (4.34)

P

with

(0)

U -1 (4.35)

Since U, are assumed to be small perturbations, the time-ordered product
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in Eq.(4.32) can be expressed as a simple exponential using the Baker-

Campbell-Hausdorff formula:ll

I Tl exe(-18,) - exp(-i(}kl\.k + %};OJ[A]( LAy T+ ). (4.36)

Thus to first order the condition for the heteronuclear-decoupling

reduces to finding phases ¢, such that

EkAk -0 (4.37)

for single-spin systems. However it may not be necessary to satisfy
Eq.(4.37) for two-spin systems (systems of two coupled homonuclear spins
each of which is also coupled to a nuclear spin with a different
gyromagnetic ratio). It has been argued12 that a non-vanishing offset-
independent Hamiltonian, having large components orthogonal to the
residual offset term, could quench the offset term, making a more
favorable situation for deccupling. Hence, a natural choice for the
offset-independent Hamiltonian for systems having both linear and

bilinear terms, for example, in liquids is

}; Ak - 2rJIl‘12. (4.38)

It would be instructive to discuss first the cancellation of
linear terms only, since it would make a connection to the methods of
iterative schemes discussed in the previous chapter. Consider the
sequence UUUU, where U is a composite 180° pulse along the x-direction
without phase distortion. The “"imperfection" term U, during the
composite pulse U may in general be written as

U - exp(exlx +el +¢ (4.39)

1].
Yy z'z
The cancellation of these linear error terms during the sequence is

shown in Table 4.2.



Table 4.2

Cancellation of Linear Spin Operators by the Sequence UU U U

State Operator
I, Iy I,
1 €x € €,
2 €x -€ -€

95
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It may appear that the current method is equivalent to the
methods discussed in the previous section. However, the current method
has the following advantages:

1) Any compososite pulse can be substituted into U ¢.

2) The evolution operatérs with phase ¢ are simply related by
Eq.(4.31).

3) No calculation is needed for U, and sequences satisfying Eq.(4.37)
can be found rather easily, and

4) sequences can be improved mechanically by some iterative schemes.

The advantage labeled 1) will fully be exploited in finding
practical sequences, and 4) will be discussed later on. Due tc
advantages labeled 2) and 3) sequences for removing linear and bilinear
operators, except the scalar operator given by Eq.(4.38) have been
easily found employing integer arithmatic on the computer.

If only 90° pulses along the four quadrature channels ix and ty
are employed, there are 64 12-pulse sequences found that satisfy
Eq.(4.38). No sequences with less than 12 pulses are found, agreeing
with the ealier discussion that a minimum of 12 pulses is required to
average all linear and bilinear operators except the scalar. If the
pulse sequence begins with an x pulse, there are 16 sequences and these
are listed in Table 4.3. The first four sequences consist of three
identical subunits of four 90° pulses and the rest consist of two
identical subunits of six 90° pulses. If there are no pulse
imperfections present, the six pulse subunit consists of 180° rotations
around the x, y, or z axis, while the four pulse subunit is equivalent

to 120° rotations arvund one of the "magic" axes. It can be shown that



Table 4.3 Windowless Sequences

Operator

(L) XYXYXY
€3] XYXYXY
3) XYXYXY
(4) XYXYXY
(5) XYXYXY
(6) XYXYXY
N XYXYXY
(8) XYXYXY
(9 XYXYxyY
(10) XYXYXY
(11) XYXYXY
£12) XYXYXY
(13) XYXYXY
(14) XYXYXY
(15) XYXYXY
(16) XYXYXY
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the sequences (1)-(4) are simply r:lated to each other by phase shifts
and cyclic permutations. If these operations are assumed to be fairly
accurate, the sequences (1)-(4) would give identical performance. The
same is true with sequences (5)-(10) and (11)-(16). Consequently, there
are three distinct representative sequences
(xyE)®, (eyny®y)*, (xyxyny)”

To see how these sequences work, take an example of (xyiy)s.
Table 4.4 shows the systematic cancellation of linear and bilinear cross
terms wh’'le preserving the scalar during the sequence.

Eq.(4.38), however, cannot be satisfied with 180° rotations and
180o phase shifts because Ilalza are invariant to these operations, and
with 180° shifts €ex 1S always tied to I,,I, throughout the sequence.
So far no assumptions have been made about the size or the relationship
among coefficients €. If the composite 180° pulse has the property of
making the coefficients associated with the guadratic terms Iial2y
nearly equal, or there are some relationships among coefficients that
are favorable for averaging these quadratic terms, one may as well use
these sequences with 180° operations. Detailed discussion on these and

other practical aspects are deferred to a later section.
B. Expansion Procedure
B.1. Single spin case

It was shown that C, = U U U U removes errors of order ¢, but

errors of order e’ remain originating from the commutator in Eq. (4.36).
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Table 4.4 Systematic cancellation of Spin Operators by the

12-Pulse Sequence (X YX YXYXYXYXY

Operator
X y z Xy Xz yz yx zx zy XX yy zz
ex Cy Ez Exy Exz Eyz ny sz Gzy Exx Cy_y sz
"€y T€z fx  fyz  “fyx  TCzx €2y “fxy “fxz €yy €2z xx
Ez 'Cx -Cy ‘sz 'Czy Exy 'Exz 'eyz ny EZZ Cxx ny
“fx "¢y €z fxy “fxz “Cyz €yx  "fzx “fzy €xx fyy  €zz
'Cy Ez 'Ex 'Cyz ny 'sz 'Czy C}{y ‘Exz €y_y sz Cn
Cz Cx Cy sz Czy 51)' C,xz Cyz ny sz Cxx ny
Cx “Cy "Cz ‘ny 'ze Cyz 'ny ‘sz Czy Cn ny sz
Cy Cz Cx Cyz ny sz Czy 5){y Exz Cy_y Gzz Cu
'Cz -ex Cy sz 'Czy ‘e){y Exz 'Eyz ‘ny sz Cxx ny
ex €y "€z “exy ez  “fyz  “fyx €2x  “Czy €xx €y €22
ey 'Cz 'Cx -Gyz 'ny ezx 'Czy 'Cw sz ny sz Cxx
'Ez €x 'fy "ezx Ezy 'ny -ze evz ‘ny ezz Exx ny
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The next step of the expansion procedure is the cyclic permutation of U
and concatenation with the original sequence to give

C3=UUTUUUUUT. (4.40)
It is easily verified that if the errors of 0(53) are neglected, the
last four pulses are obtained from the original sequence of four pulses
by 180° rotation around the x axis. Thus they should also cancel the
linear terms. It is straightforward but tedious to calculate the
commutator in Eq.(4.36). These are error terms of order e? originating
from the cross product of ¢ and it can be shown that they vanish for
the sequence Cg, leaving errors of O(es).

The analysis can in principle carried out further to show
systematic cancellation of higher order terms. However, the procedure
quickly becomes intractable: if symmetry of the commutator is not taken
into account, there would be 360 commutators to calculate in the next
stage of the expansion, i.e. the 16-pulse sequence.

A much more manageable and mechanical way of achieving
cancellation is once again to group the residual errors in one

exponential:

= UrvaUrva rf vUrva

= o (2 (2
UrfUrfUrfUrva Uv ' (4.41)

where

v - exp(-ii(z)' I] (4.42)

with () denoting the error of size “5(2)" - 0(52). Eq.(4.40) can be
considered as the first configuration in the Table 4.2. One problem in

generating other configurations with the above method is that the
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product of 180° rotations U ¢ does not generate a fixed pointa'S'l3 of
next stage 180° rotation but generates an approximate unity operator
instead. Thus the 180° rotation must be generated in some other way. One
such a method is to approximate the 180° rotation by cyclically

permuting U:

ﬁuuu-ﬁ(uuﬁﬁl)ﬁ
= (2)=-1 =-1
Urf Uv U Uv Urf
= (2) =-1
Urf v Urf' (4.43)

where the errors of O(cs) have been ignored. Eq.(4.43) corresponds to
the second configuration in Table 4.2. However, c(z) are not arbitrary
but have certain symmetry originating from the commutator in Eq.(4.36),
which has been fully exploited in removing errors of O(cz) as discussed
in the paragraph following Eq.(4.40). This point may also be argued from
the observation that the sequence U U U U can be derived from U U U U by

either a 180° phase shift or a cyclic permutation of U U. Consequently,
T 55 u® Tyt =u?, (4.66)
v v v

neglecting errors of O(cs). For Eq.(4.44) to hold ciz) and e§2) must be
much smaller than eéz). In other words, c§2) and €§2) are of O(cs) and
eéz) is of 0(e’). Also, the eight pulse UU U T U U U U cancels eéz),
leaving an error of O(es).

The above arguments imply faster convergence of the present
scheme. Namely, the third and fourth configurations in Table 4.2 are
easily generated by an exact phase inversion and a cyclic permutation
accompanied by a phase inversion (accurate to O(cs)) respectively. The

resulting sequence is
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ca-uuﬁﬁuuuﬁﬁﬁuuu‘ﬁﬁu, (4.45)

the MLEV-16 sequence. The product of U ¢ is again a unity operator. It
can be provedl'3 that the residual error is of O(e‘). Therefore, the
present expansion scheme C; —>C, ——> C¢ (a 64 pulse sequence) —> °°-
makes the error term converge as rapidly as 0(62) —_— 0(5‘) —> O(es)
—_ O(ezn) after n-th iteration. The convergence is much more
favorable than 0(en+1) which would result by combining various subeycles

in an arbitrary order.
B.2. Two-spin case

If an expansion procedure for the two-spin case is built upon the
apparent analogy to the single-spin case, it would be a 12-fold one.
However, it can be shovm that the two operations of cyclic permutation
and phase shift do not generate all 12 necessary states. More
specifically, Eq.(4.44) does not hold. Even if the next stage of the
expansion with 144 pulses iz found, there will be of little practical
use of it because other effects such as relaxation would become
important for such a long sequence. It thus is desirable to find schemes
to generate shorter sequences. Fortunately, analogous to the diszussion
following Eq.(4.40) for a single spin, there also exist relationships
among coefficients ¢ for the two-spin case.

With cyclic permutations and phase shifts 64 12-pulse sequences
are generated from the three representative sequences mentioned
previcusly. Hence, for example, following constraints can be found for

— .3
(x ¥y £ y)  sequence:
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2 @@
x y z

2 @ @

Xy yz zZX

2 @ @

¥x zy . RZ

L& @ @ (4.46)

XX Yy b4-4
vwhere errors of O(es) are neglected. The relationship among the
coefficients for the sequence (x y x y x 7)2 is:

D2 2 (4.47)

b3 z
This then implies the possibility of adding certain 12-pulse sequences
in a spirit quite similar to the construction of MLEV-8. An example of
a 24-pulse sequence constructed this way to satisfy Eq.(4.38) is

(xyxyx y)z Xyxyx y)z. There are other 24-pulse sequences which
do not fit the category described above, but still satisfy Eq.(4.38).
With a phase shift confined to 90° between each element, there are 511
sequences which are not related to each other by either cyclic
permutations or phase shifts. They are listed in Appendix 3. Some
examples are:

XY XYy XYyXYXYXFJFXYXYyXYXYXYXY (4.48)

vhich does not have an obvious structure, and

xyXyxyxy® (4.49)
xyxFxy) ' Eyxyxy’ (4.50)
EN'EH'E P, (4.51)

which have definite subunit structures.
The iterative schemes discussed in ttis chapter and the se juences

given above will be utilized in the next chapter, where heteronuclear
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decoupling in liquids and liquid crystals are treated.
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CHAPTER V. Broadband Heteronuclear Decoupling in the Presence of

Homonuclear Interactions

V.l General Theory of Heteronuclear Decoupling

The iterative schemes in the previous chapter have been discussed
with a view to heteronuclear decoupling of a spin I from an S spin. §
denotes the spin under observation and a typical example is a carbon-13,
while I denotes the spin which is irradiated with a decoupling field and
a typical example is a proton.

According to Waugh,1 decoupling of an isolated I-S pair can be
completely analyzed by observing the behavior of the I spin under the
irradiation without the necessity of considering the S spin. The
criterion for the efficiency of decoupling of I from S (I = S = 1/2)
over a certain bandwidth is that the net rotation angle (¢) the spin I
undergoes should be insensitive to the offset (§) within the bandwidth.

Mathematically, the residual splitting of the S spin spectrum is given

by

124 _, 88
A5(5) JIS tr as JIS a6 .1

where JIS is a coupling constant between spins I and S, t, the net time
of the periodic sequence, and Q@ the average frequency during t,_.

If there are interactions between two I spins-1/2 or if there is a
quadrupole interaction for the spin I * 1, it is no longer possible to

treat the behavior of the system of I spin(s) as a three-dimensional
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rotation. Since the average frequency Q1 is equal to the energy times
1/f, the most general decoupling criterion should be expressed in terms
of the effective energy or equivalently of the average Hamiltonian over
the irradiation period t..

In the past few years some of the important developments in
heteronuclear decoupling for multi-level systems have been made. The
following is a general theory of heteronuclear decoupling in a form
somewhat different than the treatments of references 2 and 3.

First consider the Hamiltonian in a rotating frame on resonance

for the S spin given by
B+ Hyg o+ Hpo 4 ﬂ‘I’f(t). (5.2)

Now suppose the initial density operator for the § spin is given by
p(0) = Sy, (5.3)

then the signal of the S spin S~ suitable for the quadrature detection

is given by
S-(ntr) - Tr{(Sx -1 Sy) U(ntr) Sx UT(ntr)}. (5.4)

Since the terms depending only on the I spin commute with the § spin
operators, these can be factored out of Eq.(5.4) by using the

transformation
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U(e) - UI(t)UIS(t)' (5.5)

where
It rf, ' '~
UI(t) = exp(-ljo {HI + HII + HI (t )}dt J (5.6)
is the pure I spin propagator and
U, (t) = T exp- I (t ) Hpg I(t yae'). (5.7)
Eq.(5.4) now reduces to

$™(nt ) = Tr{(s - 18 ] Up(e) Upg(t) s, U}:(tr) U{n(tr)}

n in
- Tr{[sx -1 sy] Uls(t) stIS(tr)}. (5.8)
Perfect decoupling is achieved when
1s(E) S, UT G(t) = 5. (5.9)

This in turn means
[ U1g» 8,1 =0, (5.10)

which can be satisfied only when Ujg = 1. This is because #ig in the
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high field Hamiltonian in Eq.(5.7) may be written in the form
#o = (2 JjIjz)Sz , (5.11)

and the evolution operator in terms of an average Hamiltonian defined by
o - - ¥ - -3 h
Upg(t) = exp(-it # ) = exp(-1z b 5 ) (5.12)

satisfies Eq.(5.10) only when EI = 0, and then the Fourier transform of
8" will consist of a single peak.

To facilitate the calculation of the spectrum under a less perfect
decoupling condition, it is desirable to divide the average Hamiltonian

iIS into two commuting parts:

#;g = hyS, = p,h, + ph_, (5.13)

where

(5.14)
is the S spin projection operator, and

h, =%

Naj =

hI. (5.15)

Then, with the properties

n n
P,=P.,P_ =P, PP =PP -0, (5.16)

it can be shown that
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UIS(tr) - p+exp[-itrh+) + p.exp[-itrh_]

-p U +pU. (5.17)

Eq.(5.8) now becomes

s'(nt ) = Tr{[sx -1 sy] (p,u} + p U7 Sx[p+U1n+ p_uf“]}, (5.18)

where
n n n
(U, +p UO" =pU +p U (5.19)
is used. With some algebra it can be shown that
s"(nt_) = Tr(ufut™). (5.20)

Thus 8~ is known once EI is calculated in the basis set which
diagonalizes EI' or calculated perturbatively in the eigenbasis set of
the Hamiltonian generating the evolution operator U;. The result is (in

A units)

s (nt) - }kflexp{-i t (&, - ck_)} (5.21)
wheze N is the total number of states and Gki are eigenvalues of h; in
the k-th state. Thus the spectrum consists of maximum W peaks positioned
at (G, - &)

Suppose for simplicity all Jj are equal and equal to Jig in

Eq.(5.11), and approximate Urg to first order, i.e.

uiglen) = -ie0(%s, - exp[-ijgr ule) Hg Up(e) d).  (5.22)
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The righthand side of Eq.(5.22) is in fact the first order correction®

to the (fictitious) I spin Hamiltonian defined by
I
U (e) = exp(-1t F). (5.23)

The total I spin Hamiltonian may be written in terms of this fictitious

Hamiltonian as

I I, 3

- 7+ Jis hyg- (5.24)

From the Rayleigh-Schrédinger perturbation theory5 the energy for # in

k-th state ¥, may be expanded as a power series of Jigt

+ - (5.25)

Similar to Eq.(5.13), Eq.(5.24) may be rewritten as

W o= p K, +p E_, (5.26)
where

Hy = B+ 172 3o, (5.27)

with corresponding energies in k-th state

J
1S
E. = + =2
Here §; is a shorthand notation for offsets { &5,, 65,777, Sj."'}- The

total energy may be expanded as
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J J
Is Is
~ (b1 ¥ I1s5) m R E G+ 50 +p By - D)

3E, }J [ 3E. J
k|'1s . ... ! B ' e
- P+{Ek(51) + an] 7t } A EACEY [aal] 7 * }

2.
k] J . |8 Ek
IS ...
- Ek(SI) + JIS[—]SZ + =57 [— + . (5.29)

a6 2
I 861

P

From Eqs.(5.22), (5.25), and (5.29) it follows that

JE
0] £(0) (0) (1) Pk
<Wk I hI SZ IWk > m JISEk - JIS[HSI]SZ' (5.30)

The generalized scaling factor A may be defined as?

9By
Ak - [5_6-;] (5.31)

In view of Eq.(5.21), the expectation value <W£°)| F%o)l W£°)> in
Eq.(5.30), although approximate, determines the position of the peaks.
Consequently, once again the scaling factor Ap is the measure of the
splitting in the S spin spectrum. Within the validity of the A-
approximation, perfect decoupling requires A = 0 for all offsets §; =
{(6;, 62,“', 6j,"‘). In other words, the decoupling sequence must
create a fictitious Hamiltonian which is offset-independent.
Furthermore, as discussed in section IV.5 the offset-independent
fictitious Hamiltonian does not have to vanish.

Theoretically speaking, Eq.(5.31) requires a multi-dimensional

calculation. However, any decoupling sequence which performs well within
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its decoupling bandwidth should create offset-independent fictitious
Hamiltonian. Therefore, only the slice

by =byg =" =5 =0 (k¥ j) (5.32)
needs to be investigated. For a single-spin case there is only one index
in Eq.(5.32), and consequently there are two eigenvalues originating
from a (2 X 2) matrix. With the identity E, = Q for this case, it is

straightforward to show that

o
"3

k=1,2 (5.33)
so there are two scaling factors, whereas there is only one Waugh

scaling factor resulting from Eq.(5.1):

aa

A = % (5.34)

The difference stems from the fact that the generalized scaling factor
gives the actual line positions while the Waugh scaling factor gives the

frequency difference between two parent lines.

V.2. Applications to Heteronuclear Decoupling for a I = 1 and

S = 1/2 System in JT.lquid Crystal Samples.

Fung et. al.® have made an extensive comparison among various
decoupling sequences developed for liquids by applying them to liquid
crystal samples. They also sugpested some decoupling sequences of their
own, called ALPHA sequences. All sequences for the single-spin
decoupling tested failed, and their sequences along with a few Waugh
1,7

sequences showed performance somewhat better than that of the single-

spin decoupling sequences. Nontheless, the whole experimental results
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are far from satisfactory and their sequences are not backed by theory.
Proper decoupling sequences for the above mentioned case can be

developed by applying the principles founded in the previous sections.

For concreteness, conside; the Hamiltonian for a system consisting of an

I1=1andas=-1/2:

2 2
#=- SIZ + wQ(Iz - 5) + DISIzSz' (5.35)

where § is the offset, wq the quadrupole coupling constant, and D;g the
heteronuclear dipole-coupling constant. Indirect coupling is neglected.

In principle, the Hamiltonian in Eq.(5.35) can be removed with the
sequences developed in section IV.5. In practical applications, however,
some questions arise. First, is it better to design a short, relatively
crude 90° pulse and improve decoupling performance by expanding the
sequence from a 12-pulse sequence to a 24-pulse sequence to a longer
sequence, or is it best to design a relatively long 90° pulse and
substitute it into the 12-pulse sequence? Second, how can a composite
pulse best be optimized?

The answer to these questions should depend upon the particular
system under consideration. Inspection of Table 4.4 reveals that the 12-
pulse sequence is not efficient for eliminating the linear terms,
requiring all 12 steps. Hence, when resonance offset is a predominant
term, schemes based on the 12-pulses may not be suitable. Conversely, if
the chemical shift range is small, as in the case of deuterium, and a
relatively strong field has to be applied to overcome the quadrupolar

interactions, schemes using a 12-pulse sequence may be appropriate.
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Suppose the system of interest belongs to the latter category.
This is typical for liquid crystal samples with parameters w, = 10 kHz,
wq = 10 kHz, DIS = 1 kHz, 61 ~ 500 Hz, and the linewidth = 2 Hz. Then a
scheme that is more efficient in reducing the big bilinear terms at the
cost of reduced bandwidth should be the choice. In other words, a
shorter composite pulse with a longer sequence is favorable as long as
the overall cycling rate is not unacceptably small. The composite pulse
should create less offset-dependent Hamiltonian within its bandwidth.
The procedure for oprimizing the composite pulse would require the
construction of the surface with continuous variables § and vy and the
details will not be discussed here.
Shenker et. al.® came up with sequences called COMARO-n given by
COMARO-2 = (y %)°(F x)°
comaro-4 = (v 0@ »°F 0@ N°.
For the COMARO-2 sequence a calculation similar to the one given in

Table 4.4 results

€ + €

+ €
1 1 XX Yy zz
EkAk --3€ I - 3 (eszyIz + ezyIzIy) + 3 I(1+1)

[

(5.36)
and shows quick averaging for the quadratic terms. The presence of the
isotropically averaged term I(I+l) is common to all 12-pulse sequences
explored in the previous chapter. For COMARO-2, however, still there are
terms remaining after averaging unlike those 12-pulse sequences. COMARO-
4 is, incidentally, indistinguishable to Eq.(4.50).and therefore should
average all linear and bilinear terms to higher order than the 12-pulse
sequences or the COMARO-2 sequence. Nontheless, COMARO-2 reportedly

performs as well for wg -~ 0.5 w) as COMARO-4 sequence, and outperforms
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COMARO-4 for wQ = @1 Perhaps the superior performance of COMARO-2 over
COMARO-4 is due to the remaining terms in the fictitious Hamiltonian,
which are made insensitive to offset by the composite pulseg'12
385, 320,,, 25,

partially aided by the scaling by 1/3. Or it may be due to the composite
90° pulse given above, which is optimized without including the
quadrupole Hamiltonian, therby renders irregular performance. Thus the
direct comparison between the two members of the COMARO family may not
be legitimate. It would be interesting to optimize the composite puise
with the quadrupole Hamiltonian included in the total Hamiltonian and
compare various 12- and 24-pulse sequences.

In the next section it will be shown how to optimize the composite
pulse for isotropic liquids and how to remove various error terms by

systematic expansions.

V.3. Heteronuclear Decoupling in Liquids for Scalar-Coupled Spins.

V.3.A. Introduction

Current broadband heteronuclear decoupling methodsl-10

assume that
homonuclear interactions among I spins-1/2 as well as among S spins-1/2
are negligible. Under cthis assumption, the decoupling of an isolated I-S
spin pair can be examined by looking at the behavior of the I spin alone
under the decoupling field. A good decoupling sequence should create

small net rotation angles B(+) and B(-) corresponding to states

S, = * 1/2, which the I spin undergoes under the decoupling sequence.
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There are cases, however, where these neglected homonuclear scalar
interactions cause visible residual splitting or broadening. The
interaction would be important when very high resolution is required
with low decoupler power, or when the coupling between abundant
nonequivalent I spins are rather strong. For a system consisting of an §
spin-1/2 and two homonuclear-coupled nonequivalent I spins-1/2 the

dependence of the magnitude of the splitting on the various parameters

is emperically given by3
J J
as = L I8 fenn | Aw) (5.37)
2 1 2
1B,

where J;; and J;¢ are homo- aﬁd heteronuclear coupling constants.

f(Aw; , Mw,) is a complicated function of chemical shifts and differs
from one decoupling sequence to another. Later in this chapter the
functional form of AS will be derived in a rigorous manner. Thus, given
that the coupling constants and B, are the same, the residual splitting
depends solely upon the decoupling sequence used.

In the previous section it was shown that the decoupling sequence
creates a fictitious Hamiltinian and in liquids the fictitious
Hamiltonian is given by Eq.(4.38). A less offset sensitive fictitious
Hamiltonian means better decoupling performance of the sequence used.
Table 4.4 shows, however, that the sequence itself largely contributes
to making the fictitious Hamiltinian assume the scalar form, Eq.(4.38).
In other words, the sequence does not alter the size of the coefficients
but averages them. Consequently, it is the composite pulse that largely
determines the coefficients and hence determines the offset dependence

of the whole decoupling scheme. It therefore is important to design
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composite pulses which make the fictitious Hamiltonian offset
independent within their respective decoupling bandwidths to ensure good

decoupling.

V.3.B. The design of composite pulses for two scalar-coupled spins

- phase alternating composite pulsesl:7»11

The approach taken for designing composite pulses is the use of
the Average Hamiltonian Theory (AHT). While there are numerous
approaches to the design of composite pulses for the single-spin cases,
the design for the coupled-spin case lacks the diversity of approaches
largely because the propagators manipulated with pulses can no longer be
regarded as rotations in three-dimensional space. The AHT approach is a
suitable tool for dealing with situations such as the one described
above. Even though the calculation gets complicated, the calculation of
higher order average Hamiltonian terms provides insights by showing
explicit offset-dependent terms, thereby guiding the design of the
composite pulses.

The relevant Hamiltonian for two coupled-spins Il and I,, both
spins-1/2, should in general be expressed in terms of two offsets §; and
§,. However, as argued in section V.1 examination of the surface §, = 0
is sufficient to evaluate performance of a decoupling scheme. Thus it
can safely be assumed that the second spin is on resonance and the first
spin is off resonance by §,. Then in the rotating frame the k-th
piecewise-constant Hamiltinian during T over which the decoupling rf-

field is applied may be written as
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He = Hept Vo (5.38)
where
# - (1Ko, 1 (5.39)
rf,k 27x :
and
V- 6,1,, +J 1,0, (5.40)

Eq.(5.39) indicates that the phases of the pulses with constant
amplitude alternate between x or -x axis of the rotating frame. The
phase alternating composite pulse, in the absence of J, has some useful
11(a):

properties This class of pulses produces a propagator at r = I Ty

which approximates an ideal rf pulse, i.e.

U(r) = TTk exp[—irkﬂiJ ~ elolx (5.41)

within the bandwidth of a composite pulse, thus having no phase
gradient. a can be selected at will. Pulses without phase distortiens as
a function of offset have many important applications.12

The transformation

T gt
u(r) =0, f.'lexp[-ijlo Ul VU . at), (5.42)

along with application of the AHT yields

)
(0) . 1 § m 9y (1+D) _
v -J I1 I2 + ;;— iml (- {IZZ(SinAj sina. +

Jl)
+ Izy(cosAj_l-cosAj)}. (5.43)

Here A is defined by
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&, - E;EO(-l)k o, (5.44)
with a; being the k-th nominal flip angle in the phase-alternating
sequence of m pulses a;a,a; "". The intial angle a, is assumed to be
zero. To zeroth order all intense coherent irradiation will remove the
terms under the summation, leaving the scalar interaction alone, thus
achieving the goal. However, for the decoupler level w, of about 2 kHz
the zeroth order approximation is highly inaccurate. Hence higher order
terms need to be considered. After some laborious calculations the first

order correction is obtained as:

52
W _ 1 m m
' =t (5ot Sy o)
W, T
2
61 J m m
L i COTR SN S8 [ }S by + §;>jblj ] (5.45)
sz
+ RN (1,1, -1 I )| W e, + )T ¢
2 lx2z ~ “lz 2x i >j ©1j
(‘721'

where the coefficients are

- (-1)d . 5.46
aj (-1) (aj sinaj) ( )

= DY sina, - AL - sin( - A) (5.47)
2 Ae - 4y Be1 " By
- sin(Ak - Aj-l) + sin(Ak_l - Aj-l)

b - 2 sinA,

i j-1 (5.48)

- 2 cosa, + (-1)a

j(SinAj + sinA.

] 1

- j+1 ) _1.k . s
bkj (-1) ak(sinAj sinAj_l) + (-1) aj(51nAk 51nAk_1) (5.49)

c; = 2 sina; ) - 2 sins + (-l)j+1aj(cosAj- cosA; 1) (5.50)
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ij - ('1)jak(cosAj - °°5Ajh1) + (-1)k+1uj(cosAk - cosAk_l)(S.Sl)

It is observed that the linear cross terms are created by the sequences
which were absent in the original Hamiltonian. Egs.(5.44) and (5.46)-
(5.51) are the primary equations used for designing composite pulses so
that the offset dependent terms may be minimized.

Since in general the Hamiltonian resulting from a sequence of
pulses contains all linear and bilinear terms, it would be instructive
to consider the next order correction term at least qualitatively to
see how offset dependence enters for various spin operators. To
facilitate the calculation some useful commutation rules are given in

Appendix 4. The operators that appear in VAR are: I, and 1

12 1y with

coefficients proportional to Ei/w:; the operators IixIloy: IlyI2y’

I,,15,, IlyIZZ’ and IlzI2y with coefficients varying as SfJ/w: and the

operators I1y’ I2y' I,,, and I2z varying as 81J2/w;. Here the quadratic
terms begin to deviate from scalar and linear spin oﬁerators for the
second spin, which were absent in the original Hamiltonian, are
produced. Theses linear terms can be regarded as arising from the
interaction of the first spin with the small field produced by the rf
field. In the previous section the criterion for good decoupling was
discussed; the sequence should produce an offset-insensitive average
Hamiltonian, and a natural choice for liquids is J I,'I, as the
remaining Hamiltonian. Now the average Hamiltonian calcultion dictates

that for a composite pulse to render a perfect decoupling, which

corresponds to making all §,-dependent terms vanish, it is inevitable to



121

have JI, I, remaining. It therefore appears that achieving homonuclear
decoupling and heteronuclear decoupling simultaneously is an
unrealistic goal.

Contrary to the liquid crystal case, in the decoupling of liquids
the most dominant terms are the linear terms with §,; of 0(103) Hz first
appearing in Eq.(5.43) whereas J is of 0(101) Hz. Thus the composite
pulse should be optimized to remove the (offset-dependent) linear terms
first. Incidentally, the minimization of offset dependence should also
render a reasonably good scalar with J having a slow offset dependence.

The strategy for designing composite pulses is to select
reasonably good candidates using Eqs.(5.44)-(5.51) and then optimize
these initial candidates to achieve larger bandwidths by direct
computation of the propagator U(r) given by Eq.(5.42). The method is
analogous to the single-spin case.1(8) 1t vwas discussed at the end of
Section V.3.A that the offset dependence of the coefficient of the
scalar interaction term is largely due to the composite pulse, rather
than the schemes for expanding the sequences. The reason for this can be
explained clearly in terms of the average Hamiltonian calculations. A
composite pulse which accomplishes perfect decoupling would have to
satisfy v(®) o JI,"I,, and v ay® L. o 0. Thus the slope
8Jf",)/86, would be zero. However, it is questionable that any solution
which satisfies all these constraints exists. Numerical optimization, on
the other hand, is performed such that the figure-of-merit function is
minimal. Inevitably then the optimal pulses found may not remove all
offset dependent terms from Eqs.(5.44)-(5.51), but minimize overall

offset dependence. As a result, for a composite pulse with a given
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number of constituent pulses there seems to exist a "natural® offset-
dependence associated with the minimal value of the merit function. This
is quite similar to the "natural®™ bandwidth one may find for a single-

spin case.ll(a)

V.3.C. The evolution of spin operators under scalar interaction.

Suppose a decoupling sequence managed to make all linear and
bilinear cross terms vanishingly small and a good scalar term was
obtained. Also suppose because of the nonideality of the composite pulse
sequence that the scalar coupling constant obtained is slightly offset-
dependent. Then the evolution operator under these conditions may be
written as

U(r) = exp(-1r JE(6)) 1;°1,). (5.52)

The resulting S-spin spectrum under this evolution operator can be
predicted by calculating the scaling factor given by Eq.{(5.31). For the
two-spin case with a Hamiltonian given by Eq.(5.52) the position of the

spectral lines can be calculated to give

8f(61)
wj - JISJ —8—6—1—— (1112)55 j =1, Wa. (5.53)

The matrix (11'12)j3 can be obtained by diagonalizing the 4 X 4 matrix

with the product basis {aa, af, fa, BB):
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11'12 o af Pa BB
aa z 0 0 0
af 0 % % 0
Pa 0 % -% 0
88 0 0 0 z

Diagonalization of the submatrix gives four eigenvalues

~lw

e = -

) ak-% (k =2,3,4). (5.54)

Therefore, the S-spin spectrum consists of four lines at the frequencies

Bf(Sl)

w, =J J ——a

s j=1,2,3,4 . (5.55)
i 1s 861 J

If the derivative 3f/85; is zero, corresponding to the perfect
decoupling, the four lines collapse into a single line. On the other
hand, if the derivative is sufficiently small so that the splitting
between any pair of lines within the triplet manifold is smaller than
the natural line width, then the three lines in this manifold collapse
into a single peak, giving a spectrum consisting of two peaks with an
intensity ratio 3:1. This situation is illustrated in Fig.5.1.

As a third type of situation, suppose the composite pulse produces
a fictitious Hamiltonian, which contains small but non-trivial linear
and bilinear cross terms and a reasonably good scalar interaction term.
Under these conditions the effective Hamiltonian has the symmetry

approaching closer to spherical symmetry than the cylindrical symmetry,
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Offset-Independent Scalar

Offset-Dependent Scalar

__J

Figure 5.1 The expected form of the S-spin spectrum under a

XBL 876-2673

decoupling sequence that produces an underlying Hamiltonian that is a
pure scalar operator 2xJI,-I,. If the effective coupling constant is
offset-independent then a sharp singlet is observed. When the coupling
constant is offset-dependent a 3:1 pattern emerges, in which the S spin
experiences the local field of the triplet or singlet states,

respectively.
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which the original unmodulated Hamiltonian possesses. Therefore, it
becomes more convenient to use operators expressed in the spherical
basis than in the Cartesian basis. The spherical basis for the bilinear
operators are listed in Table 5.1 and for linear operators the *
combination
Ia+ - Ila + I2a a=x,y,Z (5.56)

is convenient.

With the commutation rules in Appendix 4, it can be shown that
for bilinear opeators

[Ago + Ayl = 0 k =0,%1 (5.57)

[Ago » Agl = 0 k= 0,+1,%2 (5.58)
and for linear terms

[Ago + Iyl = O (5.59)

[Ago » Iy 1 = 0. ‘ (5.60)
The significance of these commutation relations becomes apparent when
the sequence is to be improved by expansion using the cyclic permutation
and phasz shifts. To ke more specific, first separate the scalar part
from the rest (denoted as #* in the following) in the fictitious

Hamiltonian such that

U(r) = I IR II2 cdr oy g (5.61)

Secondly, expand the sequence by combining wvarious evolution operators

and collecting U; on the lef::



Table 5.1 Spherical Basis Set of Bilinear Spin Operators

1
Too = - E L-1

1
Tio = T (1,5, - 1;.1,)

T I

1
w1 =5 (T T - Tp415)

1 .
Tyo = i3 (3 1,1,, - ;')

1
Tory = %5 (T00s + 13415,)

1
Toag = 7 T14los

126
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U(nr) = exp(-inr J£(6)) 1,°1,) (u})“'l U; U;l-l

.. 1,2 ' 2 f L [
UJ U3 UJ Uj U2 UJ Ul . (5.62)

The operators 0% in UL which commute with U; can be made vanish to
zeroth order in the BCH expansion by phase shifts and ecyclic

permutations:

n ot . of t\Nm . of -
Ek-luJ <0 U; nuJ[Z(_lekok]uJ 0. (5.63)

In contrast, operators 0  which do not commute with U; evolve under Uy,
making cyclic permutation and phase shifts ineffective in removing these
terms. Thus they may pose problems as nr increases. However, because the
operators do not commute with I,°I,, to first order they do not shift
the energy levels produced by I, I,. The effect of 0" and the deviation
from scalar on the spectrum may be shown by performing the degenerate-
perturbation calculation. To be more specific, consider the 3x3 matrix
«“hich determines the first order energy correction co the triplet
manifold. The singlet state has no dynamics, and thus can be
ignored. Eigenfunctions to be used are:
af + fo
2

$; =~ oa, ¢, = ' ¢, = BB (5.64)

and the secular determinant is
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Table 5.2 Matrix Elements of Operators 0" and I,.I, .

o;j -0 i,j =1,2,3.

X1%q 4 4 43
¢ 0 0 :
¢ 0 z 0
$3 i 0 0
Y1¥9 4 ) 43

4 0 0 - %
¢ 0 -1 0
4 | -2 0 0
212 | % 2 43
4, 0 . % 0
43 0 0 -3
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<$0k> -2 <p |0k, <4 08,>
<¢,| 0 ;> <4, 0> - A <$,| 0 fp> -0. (5.65)
<¢3| 0 |¢1> <¢3{ 0 |¢2> <¢3| 0 |¢3> -2

Table 5.2 lists matrix elements of 0° and quadratic terms which are
not removed by Eq.(5.63).

Since all matrix elements are zero for 0  operators it can be
concluded that they do aot affect the first order spectrum. The presence
of the scalar interaction of 0(J), therefore, gquenches the samll terms
and the decoupling performance is little affected. This is another
situation where the offset-dependent small terms are stabilized by &
larger offset-insensitive residual term, as discussed in a previous
chapter.

Because I, I, (a=1,2,3) do have matrix elements, the deviation
from the scalar may be problematical. However, as long as the composite
pulse produces a good scalar, the deviation from the scalar should be
small, and further refinements in making a better scalar can be achieved

by expanding the sequence with phase shifts and cyclic permutations.

V.3.D. Evaluation of decoupling schemes

Schemes using 90 degree pulses

With Sections V.3.B and V.3.C as a guideline, various composite
pulses are found: Using V(o) and V(l) we find the initial candidates,

then these candidates are optimized by numerically calculating the



Label

Spins-1/2.

Sequence

195 330 25
40 290 380 40
55 280 310 65 305 285 50

20 100 335 170 300 35 140 335 170 315 80

8 Given in terms of the parameter Mofw, .

b Total rotation of the composite pulse in degrees.
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Table 5.3 Phase-Alternating Composite 90° Pulses for Two Coupled

Bandwidth?® Lengthb

+0.15 750
+0.2 750
10.3 1350
+0.6 2000
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underlying Hamiltonian around §, = 0. A criterion is to reduce the
deviation from the scalar as a function of offset. Then they are further
optimized by the method sugpested by Waugh1‘7 which has been much used
for improving composite pulses for decoupling,l3 which allows bandwidth
extension without making the Hamiltonian deviate much from the scalar.
Table 5.3 lists pulses with 90° flip angle along x axis and they are
labeled P,-P,. The lengh of each pulse is given in degrees, with
overbars denoting a 180° phase shift, and the bandwidths are given as a
fraction of w,. All bandwidths are smaller than those of the single-spin
case. This may be attributed to having more constraints Egs.(5.44)-
(5.51) in optimizatiomn.

This restricted bandwidth in principle may be expanded by using
the 12-pulse based schemes. However, the schemes, as discussed in a
previous chapter, are not efficient in removing the linear terms,
although they are highly efficient in averaging the quadratic terms.
Also from the experience in the single-spin case, it is well known that
the use of nominally orthogonal channels are highly susceptible to the
exact radio-frequency phase shifts. MLEV sequences with 90; 180; 90;
composite pulse are a good example.

Fig.5.2 shows the Waugh scaling factors for the (x y X y)s
sequence with the composite pulse Pg. A 5% reduction in w, from the
nominal value w:/2n = 2 kHz significantly degrades the decoupling
performance, showing that the sequence does not have sufficient
compensation for the linear terms. Interestingly, however, the phase

shift errors up to 1° do not have a perceptible effect on the decoupling
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Figure 5.2 Sensitivity of (XY X V)3 to rf inhomogeneity or phase
shift errors using the composite pulse P;. The top plot shows the Waugh
scaling factor for the correctly adjusted sequence. Directly
underneath, the effect of a 5% reduction in w,/2r (to 1900 Hz) is shown.
There is a significant degradation in performance. Phase shift errors
as large as 1o on either Y (next trace) or X (bottom trace) chamnels are

harmless, as a comparison with the correctly adjusted sequence shows.
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Fig. 5.3 Scaling factors for the indicated composite 90° pulses
of Table 5.3 when used in the simple sequence (X Y X Y)3. The scaling
factors are shown as a function of §,;, the offset of the directly
coupled I spin, for the case 6, = 0, and assuming a homonuclear coupling
of 10 Hz and a 2 kHz rf field. For small §, the signature in each case
is that of a pure scalar operator, but the effective bandwidth of the
more elaborate composite pulses P, and P, is larger. Near the edge of

the bandwidth the compensation fails and the "triplet” states are no

longer degenerate.
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performance. These behaviors are common to all composite 90° pulses in
Table.5.2. Consequently, these may be considered the properties of the
sequence itself.

Figure 5.3 shows the scaling factors given by Eq.(5.31) for the
case of J = 10 Hz, w,/2xr = 2 kHz, values typical to broadband proton
decoupling in liquids. It is obvious from Table 5.3 and these Figures
that the bandwidth is largely determined by the composite pulse and
within their respective bandwidths the averaging of I,0l2q 1is
excellent.

If the x Yy x y x y)z(i YyXyX y)2 sequence is used instead,
there is a small improvement as Fig.5.4 shows. The sequence is also
quite sensitive to the rf inhomogeneity. However, the sequence is
insensitive to phase shift errors upto 1° unlike MLEV sequences.

Fig. 5.5 shows the scaling factors with 1° phase shift error iny
and X channels for the above sequences when the composite pulse P, is
used. Same w, and J values are used.

In principle, a longer composite pulse with a 36- or 48-pulse
sequence obtained by the expansion procedure developed in an earlier
section can be used to get an improved result. However, at the low
cycling rates of these longer sequences other imperfections due to, for
example, sample spinning and relaxation would degrade the calculated

decoupling performance.
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Figure 5.4 Scaling factors for the 24-pulse sequence
XYXYX Y)2 EXYXYX Y)2 under the same conditions as Fig.5.3.

There is a slight improvement compared with the (X Y X Y)3 sequence.
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Figure 5.5(a) Scaling factors of the sequence (X y X y)s with 1° phase

shift error in X or y channel. The composite pulse used is P,.
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Fip. 5.5(b) Same as Fig. 5.5(a), except that the sequence

y¥yxyx y)z(i yXyx y)2 is used instead.
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Sequences using 180 depree pulses and 180 degree phase shifts

Table 5.4. lists phase alternating 180° composite pulses found
using the same method as the one employed for the 90° pulses. These
pulses then are assembled to have the form UUUU, which again reduces the
linear and bilinear cross terms further. These are termed DIPSI
("Decoupling In the Presence of Scalar Interactions") sequences, and
they are labeled by the index n, the same one used to label the
composite pulses.

Waugh scaling factors for the DIPSI sequences are shown in Fig.
5.6. Also shown in the figure is the one for the WALTZ-16 sequence for
comparison. WALTZ-16 sequence has the biggest bandwidth, reflecting that
the less constraints were needed to design it. Within their respective
bandwidths the DIPSI sequences are predicted to offer very good
decoupling for the single-spin case, since A are kept well below 10°°.
The cycling rate with w,/2x = 2 kHz is 130.4 Hz for DIPSI-1, so it has a
length and complexity comparable to WALTZ-8. DIPSI-2 and -3 are
comparable to WALTZ-16 and -32 respectively in cycling rate.

Fig.5.7 shows scaling factors for DIPSI-1, -2 and -3 sequences.
The scaling factor for WALTZ-16 is also included for comparison. WALTZ-
16 shows the largest deviation from the scalar for the most of its
bandwidth. Thus it would give a spectrum consisting of four lines. DIPSI
sequences, on the other hand, render very good scalars. Thus the
spectrum would consist of a nearly degenerate "triplet” state and a
singlet. Here again, it is possible to improve the degeneracy of the

scalar by averaging the coefficients of ILiglz For example, Fig. 5.8

a



Table 5.4

Label

2 Given

b Total

Coulped Spins-1/2

Sequernce

365 295 65 305 350
320 410 290 285 30 245 375 265 370
245 395 250 275 30 230 360 245 370 340 350

260 270 30 225 365 255 395

in terms of the parameter Aw/w,.

rotation in degrees.

Phase-Alternating Composite 180° Pulses for Two
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Figure 5.6 Single-spin scaling factors for DIPSI-1, -2, -3 and
WALTZ-16. All the sequences offer excellent single-spin performance

over their bandwidths, but WALTZ-16 gives the largest bandwidth.
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Figure 5.7 Scaling factors for DIPSI-1, -2 , -3 and WALTZ-16,
using the same conditions as In Fig. 5.3. Even though the DIPSI
sequences use only 180° phase shifts, a pure scalar propagator is
approached quite closely. By contrast, WALTZ-16 gives a different

signature, showing non-scalar behavior and resulting in four different

transitions.
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Fig. 5.8 Scaling factors for the expanded sequence Cxcy with the
composite pulses Ry, Ry, and R,. It is seen that very good scalar

operators result. However, the slopes of the scalars as a function of

the offset do not change appreciably.
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shows the averaging of the coefficients for the sequence Cny, where C,
denote RRRR with a composite 180° pulse R applied along a axis in the
rotating frame. For most practical applications, however, small
deviations from the scalar as in DIPSI sequences go unnoticed and the
numerical value of the scalar does not change as the sequence is
expanded. Furthermore, the sequence expanded using orthogonal phases may
be very sesitive to imperfections such as phase shift errors and rf
field inhomogeneity as well as other imperfections such as relaxation

effects. Hence, in the experiments to be discussed in a later section,

the regular DIPSI sequences are employed.

V.4. The Offset-Dependence of the Scalar Interaction.

The splitting (AS) given by Eq.(5.37) was first discovered
emperica11y3. For a simple case of coherent-decoupling,7'10'14'15 it is
possible to derive a qualitative dependence of AS on parameters J;g, J,
wy, 6,, and §,. First consider the Hamiltonian given by Eqs.(5.38)-
(5.40). For coherent-decoupling the subscript k is immaterial. The

evolution operator may be separated as

U(t) = exp(-it(w,I_+ 6,1, )) Texp(- 1JI i1, dt), (5.66)

where

-~

1T, = ewp(it(o, 1 + 6,1, )) 1,71, exp(-it(w, I + §;1,.)).(5.67)

i
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Since w,/2x is about 2 kHz and J is about 10 Hz, it is well to

approximate U(t) such that

Jexp (- 1JJ. 1,1, dc ) = exp(-iJI 1,1, ac ). (5.68)

The calculation of Eq.(5.67) gives terms I, I, as well as cross terms
Ilalzﬂ (a¥f). Because only the qualitative offset-dependence of the
scalar part is of interest, it may be well to consider terms ) ST P

With Eqs.(4.4)-(4.7), the relevant part becomes

T .Y o= 2 2
I1 I2 I1 I2 (cos™ @ coswet + gin"§)

Ilylzy(coswet coswzt - sinw, t sinmet sind) (5.69)

2
I, 1 (c0520 cosw,t + sin29 cosw _t cosw,t)
1272z “2 e 277

Furthermore, to see only the qualitative behavior it suffices to
consider only the coeffizient of any one of these operators. If the
coefficient of Iy Iags for example, is chosen with the understanding
that w,7 = 27 and in tie limit @,>>6, , it reduces to 1(3/2)(612/w22).

Thus the splitting AS :+haves as
81 (5.70)

correctly showing the dependence on parameters J;g, J, w,, and §; as in
Eq.(5.37). For this simple case £(§) ~ 6.
In Section V.3.B the "natural" slope of f(§,) for each composite

pulse was discussed. Furthermore, an inspection of Figures 5.3, 5.4,
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5.7, and 5.8 shows an interesting feature; the slopes are nearly the
same. The calculation based on the AHT is once again a good tool to
assess the slopes. In the limlt w,>>6,, a calculation up to v(®) g
sufficient to show the offset-dependence of the scalar part, because
v(?) g the first term in which deviations from the scalar operator
appear. If the decoupling sequence makes linear and bilinear cross terms
vanishingly small, or if consideration is confined only to the scalar
part because linear and bilinear cross terms are not relevant to
determining the slope, the evolution operator to second order becomes

2

67 J
U(r) = TT exp(-itkwklx) exp -itk J 11'12 + 1 2
k 6 wy
(5.71)
(k) (k) (k)
X [ “x le12x + cy Ily 2y * e, IlzI2z]]'
where the following notations are used:
k
W, = (-1) w, ,
(k) 1k
c - -4 + 6 -2c
X N 1k
(5.72)
] 5 c
(00 Ly e 2,
Y "k “kx
s s c
o R tioe tue w2 Cu
“r Yk

with
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sjk = sin(jwktk)
(5.73)
cjk - cos(jwktk).

Since I,'I, commutes with the rest of the operators in Eq.(5.71), the
evolution operator may be rewritten as

U(r) = exp(-ird 1,°1,) BU, """ B0 (5.74)

= U(r) BBy 7Ry (B 7By 1Uk (Pk-l"'Pl)"'P11”2P1“1'

where

Pk - exp(-itkwklx). (5.75)

With the definition

- exp(—iE: t (DY w,I

27x
- exp(-1 a(k)IxJ (5.76)

the transformation of U, by P(k-1) pecomes

J §

- N

(k)
X le I2x

[P(k-l)]-lukp(k-l) - exp|-it ”y c + c§k){ Ilylzy

NN

x cosza(k'l) + 1.1 sinza
1272z

cos S D} 4 My cosza(k-l) + I 1 sinza(k'l) +
z 1z722 ly“2y

(k-1) _(k-1)
[Ily12z + Ilzlzy]sin a cos } ].

(5.77)

(k-1) ¢ (k-1)

lylzz + Ilzlzy] sin a

Now the product of operators in Eq.(5.74) can be expressed in a single

exponential form by using the BCH formula, once again ignoring the cross
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terms. Then U(r) reduces to

(k) (k)' k)’
U(r) = U (r) P exp i E; { le12x+ cy IlyIZy

k)’
€z IlzIZZ}

(5.78)
where

L ()

X x

c(k)’ = c(k) coszt:l(k D + c( ) sin a(k L

y z

c(k)' - c(k) cosza(k 1) ( ) sin a(k D (5.79)

z z y
If the sequence is to make a scalar,
(k)" _ k" _ (k)'

2‘ tkcx 2‘ tkcy 2‘ tkcz (5.80)
must hold. The numerical value of the coefficient for the scalar
interaction is given by

&', (k)' (k)’
3f§;tk { c, } . (5.81)

Then Eq.(5.78) becomes
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2—

§,c
U(r) = U () p(k) exp[-iri—li 11-12]. (5.82)

6w2

Eq.(5.82) is the basis to estimate the "natural" offset dependence of
the residual Hamiltonian associated with the composite pulses listed in
Tables 5.3 and 5.4.

For the simple sequence (360x)(360§), the residual Hamiltonian

becomes
- 2151
H=mJll - —5—] I,'1 (5.83)
2 1 72
Jw
2
So the splitting is
J.J
4 18
AS = 39 61 ( w2>> 61) (5.84)
“2

For more complicated pulses, Eq.(5.82) is calculated using the computer.
The result is listed in Table 5.5. It can be shown that all pulses
listed give very similar but not identical slopes, confirming the
earlier observation. The second order average Hamiltonian calculation

predicts that the offset dependence of the splitting is linear:

J_. J
18
as ~ 15— 5., (5.85)
©2
so that
£(§,) ~ &, (5.86)

as in the case of the simple coherent decoupling. The next term in the
Magnus expansion which contains I,,I,, term should be V(a). admixing
terms proportional to 6:. Thus in general, £(§) can be expressed as a

polynomial of odd powers of §:



Table 5.5 Slopes* of

the composite pulses P,-P, and R,-Rg

*The slope is defined as the proportionality constant in

Eq. (5.85).

.2128733

.1255166

.1414866

.9625433

.2724800

.1944533

.1579233
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@ 2k-1
f(51) - 2?_1 32k_161 , (62- 0, on resonance). (5.€7)

V.5. Experimental Details.

The sample used for decoupling experiments consists of a mixture
of CHZI and CHLCH,I in acetone-d,. The acetone-dg is used as an internal
lock. The protons in the methyl iodide, being equivalent, are used to
test the single-spin bandwidths for the decoupling sequences. The
linewidth of the carbon-13 of the molecule was used as an internal
standard. A Briicker AM-400 with a 10 mm broadband probe was used for
this search test under routine operating conditions. The effect of
homonuclear coupling was examined by looking at the carbon-13 resonance
of the methyl group in the ethyl iodide molecule. To observe fine
structure in the carbon-13 spectra due to the homonuclear interaction a
5 mm broadband probe was used and the experiments were carried out on a
Briicker AM-500. The AM-500 spectrometer turns out to have much better B,
homogeneity than the AM-400.

A method for checking the spatial inhomogeneity of the B, field
has been discussed in the literature.l? Fig.5.9(a) shows an experimental
spectrum of 3¢ of the methyl iodide on the AM-400 with 180,180 pulse
sequence irradiating the proton spins in the molecule. A decoupler
resonance offset of 200 Hz resulted 11.80 Hz splitting between peaks.
With the measured value of JCH = 151 Hz, the B, field was calibrated to
give 2551.50 Hz. The distorted lineshape in the Figure results from the

B, inhomogeneity. In Figure 5.9(b) a portion in Fig. 5.9(a) marked by an
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Fig. 5.9 (a) 3¢ spectrum of the methyl iodide with proton
decoupling. The splitting 11.80 Hz between two adjacent peaks results
from a 200 Hz decoupler offset. (b) The expanded view of the peak marked
by an arrow in (a). The B, field distribution at half of the maximum

height around the nominal value 2551.50 Hz is 1.52 Hz. The small peaks

at * 15 Hz are spinning sidebands.
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arrow is expanded to clearly show the distortion and to facilitate the

extraction of the distribution of B, field from the line shape. A 1.52
Hz deviation from the nominal value at haif of the maximum intensity is
found.

For all decoupling experimerts, care was taken to ensure a
constant temperature around the sample. One reason is that the
temperature change may cause a shift of resonance frequencies.16 The
temperature dependence of the C-13 peak of the methyl iodide in the
sample is shown in Fig. 5.10. In the Figure, the peak at the far left
corresponds to the reference peak with the decoupler level at 2551.50 Hz
with the sample at 301°. Then the temperature was suddenly raised to
307° K. The signals were sampled at the interval of 5 minutes. The
temperature change not only caused the shift of the resonance frequency,
but also broadened the resonance linewidth. It is observed that about 15
minutes are required for the sample to reach the normal state. Another
reason to keep the temperature constant is to prevent thermal expansion
or contraction of the decoupler coil, which would lead to the
fluctuation of the decoupler level. Irradiation of the decoupling field
will invariably cause a temperature rise in the sample; a method for
keeping the temperature stable is setting the temperature at a level
higher than the room temperature by turning up the temperature control
knob, so that the preheated Ny gas may pass around the sample. Another
advantage of turning up the temperature is that at higher temperatures
the viscosity of the sample tends to decrease, a favorable condition for
line narrowing. However, if the temperature is too high, the sample can

evaporate. It was found that at 307 °K the temperature was most stable
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Fig. 5.1C The temperature dependence of the C-13 peak of the
XBL 8711-5956
methyl lodide. The peak at the far left is the one before the

temperature change, and after the temperature was changed signals were

obtained at 5 minute intervals.



160

while the decoupler was on, and the sample did not evaporate. After the
pulsing with decoupling sequences the cw decoupling field was turned on,
because otherwise the temperature of the sample dropped under these
conditions. Magnet shimming was also done at the same temperature. It
was possible to shim the magnet to obtain a '3C linewidth as narrow as
0.12 Hz with on-resonance proton decoupling.

Figure 5.11 shows the experimentally observed resonance of carbon-
13 in methyl jodide (JCH = 151 Hz) on the AM-400 as a function of proton
decoupler offset for various decoupling sequences. The 10 mm sample tube
was spun constantly at 6 Hz, because at high spinning rates the surface
of the sample (in the bigger 10 mm tule) may be vortexing, which would
introduce more inhomogeneity than what the spinning is intended to
eliminate. Most of the time during the experiments the magnet was
shimmed so that the on-resonance coherent decoupling gave linewidths
within 0.2 Hz. To enhance the sensitivity, a line broadening of 0.5 Hz
was added, giving a final linewidth of 0.25 Hz. The same setting was
used for all the decoupling sequences. The decoupler level was
calibrated using the method suggested by Ernst.!” The decoupler level at
1480 Hz was used to perform a stringent test for each sequence. The
decoupler offset was incremented in 200 Hz steps over the range *1400 Hz
about the exact resonance,

WALTZ-16, which was designed primarily for single-spin cases,
gives the biggest bandwidth as expected. Bandwidths for WALTZ-16 and
DIPSI-2 agree well with the theoretically predicted bandwidths. However,
the bandwidth for the DIPSI-3 is less than the theoretical one. A cause

for this discrepancy may be attributed to the low cycling rate of 27.2
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Figure 5.11 Carbon-13 resonance of methyl iodide showing the
offset dependence of DIPSI-2, DIPSI-3,WALTZ-16, a 12 and a 24 pulse
sequence, and COMARO. The decoupler offset has been stepped in 200 Hz
increments over a * 1400 Hz range about exact resonance. Sequences (a)-
(c) give narrow resonances over their bandwidths, but WALTZ-16 decouples
over the largest range. The variations in peak height are attributable
to poor w, homogeneity over the sample volume. Sequences (d)-(f) have
very limited single-spin bandwidths, and are not suitable for

decoupling in liquids
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Hz of DIPSI-3. Nonetheless, DIPSI-3 gives more uniform and higher peak
heights, an evidence of enhanced tolerance to B, inhomogeneity.

Single-spin bandwidths for schemes using 90° pulses with
orthogonal channels are very small as Figs. 5.11(d)-(f) show. In Figs.
5.11(d) and (e) the seven-pulse composite 90o is plugged into the
sequences (x y X y)° and (x N & VX ) (x v)* (Eq.(4.50)). There is
a very small improvement in bandwith of the 24-pulse sequence over that
of the 12-pulse sequence, except at resonance. In Fig. 5.11(f), the
performance of COMARO-4 is shown. The sequence does not even work at
resonance. The only difference between COMARO-4 and the above 24-pulse
sequence is the composite 90° pulses used. It follows that the composite
pulse should be used carefully depending on the situation at hand. A
similar discussion can be found in the literature in connection to
multiple-quantum NHR.18 Common to all these composite 90° pulses are
very restricted bandwidths and intolerance to B, field inhomogeneity.
Consequently, these sequences are not suitable for liquid decoupling
experiments.

Now consider the case where there is a homonuclear coupling
between two inequivalent protons, as in the case of most molecules of
interest. In order to observe the fine structure due to homonuclear
coupling the AM-500 spectrometer with a 5 mm probe was used. Once
again, a sample consisting of methyl and ethyl iodide in acetone-dg is
used. Fig. 5.12 shows the resonance peak of a methyl carbon-13 in ethyl
iodide. The coupling constant Jyy between methyl protons and methylene
protons is measured as 7 Hz. The magnet was once again shimmed until the

linewidth resulting from coherent decoupling would gave 0.2 Hz,
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Figure 5.12 Carbon-13 methyl resonance of ethyl iodide using
three different values of w,. Due to the effect of scalar coupling
between the protons, distorted lineshapes are obtained with WALTZ-16
(left-hand spectra). DIPSI-2 gives better results, as shown on the

right.
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No line broadening was added. Decoupler offset was set c¢n resonance at
the methyl protons, then the methylene protons are 690 Hz off resonance.
Decoupler levels used were 1100, 1460, and 1930 Hz and sample was spun
at 15 Hz, faster than the rate for the 10 mm tube. The number of scans
is 64 for each spectrum.

WALTZ-16 at w,/2x = 1100 Hz gives a very broad multiplet. As B,
field increases from 1100 Hz to 1460 Hz to 1930 Hz, a slight narrowing
is achieved. However, even at the highest decoupler level there still
exists distinct multiplet structure with a linewidth of 1.0 Hz.
Furthermore, at all decoupler levels tested the "wing" at the base of
each of the peak is seen to persist, but decreases as the B, field is
increased. The wing is due to the "quartet effect19:20 of the c-13
quartet: The outer lines of the merhyl quartet experience an effective
decoupling three times as large as the inner lines, and they are three
times more sensitive to the spatial inhomogeneity of the proton
decoupling field B,.

The right-hand series of spectra are the results of the DIPSI-2
sequence on the same sample with the same experimental settings. The
result of DIPSI-2, with its similar cycling rate and complexity, is
directly comparable to the result of WALTZ-16. At the decoupler level of
1100 Hz a slight trace of the wing is observed and splitting between the
singlet state and the "triplet" state is seen. However, the performance
is already better than that of WALTZ-16 at the highest decoupler level.
As the B, level increased the lineshape approaches more closely the 3:1
pattern with the splitting unresolved, and at 1930 Hz the peak is

essentially a singlet. Intensity enhancement of DIPSI-2 over WALTZ-16
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Fig. 5.13 The trans-cinnamic acid structure. The protons labelcd
1 and 2 are a good approximation to an isolated pair of homonuclear-
coupled spins, which are also coupled to the carbon-13 labeled with an

asterisk.
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is about 25 %. The linewidth of the peak obtained with DIPSI-2 at
1930 Hz is about 0.62 Hz as compared with 1 Hz linewidth obtained with
WALTZ-16. One reason for the high fatensity of the peak resulting from
WALTZ-16, despite the breadth of the line may be inferred from Fig. 5.7.
It can be seen that although the WALTZ-16 fails to make a scalar for the
most part of the bandwidth, two scaling factors belonging to the
"triplet"” manifold stay quite close together and in fact closer than the
overall spread of the three scaling factors for the DIPSI-2 sequence.
Thus the two closely located scaling factors for the WALTZ-16 sequence
accounts for the sharp center peak in Fig. 5.12., While DIPSI sequences
manage to make the overall scalar better, the resultant scaling factors
are separated slightly more than the two scaling factors for the WALTZ-
16 sequence. In theory, therefore, the intensity of the spectrum for the
DIPSI sequence can be enhanced by lengthening the sequence to Cxcy' of
which scaling factors lie much closer to each other as can be seen in
Fig. 5.8. However, because sequences employing orthogonal chamnels are
quite sensitive to instrumental imperfections, the possibility of
improvement in performance of the lengthened sequence is questionable.
To compare the performances of the sequences in more complicated
molecules, trans-cinnamic acid was chosen as the sample. The structure
of the trans-cinnamic acid is shown in Fig. 5.13. In the Figure C*
denotes the C-13. Because of the small homonuclear coupling between
methylene protons and ring protons, and the proton in the acid part of
the molecule, the met',lene protonr can hz considered to form a nearly

isolated two-spin system. The coupling zcunstirt between the two
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WALTZ-16 DIPSI-2

(U2/27T

{IOOHz

I1930Hz ‘

«—30H —— «—30h ——

XBL B76-26€7

Figure 5.14 Low-field ethylene resonance of trans-cinnamic acid
under conditions of broadband decoupling. WALTZ-16 gives broad

multiplets, and at the lowest decoupler level all four lines are

resolved. DIPSI-2 narrows the resonance considerably, resulting in

better sensitivity and resolutiom.
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WALTZ-16 DIPSI-2
w‘-//ulperlmi
A
\ Simulation
- 30Hz > - 30H:z >

8L 876-207¢

Figure 5.15 Comparison between simulation and experiment for
trans-cinnamic acid using WALTZ-16 (left) and DIPSI-2 (right). The
parameters used in the simulation are w,/2x = 1100 Hz, §, - 0 Hz, &, = -
584 Hz, lJCH = 150 Hz, 2JCH = 0 Hz and Jyy ~ 16 Hz. The simulations
assume a completely homogeneous w, field, and have been artificially
line broadened tc match the linewidths of the experimental spectra. No

attempt has been made to fit the experimental spectra.
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methylene protons is 16 Hz. The molecule has previously been used to see
the effect of homonuclear interaction on the broadband heteronuclear
decoupling experiment.3 Decoupler offset was sat at the resonance
frequency of the proton (labeled as H;) directly attached to C*, and the
resonance offset of the indirectly coupled proton (H,) is -584 Hz. Fig.
5.14 compares the spectra resulting from the decoupling sequences DIPSI-
2 and WALTZ-16 at the decoupler levels 1100 Hz and 1930 Hz. At 1100 Hz
WALTZ-16 gives a spectrum showing four broad lines, while DIPSI-2 gives
a much narrower linewidth and an intensity twice as big. Even at the
higher decoupler level of 1930 Hz WALTZ-16 still does not give a 3:1
pattern comparable to those of the spectrum obtained with DIPSI-2 at
the lowest decouplei level of 1100 Hz. By contrast, DIPSI-2 results in
almost a singlet at 1930 Hz with an intensity 50 % higher than that of
the corresponding spectrum resulting from WALTZ-16. Fig. 5.15 shows the
good agreement between the simulated and the experimental spectra for

WALTZ-16 and DIPSI-2 at 1100 Hz.
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CHAPTER VI. The Modulation of the Spatial Coordinates of the

Sample

VI.1l. Introduction

As discussed in chapter I, the Hamiltonian for a system of nuclear
spins is composed of coordinate and spin parts. If there were no
exterial magneic field present, the Hamiltonian retains the full
isotropic symmetry. In other words, the Hamiltonian becomes a scalar,
and consequently there is no preferred orientation. The use of no
magnetic field has been devised in the early days of MRL and the
recently introduced method of time-domain zero-field NMR? has been
quite successful in structure determination in randomly distributed
spins in solids. Without the external magnetic field however, valuable
information is lost; namely the chemical shift cannot be recovered with
the zero-field NMR technique. Thus the vast majority of NMR experiments
are performed in high magnetic fields. Furthermore, the trend is to use
higher magnetic fields to achieve better resolution.

In the presence of the high magnetic field only the terms which
commute with the Zeeman term survive, and other terms are "truncated".
Unfortunately, this makes the Hamiltonian assume cylindrical symmetry,
and preferred orientation of nuclear interactions sets in. In liquids,
the orientation dependence is averaged away naturally by molecular
motions faster than the Larmor frequency. Nuclear spins in solids, in

contrast, are locked in a rigid lattice and do not enjoy this benefit.
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Hence the NMR spectra of powdered solids exhibit broad, and in many
instances featureless, signatures reflecting the effects of the
anisotropies of the spin interactions.

One way to overcome line broadening is the application of

multiple pulses,3

and this is one of the main goals of chapter III. If
transformed into an appropriate frame, the spins acquire time
dependence. Because of technological limitations on the anplitude and
phases of pulses, it is futile to imitate nature and apply the pulses
randomly. Thus most pulsed NMR techniques use carefully designed
sequences of pulses, with the exception of stochastic excitation.”
(Recently, Tycko et.al’® introduced highly efficient iterative schemes,
in which at high iterations the pulse sequences behave stochastically.
However, this method is different than the random modulations such as
"white noise".) Unfortunately, the chemical shift anisotropy cammot be
removed with the multiple-pulse method without removing the isotropic
chemical shift at the same time.

On the other hand, because of the duality of the spin Hamiltonian
it is equally possible to achieve 1line narrowing by mechanical
modulation on the spatial coordinates. The rotation of samples was

introduced almost three decades agos'lo

and has been used ever since.
Provided that the rotation speed exceeds the coupling constant of the
spin interaction under consideration, the rotation of the sample
"truncates" the coordinate part of the Hamiltonian along the spinner
axis much like the magnetic field truncates the spin part. In

particular, 1f the spinner axis is tilted by the "magic" angle, 8, =

54.70, the truncated value of the (first order) anisotropy is equal to
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zero. The magic angle spinning (MAS) method11 has been the major method
for obtaining isotropic chemical shifts. However, for abundant spins-
1/2 or for nuclei with spin angular momenta greater than 1/2, the
rotational speed has to exceed dipole or quadrupole coupling constants.
Considering that currently the highest spinning speed rarely exceeds 20
kHz, the application of MAS to systems other than dilute spins-1/2
seems to be unfeasible.

A method to get around this problem is the use of multiple pulses
to remove dipolar (or possibly quadrupolar) interactions while using
MAS to remove the chemical shift anisotropy (CSA). The method was
suggested by Haeberlen and Waugh12 and experimentally implemented by
Gerstein et.al.13 Unfortunately, the application of multiple pulses
scales the chemical shift range, and thus degrades the resolution. The
use of hipgher magnetic fi:lds may be a solution. However, this again is
limited by the technically achievable spinning speed.

Recently, Maciel et. al.l4 showed how to recover the isotropic
chemical shift without spinning the sample. Instead, the sample is
discretely hopped by 120° around an axis tilted by the magic angle from
the laboratory z axis along with appropriate sequences of pulses to
initiate and terminate the evolution of the density operator. This
obviates the necessity for rapid spinning, and thus constitutes a
significant development in high resolution NMR of powdered solids.
However, the application of the hopping technique is still confined to
the case of dilute spins-1/2 such as '3¢. The reason is that for
abundant spins-1/2 or for spins with angular momenta greater than 1/2,

dipole or quadrupole interactions have to be considered. The hopping



178

technique may be generalized to treat these problems. However, the
evolution under these interactions as well as the chemical shift, can
no longer be regarded as rotations. Thus it is very difficult to
express the resulting density matrix in terms of functions with closed
form. In fact for spins I = 3/2 the basis operators, (2I + 1)2 in
number, have yet to be daveloped.

For these cases a solution may be once again the application of
multiple pulses. But the scaling of the chemical shift range is
unavoidable. Furthermore, because the resulting quantization axis would
be different from z axis, the evolution of the density matrix under
this effective Hamiltonian would be very complicated. Consequently, the
design of schemes for removing CSA would be quite difficult. Another
setback of this technique is that even for the removal of CS.! four
experiments are required for quadrature detection. The requirement
stems from the inherent method of "storing" only half of the
information about the evolution as a Zeeman order. In addition, the
hopping time ty, must be T, < t < T;, so that the unwanted information
may dephase completely. Although the condition is easily met, half of
the information is wasted (which is recovered only after doing three
other experiments) and decay of the signal occurs because of the spin-
lattice relaxation during t,. This may be particularly serious for a
system for which T, is not substantially longer than T,. A superior
approach then should be one which does not have the lower limit on ty.

In this chapter, the magic-angle hopping technique will be
generalized to be applicable to abundant spins-1/2 and, in principle,

spins I # 1 as well as dilute ¢pins-1/2. Basically, the extension
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consists of the application of multiple pulses at appropriate times in
addition to hopping of the sample. Also it will be shown that with this
approach only one experiment is necessary for full quadrature
detection. Furthermore, if more than one angle is allowed to be used,

other anisotropies such as the second order quadrupole effects can also

be removed.

VI.2. The Hamiltonian

As dicussed in Chapter I, in the laboratory frame (LAB) a general
form of the Internal spin Hamiltonian consisting of chemical shifts

(CS), dipole (D), and quadrupole (Q) terms may be written as

2¢ 2 L
H—EE S GO R, T (» = CS, D, Q) (6.1)
ALp=0l1mm- 2

where the sphrerical tensors ¥ and ¥ denote spatial and spin parts
respectively. Tﬂm = 0 unless £ = 2 for X = D, Q. For A = CS, the term
corresponding to £ = 1 (the antisymmetry part) does not contribute to

the spectra to first order and thus will be ignored. Then Eq.(6.1) may

be rewritten as

Ccs ,.CS 2 m _A A
# - ROG T00 + E}};—-Z -1 R2-m TZm (6.2)

cs .cs
= Royo Too *+ ;-
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Since ﬂl has a common structure for all A, it suffices to consider a
representative case and suppress the summation over A. R2_m in ﬂl can

be expressed in terms of tensors iun the principal axis system (PAS) as

is given by Eq.(1.17). Thus

m (2) ]
]{1 - Zn('l) (van_m_mo (n )pz_mﬁ) sz. (6-3)

Once again D;m. denotes the Wigner rotation matrix commecting the LAB
and PAS. Now consider a tilted space frame, related to the LAB by

2 2 .
Doy(0). With the notation D5, (8) = D,y and Dy (A*) = D.y, Eq.(6.3) in

the tilted frame becomes

# -0, Zn(q)m T, Eﬂ Dy E Dyot3 @y, + D_H_z]}. (6.4)

In NMR, measurements are usually made in the rotatiﬁg (spin) frame,

which is defined by the transformation

R = exp[iwot Iz). (6.5)

Then from Eq.(1.12) the Hamiltonian becomes (henceforth the subscript

"1" will be dropped)

H - zn ('l)m R2_m an szr D:Ili? ('l’lo|¢(t)] . (6-6)

Because of the rotational symmetry around the z axis ¥ can be set to
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zero. § = 0 because the axis of the rotation is along the z direction.

Then

im'w.t

22)(0,0,4(t)) = 6, & 0",

where ¢(t) = wyt is used. The Hamiltonian thus becomes

i
H(t) = wA}}n -utT, Eﬂ 2D oy, e ™0".

where

r Z L} ﬂ !
Pa.m = J—; Do+ 3 (Pup * Doyo)-
#(t) vanishes over a cycle wyr =~ 2x unless m = 0. Thus

=(0) _ '
# @y Tao Eﬂ Dy Po-m

and this corresponds to the usual truncation.

VI.3. The Removal of the First Order Anisotropies

Magic angle experiments

(6.7)

(6.8)

(6.9)

(6.10)

It is well known that Tp; in dipole and quadrupole Hamiltonians

can be removed by either continuous coherent averaging with the
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radiofrequency field tilted by the magic angle as in the Lee-Goldburg
15

experiment”” or the discrete isotiopic average resulting from multiple-

pulse sequences such as the WHH-4 sequence

X Y z '

T20 + T20 + T20 0, (£.11)
where

a 1 e 2! -

T20 - 73(31a1a -1'1). o X, ¥, Z (6.12)

Thus three configurations such as x, y, and z are needed. In view of
the analogy discussed in Chapter I, it is clear that the same
continuous averaging around the magic angle and the three
configurations can also be used to remove the spatial part of the spin
Hamiltonian. Note that the configurations can be reached by 120°
rotations around the (111) axis. The removal of the spatial part will
now be shown by detailed calculation. The principal equation to be used
is Eq.(6.10), where the Wigner rotation matrix DO-H is a function of
two angles f and ¥y, namely @1 = (0, B, vy). B 1is the tilt angle of the
symmetry axis from the LAB z axis, and y is the azimuthal angle of the

symmetry axis.

(i) Sample Spinning Experiments

These correspond to the continuous coherent averaging method. In

this case Eq.(6.10) becomes
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' -iMwrt
H(E) = w, T20 }% Db-ﬂ Ppy © , (6.13)

of vhich average vanishes aver the cycle w,.r - 2% unless M = 0. Thus

once again # is truncated along the direction of the spinner axis:

- w0, T20 DbO P20 (6.14)

Note that
Do) = P,(cosp) = 1/2 (3 cos’p -1). (6.15)

Thence # -~ 0 if B = 6, (the magic angle), and this is the origin of the
magic angle spinning (MAS) experiments.

It is interesting to note that in principle there is an
infinite number of angles g, which make P;(cosg) vanish in the sense

that

B(_’l' P,(cos B,) = 0. (6.16)

N is th¢ number of degrees of freedom for choosing angles. For N =
there i: only one angle which satisfies the above equation and this is
the magic angle. For n = 2 there is an infinite number of sets of such
angles. It will be shown in a later section that the increased number
of degrees of freedom opens up possibilities of doing unusual

experiments.
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As discussed in the introduction to this cliapter, it is
difficult to achieve spinning speeds greater than the dipole (and of
course the quadrupole) interactions. Thus, the MAS is mostly confined
to dilute spins-1/2 such as lsC, whose spectra is broadened
predominantly by the CSA. Foe dipole coupled spins-1/2, the dipole
interactions can be removed by the application of multiple pulses,
while the CSA is removed by the MAS. This method is termed "CRAMPS"
(the Combined Rotational And Multiple Pulse Spectroscopy)13'16 CRAMPS
is currently the most widely used method for extracting the isotropic
chemical shifts of the abundant spins-1/2. However, the disadvantage of
the method is, as pointed out earlier, that the the chemical shift
range is scaled by the multiple pulses applied, degrading the
resolution. This may be problematical for a system of spins with a wide
range of closely spaced chemical shifts. The application of higher
static magnetic field to separate these resonance lines are hampered by

the limitation of the spinning speed available.

(ii) Sample Hopping Experiments

The spatial analog of the coherent averaging with discrete
plecewise-constant configurations is the sample hopping experiment.
The solid angles corresponding to the configuratioms x, y, and z are
f, = (0, 0, 0), 9, = (0, /2, O0), and 1y = (O, x/2, n/2). For

simplicity the following notation will be used:
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! E 1 N _ B
Al = }nno-u J—% Do+ 3 o + 20} 5}1 Do.u Po-ym (6-17)
At those three solid angles A(fl) becomes
1 L} 3 ] ¥
A@y) = -3 Pyo * JE (r22* #2.2)

1 ’ 3 [] 1]
A0y = -5 Pyg - jﬁ (et 25.2) (6.18)

It follows that

3
zk_l A@) =0, (6.19)

showing that indeed the three configurations remove all (first order)
anisotropies. It can easily be proved that if the sample is not spun,
the first order anisotropies cannot be removed with angles fewer than

three. Thus the minimum number of degrees of freedom for this case is

three.

Implementation

A question arises immediately: How can one implement Eq.(6.19)
experimentally? Of course, Eq.(6.19) cannot be satisfied in the sense

of time-averaging, because the time scale for manipulation of the
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spatial coordinates is much bigger than that of the spin coordinates.
For dilute spins-1/2 the experimental implementation of Eq.(6.19) can
be done with the hopping technique developed by Maciel et. al.14 :
Consider the Hamiltonian for spins-1/2 in powdered solids consisting of
the Zeeman(#,) and the chemical shift(#_ ) terms. For simplicity onmly a
representative crystallite will be considered. However, the result
holds for a system with an arbitrary number of crystallites as well.
The Hamiltonian in the rotating spin, tilted space frame may be

written as

H o= w0501, + @ 2y Do y(®) pp_y (01, (6.20)

where the index M runs from -2 to 2, and oy is the isotropic

so

shielding tensor.

First position the sample axis at fI; and apply a n/2 pulse along
the (-y) direction. Then the initial density operator is allowed to
evolve under the Hamiltonian corresponding to the angle for the

duration of r/3. The density operator at r = r/3 is thus

p(%) - exp(-i§¢llz] Ix exp(1§¢llz]

T T
- Ix cos —Ql+ Iy sin 3@1, (6.21)

w

where

&) = WOy + Wo 2y Doom(By) po_y(0). (6.22)
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The x component is stored by applying a second x/2 pulse along the y

axis and the sample axis is hopped to the next angle Q,. A x/2 pulse

along (-y) allows the magnetization to evolve, and after another period

/3 the density operator becomes
I

p(t) = exp(-i%ﬁzlz) Ixcos¢1 3 exp(i%&zlz).

The procedure is continued until the angle dependence of the

magnetization becomes
T T T
£, = exp|-iz cosx cosy .
y = exp(-13 45) cos3 4, cos3 ¢
Three other experiments to store various components result

. : 7T T T

f2 - -1exp(-1§ ¢3] cosy ¢2 sin§ ¢1
- T T T

f3 - -1exp(~i§ ¢3) sin§ ¢2 cosy ¢1

T T . T
fa - —exp[-i§ ¢3) sin§ ¢2 singy ¢1.

It follows that

4 T Y
2(_1 £ - eXp(-1—3-(¢1+ B+ 8,)]

(6.23)

(6.24)

(6.25)
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XBL 8711-5970

Fig. 6.1(a) Schemacic diagram of the experiment for removal of
the first nrder anisotropies. The initial density operator created by a
90° pulse along -y axis evolves under #,(f} ). See text for the
definition of the Hamiltonian. The Hamiltonian is made to vanish during

t;,, the individual hopping period. Overall evolution time is t;.
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XBL 8711-5953

Fig. 6.1(b) The three orientations of the sample G to be used
for the experiment given in Fig. 6.1(a). The sample is hopped about an

axis tilted by the magic angle, 8  with respect to the z axis.
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Here

@1 + @2 + @3 - 3w00iso (6.26)
Thus the isotropic chemical shift is recovered. However, a disadvantage
of the meti.nd is that four experiments are required for quadrature
detection. A superior method is to recover the isotropic chemical shift
in one experiment. The key is not to discard half of the information
while storing the remainder. To achieve this, consider the experiment
shown in Fig.6.1.

The evolution operator for the scheme at time t = t; + 2t is
‘1 ! ‘1
U(t) = exp(-i¥ (23)57) exp(-1%,(0,)57) exp(-i¥, (0,)5")

t
- eXP[-i{Hz(ﬂl) + H (8,) + Hz(n3)}§1). (6.28)

where Hz(ﬂk) denotes the high field truncated Hamiltonian with the

sample oriented along .. The second equality in Eq.(6.28) follows from

the fact that

[#,ap)  Hy(ap] =0, 1,j -1,2,3 (6.29)

From Eqs.(6.2), (6.20) and (6.28) it follows that
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cs . CS
u(e) = exp(-it Ry Too

= exp(-1t100Tk %150,k Tke) (6.30)

where %iso0.k is the isotropic shilding tensor for the kth spin.
Consequently the spectrum should show sharp lines at their respective
chemical shift values.

The procedure also holds when there are dipole and/or quadrupole
interactions present as well as the chemical shift term in the
Hamiltonian. If the hopping procedure of Maciel et. al. is followed, it
is extremely difficult to express the density matrix evolved under the
Hamiltonian. Furthermore, for spins I = 3/2, it is not even known
whether one can write down the density operator at all, let alone
decipher the information and design schemes to remove unwanted terms. A
straightforward method analogous to CRAMPS is to apply multiple pulses
to remove the dipole (and quadrupole interactions), while the hopping
technique is used to remove the CSA. However, once again the chemical
shift range would be scaled and the resulting quantization axis would
be different from I,, which makes the design of the schemes very
difficult. Thus the present method may be the most versatile one. The
crucial point is to make ﬂz = 0 during the hopping periods, to which

the next section is devoted.

VI.4. The Design of Dead Time for Evolution

The general approach adopted here to make U(t,) = 1 during hopping
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periods is the Average Hamiltonian Theory (AHT). Of course other
approaches such as iterative schemes can be incorporated.

First consider a Hamiltonian containing only the chemical shift
term. As usual, the density operator starts evelution by a x/2 pulse
along the -y direction. Instead of terminating the evolution by another
n/2 pulse, apply 2x pulses continucusly while the sample is hopped.

Then the density operator at t = r/3 + t, becomes
p(5 +t) = TJexp|-i thdt'{d’(1 + 01+ oI} exp(-i3#,1) 1
3 Tt 0 3 z 17y 3"17z7 “x

X exp(i%¢1lz] 9—1exp[ifzh dt'{@(% + t')Iz + wlly}}

- exp(-ithwlly] Uexp[-ij.:hdtj.:hdt'{@(% +t) Tz(t)}] U I
x U{ fj'lexp[ij.;h dthh dt'{tb(% +t) Tz(t)}]exp(ithwlly] (6.31)
Here J is the time-ordering operator,
Uy = exp(-1#;71,/3), (6.32)
®(t) = wyoy o + W Yy Do_y(B(E)) £y y(@"), (6.33)
with (0) = By, and f(t;) = B,. Finally,

I,¢0) = exp(ite 1) I, exp(-1twiI ). (6.34)
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n=1.0

n =0.5

Jt

n=20.0

Fig. 6.2 Simulated spectra of a powder sample of dilute spins-1/2
with asymmetry parameters n = 1.0, 0.5, and 0.0. The three spectra on
the left are for the static sample, while those on the right are

spectra predicted to result from the experiment.
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Supposing that w; >>| @I, one may approximate the time-ordered
integration of the "switched" operator Tz(t) in Eq.(6.31) by the zeroth

order average over the duration

Iio)g %hJ-th T (o) at, (6.35)
0
which vanishes if Wty = 2mr, m = 1,2, . Furthermore, because the 2n

pulse imparts cycl .*tv to the switched Hamiltonian, all odd order
correction terms vanish. Similarly, the Hamiltonian is made zero with
the 2x pulses during the second hopping period. Hence, to this degree

of approximation, at t = 7 + ty the density operator becomes

p(t) = exp(-if §}<-i $, 1,) I exp(i] 2(_:1* 4, 1) (6.36)

- exp(-irwoaisoIz Ix exp(irwoaisolz)

Therefore, once again the isotropic chemical shift is recovered.
However, it is achleved in one experiment. The continuous irradiation
of 2x pulses may be somewhat demanding. A better way may be to apply =«
pulses at appropriate times to create a spin-echo while the sample is
hopped.

Fig.6.2 shows the simulated spectra of a powdered sample of dilute
spins-1/2 with n values 0, 0.5, and 1.0. Fig.6.2(a) is for a static
sample and displays full powder pattern. Fig.6.2(b) shows a sharp
single line which is predicted to result from the experiment proposed
in Fig.6.1.

For a dipolar or a quadrupolar system it is easy to create an
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XBL 8711-5960

Fig. 6.3 Trajectory of I, for the sequence (x y)s. Note that the
trajectory traverses all six points, where the three coordinate axes

intersect the unit sphere.
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echo by applying (1r/2)x(1r/2)y pulse sequence.]‘7 However, if the
Hamiltonian contains the chemical shift term in addition to dipole and
quadrupole terms, there are no time-reversezl sequences for creating the
echo. Gonsequently, sequences to get rid of all these terms must be
designed. For a general discussion of methods to average various terms
the reader is referred to Chapter III. As discussed earlier, it
requires three configurations to remove the Ty, terms in the dipole
(and quadrupole) Hamiltonian to zeroth order. In addition, two
configurations are are required to remcve I, terms (ng and ng). Since
these two averaging processes are independent of each other, at least
six configurations (or sixz pulses) are required.

Two examples of such sequences are (x y)s and (¥ x 2x X y), wvhere
X, ¥, X, and ¥ are yo° pulses with four quadrature phases. The
trajectory of Tz(t) resulting from the sequence (x y)s is shown in

Fig.6.3. It is well known that for symmetric cycles all odd order terms

vanish.18 As shown in Appendix 5, such a sequence can be constructed by

concatenating an inverse sequence with an original sequence. . Examples

are given in Figure 6.4.

VI.5. The Second-Order Quadrupole Effect

VI.5.1. The problemlg'21

For a powder sample of spins I >» 1 the biggest broadening is due
to the anisotropic quadrupole effects. The first order quadrupole

effect was treated in the last few sections. It will be shown in this
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(a)
Yy x X vy 2y Yy X X oy
{
0 I I I I I I A
\Z X x z Z X &% X 7!
(b)
Yy X 2x X ¥y Yy X 2x X y
[}
Ll
'z X Y Y X 22 X Y Y X i

XBL 8711-5971

Fig. 6.4 Two sequences which produce symmetric evolution
operators, and thus make all odd order correction terms in the Magnus

expansion vanish.
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section that the geometrical arguments associated with the magic angle
are no longer tenable for the higher order anisotropies. Nonetheless,
there are some interesting symmetries for these higher order
anisotropies, which will be exploited to design experiments for the
removal of the anisotropy associated with the second order quadrupole.
The second order quadrupole effect is most prominent for nuclei
with half-integer spins. Especially, for these spins the first order
effect does mnot manifest itself in the central transitionm = -1/2 «
m = 1/2 of the spectrum. Figure 6.5 shows this situation schematically.
To see this mathematically, consider the signal resulting from the

secular quadrupolar Hamiltonian iéo) qiven by Eq.(6.10) with w, = wg'
S, (t) = Tr( I,I.(t)). (6.37)
where
1,(t) = exp(-itH{") 1, exp(1t#("). (6.38)

Now consider only the subspace connected by the transition between

m=-1/2 and m = 1/2, which is relevant to the discussion. Then

St1/2 = Lt <172| 1, I.(t)|1/2>

1 —(0)
_ Z‘ E;nlmsz?' 1, Im><m | exp(-16E.") lmp><m, | 1 [ny>

.. 5(0 1
x <m3| exp[ltﬂé )] Iii>
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XBi 8711-5976

Fig. 6.5 Central portion of the energy levels of a nucleus with a
half-integer spin. The Zeeman energy levels are perturbed by the first
order quadrupole interaction. However, the energy level difference

between m = 1/2 and m = -1/2 remains unchanged.
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1 1 1 %(0) 1
- E; <i§| I l$7><$7| exp(-itﬂQ ] |¢E>

x <3| 1 || exp(id"iéo)] 42>
- 5; |<#3] 1, |5p>| exp{-it cég) c(o)]} (6.39)
Since
<1/2] Ty |1/ = <-1/2| Tyg |-1/2>, (6.40)
s - 6(502 - 0. (6.41)

Thus the broadening in the central transition is due to the second

order quadrupole interaction.

V1.5.2. Mathematical Formulation for the Removal of the

Second Order Effect

In 2 tilted space, rotating spin frame the first order correction

term is given by

=(1) - 1 _qyIm’ A A!
# T2 E; ',2,2 m,m “) “A'( D vl -m vl'—m‘
A imw . t1 1m w t2
"[sz' Im].[dt.[dte 0 (6.42)

where



201

Vo - Eﬂ D _ w Py (6.43)

Among the various cross terms only the terms A = A’ =Q and £ -~ £2' = 2
a.e responsible for the second order quadrupole effect. After some
algebra it can be shown that the part of the Hamiltonian which gives

rise to the second order quadrupole effect reduces to

2
z(1) “q 1, ..m
o= 20, };n-o n (D { 2V m Y20 [ Ton' T20 ]

" v2-m v2m [ T2m’ T2-m ]}’ (6.44)

where the label Q is suppressed for simplicity except for wg in the
expression.

Table 6.1 lists commutation relatioships among various operators
Tym- In the basis of the Zeeman interaction only [ Tom Toem ] (n =
1,2) are nonzero, and thus these are the terms which contribute to the
first order energy shifts to the energy levels determined by the Zeeman
and ﬁéo) term. Therefore, these are ultimately responsible for the
second order quadrupole effects.

It is easy to show that

<-1/2] [ Tops To.p | 1-172> - <1/2| [ Tpp, Typ ] 11/2> = 16

m=1,2, (6.45)

Thus the second order frequency shift is given by



Table 6.1 Commutation Relations for Various Spin Operators

Here

Expressed in Terms of Spherical Tensors

3 2 2
[ Tpayr Tyo ] R (1, + 111, +1,1))
3 (.2 2
[Tzﬂ,'rzo] -t-——zjz [1t12+ 2 LI T, + J.zI__t)
3
[Ty Tpy 1= (71, - 01,

T

3
[Tpeq » Tpp 1 = - 14

3
[ Ty 1 Toog 1-- "2 (4 1, -31, )

202
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w

(2) _ M) a2) _ 8 1, .m
RV I @, zn.ao 20D Vs o Vo (6.46)

Eq.(6.46) is the principal expression to be utilized for the design of

the schemes for the removal of the second order quadrupole effects.

Spinning Experiments

Now consider the case in which the sample is spun around a tilted
axis. With the definition of V,y given by Eq.(6.43) and the following

property of the Wigner rotation matrix

M-m
D-m-u = (-1) DmM (6.47)

the second order shift reduces after some lengthy calculations to

2
(2) _ 16“q ' 2
“@ ~ 3w, -—2I r( u-z)l
{151 + 15, 1% - 5 (1917 + 19, 417) }- (6.48)

More explicit expression of Eq.(6.48) is prohibitively complicated. The
geometry of the scheme for the removal of wéz) can be found as follows:

The line broadening is due to the distribution of the orientations
' (0,8’ ,7') of the spins in the powder sample. The orientation

dependence can be expanded in terms of independent basis functions of
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B' and vy'. Thus

(2) 5)‘ a (@) F (@), (6.49)
Explicit calculation of Eq.(6.49) shows that

(2) Z, ' '
w - C_ (1) eos(2mB ) cos(2ny ). (6.50)
Q n=0,1,2 ™

Here mi = n = 0 correponds to the orientation-independent terms, which

give rise to the isotropic shift. The isotropic shift can be calculated

to give

]2{11f1 + 12f2 + 9f3}
9f + 20f + 35f
[]2 = 3 F 650

where

22 3 4

f1 -3 sc” - g S
-1, & 2

£, =15 (9¢ +6c° -7) (6.52)
1 (g 4

£,=7 (9 -6c"+1)

with
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s] _ [sin ﬂ]
c cos B}, (6.53)

B being the tilt angle of the spinner axis from the LAB z axis. It is
interesting that the sum of the coefficients of f; in each parenthesis
is equal to 1.

The coefficients C, in Eq.(6.50) are determined by the orienta-
tion of the spimnner axis. The removal of the second order quadrupole
effect thus reduces to making

Cmn = 0 (m,n ; 0,1,2), (6.54)

except the coefficient of the isotropic shift Cypg. G, can also be ex-

panded in terms of fk' and it can be shown that Eq.(6.54) is achieved

when

fl - fz - f3. (6.55)

Note that
- f3 ~ A TA + B TZ, (6.56)

£, - f2 ~ £

where



XBL 8711-5959
Fig. 6.6 The second and fourth order Legendre polynomials.
¢ = cosfl, (k = 1,2) vhere B and ﬂz are angles which make the

polynomials vanish simultaneously.

206



207
P (cos B) = = (35 cos’s - 30 cos?p + 3) (6.57)
4 8
is the fourth order Legendre polynomial and once again
1 2
Py(cos ) =5 (3 cos“B - 1) . (6.58)

The second and fourth order Legendre polynomials are shown in Fig.6.6.
Thus it may be conjectured that the removal of an nth order anisotropy
by mechanical sample spinning is associated with a function g  having

the form

g, - };‘? bmn ?Zm(cos B). (6.59)

However, the rigorous proof of Eq.(6.59) for n * 3 requires more work
and is of no further interest here.
In view of Eq.(6.5t), the angles which satisfy Eq.(6.55) must be

the roots of the simultaneous equations

}i Tz(cos ﬁk) -0 (6.60)

and

}E ?h(COS'ﬁk) = 0. (6.61)
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Fig. 6.7 Simulated spectra for a powder sample which is spun
around an axis tilted from the z axis by A, and 52 respectively. The
line broadening is due to the CSA and the second order quadrupole

interaction.
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In this case the minimum number of degrees of freedom, N, is two.
Unlike the case of the first order anisotropies, there is only one set
of two angles which satisfy Eqs.(6.60) and (6.61).

Recently the variable-angle sample spinning (VASS) method has
been introduced?2 27 to deal with the line broadening due to the CSA
and the second order quadrupole effect. The VASS studies show that
there is no "magic® angle which satisfies Eqs.(6.60) and (6.61) si.-
ultaneously, although there are angles at which the overall
anisotropies are minimum. The optimal angles sould be different for
different samples. Another interesting feature observed in the VASS
studies is that at certain two angles the resulting powder patterms are
exactly opposite to each other. This behavior is shown in Fig.6.7.
These angles are the roots f; = 37.377365° and 8, = 79.187691° of the
above simultaneous equations. It follows that the two angles also

remove the first order anisotropies, which are proportional to

P,(cos B).

VI.5.3. Implementation

In principle Eqs.(6.60) and (6.61) may be achieved by hopping the
sample between B; and By as shown schematically in Fig.6.8(a). Because
many nuclei of interest such as 2Ta1 (I= 5/2) have the quadrupole
coupling constants of 0(106) Hz, it is impractical to apply multiple-
pulse sequences to make the Hamiltonian vanish during hopping periods.
Another possibility is shown in Fig.6.8(b). Instead of hopping, the

sample axis is rapidly rotated about an axis orthogonal to the sample
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(@)

(b)

XBL B711-5972

Fig. 6.8 Two experiments for the removal of the CSA and the
second order quadrupole interaction. In (a), the spinner axis is hopped
between two angles f; and B,. In (b), the spinner is quickly rotated

from B3 to B,.
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spinning axis. In this case the angles (denoted as f and B,) must be

found from the integral equations

By,
Iﬂ3 P,(cos B) df = 0 (6.62)

and

Py
Iﬂ3 F,(cos #) df = 0 (6.63)

rather than the discrete summation Egs.(6.60) and (6.61). They are:

Bq = 19° and By = 99°. The summation or the integration is possible
because the portions of the Hamiltonian responsible for the first order
anisotropies and the second order quadrupole effect commute with
themselves at all times during the experimental methods proposed above.
The rotation of the sample axis requires time of 0(10'2) seconds with
current technology. Consequently, many sidebands may clutter the
spectrum. However, in principle, these side bands can be suppressed

with the techniques developed for the MAS experiments or the extemsions

thereof.zs'37
V1.6 Remarks

A technique used throughout this Dissertation is the AHT. The

connection between the zeroth order term in the AHT and the first order
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perturbation theory has been discussed by Haeberlen.38 It was shown in
Chapter II that the first order correction term in the ANHT gives a
result identical to the first order correction term in the Taylor
series expansion of the exact theory of the interaction of a spin-1/2
with the quantized-electromagnetic theory. It can be shown that the
second-order quadrupole effects as calculated in this chapter by using
the first-order correction term in the AHT results in an expression
identical to the second-order perturbation theory. An advantage of the
AHT over perturbation theory is the explicit appearance of the
operators in the expressions, allowing a quick decision on which
operator terms are important for the situation under consideration.
The increased number of degrees of freedom in selecting angles
will undoubtly shed light on the design of schemes for the removal of
various anisotropies. Although the large magnitude of the quadrupole
coupling constants prevents the modulation of the spin degrees of
freedom by the application of pulses, in general the complementary
modulation of spin and spatial coordinates will be the most versatile
tool for the high-resolution NMR spectroscopy. In fact, a combined

approach of multiple pulses and mechanical motion has been proposed39

for achieving one of the ultimate goals of KMR reducing the

Hamiltonian to a scalar.
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Appendix 1

To prove that a second rank tensor may be regarded as a direct

product of two vectors, first note the following transformation

properties of a second rank tensor and a vector:

Tin = 2x2 Cmk Cng Tis (A1.1)

Vo = Zn 8am Vi (A1.2)
Let

Tap = Palp: (AL.3)

where Py and qg are components of vectors 3 and  respectively. Then

Palg = (Zm 4am pm] [Z'n agn qn]
= 2mn 8am 8gn Tin
- T&ﬂ' (Q.E.D.) (Al.4)

Appendix 2

Consider the total Hamiltonian consisting of an internal(ﬂv) and

a time-dependent external(#;) parts:

H - () + 4, (A2.1)
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The evolution operator for the Hamiltonian satisfies

du/dc = -1 HU. (A2.2)
Now suppose U can be separated into two parts:

U= U0, (A2.3)
with U; satisfying

duy/de = -i #U;. (A2.4)
Then Eq.(A2.2) becomes

dU/dt = (dU,/dt)U, + U, (dU,/dt)

= -i HU + Up(dU_/dt)

~ -i(# + HV)U. (A2.5)

It follows that

au,/de - -1 u} %, u;. (A2.6)

Therefore



t
- -- ) T
u =9 exp 1J-odt Uy K Ul].

Appendix 3

219

(A2.7)

List of 24 pulse sequences which removes all linear and bilinear

cross terms. The definition of phases is: 0 = x, 1 = y, 2 =X, and

ey,

@3212321083232183810832101
83081083232123210323032101
032101210323210323032101
01210123083230830121232161
©12101232303230121232101
9121038101232301212321061
012301038123230121232101
9123838103232301212321061
9121012363012123212321061
9361630810323212321232181
230103010301030103010301
0121012101210361830106301
93212321232123010838108301
012321232123230103918301
012123212381012183818301
912321232301012163010301
8123238108121012103641€3061
8323063012123212303616381
030121232123212383010301
03230381232123230830106301
032303012323810123018301
0121232123012191230103061
91232123230121012306108381
012303236121232123010301
930123030121230101218301
©12323012321230101210301
©12303230123238101210301
012323p321232361012103081
030121232123012101238301
0361232301232123010812301
0301230323612323010123081
012303230123231210123081



8121810121210121€1€121901
03810830103018121010121¢1
030291830361012101012101
212181210121012191012101
03810303p103012101012101
832103238323812101017181
032323832323012101012101
83332°32323321210108121461
#3°3e3232383212101812101
81232123212321710181°1081
23¢32323p3252121010812101
012303238323832101012101
@12323032323832101017161
@12123212321232101012181
83212103@321010361012101
01710301083030108301012101
012123432383230301012101
0121232383232323061012101
@381012303012123010812181
012103230323932361012101
012123932323032301012101
03018301039¥1210121812101
8301230301832101210812101
0323032303232101210612101
8383230321010321210812101
832303232101030121012101
032321910301036121912101
832321030103830121012101
830323832103610321012101
832303232193018321012101
832321010303010321012101
830323032301030321012101
832303232301030321012101
8303232303210838321012101
8123212103032308321012101
9321232103032303210121081
812103932383238321012101
212103230323236321012101
812101232123212321012101
0323210323032101083012101
81232121083232108103012181
832123210323210163312101
032321230323210103012181
032321232101030163012101
832121030321030103012101
832121832303718303012101
032121230323210303012181
612101230323@32303012181
012123832393812123012101
012123233323012123812101
612301212323012123012101
9121230301212321230812161
0121012123212321238121081
81°1@81238323230323012101
012123630@123212323812101
@121@3232123218383212101
0121@32121838323083212181
812103212183232101032181
@323210383230103010321081
8323210323032103081032101

@30421232123210323218181
@238323212323210323210101
@321010323232183232108161
@30323832323436323210101
@37303012121236323210101
@3012123212123@323218161
@381232123212320323210141
@3032123232123@323218181
@3¢4123232123230323210101
@3@123232301012323216101
12323912121012323210101
912103030123212323210181
@30101032323212323210101
23010103010108301010830191
9121010121010301081€.7181
930103010301030101039101
030301038301083¢11010301061
012101210121830101043041081
£121219121210301010308101
23010303901033308101032101
8303230303230301021030181
232303230323030101038181
932323032323832101032101
912101212101230101030101
@32121232121236101030101
012321212321230181038101
©321232123212308161030101
9323212323212301010838101
830323032303230191030101
032303232303230101830101
0121232121232360101630161
012321232123230191030101
8321232321232301010308101
©30323230323230101030101
©612323212323238101030101
03230384301018121081038101
9121212321016121010301081
912123212301012101030101
8123212323610121010301061
832123232301012101636101
012323010121€1210108301081
230101210121912191830101
930121012121012101030101
812323012161212101830101
€301232121232121081030101
930321232123212101063¢101
838323212323212101030101
939323832323032101938101
032393012121232101030101
030121232121232101030101
©38123212321232101030101
038321232321232101030101
©012121238301010301030181
212101012193010301036101
0301030103030103010830101
012101210123610301830101
8121210121230183810830101
012101012301830301620101
8301032303032303018308101
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Appendix 4. Some useful commutation rules.
[ I;7I) ,og ] =% 1 By~ (+ sign for k = 1, - sign for k = 2)
{ 1771, , By | = /21
[ 1,71, ,a" ) =0
[ 1;'I, ,aft ] =0
[ 13715 , agap ]} = 0
where

a,Bf,7 = x,¥,2z and cyclic permutations.
ui - o b ay

+
By = B11y * 118,

With the above commutation rules it is easy to show that

exp(-1Jt1; 1) o exp(itJI;1,)

= a cosJt + 287" sinJt.

Appendix 5
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In this Appendix it will be shown that any sequence of pulses of

the type (Pl"‘Pn)(Pl"'Pn)'1 makes the switched Hamiltonian cyclic, if
[#.1,] =o. (A5.1)

(pf.) Consider the following evolution operator with n plecewise-

constant Hamiltonians

+ H)]... exp[-ir(-w

U= exp[-ir(-wll + H)]

I
¢, 16,

= g'lTTkzl exp[-ir(-w11¢k + 1)), ¢ =x, by (45.2)

where J is the time-ordering opertor. Eq.(A.2) can be rewritten as

U = ei”Iz U-lTTk exp(-ir(w + ﬂ)] e_i”Iz

1I¢k
- {eiﬁlz jrrk exp(ir(wll45 + ﬂ)] e-i”Iz}T
k

- { 9 TTk exp(ir(-w11¢k + ﬂ)J}T

- { 7 T, exp[-ir(w11¢k - H)]}T. (A5.3)

Now separate the rf part from the internal Hamiltonian:



226

U - exp (-1r (w11¢k+ )

- exp(-1re1, ) Jexp(-1[} at (o)

= Pka. (A5.4)

In general, the exact form of Vk cannot be calculated, but it may be

expressed in terms of (21 + 1)2 basis operators Om'

Vy - exp(-ifzm amOm]. (AS5.5)

It follows that

exp(-ir(wlldjk - H)] - P, exp(irzm akamJ

1
- kak' (A5.6)

Thus Eq.(A5.3) may be rewritten ask

v- (977, ka;‘(]"
- (UTTk,m Pm VLJT

- g1 7,
7 ﬂk’mvkpm, (A5.7)

where

<t

j - (Pj'l “ .. Pl)1 Vj (Pj']. « . P].)' JZ2 (AS.S)

and
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\71 - Vy. (A5.9)

Therefore, for a sequence of the type (P,...P_)(P,...P )'1, the total
ype (£y.--Fp)thy - Py

evolution operator becomes

-1 ~ ~
Utot ~ (@ ﬂk,m kaID [gﬂk',m'Pm'vk')

- Vl... Vn Vn... Vl. (Q.E.D.) (A5.10)



