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NMR WITH GENERALIZED DYNAMICS OF 

SPIN AND SPATIAL COORDINATES 

Chang Jae Lee 

Abstract 

This work is concerned with theoretical and experimental aspects 

of the generalized dynamics of nuclear spin and spatial coordinates 

under magnetic-field pulses and mechanical motions. Specific goals 

include: a description of the interaction of spins .with a quantized 

radiation field; the design of multiple-pulse sequences for the 

averaging of all linear and bilinear spin operators; schemes for 

heteronuclear decoupling of spins in multi-level systems; methods for 

the removal of anisotropic spin interactions in orientationally 

disordered solids. 

The main text begins with an introduction to the concept of 

"fictitious" interactions. A systematic method for construction of the 

fictitious spin-1/2 operators is given. The interaction of spins with a 

quantized-field is described using this formalism. 

The concept of the fictitious interactions under the irradiation 

of multiple pulses is utilized to design sequences for selectively 

averaging linear and bilinear operators. Relations between the low-

field sequences and high-field iterative schemes are clarified. These 

relations and the transformation properties of the spin operators are 

exploited to d-volop schemes for heteronuclear decoupling of multi-
\ 
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level systems. The resulting schemes are evaluated for heteronuclear 

decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples 

and from a homonuclear spin-1/2 pair in liquids. 

A relation between.the spin and the spatial variables is 

discussed. The transformation properties of the spin operators are 

applied to spatial coordinates and utilized to develop methods for 

removing the orientational dependence responsible for line broadening 

in a powder sample. Elimination of the second order quadrupole effects, 

as well as the first order anisotropies is discussed. It is shown that 

various sources of line broadening can effectively be eliminated by 

spinning and/or hopping the sample about judiciously chosen axes along 

with appropriate radio-frequency pulse sequences. 
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CHAPTER I. Fundamental Phenomena and Tools 

I.1. Introduction 

What is remarkable about nuclear magnetism is that it continues 

to be a fertile source of fundamental physical phenomena and at the 

same time it has found an enormous number of applications in fields 

such as physics, chemistry, biology, and medicine to name a few. A 

reason for the versatility of NMR may be due to the fact that nuclear 

spin dynamics can be described with relative ease, although accurately 

with standard quantum mechanics: the difference between energy levels 

is quite small even at high magnetic fields, so the high temperature 

approximation is usually possible except for some extraordinary 

circumstances; in addition, a semiclassical description for the spin-

radiation interaction j.s adequate under most experimental conditions. 

The simplicity along with accurate predictions has made a great variety 

of sophisticated experiments possible. In short, NMR is a field which 

enjoys a happy marriage between the fundamentals and applications. 

Accordingly, in this Dissertation an attempt has been made to 

incorporate the duality: the fundamentals and applications. However, 

because AE'At £ h -* 0, the focus will be paid only on limited aspects 

of this vast field: in the following sections of this chapter some 

basics on the nuclear spin itself and the spin Hamiltonian are 

discussed. Then in Chapter II, a simple model for the interaction of a 

spin with an electromagnetic field is described on a consistent full-

quantum mechanical footing. The rationale behind the inclusion of the 
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chapter is not merely to provide a balanced exposition on the spin 

dynamics with the fundamentals and applications to abide by the 

principle of duality mentioned above, but also to be pragmatic: 

Although the basic nature of this chapter may be considered to be on 

the fundamental side, it is hoped that it will find some applications 

in cases which require microscopic treatment. NMR, being a branch of 

general spectroscopy, can be described on a universal dynamical footing 

applicable to all branches of spectroscopy. Thus the full quantum 

mechanical analys:- of nuclear spin-electromagnetic radiation 

interaction may find applications in, for example, optical 

spectroscopy, or vice versa. Also it is hoped that some benefits will 

result as by-products from the treatment itself. 

Later chapters deal with more complicated systems: there are many 

spins in the system, interacting with each other and suject to much 

more complicated external perturbations. Most relevant to this 

Dissertation is the removal of unwanted term(s) from the Hamiltonian 

while keeping the desired term(s) as intact as possible, by modulating 

the spatial and/or the spin parts of the Hamiltonian with mechanical 

motions, or radiofrequency pulses or with a combination of the two. 

Chapter III deals with the design of multiple pulse sequences for 

solids under general interactions: the sequences developed for high 

field Hamiltonians have to deal with only the truncated part of the 

Hamiltonian. Hence, it is necessary to devise a generalized scheme for 

sequences to be used for averaging the Hamiltonian at low static 

magnetic fields, because the Hamiltonian contains full untruncated 

interactions. The sequences for these low (and zero) fields may also 
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have important applications for high field experiments, where pulse 

imperfections produce terms that appear in the low field Hamiltonian 

which were absent in the original high field Hamiltonian. Also the 

transformation properties of these various terms may be useful for 

designing some experiments, and this will be discussed in a later 

chapter. Other possible applications include homo and heteronuclear 

spin decoupling by applying multiple pulses. 

Chapter IV discusses iterative schemes frequently used in NMR in 

connection with the multiple-pulse sequences developed in Chapter III. 

However, in this chapter the pulses will no longer be considered ideal: 

the radio frequency field srength is of the same order as the internal 

error terms, and furthermore they may have amplitude imbalance and 

phase shift errors as well. So a goal of this chapter is to show the 

relationship between the schemes for the low field multiple pulse 

sequence design and the iterative schemes especially developed for 

modern decoupling experiments for a single-spin case. The similarities 

as well as the differences between the two methods will be analyzed, 

and the result of the analysis will be utilized to extend the 

decoupling schemes to treat the two-spin case, where bilinear spin 

operator terms as well as linear terms have to be dealt with. 

The first discussion given In Chapter V is on the criteria of 

the heteronuclear decoupling for multi-level systems. The decoupling 

schemes developed in Chapter IV along with other schemes will be 

evaluated by applying the criterion for liquid crystal samples. Then it 

will be discussed in detail how to design composite pulses and put them 

together in a sequence for the heteronuclear spin decoupling in liquids 
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in the presence of homonuclear interactions. Various comparisons will 

be made on these schemes using both simulation and experiment. 

In the chapters thus far the modulation schemes are aimed at 

affecting the nuclear spin coordinates. In Chapter VI, external 

perturbations will be applied on the spatial degrees of the freedom of 

the Hamiltonian. The major goal is to achieve highly resolved resonance 

lines in powder samples. Although the pulsed NMR techniques are quite 

versatile and powerful in many instances, they cannot be used for 

extracting the isotropic chemical shifts; because in the presence of 

high magnetic fields the spin part of the chemical shift Hamiltonian is 

proportional to I z > Consequently, the radiofrequency pulses can not 

distinguish the isotropic part from the anisotropic part. Therefore 

carefully designed mechanical motions affecting the spatial part of the 

Hamiltonian are used to deal with the problem. A theoretical background 

for dealing with the various anisotropics which cause the broadening of 

the resonance lines will be given and some experimental possibilities 

will be discussed. 

Finally some useful relationships and data too lenthy to include 

in the main text are compiled in Appendices. 

1.2. The Nuclear Spin and the Hamiltonian 

I.2.A. The Nuclear Spin 

A very fundamental property of a nucleus is its intrinsic spin 

angular momentum. The concept of the intrinsic spin angular momentum 
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(or simply the "spin") of the electron was proposed by Uhlenbeck and 

Goudsmit to explain the appearance of two closely spaced lines of the 

D line in a sodium spectrum. The electron may be regarded as a charged 

sphere spinning around one of its axis. Then by analogy to classical 

electromagnetism the intrinsic angular momentum may arise from such 

motion. Thus the name "spin" was given to the intrinsic angular 

momentum. But the simple classical model turned out to be untenable. 

Dynamical variables may be (first-)quantized by replacing the 

corresponding classical mechanical quantities by appropriate operators. 

In the classical limit ft -+ 0 the spin reduces to zero. So the spin has 

no classical analog of the classical mechanics, and thus there is no 

explicit operator form for it. Dirac later showed in his relativistic 
2 quantum mechanical treatment that the spin arises naturally. However, 

the therry of Dirac does not hold for other elementary particles, and 

the value of the spin of each particle has been experimentally 

determined. The elementary particles of concern in this Dissertation 

are nuclei. 

I.2.B. The General Form of the Spin Hamiltonian 

Since the spin Hamiltonian has been detailed many times in 

standard texts, ' monographs, and theses, no exhaustive discussion on 

it will be given here. Only some points which will be utilized 

extensively in later chapters are given. 

The spin Hamiltonian of interest to this work consists of the 

Zeeman (# z), radiofrequency (#rf). chemical shift (# c s), dipole (9 D), 
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quadrupole (SQ), and indirect coupling (#j) interaction terms. H~ and 

H * may be regarded as external Hamiltonians and the rest as the 

internal Hamiltonians. The decomposition, however, is not unique. For 

example, when transformed to the rotating frame, certain parts of #-, 

more specifically, the resonance offset (Jf_«) term is considered as an 

internal Hamiltonian. Conversely; when the second averaging condition 

is met, the resonance offset term may be regarded as a new "Zeeman" 

term and hence may be considered to be an external part of the spin 

Hamiltonian. Therefore, the terms "internal" or "external" should be 

used in accordance with the particular situation under consideration. 

In the laboratory frame (LAB) each indiviiual (internal) 

interaction term in # z, # c s, X D, HQ and Jij may in general be written as 

X* - I-RX-tX , A - Z.CS, D, Q, J. (1.1) 

Fare 

R - -7 1 : Z 

fa : CS 

-77 ft 8 : D (1.2) 

_?2. 
61(21-1) Q 

7 and 7' are the magnetogyric ratios, a the shielding tensor, ft the 

dipole coupling tensor, V the electric field gradient tensor. 
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tx -8„ Z, CS 

D, J (1.3) 

Alternatively, the Hamiltonian can also be written as 

I - R-T, (1.4) 

where If i s cons t ruc ted from the d i r e c t product of f and X: 

T a 0 " T a A /3 - (1 .5) 

R and T represent the spatial and the spin part of the Hamiltonian 

respectively except for the cases of A — Z and CS. These tensors can be 

either Cartesian or spherical. Thus 

31 ~ la.fi RafiT0a (tt-*» " x ' v ' 2 > (1.6) 

or 

" Z*-o )F- - „ (-1) S., T- . (1.7) 

The Cartesian tensor form provides some useful physical insights which 

will be discussed in section I.2.C. The spherical tensor form is useful 

when rotations or other unitary transformations are involved. It is the 

form which has been used extensively by Haeberlen and Waugh for the 

http://la.fi
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description of the spin-lattice relaxation in periodically perturbed 

systems. 

I.2.C. The Analogy between the Spin and Spatial Parts of the 

Hamiltonian 

The Hamiltonian in Eq.(1.6) expressed in terms of Cartesian 

tensors will now be used to point out an analogy between the spatial 

and the spin parts. The analogy is general. However, it is most 

striking for quadrupole and dipole interactions. 3Q and # D have quite 

similar structures and the quadrupole interaction is more general in 

the sense that it has the asymmetry parameter(ij) . So %» will be 

considered here as a representative case without the loss of 

generality. 

It can be shown (the proof is given in Appendix 1) that a second 

rank Cartesian tensor A a may be regarded as a direct product of two 

vectors 

Aa 0 " Vcfl/3 (a'^~ x , y i o r z > ( 1 8 ) 

where p and q« are components of vectors p and q. Hence R - can be 

written as a product of components of two vectors iQlo', quite 

analogous to the fact that T g is expressed as a product of two angular 

momentum operators IQIo'• Therefore, there is a one-to-one 

correspondence between spin and spatial parts of the Hamiltonian. 

The general analogy can be made more explicit for the simple case 
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• -Y 

Figure 1.1 Laboratory coordinate system and polar angles 8 and 4 

of the axis of the symmetry of a a x i a l l y symmetric quadrupole. 
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of ij-0 (this includes dipole interactions). In this case because of 

axial symmetry only the principal axis of symmetry is important and the 

Hamiltonian may be expressed in terms of the two polar angles 6 and <j> 

shown in Fig.1.1. Thus (apart from a constant factor) 

#« ~ l l ( 3 c o s 2 f l - l ) ( 3 I 2 - I 2 ) + | s i n 0 cos0( I I + 1 1 ) e _ 1 * Q ^ z z z Z + + z 

+ fsinflcosfld^+II^e1* + |sin20(I2e"2i*+I2e2i*)]-. (1.9) 

The two vectors ~L and l' making up the tensor tL are now identical to 

each other and are parallel to the symmetry axis of the quadrupole. The 

unit vector along this direction has the following components 

x — sin0 cos^ 

y - sin* sin^ (1.10) 

z -= cos0 

Then HQ may be written as 

3L ~ 4 ( 3 z 2 - 1 ) ( 3 I 2 - I 2 ) -3zx(I I +1 I ) -3yz(I I +1 I ) Q 2 z z x x z y y z z y 

-3x7(IxIy+lyIx) -§(x2-y2)(I2-I2). (1.11) 

Thus we can now clearly see the close analogy between spin and spatial 

parts, and it will be fully exploited in designing the experiments to 

be discussed in Chapter VI. 
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I.2.D. Some Useful Properties of the Spherical Tensors 

An irreducible tensor operator A*̂  of rank 2 has (2i+l) 

components, which under a coordinate rotation R, satisfy 

R Aim R t " i - Aim' Dm'm ( R ) ^- 1 2> 

1 - 0. 1, 2,... 

m - i, i-1, .... -i 

where D ^ f a re Wigner r o t a t i o n mat r ices . 

Some useful commutation r e l a t i o n s h i p s between A« and the angular 

momentum operators, a r e : 

[ J 0 . A im ] ~ m A i m ( ! • " ) 

[ X ± l - AAm ] " T [ V 2 { i ( i + D - m(m+l)}] V 2 A i m ± 1 (1.14) 

For i - 1 and A l m - I m Eqs . (1 .13) and(1.14) reduce to 

[ X 0 - J l i l ] - 1 I l ± l (1-15) 

[ 1+1. X - l ] - " I 0 - < 1 - 1 6 ) 

P r i n c i p l e a x i s system (PAS) 
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The relationship between the spatial part R of the Hamiltonian in 

the LAB and *p in the PAS can be expressed using Eq.(1.12) 

Ri-m ~ \ ' "i-m< B- (m-m' ( n , )- ^ ^ 

where fl' is the solid angle relating the two frames, pn — 0 (m * ±2) 

for X - D,Q. /JQQ - •J^1"iso
 and m — 1 term corresponds to the 

antisymmetry component, which has no effect on the first order spectra 

and thus is usually ignored. 

1.3. Remarks 

It should be remembered that these internal Hamiltonian terms are 

scalar quantities as evidenced by Eq.(l.l) or Eq.(1.4). Thus they have 

the isotropic symmetry, and this Is the property which the zero-field 

NMR methods capitalize on. In zero field the Hamiltonian is orientation 

independent, so a single-crystal-like spectrum is obtained from a 

powder sample. Once an external field is applied, the spin components 

orthogonal to the applied field undergo rapid motion, and the isotropic 

symmetry under rotation is broken. (However, the symmetry broken this 

way is different from the "broken symmetry" occurring in the condensed 

phases such as ferromagnets. In such cases there exist intrinsic 

alignments of spins even if there is no external field present. If the 

external field Is present, even spins In a normal phase (paramagnet) 

line up parallel to the field and this is not an intrinsic property of 

the spin system.) 
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Line broadening is removed by isotropic motion of the molecules 

in liquids provided by the nature. However, in solids the motion must 

be provided by the experimenter either by pulses to affect the spin 

part, by mechanical motions to affect the spatial part, or a 

combination of the two. 
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CHAPTER II. Full Quantum Mechanical Treatment of the Spin-

Radiation Interaction. 

II.1. Introduction. 

Chapter I focused on the nuclear spin and general form of the 

internal Hamiltonian. This chapter will concentrate on the dynamics of 

the interaction of spins with electromagnetic radiation. The second 
1 2 quantization method • is highly useful for those systems in which the 

number of particles in a given state changes, and the production and 

disappearance of particles of a given species occurs. Thus for 

describing the spin-radiation interaction the second quantization method 

is frequently employed. One feature that arises in the method of second 

quantization is the concept of "fictitious" particles. The concept is 

found in many branches of physics dealing with many-particle systems. 

The idea behind the concept is to transform the "coupled" or complicated 

real system to some "uncoupled" (or at least less strongly coupled) 

"fictitious" system, so that they may become amenable to calculation. 

Some familiar examples include: the separation of an otherwise 

unsolvable two-body system into a non-interacting center of mass system 

and a reduced mass system, the transformation of a coupled harmonic 

oscillator into uncoupled normal coordinates, the Hartree-Fock method 

for calculating electronic energy, and phonons for describing vibrations 

in crystal lattice. The replacement of a time-dependent Hamiltonian with 

a fictitious time-independent "average" Hamiltonian has been a powerful 

tool for multiple-pulse techniques in NMR. • The concept of fictitious 
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|2> — 

I1> 

XBL 8711-5975 

Fig .2.1 Two processes of a spin-1/2 and electromagneic field 

interaction. The spin is excited or de-excited by 

absorbing or emitting a photon respectively. 
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spin-1/2 has been used with eminent success in dealing with multiple-
6 7 8 quantum transitions. ' ' 

In this section a few simple model cases of interaction of a spin 

with radiation will be given, following closely the discussion given by 
q Pines. 

II.2. The Second Quantization Treatment of a Spin-1/2 (Fermion) 

Interacting with a Quantized-Field. 

A. The Hamiltonian 

Consider first a two-level system generated by placing a spin-1/2 

in a large static magnetic field. Next the spin is made to interact with 

a field oscillating with a single mode such that only the two processes 

depicted in Fig. 2.1 occur, that is non-linear couplings are ignored. 

The energy level |2> is assumed to be higher than |l> with a difference 

in frequency given by «i - Un ~ w 0 - Finally introduce creation and 

annihilation operators C** and C= (j-1 ,2) for the spin, and a' and a for 

the radiation respectively. Then the total Hamiltonian may be written as 

* " fiS + *R + »SR 

= Hw^\ci
 4 w 2 G 2 C 2 ) + fiwata + F ( a C 2 C l + a t ci c2>» ( 2 1 ) 

where A is a spin-radiation coupling constant and the zero point energy 

is ignored. 
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Table 2.1 Complete set of orthogonal basis functions 

in the occupation number formalism. 

N 1 n^fi^ 1 
nvi> 

0 | 0 . 0 . 0 , • • •> m | 0 > 

1 1 i.o,o,-->. | 0 ,1.0,••>, | o , o , i - > , - - -

2 1 L i , o - > , 1 , 0 , l . " > . | 0 , l , l - > , 
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B. Is a Single Particle too many? 

A question arises, however, whether # S R given in Eq.(2.1) is equal 

to 

*SR" ~2 K C 2 + a t c I C
2 ) • < 2 2 > 

In other words, whether operators satisfy commutation rules 

[ C1 . c\ ] - 0 (2.3) 

and 

[ cj , C 2 ] - 0. (2.4) 

It is perfectly clear that when there is a system consisting of many 

identical particles, the following commutation or anticommutation rules 

must apply: 

and 

( c. , c k , - { c] , ct , - o 

[ a j • *k J - 1 • ] • 4 1 - ° 

(fermions) (2.5) 

(2.6) 
(bosons) 

i aj • 4 J - v 
However, what if there is only one particle in the system to begin with? 

Is there any commutation rule at all for this case? To answer the 

question, the complete set of basis functions in the occupation number 

formalism is given in Table 2.1. The number of states M depends on the 

system. For example M —• « for a hydrogen atom or a harmonic 
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oscillator, but there are only two energy levels for a spin-1/2. The 

number N varies depending on the processes occurring in the system. For 

example, 

C1C2C3c|cJ| 0,0,1,0,••> (N - 1) 

- C 1C 2C 3cJ 1,0,1,0,••> (N - 2) 

-= C ^ c J 1,1,1, ••> (N - 3) 

= C^l 1,1, ••> (N - 2) 

= Cj 1,0,0,•"> (N - 1) 

-| 0.0,0,•••> (N - 0) 

where the signs involved in the process are temporarily ignored. It can 

be clearly seen that the number of particles varies from zero to three. 

Now return to the problem of a spin-1/2, a two-level system. The 

complete set of basis functions in the occupation number space and the 

number of particles associated with each function is given in Table 2.2. 

It can easily be seen from the table that the number of particles (in 

this case fermions) varies as 0 < N < 2. It is clear that these are not 

the real particles but fictitious particles. Furthermore in the second 

quantization formalism even though we started with one real fermion, 

there can be a variable number of fictitious particles during the 

process, depending on the number of states and the type of interactions 

involved. In the above case of interaction where the total number of 

particles is conserved, the variation of the number of fictitious 

particles may be likened to injecting test particles to facilitate the 



Table 2.2 Complete basis set for the two-level system of 

a spin-1/2. 

No. of 
p a r t i c l e s b a s i s 

0 
1 
2 

| 0> : the vacuum s ta te 
1 i,o>, |o,i> 
| 1.1> 
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calculation and removing them at the end of the calculation. In some 

sense, the above method is reminescent of the method of Lagrangian 

multipliers. To be more specific, consider the variational equation as 

an example: 

fi{ e[p] - /iNJ- - 0, (2.7) 
where G[p] denotes an energy functional of electron density, and 

«H -1 P(.h d3r (2.8) 

is the total number of electrons in the system. Here, the electron 

density is varied even though the total number of particles is a 

constant. Back to the case of the spin-1/2 interacting with the 

radiation, the conservation of the number of particle should be relaxed 

during the calculation. Otherwise, operators CjC2 and CjCj appearing in 

Eq.(2.2) would be meaningless: If N - 1 is rigidly required throughout 

the calculation, then 

Ĉ Cjj 1,0> - cj 0.1> - 0. (2.9) 

The first equality holds because of the conservation of particle number 

and the second equality is due to the fact that no more than one 

particle (fermion) may occupy a state. Similarly, 

CJC2| 0,1> - cj| 1,0> - 0. (2.10) 

However, if the condition is relaxed during the calculation, 
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c|c2| o,i> - cjo,o> - | i,o> 
N _ i > N - 0 > N - 1 

C^l 1,0> - cj| 0,0> -| 0,1> 

N - 1 > N - 0 > N- 1 

c 2cj o,i> - c2| i,i> -I i,o> 
N - 1 > N - 2 > N - 1 

c^i i,o> - cj i,i> - I o.i> 
N - 1 > N - 2 > N - 1 

So, one can see that the operators cause the transitions between states 

| 1> and | 2>. It is also confirmed that the number of fictitious 

particles changes as 0 < N < 2 during the process, and that it is 

conserved at the end of the calculation. 

The spin-1/2 just discussed is not an isolated example where there 

are a number of fictitious particles even if there is only one real 

particle. Another example easily found is a harmonic oscillator in the 

mode k vith the energy given by 

E ( V " ( nk + \)fiwk' V 1 > 2 ( 2 1 1 ) 

Eq.(2.11) can either be interpreted as the energy level associated with 

quantum number n^ of a real harmonic oscillator or as the energy of a 

system of n^ fictitious particles in the k-th state, all excited by 

fiu^/2, thus given the name "elementary excitations". The fictitious 
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particles satisfy either the anticommutation rules or the commutation 

rules depending on whether the real particles are fermions or bosons. 

C. Connection to the Spin Angular Momentum Operators 

The Hamiltonian in Eq.(2.1) will now be transcribed into a more 

familiar form by transforming it back to the coordinate representation 

from the occupation number representation. To do this it first should be 

noted that the matrix element should be identical in both 

representations: 

o±. = < ^ i | o U j > - < - - - i . - - | o o c c | - • • y > . (2.i2) 

Here 0 is an one-particle operator. Since there is only one spin-1/2 in 

the system, operators representing many-particle interactions need not 

be considered. {̂ .} are one-particle wave functions. 0 O C C is the 

corresponding operator in the occupation number representation. Then it 

can be shown that 

Oocc V 0 cjc (2.13) 
) mn m n 

where 0 represents the matrix element of the operator in the 

coordinate representation. As an application, consider the following 

operator given in the occupation number representation 

0 ° C C - I (C|c2 + cjc^. (2.14) 
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With Eq.(2.13) the corresponding matrix 0 can be found as 

0 *-, * , 
To I72T 
[1/2 0 J 

which is identical to the matrix representation of I x for a spin-1/2. 

With the same procedure the following set of identities for spin-1/2 

operators is found 

Xx - \ < C1 C2 + C2 C1> 

Jy " -|<C1C2 " C2C1> 

\ " \ <4 C1 " C2C2> 

Note that because of the anticommutation rules for fermions 

(2.15) 

<T \ ( Gl Ci + C1 C2 ) I ( c}c2 - c } C l ) - iiy. (2.16) 

With the above operators it is possible to recast the Hamiltonian 

given by Eq.(2.1) as 

H - ttwnI + ftwa'a + 
0 z 

^(al+ + ah), (2.17) 

where I . - I ± i l Eq.(2.17) then i s the f u l l quantum mechanical 
— * y 

Hamiltonian for the spin-radiation interaction, and one can recognize it 
12 to be identical to the Jaynes-Cummings model (JCM) in which rotating 
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wave approximation is made. The JCM has been one of the most examined 

models in quantum optics. • • 

II.3. Spin-1 Operators in the Second Quantization Method 

Spin-1 operators can also be expressed in terms of particle 

creation and annihilation operators applying the method discussed above. 

It suffices here to state that in this case because the spin-1 is a 

boson, C and C' operators satisfy boson commutation rules and to give a 

representative example: 

° ° C C " Tl ( C1 C2 + C1 C2 + C2 C3 + C2C3> (2.18) 

The corresponding matrix representation for 0 is then 

0 -
f 0 1/72 0 1 
1/72 0 1/72 
0 1/72 0 

1 
72 

0 1 0 
1 0 0 
0 0 0 

1 
+ 72 

0 0 0 
0 0 1 
0 1 0 

72(I x" 2 + ll'3) - I x, (spin-1) (2.19) 

where the definition of fictitious spin-1/2 operators ' has been used. 

For concreteness, a set of basis operators for the spin-1 expressed in 

terms of C and C* operators is listed in Table 2.3. 

II.4. Average Hamiltonian Treatment of the Spin-Quantized 

Radiation Interaction. 



Table 2.3 Basis operators for a spin-1 

I x - 2- 1/ 2
( cJc 2 + CJc x + cjc3 + cjca) 

I y - i 2- 1/ 2
(_ cJc 2 + c J C i . c| C s + C J C 2 ) 

Tz - c I c i - C1 C3 
Q x - i 2- 1/ 2

(_ C{c 2 + cjc1 + Cjc3 - cjc2) 

Q y - 2 _ I/ a(cIc 2 + cjcj - cjc, - cjc 2) 
Q 2 - S-^cJc, - 2cjc2 + Cjc3) 

0+2 - Ctc 3 

Q.2 - c 3 t C l . 
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A. The Time-Independent Fictitious Hamiltonian 

The Schrodinger equation for the simple model Hamiltonian given by 

Eq.(2.17) can be solved exactly and the solution is provided by Jaynes 
12 and Cummings. 

with 

E ^ - * , ( » f l / 2 ) ± * j ( A u ) 2 + A 2 ( n + 1 ) (2.20) 

Aw - w - wQ (2.21) 

*n+ I A|n+1 sin* + Aw contf || n+l , -> (2.22) 

+ |Ajn+l cos* - Aw sinff l| n,+> 

and 

<f> - lAjn+l cos* - Aw sin* || n+l,-> 

- Aln+1 sinS + Aw cosfl | n,+>, (2.23) 

where | n,+> is the state with n quanta in the field with the spin "up" 

and | n+l,-> is the state with n+1 quanta with the spin "down". Thus 

(2.24) 

(2.25) 

a Ta | n> - n | n> 

and 

y ±> - ±i/2| ±>. 
6n satisfies 

J n+1 
tan B - —r 

n Aw + 

J n+1 
tan B - —r 

n Aw + 
c n 

and e n is given by 

(2.26) 
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e - (Aw)2 + A2(n+1) . (2.27) 
n *l 

Eigenfunctions <f> . are mixtures of eigenfunctions of the unperturbed 

Hamiltonian 

S 0 - - ftu(lz + ata) (2.28) 

and the perturbation due to the interaction of the spin and the 

radiation causes the transition between the two states | n+l,-> and 

I n,+>. 
Although there exists the exact solution for this simple model 

Hamiltonian, in general one is forced to resort to approximate 

solutions. With the anticipation of extending the treatment to general 

cases an approximate solution based on the Average Hamiltonian Theory 

(AHT) will be presented. AHT, a variant of the time-dependent 

perturbation theory, has been quite successful for dealing with many 

dynamical phenomena encountered in NMR and recently in quantum optics 

as well. The basic idea of AHT is to replace a time-dependent 

Hamiltonian by a fictitious time-independent "average" Hamiltonian. 

We first transform the system into a rotating frame defined by 

U - exp(-iwt(I + a*a)). (2.29) 

Then the Hamiltonian given by Eq.(2.17) becomes 
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» - -ftA«I z + 5 | ( a l + + a h ) , (2 .30) 

where Aw - w - « Q . NOW suppose l lS S R l l»IIS 0 £fll , where # Q f f i s the o f f s e t 

Hamiltonian and the " s i z e " of a Hamiltonian i s def ined by ' 

11X11 - T r j a 2 ] 1 / 2 . (2 .31) 

Then the o f f s e t Hamiltonian transformed in to a second i n t e r a c t i o n frame 

may be w r i t t e n a s 

* o f f ( t > " U r f ( t ) - f i A w I

2

 U r f ( t ) ' < 2 - 3 2 > 

where 

U r f ( t ) - e x p [ - ^ t » S R ] - e x p [ - i t ^ ( a l + + a f I ) ] . (2 .33) 

Our goal is then to find the time-independent Average Hamiltonian 

% such that 

Urf e xP<"|^ t ) " Urf ° e x p("f Jo ^ t ' ) ^ ' ) - < 2 3 4 > 

where 0 is the Dyson time-ordering operator. B is usually expanded as 

a power series, in which the first two terms are given by 



30 

»<°> - Ijj l(t)dt 
(2.35) 

^'^lldtJiL6t2^h?'^t2^-

However, explicit calculation of #0ff with U rj given by Eq.(2.33) shows 

that it does not yield functions having closed forms, so the average 

Hamiltonian terms become difficult to calculate.lt therefore is 

necessary to find a picture in which the exponential of Eq.(2.33) 

becomes a single term, to which the next section is devoted. 

B. The Fictitious-Spin Operators 

With a slight rearrangement one gets 

(al + a.h ) - (a+a^I + Ka-a^I (2.36) 
-r X y 

and may be tempted to find some function *(a,a') such that 

(a+a*)I + i(a-at)I - D(I cos* + I sin*) (2.37) 
x y x y 

where D is a constant. The quantity in the parenthesis on the right-hand 

side is 

e-i*I z j UIz - I cos* + I sin*, (2.38) 
x y 

and the constant D may be obtained from 

http://calculate.lt
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<n| (a+a*)2 + {i^-a*)} 2! n> - 4<n | (n + |) | n> - D 2. (2.39) 

Then #(a,aT) has the following form 

^(a.ab - cos" 1 ( a + a } (2.40) 

or 

^a.a*) - sin'1 1 ( a ' a }. (2.41) 

Thus in a frame transformed by exp(-i^Iz) the exponent in Eq.(2.33) 
becomes a single term: 

al + a*I > -I _,_ 1 I 
+ - 2Jn + 2 « 

(2.42) 

where the prime denotes the new frame. 
However one can easily verify that a and a' resulting from 

Eqs.(2.40) and (2.41) are 

a - JnTl/2 e 1* 

a*- Jn+1/2 e" 1* (2.43) 

and they satisfy 

aa* - a*a - n+1/2, (2.44) 

instead of satisfying the usual boson commutation relations. In the next 
section the reason for this inconsistency will be discussed and a 
correct transformation will be given. 
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C. The Phase of the Quantized Radiation 

The definition of the phase of the quantized radiation is not 

unique. The requirements the quantum phase of the radiation must satisfy 

are: 

1) The quantum phase and the number of photons in the radiation field 

must satisfy the uncertainty rule 

2) It must correspond to the classical phase in the classical limit. 

A definition of a and a' operators including the quantum phase is 
1 Of) 

given by ' 

-r n+1 e i* 

a*- J~n e'1* - e"1* J~~n+1 . (2.45) 

The exponential operators satisfy 

•^-[r^lF]- 1- (2.46) 

and 

; * . * -.t i .. (2.47) 
n + l 

The righthand side of Eq.(2.47) can be simplified as follows: If 

Eq.(2.46) is true, 
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- i* i4 -i* i* -i# i* , o ,<>>> 
e T e e e T - e e T (2.48) 

With a slight rearrangement the above equation becomes 

e" 1* e^fe" 1* e 1* - l) - 0. (2.49) 

Since the operators on the left-hand side of the parenthesis cannot be 

zero, the quantity within the parenthesis must be zero, in contrast to a 
21 claim in the literature. As a matter of fact, for any photon state 

a V r i ' 2; cn I «* " EnSJ 1*- (2-50) 

It follow that exp[±i#J is rigorously an exponential function. 

After some algebra it can be shown that the following uncertainty 

rule between the phase and the number of photons in the field holds: 

An Atf > «, (2.51) 
22 as is given in standard texts on quantum mechanics. 

The reason for the inconsistency of the definitions given by 

Eq.(2.43) can now be explained. To show this first rearrange Eq.(45), 

the correct quantum mechanical definition of a and a' : 

a + a * - Mn+1 + J~n l c o s i + i M~n -Jn+1 Jsin * (2.52) 

and 

i(a - a*) - Mn+1+ Jn~jsin * + ijjn+l- Jn~jcos * 

-fel+ J^~]cos(*-J) + i[]S~- JnTl Jsin(rf-|). (2.53) 

The above equations show that the two quantities are orthogonal to each 

other. However, it is not possible to assign a definite phase and the 
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number of photons simultaneously because of the uncertainty principle. 

By contrast, the definitions for a and a* operators given by Eq.(2.43) 

demands a definite knowlege of the phase and the photon number. As a 

result, the number of photons in the field ( ,/(n+l/2) ) is incorrect. 

The correct number of photons can be shown to be (n+1), with the one 

extra photon being responsible for the spontaneous emission. In the 

classical limit n»l, the difference between the number (n+1/2) and the 

quantum mechanical number (n+1) is immaterial. The next section will 

show how to find a correct quantum mechanical transformation. 

D. The Fictitious Spin-1/2 Operators for the Spin-

Radiation Interaction 

By analogy to the procedure given in Sec.B, J| n,+>,| n+l,->} will 

be chosen as the complete basis set for the coupled two-level system. 

Fictitious spin-1/2 operators for the coupled system of the spin and 

radiation may be constructed by utilizing the identity 

^ - L . n . | i > T i n . < m ' - ( 2 5 4 ) 

Then there results a new set of operators £„, i„, and i_ 
x. y i. 

* x - 1/2(| n,+Xn+l,-| + |n+l,-Xn,+ |), 

£ — i/2(| n,+Xn+l,-| - | n+1, -Xn,+ |) , (2.55) 

i - 1/2(| n,+Xn,+ | - | n+l,-Xn+l,-| ). 
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which can e s i l y be shown to sat isfy the commutation rules for the 

angular momentum operators: 

[ i x , iy J i i z , 

[ i y , i z ] - i i x , (2.56) 

[ i z , i x ] - i i y . 

Furthermore, 

i x - J ( |n,+Xn,-t| + |n+l , -Xn+l , - | ) - \ , (2.57) 

where the closure relat ion 

| n , + X n , + | + | n+ l , -Xn+l , - | - 1 (2.58) 

is used for the second equality. Similarly, 

I2 - I2 - i (2.59) 

y z 4 

It follows that the operators can be regarded as fictitious spin-1/2 

operators. Finally, we can relate these operators to a, a* and the 

original spin-1/2 operators, by using Eq.(2.54) and the matrix elements 

<n+l,-| al I n,+> - 0 

<n,-t] a*I_ | n+l,-> -0 

<n,-tj al | n+l,-> - 7(n+l) 
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<n+l,-| a*I_ | n,+> - 7(n+l) (2.60) 

<n+l,-| I z | n+l,-> - -\ 

<n,-t] I | n,+> - \ 

Thus the following set of fictitious spin-1/2 operators results 

Jx " 2 7 ( k ) ( a I
+
 + a t l-> 

lj * 27(nTiy ( a I
+ " a t l- ) ( 2 6 1 ) 

i - I z z 

and it is easy to verify that these are the correct set of fictitious 

spin-1/2 operators. Implicit in Eq.(2.61) is that the total excitation 
no 

number operator 

t N - aTa + I (2.62) z 

is a constant for the spin-radiation interaction Hamiltonian given by 
, A A 

Eq.(2.30), because both al + and a'I_ conserve N. Consequently, N must 

commute with both the unperturbed Hamiltonian and Bgp. The commutation 

can easily be shown. Furthermore, it can be shown that the numerical 
A 

value of N is equal to (n+1/2) as follows: 

(i) Spin "up" 

The corresponding state must be | n,+>. Thus 

<+ | I z | +> - 1/2 
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and 

<n | a'a | n> - n. 

Therefore, the expectation number of N is equal to n+1/2. 

(ii) Spin "down" 

The state is | n+l,->, so 

<- | I z| ->- -1/2, 

<n+l| at a | n+l> - n+1 

and thus 

<N> - 1/2. 

E. The Transition Probability 

With the fictitious spin-1/2 operators 2a (a - x,y,z) the 

"switched" Hamiltonian given by Eq.(2.32) can easily be calculated. From 

now on ft will be set equal to 1 and the subscript "off" will be 

suppressed for convenience. Thus 

X - eltAy(n+l)ix ^ ^ e-itA7(n+l)ix ( 2 6 3 ) 

- Acofi cos>7(n+l) t + i sinAy(n+l)tV 

The f i r s t two terms in the average Hamiltonian then becomes 
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* ( 0 ) - Ay ( n"" 1 ) f(l 2sinAy(n+l)r + iy{l-cosAy(n+l)rj-

5(1) (Aa.)2 f slnAy(n+l)r] ( 2 6 4 ) 

" 2A7(n+l) x[ Ay<n+l)r J" 

Suppose the spin is continuously irradiated and measurements are made at 

time t such that 

A7(n+l)t - 2mjr (m - 0,1, 2 , . . . ) , (2.65) 

then the average Hamiltonian terms become 

» ( 0 ) - 0 (2.66) 
and 

B 2A7(nTiyix- ( 2 6 7 ) 

The evolution operator in the interaction picture may thus be 

approximated as 

s-itAy(n +l)i x e - i t ( » ( 0 )
+ » ( 1 ) ) 

. e-it{Ay (n +l) + s^}ix. 

U(t) » e 

(2.68) 

We also assume the Initial state is | n,+>. The state at time t is then 

|*(t)> - U(t)| n,+> 
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- cos7p| n,+> - i s inrpl n+l,->. (2.69) 

where 

The t rans i t ion probability i s thus 

P - | <n+l, -| *(t)> | 2 - s i n 2 |[A7(n+l) + gffin+l)) , (2.71) 

while upon using Eqs.(2.20)-(2.27) the exact solution is found to be 

2 
p - — ^ - ^ sin2 ^ i r< n +i) Ht^ryy u-m 

(Aw) + A (n+1) 
| { A2(n+1) .(Aw)2}1/2 

When A./(n+l)»Aw, which is implicit in the transformation given by 

Eq.(2.34), to a good approximation 

/ 2 ( n + 1 } - 1 , (2.73) 
(Aw) + A (n+1) 

and 

{ A 2(n +l) +(Aw) 2 p - A7(n+l){l + if;^) *}• (2-74) 

Then Eq.(2.72) reduces to 

p . . l n 2 | [ A y ( B t l , t ) 3 J g ^ ] 1 (2.75) 
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which is identical to the approximate solution, Eq.(2.71). 

A comparison between the semiclassical and quantum mechanical 
23 24 transition probabilities ' establishes the correspondence 

A7(n+1) < > w 

In the next section the theory will be extended to include double-

quantum transitions. 

F. The Double-Quantum Transition 

A simple three-level system is generated by placing a spin-1 in 

the static field. The energy scheme is depicted in Fig. 2.2. The 
q Hamiltonian can be shown to be with a slight modification 

1 - V « + K Q z + w a t a + y t ( a I

+

 + a t l - > ( 2- 7 6 ) 

where the basis operators for the spin-1 in Table 2.3 have been used, 

along with u>->n + W03 "• 2wn and W53 - «TO ~ ^.WQ. 

In the frame defined by Eq.(2.29) the Hamiltonian becomes 
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«o + ( 0O 

|3> 

T |2> 

0). 
co_ - co, 

1> 

XBL 8711-5974 

fig. 2.2 Three-level diagram for a spin I - 1. The original energy 

levels are determined by the Larmor frequency WQ, and 

they are perturbed by the quadrupole interaction. w Q is 

the quadrupole coupling constant. 
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i - H Q . + v t ( a i + + ati->- ( 2 7 7 ) 

Supposing that U>Q » A,/(n+l), we may transform to a second interaction 

frame, where the switched Hamiltonian is given by 

n - e l w' utQ ( X j i^ t ] -iw tQ 
Q z|y2< a + a ) J

X
 + 7 2 < a " a ^ y j * Q Z ( 2 7 8 ) 

With JJQT - 2nur (m - 1,2,...) and after some algebra using the 

commutation relations among the basis operators for the spin-1 given in 

Table 2.3 one can show that 

» ( 0 ) - 0, (2.79) 

and 

2 
Ha) = -£-(a2Q - a t 2Q ), (2.80) 

W Q + 2 " 2 

where terms leading to non-conservation of the total number of particles 

are ignored. The identical result can also be obtained by an operator 
Q 

perturbation method. One thus can see that the double-quantum 

t r ans i t i on is associated with the application of a and a' operators. 

I I . 5 . Remarks 

In this chapter it was shown that simple cases of a spin 
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interacting with the electromagnetic field can be treated on a 

consistent full-quantum mechanical footing, by employing the second 

quantization method and a correct transformation which yields 

fictitious-spin operators. The AHT, a tool widely used in treating many 

complex dynamical phenomena in NMR, is also employed to deal with the 

fully-quantum mechanical cases with, to a good approximation, identical 

results. As a result, it is possible to make a connection between 

semiclassical and quantum mechanical quantities such as the field 

strength and the number of photons in the field. 

The direct appearance of photon creation and annihilation 

operators in the expressions may allow one to "see" the spectroscopic 

dynamics microscopically. The treatment, hopefully, will cast some light 

on schemes that require such a microscopic observation. Especially, it 

may be of help to clarify the relation of NMR to quantum optics, in 

which the use of quantized radiation field is a common practice. In fact 

much of the development of optical spectroscopy has capitalized on the 

close analogy to NMR, and some sophisticated NMR techniques have 

benefited from developments in quantum optics. A possible application of 

the above treatment may be to analyze the spin dynamics during multiple 

pulse and multiple quantum experiments. 

In most routine NMR experimental conditions it is possible to 

create enormous number of photons in a unit frequency range with low 

power due to the smallness of the frequencies involved in these 

transitions and high accuracy of frequency generated. Thus in these 

conditions the classical limit n —• <*> is applicable with virtually no 

errors. Consequently, in the discussions to follow the spontaneous 
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emission will be neglected and the magnitude u, and the phase <t> of the 

radiation will simultaneously be assigned. 

The convention for the direction of pulses adopted in this 

Dissertation is as follows: According to classical mechanics the 

equation of motion of a spin magnetic dipole moment is given by 
-* 

du •* -* •£ - 7 /i X B . (2.81) 

The moment i s re la ted to angular momentum by 

2 - 7* (2.82) 

and the Hamiltonian for the interaction of the spin and $ i s 

Jg _ . 2-g - . yt'l - w-t . (2.83) 

I f 

then 

3 - BjX, (2.84) 

Jl - W l I x . (2.85) 

Consequently, when the term "x pulse" is used it means that the pulse is 

applied in such a way that the direction of the pulse field is along the 

positive x axis. Thus the pulse is associated with the rotation operator 

Rx - expf-itWilJ (2.86) 

and the rotation is clockwise if 7 is positive. 
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CHAPTER III. Orchestration of Multiple-Pulses in 15-Dimenslonal Spin 

Space in Solids. 

Ill.1 Introduction 

This and later chapters will concentrate on more complicated 

systems: the system consists of many interacting spins, and they are 

under much more complicated external perturbations. Nearly all modern 

NMR experiments are performed in the time-domain; that is the external 

perturbations are applied such that the (internal) spin Hamiltonian is 

made appear time dependent. Provided that the time-dependence is fast 

enough, the modulated internal Hamiltonian can be time-averaged. With 

variety of external perturbations the experimenter can in principle 

make the spin Hamiltonian into any form he desires. This chapter 

concentrates on the multiple-pulse technique for the selective removal 

of various terms in the Hamiltonian. External perturbations are thus in 

the form of radio-frequency pulses and are applied on the spin 

coordinates, which are then time-averaged. The pulses can be either 

"hard" or "soft", the former nearly approximating the fi-funtion and the 

latter being windowless. 

Magnetic-field pulses cause the spin to nutate about the 

direction of the axes along which the pulses are applied. From the 

transformation properties of various spin operators under these 

rotations some useful informations can be extracted. Especially, one of 

the goals of the high-field iterative schemes Is the removal of various 

spin operators with low-power rf fields. In such condition the 
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resonance offset can cause the pulse to deviate strongly from the ideal 

pulse, and as a result variety of linear and bilinear terms are 

created. Same spin opertors appear in the low static field and 

multiple-pulse sequences for the removal of these spin operators can 

thus shed some light on the design of the high-field iterative schemes. 

In Chapter VI discussed is the averaging of various anisotropies by 

mechanical motions. It will be shown in the chapter that the 

transformation properties of the spin operators are also useful for the 

design of schemes for the averaging of these anisotropics. 

Ill.2 The Spin Hamiltonian 

One of the simplest multiple-pulse sequences is the WHH-4 

sequence designed to remove the homonuclear dipolar Hamiltonian in 

high field. The secular dipolar Hamiltonian may be written as 

»° - V »D ' (31, I.' - I -I »). (3.1) 
zz /jL>i- ii iz l z i i 

where 

Dii' " h 2 * ( l " 3 eo" 2*!!*)/ rii' <3-2> 

is a dipole coupling constant. The dipole Hamiltonian can be averaged 

to zero utilizing 
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» D + iP + iP - 0, (3.3) 
xx yy zz 

and the WHH-4 sequence satisfies Eq.(3.3). Of course, the WHH-4 

sequence is not the shortest sequence that satisfies Eq.(3.3), since 

the three-pulse sequence (xyx) also satisfies Eq.(3.3). At any rate, 

these sequences all generate the same configurations 

( (X.Y.Z) , (Y,Z,X),(Z,X,Y)} ignoring the sign, which is immaterial for 

quadratic terms. But what if there are more terms than those given in 

Eq.(3.1)? How many and which configurations are needed to remove all 

these terms? To answer these questions let us first write down the 

Hamiltonian that includes all possible linear and bilinear spin 

operators. The Hamiltonian can be obtained by placing a system of spins 

I in a static magnetic field which is too low to truncate dipole-dipole 

or quadrupole interactions. Thus it may be written as 

» - JL + ». + » (t) 1 2 p 

- H. _ + H (t). (3.4) 
m t p 

Here 

*1 ''I Vj'^J^O < 3- 5> 

contains terms linear in spin vaiable with a denoting the chemical 

shift tensor. In contrast, the terms in 

s-\. kW1* ( 3 6 ) 
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are bilinear in spin variable for which jî k corresponds to the dipole 

interaction with a coupling tensor C ^ and j-k corresponds to 

quadrupole interaction with a coupling tensor C=.=. Finally, 

V c ) - - L V j " s i ( t > <3-7> 

denotes the pulsed magnetic field. For convenience, the coordinate 

system chosen is the laboratory system. 

The evolution operator given by 

U(t) - 3exp(-ifjdt'»(t')] (3.8) 

may be separated into two parts 

u (t) - u p(t)u i n t<t) 

- 3exp(-iJ|j dt' »p(t')) ^expf-ijj dt' » i n t(t')) (3.9) 

as d iscussed i n Appendix 2. The "switched" Hamiltonian i s 

'mt^-^'mtV0- ( 3 1 0 ) 

Assuming the cyclicity of U (t) at time t - t , the cycle time, one can 
P c 

now calculate the average Hamiltonian S - For 

simplicity, only the zeroth-order term will be considered. It is worth 

noting here that the density matrix p can be expanded in terms of 
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N - (21+1) basic operators. For example, 

p(t) - ) a (t)I + a nl (3.11) 
/p-x,y,z a a 0 

for 1-1/2. For I - 1 there are eight basic hermitian operators, 

traceless and independent of each other. One such set of commonly 

encountered basis operators is given in Table 2.3. Also from the form 

of internal Hamiltonian given by Eq.(3.4), it can be noted that the 

same basic operators can be used to expand the internal Hamiltonian. 

Thus, with the following shorthand notations 

A - I. , 

"- Vk*- 1 / 3 V v 
** - Vk/> + V»»- ( 3 1 2 ) 

(A*B, A.B-X.Y, or Z; a*p, a,0-x,y, or z) 

the internal Hamiltonian may be written as 

""^V^^jw"- ( 3 1 3 ) 

The time-dependent switched Hamiltonian given by Eq.(3.10), 

corresponding to the form for p, is then 



52 

Another way of writing Eq.(3.10) is to consider B (t) causing the time-

dependence of the spin operators. The latter viewpoint is adopted for 

this chapter. The reason is that in the latter viewpoint the trajectory 

of the spin operators can easily be visualized, and this is of great 

use in designing certain experiments. In Chapter V these transformation 

properties will be fully exploited. However, the feasibility of 

monitoring the trajectory is due to the fact that there is no big 

offset term in the Hamiltonian. If there is an offset Hamiltonian with 

a size comparable to that of H, it becomes very difficult to follow 

the trajectories and the form given by Eq.(3.14) is highly useful. This 

viewpoint will be exploited in the section on spin-decoupling problem 

in liquids. Thus, the form of 8^ n t to be used in this chapter is 

with 

A(t) - ljt(t) A U (t), etc. P P 

III.3 Transformation Properties of the Spin Opertors 

In general, in the three-dimensional space spins can be rotated 

through any angle around any axis through the origin. These rotations 
9 then constitute a three-dimensional rotation group. Here, though, only 

90 rotations generated by pulses along three orthogonal axes x, y, and 

z are considered so that they constitute the octahedral group 0. The 

group 0 has the axes of symmetry of a cube: three axes of the fourth 

(3.15) 

(3.16) 
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Table 3.1 24 configurations accessible in a right-handed 

coordinate system and operatons to reach them. 

Configuration 
X y z 
y z X 

z X y 
X z y 
y X z 
z y X 

y X z 
z y X 
X z y 
z" y X 

X z y 
y X z 
X y z" 
zf X y 
y z~ X 

y z" X 

X y z 
z X y 
z X y 
y z X 

X y z 
X z y 
y X z 
z y X 

Operat ion 
1 
x z" 
z x 
X Z Z , z z x 
z 
y 
z 
X Z X , x z x, z x z, z x z 
X 

y 
X 
X X Z , z x x 
X X 
Z X 
X Z 
X Z 
X Z 
Z X 
Z X 
X Z 

z z 
X Z Z , z z x 
X X Z , Z X X 
X Z X , X Z X , Z X Z , z x z 

Operations are given in chronological order with the following 

notation: a - (w/2) . 
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H„ " H r i.n(t) + H, int 

XBL 8711-5968 

Fi^.3.1 Schematic diagram showing the nth piecewlse-constant 

Hamiltoniari in the ro ta t ing frame. 



55 

order, four axes of the third order, and six axes of the second order. 

There are 24 elements which are divided into five classes: E, eight 

rotations C 3 and Cg, six rotations C 4 and C 4, three rotations C 4, and 

six rotations C 2. The switched Hamiltonian tranforms subject to these 

operations in the group. Table 3.1 lists all these 24 configurations 

accessible in the right-handed coordinate system. 

When rotations are made using pulses having finite widths, it is 

no longer possible to use the interaction frame Hamiltonian sandwiched 

between pulses. Thus it is necessary to consider the transformation of 

each operator during each pulse. To this end, first consider the 

rotating frame Hamiltonian consisting of the internal part (8*nt) and 

» - H _ (t) + ». „, (3.17) 
n rf,n int 

during a pulse as is drawn schemetically in Fig.3.1. n represents the 

n-th section of the sequence. The evolution operator for an n 

piecewise-constant pulse sequence is given by Eq.(3.9), and as usual 

may be approximated as 
U(r) » U r f(r) e ir (S

( 0 )
+» ( 1 )-K.) (3.18) 

with 

* ( 0 )=7.[o UIf< e> "int u r f < t ) d t ' etC" ( 3" 1 9 ) 

Eq.(3.19) can be decomposed into n integrals 

ff<°> - i\™ f k Uf„(t) S. ,. U ,(t)dt. (3.20) 
r/jc-ljt, . rf m t rfv 
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Table 3.2 Zeroth order average of linear and blinear operators 

during a w/2 pulse. 

Pulse Linear operators 

Xx Jy ! Z 

± x I x (2A)(IyTI2) (2/»r)(IzTIy) 

± y (2A)(I X±I Z) I y (2/ir)(IzTIx) 

± z (2A)(I xTI y) (2/ir)(Iy±Ix) I z 

Bi l inear Operators 

XY" YZ ZX XX YY ZZ , r * 

± x XYTZX ±(YY-ZZ) (ZX±XY) XX (YY+ZZ)/2T2YZ (YY+ZZ)/2±2YZ 

± y XY+YZ YZTZX ±(ZZ-XX) (XX+ZZ)/2±2ZX YY (ZZ+XX)/2T2ZX 

± z ±(XX-YY)/2 YZ±ZX ZXFYZ (XX+YY)/2T2XY (XX+YY)/2±2XY ZZ 

The following notations are used: 

XY E (IxI ,+I T ,)2/ir, XX - I XI X», and cyclic permutations. 
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It may further be rewritten as 

» < 0 )- S & O * J jo k DJf,k ( t > Bint Urf,k< t ) d t Urf(tk-1> < 3" 2 1> 

where r^ - t^ - t« •, and U £ uCt) denotes kth pulse. Eq.(3.21) dictates 

that the integration over the trajectory during the pulse must be 

performed, while transformations due to pulses up to the (k-l)th 

segment in the sequence can be considered to occur instantaneously. 

If the configuration a for a linear term transforms into a' 

(a^'), it is said that the "transition" from a to a' has occurred and 

the average of the linear term during the transition is (2/»r)(a-hi') . If 

the rotation axis is along the direction o, a stays invariant and 

during the pulse one has a "stationary" point. In table 3.2 are listed 

time averages of various operators during a 90 pulse. 

In NMR (although it is equally applicable to other spectroscopic 

methods) the rotations of a spin has frequently been described via a 

vector representation on the unit sphere. The trajectory of the 

magnetization vector in particular has been extensively used to model 

coherent and incoherent processes. Here an extension will be made to 

include all nine basic operators, and it will be utilized to describe 

the transformational behavior of all operators subject to sequences of 

pulses. It is particularly useful for discussing windowless sequences 

where averaging over trajectories is performed. Fig.3.2 is a vector 

representation of nine basis operators and the trajectories they travel 

under rotations around coordinate axes. Linear operators have a direct 

correspondence to unit vectors pointing at respective "vertices", where 

the coordinate axes and the unit sphere intersect. Bilinear quadratic 
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XBL B72-9572 
Fig.3.2 Vector representation of the (a)linear and (b)bilinear 

spin operators. Curves denote the trajectories the 

operators folic under rotations about the coordinate axes. 
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terms XX, YY, and ZZ have the same correspondence to the vectors except 

that two opposite points on the sphere are identical. Bilinear cross 

terms point at the midway between two adjacent coordinate axes. Again 

points on the opposite sides of the sphere are equivalent. 

If the rotations are made about the coordinate axes, the 

trajectories of the linear terms and bilinear quadratic terms would be 

certain segments of the great circles. The trajectories of the bilinear 

cross terms would be confined to circles with a radius 1/J2, when only 

one component changes during the rotation, while they will be segments 

of great circles when the rotation axes are orthogonal to the direction 

of the operators. 

With these tools is now possible to achieve various objectives 

such as averaging out the ZZ term. 

(i) Z term 

In high field, because of magnetic field inhomogeneity the spin 

isochromats undergo rapid dephasing. The inhomogeneity, which is 

proportional to Z, can be removed by pulse sequences such as the Carr-

Purcell sequence. By a series of IT pulses (or equivalently, two 

juxtaposed two w/2 pulses), the Z term in the interaction frame is 

periodically inverted: Z, Z, Z, Z Thus the average is zero. Note 

that the ideal Carr-Purcell sequence generates the "perfect echo". It 

is obtained whenever 

»<°> - 5 ( D - ... -»(") _ ... - o (3.22) 



60 

because then 

P(0 - U(r)p(0)Uf(r) - e' i S rp(0)e i W r - p(0). (3.23) 

It is also possible to generate the perfect echo with a condition less 

stringent than Eq.(3.22), namely If either 

[ » l n t . P(0) ] - 0 (3.24) 

or 

because then 

[ » i n t , P(0) ] - 0, (3.25) 

p(r) - U(T)p(0)Uf(r) - p(0)UUf(r) - p(0). (3.26) 

For the Carr-Purcell case, the initial density operator and the 

internal Hamiltonian are 

/>(0) - I z (3.27) 

and 

». „ - Sol . (3.28) 
int z 

The switched internal Hamiltonian resulting from the Carr-Purcell 

sequence is 
)i. At) - ± Sul (3.29) 
int z 

with the sign depending on time. In this case Eqs.(3.24) and (3.25) as 

well as Eq.(3.22) is satisfied since 
[ »(t),S(t') ] - 0. (3.30) 
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The hetevonuclear Interaction, after truncation, is proportional 

to I ZS Z. As long as 7j and yr are sufficiently different for the pulses 

to affect only one spin species, the heteronuclear interaction can be 

removed by the same sequence. The removal of the Z term requires two 

configurations if S pulses are employed. 

With windowless sequences, any stationary point a is to be 

removed by adding another stationary point -a. As given in Table 3.2a 

transition gives an average (2/JT) (<*+<*') which is incommensurate with a 

and a' , so it must be treated separately from stationary points. The 

number of times that a appears in transitions must be equal to the 

number of times -a appears. A minimum number of four JT/2 rotations (or 

two K rotations) is required to remove the Z term. 

(ii) All three linear terms 

In zero-field experiments, it is difficult to attain the perfect 

zero-field because of a residual field and in general it has all three 

components. So the spin-residual field interaction term may be written 

as 

» - a l + a l + a l . (3.31) 

res x x y y z z 

It therefore is necessary to remove all three linear terms to obtain 

the true zero-magnetic field. With S pulses a minimum of four 

configurations, for example { (x.y.z), (x,y,z), (x,y,z) , (x.y.z") } is 

required. These configurations are reached by the sequence of jr 

rotations with equal delays between pulses: (-»rx-jr-irx-jr-)n. The 

sequence then is an zero-field analog of the Carr-Purcell sequence. 

However, in this case the perfect echo cannot be obtained because the 
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Fig. 3.3 Trajectories of the three linear spin operators under 

the 16-pulse sequence ( x x y y x x y y x x y y x x y y ) . 

The operators are eliminated by the sequence 

simultaneously. Small circles are stationary points. 
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Hamiltonians at different times do not commute with each other or with 

the initial density operator. For example, the Hamiltonian after the 

first pulse is a xI x - flyly - a
z I z

 a n it * n general does not commute 

with a xI x + ayly + a 2I z. 

The removal of all three terms with a windowless pulse sequence 

is much more complicated. It involves both stationary points and 

transitions. A minimum of 16 »r/2 rotations (or eight ir rotations) is 

required. An example of such a sequence is ( x x y y x x y y x x y y x x 

y y). In Fig.3.3 the trajectories of three linear terms under the above 

sequence is shown. 

(iii) ZZ term 

As discussed at the beginning of this chapter, with 6 pulses a 

minimum of three configurations, eg. {(x,y,z), (y,z,x),(z,x,y)}, is 

required to make the ZZ term vanish via the Isotropic average 

XX + YY + ZZ - 0, (3.32) 

since they cannot be inverted. The WHH-4 sequence is an example which 

satisfies Eq.(3.32). Incidentally, these three configurations also 

remove other quadratic terms YY and XX via Eq.(3.32). Therefore, in 

general, for any sequence to average the quadratic terms to zero it 

must average them over a multiple of three configurations. 

A windowless anlog of the WHH-4 is the BLEW-6 sequence. For 

quadratic terms aa, a transition aa •+ flf} has the average Hamiltonian 

(aa+00)/2 + (l/ir)a0 if a*(} and aa if a - 0. For the ZZ term the 

transition ZZ -+ aa has the average Hamiltonian 

» ( 0 ) - [a,Z]2/2 + <*Z/* (a -x,y) (3.33) 
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XBL 8711-5954 

F iR- 3-& A trajectory over which the ZZ term is averaged out. 
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whereas for aa - ZZ 

» ( 0 ) - ZZ . (3.34) 

If pulses are to be applied only along the x, y, x, and y directions 

Eq.(3.34) is irrelevant. The first term in Eq.(3.33) is a quadratic 

term and therefore must be averaged to zero via Eq.(3.32), whereas the 

second one is a cross term and must be balanced by a term proportional 

to -aZ. These two averaging requirements are independent of each 

other, so a multiple of six steps is required to make 
f(0) 

to vanish. 

One such a trajectory is shown in Fig. 3.4. 

It is observed that: 

(a) To ensure the isotropic averaging, Eq.(3.32), a trajectory 

must traverse x, y, and z - ±1 equal number of times, and 

(b) Each quarter segment of a great circle must be balanced by an 

adjacent segment of the same circle. 

There are eight trajectories equivalent to the one shown In Fig.3.4, 

associated with eight octants. There are six different ways of covering 

the trajectory in Fig.3.4. In terms of the notation of Burum et.al. 

these are 

(ZX)(XY)(YX)(XZ)(ZY)(YZ) 

<ZX)(XY)(YZ)(ZX)(XY)(YZ) 

(ZX) (XY) (YX) (XZ) (ZY) (YZ) 

(Zx) (XY) (YZ) (ZX) (XY) (YZ) 

(ZY) (YX) (XZ) (ZX) (XY) (YZ) 

(ZY) (YX) (XZ) (ZX) (XY) (YZ) 

all with a scaling factor equal to 2j5/3n, identical to BLEW-6 

sequences. Overall there are 8x6 - 48 sequences that are equivalent to 
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BLEW-6 sequences. 

(iv) Other bilinear terms 

Other quadratic terms XX and YY are also removed via the 

isotropic average if S pulses are used. The configurations 

{(X,Y,Z)I(Y,Z,X),(Z,XIY)} can be reached either by pairs of 90° 

rotations around the coordinate axes or by 120 rotations around the 

cube body axes. 

Terms XX and YY are simply obtained from ZZ by 90 rotations 

around x or y axes respectively. Thus to average XX, for example, with 

windowless sequence one notes 

K0*-°- \H,pzzn

P>*t)dt 

- PyJo P y U p \ z ( t ) P y n p y u

P . « ( t ) p J d t V ( 3 3 5 ) 

where P i s a 90 rotat ion around y a x i s . Therefore, the trajectory of 

XX(t) that s a t i s f i e s 

jo p. 

may be obtained from 

S ™ > - In u T (t) XX u (t) dt - 0 (3.36) 
xx JO p,x p,x v-"--*"/ 

U - P U P*. (3.37) 
p.x y p.z y 

Thus the removal of any one of the three quadratic terms is simply 

related to the others and basically involves the same procedure. The 

removal of all three quadratic terms involves two stationary points 
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xx , yy , zz 

XBL 872-9569 

Fig. 3.5 Trajectory the three b i l i n e a r operators XX, YY, and ZZ 

traverse under the vlndowless sequence (x y z) . 
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(a) 

XBL 8711-5973 
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(b) 

XBL 8711-5967 



71 

Fig. 3.6 Trajectories of the three linear spin operators under 
o 3 

the 12 pulse sequences (a) (y x y x) and (b) (x y x y) . 

The average of I z under the first sequence is along the 

(111) axis, while it vanishes under the second 

sequence. 
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even though the same number of six steps are needed and Fig.3.5 shows 
o 

one such trajectory, resulting from the sequence (xyz) . 
A cross term is to be removed by adding an inverse. In any 

configuration (0,^,7) the number of negative cross terms is either zero 

or two. In other words, it is an even number. Thus a multiple of four 

configurations is required to remove all three cross terms. The removal 

of all six bilinear operators requires therefore at least 12 

configurations. The corresponding 12-pulse sequence is a zero-field 

analog of the WHH-4 sequence. If a windowless sequence is employed, 24 

90 pulses are needed to remove all six bilinear terms, corresponding 

to BLEW-6 sequence for high field. 

The use of 12-pulse sequences will be discussed in connection to 

decoupling experiments in a later chapter, and they deserve some more 

discussion which is given in the next section. 

III.4 The 12-pulse sequences 

There are three types of 12 90 -pulse sequences which are zero-

field analogs of the high-field WHH-4 sequence. The first group 

contains z and z pulses as well as pulses along x and y axes. A few 

examples are 
9 (x y z x y z) , 

— — — 2 (z y x z y x) , and 
_ p (y z x y z x) . 

The remaining two types of sequences have a common structure of 
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Table 3.3 Averaging of linear and bilinear operators under 

(y x y x) sequence. 

X Y Z XY YZ ZX XX-YY YY-ZZ ZZ-XX 

-z Y X -YZ XY -ZX ZZ-XX YY-XX XX-ZZ 

-z -X Y ZX -XY -YZ ZZ-XX XX-YY YY-ZZ 

Y -X Z -XY -ZX YZ YY-XX XX-ZZ ZZ-YY 

Y z X YZ ZX YX YY-ZZ ZZ-XX XX-YY 

-X z Y -ZX YZ -XY XX-ZZ ZZ-YY YY-XX 

-X -Y Z XY -YZ -ZX XX-YY YY-ZZ ZZ-XX 

z -Y X -YZ -XY ZX ZZ-YY YY-XX XX-ZZ 

z X Y ZX XY YZ ZZ-XX XX-YY YY-ZZ 

-Y X Z -XY ZX -YZ YY-XX XX-ZZ ZZ-YY 

-Y -z X YZ -ZX -XY YY-ZZ ZZ-XX XX-YY 

X -z Y -ZX -YZ XY XX-ZZ ZZ-YY YY-XX 

X Y Z XY YZ ZX XX-YY YY-ZZ ZZ-XX 

0 0 S I m 0 0 0 0 0 0 

s - 1/73 

hu - <i x+i y+v/y3 
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Table 3 A Summary of averaging of ope ra to r s for windowless 

sequences 

Sequence X XY YZ ZX XX-YY YY-ZZ ZZ-XX 

(xyxy) o I J L ! o 0 0 0 - * A 1 1 - 1 2 A n - i 2 A n - i 
(xyxy) Mil ° ° 0 0 0 * A -m - 2 A -m - 2 A - m Group 

(xyxy) 3 o i i . n o 0 0 0 - 4 A i - n 2 A i - n 2 A i - u (a ) 

(xyxy) 3 i i n o o 0 0 0 * A m - 2 A m - 2 A i n 

(xyxy) ' 

(xyxy) ! 

(xyxy) ! 

(xyxy) ! 

0 0 ^ - l l 0 0 0 0 

0 0 I 1 1 - 1 0 0 0 0 

0 0 I 1 1 1 0 0 0 0 

0 0 I -M, 0 0 0 0 

-6A 1-11 6 A 1 - 1 1 

6A11 i 6 ^ 1 1 - 1 Group 

6 A n l 6 A 1 X 1 ,b) 

6A -111 6 A - 1 1 1 

Only r e p r e s e n t a t i v e sequences in each group are given. 

h 11-1 ( I x + I y + I z ) / 3 , e t c . 

*11-1 " <Vy + Vz + W / 1 2 ' e t c ' 
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•3 

(a ft a' P') , with a and p being orthogonal and applied along ±x or ±y 

axes, a may or may not be equal to a'. So is with P and P'. These have 

intimate connection to the broadband decoupling sequences to be 

discussed in the next chapter. Two representative pulse sequences, one 
a o 

from each group, are (y x y x) and (x y x y) , and corresponding 
trajectories for linear terms are given in Fig.3.6. 

o 
It can easily be seen that for the sequence (y x y x) , I — I 

x y 
- 0 and T z - S Iiii- The scaling factor S is 1/73 for the S pulse case 
and 4/(ir./3) for the windowless case. The averaging for this sequence is 

— 3 — — — shown in Table 3.3. For the sequence (x y x y) , I - I — 0 and I — S x y y 
I.H.li with S - 1/73 and l/73(2/*+l/2) for 6 and windowless cases 

respectively. Table 3.3 also lists configurations reached during the 

sequence. The average values of various terms resulting from windowless 

sequences are summarized in Table 3.4. 

It is interesting to note that the average value of quadratic 

terms aa - pp (a,p - x, y, or z) all have the same form (a/? + py + -ja) 

if the trajectory of the nonvanishing linear term is in an octant 

spanned by (a /9 7) . It is also seen that even though each 12-pulse 

windowless sequence does not remove the bilinear terms, it is possible 

to do so by combining two suitably chosen sequences such as (x y x 
3 — 3 y) (x y x y) , thus creating the desired 24 configurations as discussed 

in the previous section. However, no two sequences from group (b) can 

make all the bilinear term vanish. However, it can be shown that 36-

pulse sequences such as 

(y x y x)3(z y z y)3(x z x z ) 3 

can make all bilinear terms vanish. For clarity, a few examples of 
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Table 3.5 Average values of operators resulting for group (b) 

sequences 

X Y Z XY YZ zx XX-YY YY-ZZ zz-xx 

(yxyx) 0 0 •In 0 0 0 0 -6* 6 
/ - -% 3 

(xzxz) 0 Hu 0 0 0 0 -6 6 0 

( z y z y ) 3 hu ° 0 0 0 0 6 0 -6 

(yxyx) 0 0 ^ l - l l 0 0 0 0 -6 6 

(xzxz) 0 - 1 - ! --11 0 0 0 0 -6 6 0 

(zyzy) - 1 - ! - 11 ° 0 0 0 0 6 0 -6 

*Same as in Table 3.4. 
* A .j is suppressed for simplicity. 
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sequences with average values of operators are listed in Table 3.5. 

In order to see the relationship between 12-pulse sequences and 

high-field iterative pulse schemes, it is necessary to have a brief 

review on the latter, which is the subject of the next chapter. 
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CHAPTER IV. Iterative Schemes In NMR 

IV.1. Introduction 

In NMR iterative schemes have been widely used ranging from the 

design of error compensated pulses for broadband excitation to selective 

multiple-quantum excitation. There are several extensive reviews 

available. Consequently this chapter will focus on only some limited 

aspects of the iterative schemes: basic ideas behind broadband 
7 8 

decoupling schemes such as the MLEV, and the Waugh schemes for s ingle-

spin cases. Then an extension will be made to take the homonuclear spin-

spin coupling into consideration. 

In previous chapters the assumption has been made that the pulses 

are much stronger than internal Hamiltonian terns. Mathematically, it 

corresponds to 
H» i n tllt c < 1. (4.1) 

where t c is the cycle time of the sequence. Even for windowless 
Q 

sequences experimental results on high field dipole-coupled systems 

show that the 90 pulses with widths up to 6 jisec were successful before 

the quality of the experimental results degraded. That corresponds to 

approximately 40 kHz for proton decoupling field strength. However, 

there are many samples which are polar or ionic so that the "lattice" of 

the sample absorbs the energy from the decoupling field. The heat thus 

generated In the sample not only damages the sample but also causes 

decoupling field inhomogeneity via thermal expansion of the decoupler 

coil. The temperature effect will be discussed in more detail later in a 
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section on spin-decoupling in liquids. 

In order to achieve better resolution spectrometers with higher 

fields are being used. This means that the spread of chemical shifts to 

be decoupled is bigger. Consequently, the goal of modern decoupling 

schemes is to decouple broader bandwiths with minimal expenditure of 

decoupler power. 

As the lower decoupler level is used, the magnitude of the 

resonance offset term becomes comparable to that of the decoupling 

field. Using ART with the offset term included in the internal 

Hamiltonian would quickly become inaccurate as Lu>/u>2 gets bigger. For 

this reason, it is desirable to consider the offset term as an 

additional external field. In the next section a closer look at this 

external Hamiltonian is given. 

IV.2. Offset-incorporated Pulses 

When there exists an offset with a size comparable to that of 

% r£, the total Hamiltonian for the perturbing field may be written as 

», - Awl + w.I , (4.2) 

1 z 2 x 

where the decoupling field B 2 is assumed to be applied along the 

rotating frame x-direction and un - T j ^ . The actual rotation due to the 

effective Hamiltonian #i is 

n l 0 - u„ t n l 2 p 
- t ( Awl, + w I ), (4.3) 

p z i. x 
where t is the pulse width. The magnitude and the direction of the 
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XBL 8711-5958 

Fig. 4 .1 The d irec t ion and the magnitude of the e f f e c t i v e f i e l d 

resu l t ing from the rf pulse and the resonance o f f s e t . 
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f i e l d i s shown in F i g . 4 . 1 . Eq.(4.3) may be rewritten as 

n-I 0 t | A 2 _,_ 2 p JAw + « 2 

Awl + V x 
JAW + O>2 J 

- t w fcosfl I + sin0 I ] 
p e *• x zJ 

- t w exp(i0I ) I exp(- i01 ) , 

A 2 ^ 2 

Aw +o>„ 

where 

tanS - Au/u 2 . 

Eq.(4 .4) can further be reduced to 

n - I f) - u„t sec* exp(i0I ) I exp(-ifll ) 

- p see* exp(i01 ) I exp(-itfl ) . 

Hence, i f # r £ i s applied along x -d irec t ion such that 

P ~ w 2 f c p -

the net rotat ion angle Is 

P - w„ t - p secS 

and the rotat ion ax i s i s 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

n - i cos* + k sinfl. (4.9) 

More generally, when the pulse is applied along an axis rotated by a 

phase angle ^, the evolution operator for describing the net rotation is 
.A 

U(0;*) - exp(i0 n-l) 

ltfly i^I z -i^Ix -itflz -Itfly. (4.10) 
— e ^ e e e & J 

In practice a>2 is not equal to the nominal decoupler level u2 • In terms 

of nominal quantities labeled with the superscript M o n , the actual 

rotation angle can be written as 
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o u2 - p — sec0 
fill), 

1 + sectf , (4.11) 

where 

6<j>2 — w 2 - w 2. (4.12) 

IV.3. Iterative Schemes for Linear Operators 

Because the effective angle f} is different from the nominal 

value p and the net rotation axis is not along the direction of the 

original pulse, it becomes very difficult to visualize the net effect of 

the sequence of such pulses. This is largely due to the Au term and also 

partly due to pulse imperfections such as Su2. Thus It is important to 

design a scheme to offset the effect of these causes of pulse 

imperfection, and this is the main goal of designing composite pulses. 

Now suppose a composite pulse R is designed such that the net 

effect of R is an approximate inversion of z-magnetization over a wide 

range of Aw: 

(4.13) 

Then RR( • c) is an approximate cycle in the sense that 

R* I, R = - I,, z z 

chzC = I z. (4.14) 

T••.-••> enmmon operations for constructing more highly compensated cycles 

are phase shift and cyclic permutation of a certain segment of the 

sequence to the either ends of the sequence. The phase shift by 180 is 

an operation which inverts the phases of all constituent pulses, and is 

denoted as C. It can be shown ' that C leaves the net rotation angle 
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and the z-component of the rotation of the rotation axis unchanged but 

reverts x- and y-components of the rotation axis. Thus, provided that 

the z-component is very small, C is nearly the opposite rotation of C. A 

sequence C^ generated by cyclically permuting R, an approximate 180 , 

nearly inverts the z-component of the rotation axis provided that it is 

predominantly bigger than x- and y- components. 

Linear spin operators can be averaged out by using these 

operations, and Fig.4.2 shows a systematic cancellation scheme. In 

Fig.4.2.(a), the big resonance offset term is shown. The effect is 

approximately removed by the composite 180 pulse R. In (b) , RR is thus 

a cycle with rotation axis almost In the x-y plane. Then RR is combined 

with RR in (c) to give the rotacion axis along z (MLEV-4) . Then RRRR, 

which is obtained by cyclically permuting a R and which approximately 

inverts the z-components, is added to give a net rotation axis 

predominantly in the x-y plane (MLEV-8), part (d). Finally, a phase 

inverted 8-pulse cycle is added to cancel x-y components, leaving only a 

small z-component (MLEV-16). MLEV-4 is the first member of the family of 

the MLEV sequences which has vanishingly small rotations. Hence it makes 

the linear I operator in 

vanish, thereby leading to heteronuclear decoupling. 

IV.4 Connection to the Average Hamiltonian Theory 

The switched Hamiltonian # j n t resulting from the irradiation on 

the I spin with the composite pulse R in general has all three 
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(a) 

(b) 

XBLB711-5951 
Fig. 4.2 Diagrams showing cancellation of errors by systematic 

concatenation of sequences related to each other by phase 

shifts and permutation of parts of the sequence. In (c) 

8 denotes a very small angle. 



(c) 

RRRR 

(d) 

RRRRRRRR 

(e) 

RRRRRRRRRRRRRRRR 

nnnrt 

XBL 8711-5952 
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components 

5int - J S z { a ( t ) I x + b ( t ) I y + C ( t ) 1 z } ' ( 4 1 6 ) 

where a(t), b(t), and c(t) are constants. The average Hamiltonian is 

H. _ - JS fal + bl + cl 1, (4.17) 
m t z *• x y z-*' ' 

where a, b, and c are time-independent constants and are not in general 

time-averages of a(t), b(t), and c(t). The quantity in the parenthesis 

in Eq.(4.17) has the same form as the residual field appearing in zero-

field experiments. As discussed in Chapter III, it can be removed with a 

minimum of four configurations such as those obtained by applying the 

zero-field analog of the Carr-Purcell sequence, (•*x-'r
2-*x-*z-)n-

For the case of MLEV-4 sequence RRRR, the total average 

Hamiltonian is 
» ( 0 ) - iff. . + *% Jt + *U1Z »< .e" 1' 1 2 

4[ int int int 

+ e 1* 1*^ * i n t R e " i , r I z } . (4.18) 

with » i n t given by Eq.(4.17). 

In general the composite 180 pulse can be written as 

R « e - " I z .- 1" 1* e i S ' I z , (4.19) 

where B and 6' are offset dependent. In other words, the rotation axis 

is on the x-y plane and the phase may vary depending upon the offset. 

With the assumption that Eq.(4.19) holds exactly, Table 4.1 is drawn up 

to show the cancellation of terms, a' and b' are in general different 

from a and b due to Eq.(4.19). 

For the zero-field sequence (•*x-'r
z-,r

x"'r
2-)n shown in Fig.4.3(a), 

the corresponding average of the Hamiltonian is 
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Table 4.1 Cancellation of linear terms with R R R R 

Pulse I x Iy I z 

R a b c 

R a' b' -c 

R -a -b c 

R -a' -b' -c 
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(a) 
7t„ n 71 

«x H n x 

JcJjtjHjlzTCx 

71. 
/ r n * 
/ \ 
i / \ i 

JI+HjIz 

(b) 

*x *z *x *z *z *x *z *x 

XBL 8711-5969 

Fig. 4.3 Pulse sequences for the removal of linear terms, (a) A 

four pulse sequence to remove the terms to zeroth order, 

(b) Expanded sequence to remove the terms to first order. 
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» ( 0 ) - j[H + IT" 1* * + ic'K'h n * + ** W 1 } * * * * " ) . (4.20) 
4*- x x x z z x x z x x z x - * 

Because ffz»rx - * x w z and wi th the t h i r d and four th term switched, 

Eq. (4 .20) can be reduced t o 

I ( 0 ) - y[H + n'hn + ir'h* + n'K'hx n ] , (4.21) 
4*- x x z z z x x z J \ • •»-/ 

which is equivalent to Eq.(4.18), since in zero-field the phase does not 

enter and thus irx is equivalent to R. 

Making ff|n> - 0 can be achieved by symmetrizing the sequence, 

which is shown in Fig.4.3(b). As is discussed previously, R is 

equivalent to zero-field * x. Then the second half of the eight-pulse 

sequence, (",r
z
_'r

x"*z~*x-) c a n be obtained from the original four-pulse 

sequence by permuting a it to the right end of the sequence, i.e. 

* (K it it it )JT — jrjTirir. (4.22) 
x x z x z x z x z x 

In the high-field language, Eq.(4.22) can be shown to reduce to 

R^RRRR)^" 1 - RRRR. (4.23) 

Hence the eight-pulse sequence is equivalent to the MLEV-8 sequence. The 

procedure can be carried out further to show that 16 steps are needed to 

average out the second order average Hamiltonian term which contains 
2 ? 2 coefficients such as a b, ab , b e , etc. Showing the cancellation is 

straightforward, but will not be discussed in more detail. 

While some connections have been made between high-field 

iterative schemes and zero-field multiple-pulse methods, the difference 

should also be noted. Firstly, the generalized Hamiltonian with the form 

given by Eq.(4.17) is a result of the pulse sequence rather than the 

original Hamiltonian. The original high-field Hamiltonian commutes with 

I z, and thus is invariant to phase shifts. By contrast, the original 
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low-field Hamiltonian originationg from the residual field does not 

commute with I . This remark is true also for the Hamiltonian including 

bilinear terms. 

Secondly, the connection was possible only for the 5-function 

pulse cases. It should be reminded that for the case of windowless 

sequences, a minimum of 16 configurations is needed to average out the 

linear terms to zeroth order, rather than four configurations. Hence it 

is difficult to make a connection between the high-field iterative 

schemes and the zero-field multiple pulse sequences. The most important 

difference arises, however, from the fact that the time-averaging of the 

coefficients of Eq.(3.14) is in general different from that of the 

switched spin operators given by Eq.(3.15). Except for some special 

cases such as discussed in the last few paragraphs the sequences for 

averaging the the basis spin operators are not the same as those for the 

coefficients of the spin operators. Furthermore, the sequences designed 

for decoupling spins in liquids and liquid crystals use low decoupler 

power to avoid excessive sample heating, so the arguments for the 6-

function pulses are not suitable for these cases. 

Finally, the design of multiple pulse sequences requires detailed 

calculation of terms appearing in the Magnus expansion, whereas the 

modern decoupling schemes use certain machinary which guarantees better 

averaging, without detailed calculations as the sequences are expanded 

iteratively. 

The iterative schemes for heteronuclear spin-decoupling developed 

to date are aimed at removing an isolated I-S spin pair. However, in 

decoupling heteronuclear spins there are cases when interactions between 
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homonuclear spins need to be removed as well. Schemes for the single 

spin cases are found to be inefficient in decoupling when there are 

homonuclear couplings. Therefore, the development of schemes for 

averaging linear and and bilinear operators is necessary, and it is the 

subject of the next section. 

IV.5. Schemes for Removing Linear and Bilinear Operators 

A. The construction of basic sequences 

When there are bilinear terms, operations such as phase shift and 

cyclic permutation commonly employed in single-spin decoupling do not 

behave as simple rotations. Detailed average Hamiltonian calculation may 

be employed to design a highly compensated sequences. However,the 

calculation, considering that low rf-field is used, can quickly become 

unwieldy as one goes to higher order calculations. 

A method to obviate these complicated calculations and obtain a 

scheme for averaging both linear and bilinear operators is to decompose 

the total propagator into rf part and the perturbation: 

U(t) - U r f(t)U v(t). (4.24) 

The discussion on the specific form of U * is deferred to a later 

section. Here it suffices to state that U f is a some broadband 

composite pulse without phase gradient. To be more explicit, Eq.(4.24) 

can be written as 

U(t) - U r f(t) ^expf-ij^ u£f(t') » i n t U r f < 0 dt'). (4.25) 

The exact form of Uv(t) given by the second exponential in Eq.(4.25) may 
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not be known, but in general it can be expressed as a single exponential 

with the exponent expanded in terms of basis operators. If Ji- t contains 

a homonuclear coupling term between two spins Ij and I 2 as well as the 

offset and heteronuclear coupling terms, the basis operators span a 15-

dimensional space: six associated with linear operators and nine 

bilinear operators. 

Now suppose the total evolution operator is composed of a product 

of n evolution operators having a same duration r: 

U(nr) - U - (r)U (r) U > .(r)D n(r). (4.26) 

rf,n ' v,n rf,l v,l % ' 

Also suppose that the evolution operator for a composite pulse with an 

overall phase <f> — 0 can be written as 
U ( r ) - Urf,0 ( r ) Uv,0 ( r )- ( 4 " 2 7 ) 

Then with the notation 

4>z - exp(-i^I 2), (4.28) 

the evolution operator associated with a pulse having a phase <f> becomes 
V ° - Urf , / '> Uv,0<'> 

" U r f f , ( 0 *«p(-ijj u | f > ( t ) » i n t u r f ^ ( t ) dt) 

^ U f „ ( r ) <j> x z r f , ( T ' *z 

7exp(-ijj #J ^ ( t ) ^ I j a t ,t U r f ( ) ( t ) K d t ) . ( 4 .29) 

Since » i n J . i s a h igh f i e l d Hamiltonian, 

I J z • * I „ t 1 " 0, (4.30) 

and Eq.(4.29) reduces to 
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V ° - *l Urf.0<r> *A »«P(-1J; Urf,0(t> *i„t Urf,0^ d t K 

" {*! Urf.0 ( T ) *«}{*« Uv.O <'> *J- ( 4 " 3 1 > 
In passing, it is worth noting that Eq.(4.30) does not hold for the 

zero-field Hamiltonian. So the present approach can not be used for 

zero-field multiple-pulse calculations. 

At any rate, each element of Eq.(4.26) is simply related to U 0 by 

the phase shift 4> . The evolution operator U(nr) can now be rearranged 

such that the total evolution operator due to the rf-field Hamiltonian 

appears on the left : 

*n Vl h 
rf,tfn v,^n rf,^ v,^ 

-» <?TT A K r 1 > K , p f t r 1 > } 
- J U (? TT ni U . , (4.32) 

rf '' p-1 v,<f> ' v 

where 0 is the time-ordering operator, 

U*"* - U _ , U - , , (4.33) 
rf rf,^ rf,^ and 

\* - Hvj v* {#"} 
with 

U ^ - 1. (4.35) 

Since U are assumed to be small perturbations, the time-ordered product 
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I 

in Eq.(4.32) can be expressed as a simple exponent ia l using the Baker-

Campbell -Hausdorff formula: 

D T T k « p ( - i \ ) - e x p f - i ^ + g ^ [^ . A. ] + • • • ) ) . ( 4 . 3 6 ) 

Thus to first order the condition for the heteronuclear-decoupling 

reduces to finding phases 4i. such that 

Ay. " 0 (4.37) 

for single-spin systems. However it may not be necessary to satisfy 

Eq.(4.37) for two-spin systems (systems of two coupled homonuclear spins 

each of which is also coupled to a nuclear spin with a different 

12 
gyromagnetic ratio). It has been argued that a non-vanishing offset-
independent Hamiltonian, having large components orthogonal to the 
residual offset term, could quench the offset term, making a more 
favorable situation for decoupling. Hence, a natural choice for the 
offset-independent Hamiltonian for systems having both linear and 
bilinear terms, for example, in liquids is 

I A^ - 2»rJI1-I2. (4.38) 

It would be instructive to discuss first the cancellation of 

linear terms only, since it would make a connection to the methods of 

iterative schemes discussed in the previous chapter. Consider the 

sequence UUUU, where U is a composite 180 pulse along the x-direction 

without phase distortion. The "imperfection" term U v during the 

composite pulse U may In general be written as 

U - expfe I + e I + e I ] . (4.39) 

v r * - x x y y z z ' 

The cancellation of these linear error terms during the sequence is 

shown in Table 4.2. 
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Table 4.2 

Cancellation of Linear Spin Operators by the Sequence U D U U 

State Operator 

Jx ly I Z 

1 6x £y £z 
2 £x " £y " £z 
3 " £x " £y ez 
4 " £x ey - £z 
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It may appear that the current method is equivalent to the 

methods discussed in the previous section. However, the current method 

has the following advantages: 

1) Any compososite pulse can be substituted into U r£. 

2) The evolution operators with phase <jt are simply related by 

Eq.(4.31). 

3) No calculation is needed for U v and sequences satisfying Eq.(4.37) 

can be found rather easily, and 

4) sequences can be improved mechanically by some iterative schemes. 

The advantage labeled 1) will fully be exploited in finding 

practical sequences, and 4) will be discussed later on. Due to 

advantages labeled 2) and 3) sequences for removing linear and bilinear 

operators, except the scalar operator given by Eq.(4.38) have been 

easily found employing integer arithmatic on the computer. 

If only 90 pulses along the four quadrature channels ±x and ±y 

are employed, there are 64 12-pulse sequences found that satisfy 

Eq.(4.38). No sequences with less than 12 pulses are found, agreeing 

with the ealier discussion that a minimum of 12 pulses is required to 

average all linear and bilinear operators except the scalar. If the 

pulse sequence begins with an x pulse, there are 16 sequences and these 

are listed in Table 4.3. The first four sequences consist of three 

identical subunits of four 90 pulses and the rest consist of two 

identical subunits of six 90 pulses. If there are no pulse 

imperfections present, the six pulse subunit consists of 180 rotations 

around the x, y, or z axis, while the four pulse subunit is equivalent 

to 120 rotations around one of the "magic" axes. It can be shown that 
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Table 4 .3 Wlndowless Sequences of 90 Pulses Producing a Scalar 

Operator 

(1) X Y X Y X Y X Y X Y X Y 

(2) X Y X Y X Y X Y X Y X Y 

(3) X Y X Y X Y X Y X Y X Y 

(4) X Y X Y X Y X Y X Y X Y 

(5) X Y X Y X Y X Y X Y X Y 

(6) X Y X Y X Y X Y X Y X Y 

(7) X Y X Y X Y X Y X Y X Y 

(8) X Y X Y X Y X Y X Y X Y 

(9) X Y X Y X Y X Y X Y X Y 

(10) X Y X Y X Y X Y X Y X Y 

(ID X Y X Y X Y X Y X Y X Y 

C12) X Y X Y X Y X Y X Y X Y 

(13) X Y X Y X Y X Y X Y X Y 

(14) X Y X Y X Y X Y X Y X Y 

(15) X Y X Y X Y X Y X Y X Y 

(16) X Y X Y X Y X Y X Y X Y 
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the sequences (l)-(4) are simply r ;lated to each other by phase shifts 

and cyclic permutations. If these operations are assumed to be fairly 

accurate, the sequences (l)-(4) would give identical performance. The 

same is true with sequences (5)-(10) and (11)-(16). Consequently, there 

are three distinct representative sequences 

(xyxy) , (xyxyxy)2, (xyxyxy) . 

To see how these sequences work, take an example of (xyxy) . 

Table 4.4 shows the systematic cancellation of linear and bilinear cross 

terms wh"le preserving the scalar during the sequence. 

Eq.(4.38), however, cannot be satisfied with 180 rotations and 

180 phase shifts because Ii al2 a are invariant to these operations, and 

with 180 shifts e is always tied to Iivl^x through011*1 t n e sequence. 

So far no assumptions have been made about the size or the relationship 

among coefficients e. If the composite 180 pulse has the property of 

making the coefficients associated with the quadratic terms Ii Ql2 a 

nearly equal, or there are some relationships among coefficients that 

are favorable for averaging these quadratic terms, one may as well use 

these sequences with 180 operations. Detailed discussion on these and 

other practical aspects are deferred to a later section. 

B. Expansion Procedure 

B.l. Single spin case 

It was shown that C 2 • U U U U removes errors of order e, but 

errors of order t remain originating from the commutator in Eq.(4.36). 
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Table 4 .4 Systemat ic c a n c e l l a t i o n of Spin Operators by the 

12-Pulse Sequence ( X Y X Y X Y X Y X Y X Y ) 

Operator 

x y z xy xz yz yx zx zy xx yy 

£x £y £z £xy £xz £yz £yx £zx £zy £xx £yy ezz 

-ey • £ z £x eyz " £yx - £zx £zy " £xy " £xz £yy £zz £xx 
£z "£x -ey - £zx " £

Z y £xy - £xz " £yz £yx €zz £xx £yy 
"€x "ey £z £xy " exz - £yz £yx - £zx " £zy exx £yy £zz 

"£y £z -£x " £yz £yx ' £zx - £zy £xy - £xz £yy ezz £xx 
£z £x £y £zx £

2y £xy £xz £yz £yx £zz £xx £yy 
£x "£y "£z ~ £xy " exz £yz - £yx " £zx £zy exx £yy £zz 
£y £z £x £yz £yx £zx £zy exy £xz £yy £zz £xx 
-£z £x £y £zx - £zy " £xy £xz - £yz -yx ezz £xx £yy 

£x £y -ez " exy exz - £yz - £yx ezx " £zy cxx £yy £zz 
ey "£z £x - £yz -yx ezx - £zy - £xy £xz £yy £zz £xx 

- i c 

z 
£x "£y " ezx ezy " exy - exz £y Z 

£yx £zz exx £yy 
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The next step of the expansion procedure is the cyclic permutation of U 

and concatenation with the original sequence to give 

C 3 - U U U U U U U U . (4.40) 

It is easily verified that if the errors of 0(e ) are neglected, the 

last four pulses are obtained from the original sequence of four pulses 

by 180 rotation around the x axis. Thus they should also cancel the 

linear terms. It is straightforward but tedious to calculate the 

commutator in Eq.(4.36). These are error terms of order e originating 

from the cross product of e and it can be shown that they vanish for 

the sequence C 3, leaving errors of 0(e). 

The analysis can in principle carried out further to show 

systematic cancellation of higher order terms. However, the procedure 

quickly becomes intractable: if symmetry of the commutator is not taken 

into account, there would be 360 commutators to calculate in the next 

stage of the expansion, i.e. the 16-pulse sequence. 

A much more manageable and mechanical way of achieving 

cancellation is once again to group the residual errors in one 

exponential: 

uuuu - u ,u u ,u ii i u i 
rf v rf v rf v rf v 

- U _D _U JJ JJ < 2 ) - U ( 2 ) , (4.41) 
rf rf rf rf v v 

where 

U - exp(-ie(Z)- i) (4.42) 

with e^2) denoting the error of size lle^ll - 0(e2). Eq.(4.40) can be 

considered as the first configuration in the Table 4.2. One problem in 

generating other configurations with the above method is that the 
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product of 180 rotations U j does not generate a fixed point '• of 

next stage 180 rotation but generates an approximate unity operator 

instead. Thus the 180 rotation must be generated in some other way. One 

such a method is to approximate the 180 rotation by cyclically 

permuting U: 

U U U U - U ( U U D U 1) D 

- u _ u u^u"1 v'\ 
rf v v v rf 

- U - U ( 2 ) V~l, (4.43) 
rf v rf v ' 

where the errors of 0(« ) have been ignored. Eq.(4.43) corresponds to 

the second configuration in Table 4.2. However, «' ' are not a rb i t rary 

but have cer ta in symmetry originating from the commutator in Eq.(4.36), 

which has been fully exploited in removing errors of 0(e ) as discussed 

in the paragraph following Eq.(4.40). This point may also be argued from 

the observation that the sequence U U U U can be derived from U U U U by 

ei ther a 180 phase shif t or a cyclic permutation of U U. Consequently, 
U ( 2 ) - U U U ( 2 ) ( U U ) " 1 = U ( 2 ) , (4.44) 

V V V 

neglecting errors of 0(e ). For Eq.(4.44) to hold eA ' and €JL ' must be 
x y 

much smaller than e£ '. In other words, e£ ' and ê . ' are of 0(e) and 

e£ 2 ) is of 0(e 2). Also, the eight pulse U U U U U U u U cancels e<2>, 

leaving an error of 0(e ). 

The above arguments imply faster convergence of the present 

scheme. Namely, the third and fourth configurations in Table 4.2 are 

easily generated by an exact phase inversion and a cyclic permutation 

accompanied by a phase inversion (accurate to 0(e )) respectively. The 

resulting sequence is 
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C - U U U U U U U U U U U U U U U U , (4.45) 

the MLEV-16 sequence. The product of U r£ is again a unity operator. It 

can be proved • that the residual error is of 0(e ). Therefore, the 

present expansion scheme Co — > C A — > Cc (a 6̂  pulse sequence) — > '" • 

makes the error term converge as rapidly as 0(e ) — > 0(e) — > 0(e) 

— > " •' 0(e n ) after n-th iteration. The convergence is much more 

favorable than 0(e n ) which would result by combining various subcycles 

in an arbitrary order. 

B.2. Two-spin case 

If an expansion procedure for the two-spin case is built upon the 

apparent analogy to the single-spin case, it would be a 12-fold one. 

However, it can be shown that the two operations of cyclic permutation 

and phase shift do not generate all 12 necessary states. More 

specifically, Eq.(4.44) does not hold. Even if the next stage of the 

expansion with 144 pulses is found, there will be of little practical 

use of it because other effects such as relaxation would become 

important for such a long sequence. It thus is desirable to find schemes 

to generate shorter sequences. Fortunately, analogous to the discussion 

following Eq.(4.40) for a single spin, there also exist relationships 

among coefficients e for the two-spin case. 

With cyclic permutations and phase shifts 64 12-pulse sequences 

are generated from the three representative sequences mentioned 

previously. Hence, for example, following constraints can be found for 

(x y x y) sequence: 
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< < 2 > - -
X 

< < 2 > - , 
y 

t(2) 
z 

£

( 2 > -
xy 

e < 2 > -yz - £ < 2 > 
zx 

e < 2 > -yx e < 2 ) -zy -e< 2> xz 

<< 2> - £ < 2 > - e

( 2 > 
xx yy zz' (4.46) 

3 
where errors of 0(« ) are neglected. The relationship among the 

2 
coefficients for the sequence (x y x y x y) is: 

4 2 ) - << 2 ) - 0. (4.47) 

This then implies the possibility of adding certain 12-pulse sequences 

in a spirit quite similar to the construction of MLEV-8. An example of 

a 24-pulse sequence constructed this way to satisfy Eq.(4.38) is 
2 2 

(x y x y x y) (x y x y x y) . There are other 24-pulse sequences which 

do not fit the category described above, but still satisfy Eq.(4.38). 

With a phase shift confined to 90 between each element, there are 511 

sequences which are not related to each other by either cyclic 

permutations or phase shifts. They are listed in Appendix 3. Some 

examples are: 

x y x y x y x y x y x y x y x y x y x y x y x y (4.48) 

which does not have an obvious structure, and 

(x y x y x y x y) (4.49) 
2 2 

(x y x y x y) (x y x y x y) (4.50) 

(x y ) 3 ( x y ) 3 ( x y ) s ( x y ) 3 , (4.51) 

which have definite subunit structures. 

The iterative schemes discussed in this chapter and the sc quences 

given above will be utilized in the next chapter, where heteronuclear 
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decoupling in liquids and liquid crystals are treated. 
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CHAPTER V. Broadband Heteronuclear Decoupling in the Presence of 

Homonuclear Interactions 

V.l General Theory of Heteronuclear Decoupling 

The iterative schemes in the previous chapter have been discussed 

with a view to heteronuclear decoupling of a spin I from an S spin. S 

denotes the spin under observation and a typical example is a carbon-13, 

while I denotes the spin which is irradiated with a decoupling field and 

a typical example is a proton. 

According to Waugh, decoupling of an isolated I-S pair can be 

completely analyzed by observing the behavior of the I spin under the 

irradiation without the necessity of considering the S spin. The 

criterion for the efficiency of decoupling of I from S (I-S - 1/2) 

over a certain bandwidth is that the net rotation angle (̂ ) the spin I 

undergoes should be insensitive to the offset (5) within the bandwidth. 

Mathematically, the residual splitting of the S spin spectrum is given 

by 

A S ^ - J i s i If - J i s i <51> 
r 

where Jjg is a coupling constant between spins I and S, t the net time 

of the periodic sequence, and fi the average frequency during t r. 

If there are interactions between two I spins-1/2 or if there is a 

quadrupole interaction for the spin 1 ^ 1 , it is no longer possible to 

treat the behavior of the system of I spin(s) as a three-dimensional 
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rotation. Since the average frequency ft is equal to the energy times 

1/fi, the most general decoupling criterion should be expressed in terms 

of the effective energy or equivalently of the average Hamiltonian over 

the irradiation period t r. 

In the past few years some of the important developments in 

heteronuclear decoupling for multi-level systems have been made. The 

following is a general theory of heteronuclear decoupling in a form 

somewhat different than the treatments of references 2 and 3. 

First consider the Hamiltonian in a rotating frame on resonance 

for the S spin given by 

ft - %1 + # n + » I S + »jf(t). (5.2) 

Now suppose the initial density operator for the S spin is given by 

P(0) - S x, (5.3) 

then the signal of the S spin S" suitable for the quadrature detection 

is given by 

S"(ntr) - Tr/(Sx - i S y) U(ntr) S^ U^nt^}. (5.4) 

Since the terms depending only on the I spin commute with the S spin 

operators, these can be factored out of Eq.(5.4) by using the 

transformation 
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U(t) - UjCtJUjgCt), ( 5 5 ) 

where 

Ux(t) - 0 exp(-ijj |» x + » n + S^f(t')]-dt'j (5.6) 

is the pure I spin propagator and 

U I g(t) - 7 exp(-ijj uj(t') H I S Ux(t')dt'). (5.7) 

Eq.(5.4) now reduces to 

S-(n t r ) - Tr{(S x - i S y) uj<t r ) U ^ ) S^ u £ ( t r ) u J V p } 

" T r { t S x - i Sy) U IS ( t r> *A>v>Y <5-8> 

Perfec t decoupl ing i s achieved when 

U I S ( V Sx U ! s ( V " Sx- <5-9> 

This in turn means 

[ U I S , S x ] - 0, (5.10) 

which can be satisfied only when UVg - 1. This is because Bjg in the 
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high field Hamiltonian in Eq.(5.7) may be written in the form 

"is - (J VjJ*. • (5.11) 

and the evolution operator in terms of an average Hamiltonian defined by 

U I S ( t r ) - e X p ( - i t r » I S ) - e x p t - i ^ h j S j (5.12) 

sa t i s f i e s Eq.(5.10) only when Ej - 0, and then the Fourier transform of 

S~ wi l l consist of a single peak. 

To f ac i l i t a t e the calculation of the spectrum under a less perfect 

decoupling condition, i t is desirable to divide the average Hamiltonian 

S j S into two commuting par t s : 

*IS ~ K I S z ~ P+h+ + P - h - ' ( 5 1 3 ) 

where 

1 ± 2S 
P ± - — Z (5 .U) 

i s the S spin project ion operator, and 

h ± - ± f h r (5.15) 

Then, with the properties 

p n - p +, p" - p_, p+p_ - p_p+ - 0, (5.16) 

it can be shown that 
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U I S ( t r ) " p + e x p ( " i t : r h J + P.eM-iyO 
~ P +

u+ + P.u.- (5.17) 

Eq.(5.8) now becomes 

S"(ntr) - Tr{(Sx - i S y) ( P +U n + P.u")Sx(p+u|n
+ V.^)}. (5-18) 

where 

(P +
u+ + P.u.>" " P+ U" + P.U" < 5- 1 9> 

is used. With some algebra it can be shown that 

S"(ntr) - TrtfJ^11)- (5.20) 

Thus S" is known once hj is calculated in the basis set which 

diagonalizes hj, or calculated perturbatively in the eigenbasis set of 

the Hamiltonian generating the evolution operator UT. The result is (in 

ft units) 

S"(nV - XW" 1 'r^ " V ) (521) 

where N is the total number of states and CIJ. are eigenvalues of 11+ in 

the k-th state. Thus the spectrum consists of maximum U peaks positioned 

at (^ - CfcJ. 

Suppose for simplicity all J* are equal and equal to Jj S in 

Eq.(5.11), and approximate Uj S to first order, i.e. 

U I S ^ t r ) " e" i t r S i ° ) s z " e x P C~ iJS^ U I ( t ) ̂ IS U I ( t ) d t ) - ( 5 2 2 ) 
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The righthand side of Eq.(5.22) is in fact the first order correction 

to the (fictitious) I spin Hamiltonian defined by 

UjCtj.) - expf-it^ 1). (5.23) 

The t o t a l I spin Hamiltonian may be wri t ten in terms of t h i s f i c t i t ious 

Hamiltonian as 

n1 - H 1 + » I S 

- S 1 + J I g h l g. (5.24) 

From the Rayleigh-Schrodinger perturbation theory the energy for H in 

k-th state tf^ m a y D e expanded as a power series of Jj-: 

Similar to Eq.(5.13), Eq.(5.24) may be rewritten as 

* X - P+»+ + P.*., (5.26) 
where 

ff± - a 1 ± 1/2 J I g I z (5.27) 

with corresponding energies in k-th state 

J, 
h± " \ ^ S I ± ^ >• (5.28) 

Here S-r is a shorthand notation for offsets 4 Sx, 87,'-' , 6i,'m'V. The 

total energy may be expanded as 



I l l 

. K ( f i T + J I S S z ) - P + E k ( 5 l + -f) + P _E k ( 5 l - -f) 

iw + »-f,{W-» +-} 
W +Jis 

f a ^ l 
3fi, •.•*&]• (5.29) 

From Eqs.(5.22), (5.25), and (5.29) it follows that 

<*, (0) r(0) s I (0) . „(1) 
hI SZ \ > JIS Ek " JIS 

3E.1 k 
as. 

(5.30) 

The generalized scaling factor Â  may be defined as'' 

\ - 55, (5.31) 

In view of Eq.(5.21), the expectation value <*£ | M I *k > i n 

Eq.(5.30), although approximate, determines the position of the peaks. 

Consequently, once again the scaling factor A^ is the measure of the 

splitting in the S spin spectrum. Within the validity of the A-

approximation, perfect decoupling requires A^ - 0 for all offsets 6-r -

{̂ i i ̂ 2' ' "" • ̂-i . '' ' J • 1° other words, the decoupling sequence must 

create a fictitious Hamiltonian which is offset-independent. 

Furthermore, as discussed in section IV.5 the offset-independent 

fictitious Hamiltonian does not have to vanish. 

Theoretically speaking, Eq.(5.31) requires a multi-dimensional 

calculation. However, any decoupling sequence which performs well within 
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i t s decoupling bandwidth should create offset-independent f i c t i t i o u s 

Hamiltonian. Therefore, only the s l i c e 

S 1 - S 2 - " - - i k - 0 ( k ^ j ) (5.32) 

needs to be invest igated. For a s ingle -sp in case there i s only one index 

in E q . ( 5 . 3 2 ) , and consequently there are two eigenvalues or ig inat ing 

from a (2 x 2) matrix. With the identity E f c - f^ for th i s case , i t i s 

straightforward to show that 

a f l k 
\ -JT k" 1 > 2 (5-33) 

so there are two scaling factors, whereas there is only one Waugh 

scaling factor resulting from Eq.(5.1): 

A - | f . (5.34) 

The difference stems from the fact that the generalized scaling factor 

gives the actual line positions while the Waugh scaling factor gives the 

frequency difference between two parent lines. 

V.2. Applications to Heteronuclear Decoupling for a I — 1 and 

S - 1/2 System in liquid Crystal Samples. 

Fung et. al. have made an extensive comparison among various 

decoupling sequences developed for liquids by applying them to liquid 

crystal samples. They also suggested some decoupling sequences of their 

own, called ALPHA sequenres. All sequences for the single-spin 

decoupling tested failed, and their sequences along with a few Waugh 

sequences ' showed performance somewhat better than that of the single-

spin decoupling sequences. Nontheless, the whole experimental results 
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are far from sat isfactory and thei r sequences are not backed by theory. 

Proper decoupling sequences for the above mentioned case can be 

developed by applying the principles founded in the previous sections. 

For concreteness, consider the Hamiltonian for a system consisting of an 

I - 1 and a S - 1/2: 

I - - « S + « Q U * - ! ) + D I s V V ( 5 3 5 ) 

where S is the offset, Wg the quadrupole coupling constant, and D™ the 

heteronuclear dipole-coupling constant. Indirect coupling is neglected. 

In principle, the Hamiltonian in Eq.(5.35) can be removed with the 

sequences developed in section IV.5. In practical applications, however, 

some questions arise. First, is it better to design a short, relatively 

crude 90 pulse and improve decoupling performance by expanding the 

sequence from a 12-pulse sequence to a 24-pulse sequence to a longer 

sequence, or is it best to design a relatively long 90 pulse and 

substitute It into the 12-pulse sequence? Second, how can a composite 

pulse best be optimized? 

The answer to these questions should depend upon the particular 

system under consideration. Inspection of Table 4.4 reveals that the 12-

pulse sequence is not efficient for eliminating the linear terms, 

requiring all 12 steps. Hence, when resonance offset is a predominant 

term, schemes based on the 12-pulses may not be suitable. Conversely, if 

the chemical shift range is small, as in the case of deuterium, and a 

relatively strong field has to be applied to overcome the quadrupolar 

interactions, schemes using a 12-pulse sequence may be appropriate. 
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Suppose the system of interest belongs to the latter category. 

This is typical for liquid crystal samples with parameters w^ ~ 10 kHz, 

WQ - 10 kHz, D I S - 1 kHz, Sj - 500 Hz, and the linewidth - 2 Hz. Then a 

scheme that is more efficient in reducing the big bilinear terms at the 

cost of reduced bandwidth should be the choice. In other words, a 

shorter composite pulse with a longer sequence is favorable as long as 

the overall cycling rate is not unacceptably small. The composite pulse 

should create less offset-dependent Hamiltonian within its bandwidth. 

The procedure for optimizing the composite pulse would require the 

construction of the surface with continuous variables S and U>Q, and the 

details will not be discussed here. 
o 

Shenker et. al. came up with sequences called COMARO-n given by 

C0MAR0-2 - (y x)8(y x ) S 

C0MAR0-4 - (y x)S(x y)8(y x)8(x y ) 3 . 

For the COMARO-2 sequence a calculation similar to the one given in 

Table 4.4 results 
V 1 1 e + e + e 
VA. - - ± £ I - i ( e I I + e I I ) + — F — 1(1+1) 

/kTc 3 x x 3 N y z y z z y z y 3 

(5.36) 

and shows quick averaging for the quadratic terms. The presence of the 

isotropically averaged term 1(1+1) is common to all 12-pulse sequences 

explored in the previous chapter. For COMARO-2, however, still there are 

terms remaining after averaging unlike those 12-pulse sequences. C0MAR0-

4 is, incidentally, indistinguishable to Eq.(4.50) and therefore should 

average all linear and bilinear terms to higher order than the 12-pulse 

sequences or the C0MAR0-2 sequence. Nontheless, COMARO-2 reportedly 

performs as well for u 0 - 0.5 »i as C0MAR0-4 sequence, and outperforms 
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C0MAR0-4 for WQ - w^. Perhaps the superior performance of COMARO-2 over 

C0MAR0-4 is due to the remaining terms in the fictitious Hamiltonian, 

which are made insensitive to offset by the composite pulse ' 

3850 320 1 8 O 250 

partially aided by the scaling by 1/3. Or it may be due to the composite 

90 pulse given above, which is optimized without including the 

quadrupole Hamiltonian, therby renders irregular performance. Thus the 

direct comparison between the two members of the COMARO family may not 

be legitimate. It would be interesting to optimize the composite pulse 

with the quadrupole Hamiltonian included in the total Hamiltonian and 

compare various 12- and 24-pulse sequences. 

In the next section it will be shown how to optimize the composite 

pulse for isotropic liquids and how to remove various error terms by 

systematic expansions. 

V.3. Heteronuclear Decoupling in Liquids for Scalar-Coupled Spins. 

V.3.A. Introduction 

Current broadband heteronuclear decoupling methods • assume that 

homonuclear interactions among I spins-1/2 as well as among S spins-1/2 

are negligible. Under this assumption, the decoupling of an isolated I-S 

spin pair can be examined by looking at the behavior of the I spin alone 

under the decoupling field. A good decoupling sequence should create 

small net rotation angles /?(+) and /?(-) corresponding to states 

S z - ± 1/2, which the I spin undergoes under the decoupling sequence. 
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There are cases, however, where these neglected homonuclear scalar 

interactions cause visible residual splitting or broadening. The 

interaction would be important when very high resolution is required 

with low decoupler power, or when the coupling between abundant 

nonequivalent I spins are rather strong. For a system consisting of an S 

spin-1/2 and two homonuclear-coupled nonequivalent I spins-1/2 the 

dependence of the magnitude of the splitting on the various parameters 
3 is emperically given by 

A S = f " *o f ( ^ i • A w
2

) < 5 , 3 7 ) FvT l 

where JJJ- and J ™ are homo- and heteronuclear coupling constants. 

f(AWj , AOJ2) is a complicated function of chemical shifts and differs 

from one decoupling sequence to another. Later in this chapter the 

functional form of AS will be derived in a rigorous manner. Thus, given 

that the coupling constants and B 2 are the same, the residual splitting 

depends solely upon the decoupling sequence used. 

In the previous section it was shown that the decoupling sequence 

creates a fictitious Hamiltinian and in liquids the fictitious 

Hamiltonian is given by Eq.(4.38). A less offset sensitive fictitious 

Hamiltonian means better decoupling performance of the sequence used. 

Table 4.4 shows, however, that the sequence itself largely contributes 

to making the fictitious Hamiltinian assume the scalar form, Eq.(4.38). 

In other words, the sequence does not alter the size of the coefficients 

but averages them. Consequently, It is the composite pulse that largely 

determines the coefficients and hence determines the offset dependence 

of the whole decoupling scheme. It therefore is important to design 
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composite pulses which make the fictitious Hamiltonian offset 

independent within their respective decoupling bandwidths to ensure good 

decoupling. 

V.3.B. The design of composite pulses for two scalar-coupled spins 

- phase alternating composite pulses • • . 

The approach taken for designing composite pulses is the use of 

the Average Hamiltonian Theory (AHT). While there are numerous 

approaches to the design of composite pulses for the single-spin cases, 

the design for the coupled-spin case lacks the diversity of approaches 

largely because the propagators manipulated with pulses can no longer be 

regarded as rotations in three-dimensional space. The AHT approach is a 

suitable tool for dealing with situations such as the one described 

above. Even though the calculation gets complicated, the calculation of 

higher order average Hamiltonian terms provides insights by showing 

explicit offset-dependent terms, thereby guiding the design of the 

composite pulses. 

The relevant Hamiltonian for two coupled-spins I-, and Io, both 

spins-1/2, should in general be expressed in terms of two offsets St and 

62. However, as argued in section V.l examination of the surface 6 2 — 0 

is sufficient to evaluate performance of a decoupling scheme. Thus it 

can safely be assumed that the second spin is on resonance and the first 

spin is off resonance by 6t. Then in the rotating frame the k-th 

piecewise-constant Hamiltinian during r^ over which the decoupling rf-

field is applied may be written as 
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*k " *rf,k + V' < 5" 3 8> 

where 

» r f k - (-D kw 2I x (5.39) 

and 

V - S,!^ + J V I 2 . (5.40) 

Eq.(5.39) indicates that the phases of the pulses with constant 

amplitude alternate between x or -x axis of the rotating frame. The 

phase alternating composite pulse, in the absence of J, has some useful 

properties 'a': This class of pulses produces a propagator at r - sirric 

which approximates an ideal rf pulse, i.e. 

U(r) - "[Tk exp(-irkjg « e i a I x (5.41) 

within the bandwidth of a composite pulse, thus having no phase 

gradient, a can be selected at will. Pulses without phase distortions as 
12 a function of offset have many important applications. 

The transformation 

U(r) - U r f 9exp(-i[j u [ f V U r f d t ) , (5.42) 

along with application of the AHT yields 

°2 *W-'h-h + ^ A <-l> ( J + 1 ){l 2 z<sinV S i-J-l> 

2y^ 
\. n-cosA.)f-. 
J " 1 J J 

+ I„ (cosA. , - cosA . )^ . (5.43) 

Here A R i s defined by 
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^ - I-0 ( - D k ° k , (5 .44) 

wi th or̂  being the k - t h nominal f l i p angle in the p h a s e - a l t e r n a t i n g 

sequence of m p u l s e s a1a2a3''' . The i n t i a l angle a0 i s assumed to be 

z e r o . To zeroth order a l l intense coherent i r r a d i a t i o n w i l l remove the 

terms under the summation, leaving the s c a l a r i n t e r a c t i o n alone, thus 

ach iev ing the goa l . However, for the decoupler l eve l u2 of about 2 kHz 

the zero th order approximation i s h igh ly inaccura te . Hence higher order 

terms need to be considered. After some labor ious c a l c u l a t i o n s the f i r s t 

o rde r c o r r e c t i o n i s obtained a s : 

-Jr

 Z2x ( ^ 3J + X>J *1J ) 
2 

r d ) 

* -^ < v - - w (Lm bi + feu) 
2 

+ - ¥ " ( 1 lx T 2« " Il« I2x> 
W„ T 

( X Cj + l > J Clj) 

where the coefficients are 

(5.45) 

a. - (-l)J(a. - sina.) J J J 

*kj " (- X> 
k+j sin(&k - A.) - sin(Ak ^ - A.) 

- s in (A k - A. ^ + s i n ( A k l - A ^) 

(5 .46) 

(5.47) 

b - 2 sinA. , - 2 cosA. + ( - l ) J a . ( s i n A . + sinA. - ) 
J j - l J J - l ' 

(5 .48) 

b f c j - ( - l ) j + 1 a k ( s i n A - s i nA . . ^ ) + ( - l ) k a ( s i n ^ - s i n A ^ ) (5.49) 

c . - 2 sinA. . - 2 sinA. + ( - l r a . (cosA.- cosA. . ) (5.50) 
J J - l J J J J - l 
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i k+1 
cfc. - (-l)Jak(cosA - cosA x) + (-1) a (cosAĵ  - cosAj^.^(5.51) 

It is observed that the linear cross terms are created by the sequences 

which were absent in the original Hamiltonian. Eqs.(5.44) and (5.46)-

(5.51) are the primary equations used for designing composite pulses so 

that the offset dependent terms may be minimized. 

Since in general the Hamiltonian resulting from a sequence of 

pulses contains all linear and bilinear terms, it would be instructive 

to consider the next order correction term at least qualitatively to 

see how offset dependence enters for various spin operators. To 

facilitate the calculation some useful commutation rules are given in 

Appendix 4. The operators that appear in VK ' are: I l z and It with 
3 3 

coefficients proportional to 51/w2; the operators Ii xI 2 xi Ii v
I2v' 

2 3 
I l z I 2 z i Iiy^z1 a n d *iz*2y w i t h coefficients varying as fixJ/w2 and the 

2 3 

operators I t , I 2 !i z. atla" I2z varying as Sx3 /w 2. Here the quadratic 

terms begin to deviate from scalar and linear spin operators for the 

second spin, which were absent in the original Hamiltonian, are 

produced. Theses linear terms can be regarded as arising from the 

interaction of the first spin with the small field produced by the rf 

field. In the previous section the criterion for good decoupling was 

discussed; the sequence should produce an offset-insensitive average 

Hamiltonian, and a natural choice for liquids is J Ij'Ia as the 

remaining Hamiltonian. Now the average Hamiltonian calcultion dictates 

that for a composite pulse to render a perfect decoupling, which 

corresponds to making all 6j-dependent terms vanish, it is inevitable to 
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have JIJ'IJ remaining. It therefore appears that achieving homonuclear 

decoupling and heteronuclear decoupling simultaneously is an 

unrealistic goal. 

Contrary to the liquid crystal case, in the decoupling of liquids 

the most dominant terms are the linear terms with Sx of 0(10 ) Hz first 

appearing in Eq.(5.43) whereas J is of 0(10 ) Hz. Thus the composite 

pulse should be optimized to remove the (offset-dependent) linear terms 

first. Incidentally, the minimization of offset dependence should also 

render a reasonably good scalar with J having a slow offset dependence. 

The strategy for designing composite pulses is to select 

reasonably good candidates using Eqs.(5.44)-(5.51) and then optimize 

these initial candidates to achieve larger bandwidths by direct 

computation of the propagator U(r) given by Eq.(5.42). The method is 

analogous to the single-spin case. ^ a' It was discussed at the end of 

Section V.3.A that the offset dependence of the coefficient of the 

scalar interaction term is largely due to the composite pulse, rather 

than the schemes for expanding the sequences. The reason for this can be 

explained clearly in terms of the average Hamiltonian calculations. A 

composite pulse which accomplishes perfect decoupling would have to 

satisfy V<°> - Jl^Ia, and V^1* - V ( 2> - •" - 0. Thus the slope 

dJf"1)/d61 would be zero. However, it is questionable that any solution 

which satisfies all these constraints exists. Numerical optimization, on 

the other hand, is performed such that the figure-of-merit function is 

minimal. Inevitably then the optimal pulses found may not remove all 

offset dependent terms from Eqs.(5.44)-(5.51), but minimize overall 

offset dependence. As a result, for a composite pulse with a given 
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number of constituent pulses there seems to exist a "natural" offset-

dependence associated with the minimal value of the merit function. This 

is quite similar to the "natural" bandwidth one may find for a single-

spin case. ^ a' 

V.3.C. The evolution of spin operators under scalar interaction. 

Suppose a decoupling sequence managed to make all linear and 

bilinear cross terms vanishingly small and a good scalar term was 

obtained. Also suppose because of the nonideality of the composite pulse 

sequence that the scalar coupling constant obtained is slightly offset-

dependent. Then the evolution operator under these conditions may be 

written as 

U(r) - exp(-ir Jf(«1> I^lJ. (5.52) 

The resulting S-spin spectrum under this evolution operator can be 

predicted by calculating the scaling factor given by Eq.(5.31). For the 

two-spin case with a Hamiltonian given by Eq.(5.52) the position of the 

spectral lines can be calculated to give 

f BUS )1 
»j * J i s J 1 ** f <VIo>» J - ! , " . * . (5-53) 

The mat r ix ( I j - I 2 ) i i can be obtained by d iagona l iz ing the 4 x 4 matrix 

wi th the product b a s i s {aa, ap, pa, fifi) : 
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h'h aa afi fia PP 
aa 1 

4 0 0 0 

a/3 0 1 
"4 

1 
2 0 

fa 0 1 
2 

1 
"4 0 

Pfi 0 0 0 1 
L 

Diagonalization of the submatrix gives four eigenvalues 

al " " \ ' %'i (k " 2 ' 3 ' 4 > - < 5 - 5 4 > 
Therefore, the S-spin spectrum consists of four lines at the frequencies 

"j - J I S J - S ^ - a j ' J-l.2,3,4 . (5.55) 

If the derivative df/dSj^ is zero, corresponding to the perfect 

decoupling, the four lines collapse into a single line. On the other 

hand, if the derivative is sufficiently small so that the splitting 

between any pair of lines within the triplet manifold is smaller than 

the natural line width, then the three lines in this manifold collapse 

into a single peak, giving a spectrum consisting of two peaks with an 

intensity ratio 3:1. This situation is illustrated in Fig.5.1. 

As a third type of situation, suppose the composite pulse produces 

a fictitious Hamiltonian, which contains small but non-trivial linear 

and bilinear cross terms and a reasonably good scalar interaction term. 

Under these conditions the effective Hamiltonian has the symmetry 

approaching closer to spherical symmetry than the cylindrical symmetry, 
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Offset-Independent Scalar 

Offset-Dependent Scalar 

XBL 876-2673 

Figure 5.1 The expected form of the S-spin spectrum under a 

decoupling sequence that produces an underlying Hamiltonian that is a 

pure scalar operator 2wJI1-I2. If the effective coupling constant is 

offset-independent then a sharp singlet is observed. When the coupling 

constant is offset-dependent a 3:1 pattern emerges, in which the S spin 

experiences the local field of the triplet or singlet states, 

respectively. 
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which the original unmodulated Hamiltonian possesses. Therefore, it 

becomes more convenient to use operators expressed in the spherical 

basis than in the Cartesian basis. The spherical basis for the bilinear 

operators are listed in Table 5.1 and for linear operators the ± 

combination 

J«± " Zla ± ha a- X«y- Z ( 5- 5 6 ) 

is convenient. 

With the commutation rules in Appendix 4, it can be shown that 

for bilinear opeators 

[A 0 0 . A l k] * 0 k - 0,±1 (5.57) 

[A 0 0 • A 2 k] - 0 k - 0,±1,±2 (5.58) 

and for linear terms 

[A-oo • Ia+1 ~ 0 (5.59) 

[A 0 0 . I0_] " 0. (5.60) 
The significance of these commutation relations becomes apparent when 

the sequence is to be improved by expansion using the cyclic permutation 

and phasa shifts. To be more specific, first separate the scalar part 

from the rest (denoted as Ji' in the following) in the fictitious 

Hamiltonian such that 

D(r) - e " 1 ' J f< f il> ^ e " i r *' - UJT . (5.61) 
J 

Secondly, expand the sequence by combining various evolution operators 

and collecting Uj on the left" 
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Table 5.1 Spherical Basis Set of Bilinear Spin Operators 

T — - — I I 

Too J3 h-h 
T10 " 2~|^~ ^ l + V ' I l- I 2+J 

T l ± l " 2 t I i z

I 2 ± " 1l± I2zJ 

T20 " J=" ( 3 hzhz ' I 1 I 2) 

T2±l - 4 C 1 ! , 1 * + V2 J 
T - ^ 1 1 

2±2 2 1± 2± 
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U(ni-) - exp(-inr Jf (« 1 ) I ^ l J (uj)"" 1 if U1 t ,n - l • , tn-l 

• • • U J 2 u 3 U J U J U 2 U J U i • ( 5 - 6 2 ) 

The operators 0 in uV. which commute with Uj can be made vanish to 

zeroth order in the BCH expansion by phase shifts and cyclic 

permutations: 

I - X e k ° k u j - ui&i<k°k)uJ - ° - <5-63> 

In contrast, operators 0" which do not commute with IK evolve under Uj, 

making cyclic permutation and phase shifts ineffective in removing these 

terms. Thus they may pose problems as nr increases. However, because the 

operators do not commute with IJ'IJ, to first order they do not shift 

the energy levels produced by Ij"I2- The effect of 0" and the deviation 

from scalar on the spectrum may be shown by performing the degenerate-

perturbation calculation. To be more specific, consider the 3x3 matrix 

which determines the first order energy correction to the triplet 

manifold. The singlet state has no dynamics, and thus can be 

ignored. Eigenfunctions to be used are: 

4>x - aa, * 2 - a?j+

2 Pa, fj - pp (5.64) 

and the secular determinant is 
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Table 5.2 Matrix Elements of Operators 0" and Ii„I2a-

0".. - 0 i,j - 1,2,3. 

X 1 X 2 #1 *2 *i 

h 0 0 1 
4 

*2 0 1 
4 0 

*3 
1 
4 0 0 

*1 

*2 

*3 

V2__ll *2 *3 

# 2 0 

*3 ° 

0 

0 

1 
4 

^2 

0 

I. 
4 

0 

1 
4 

0 

0 

-I 
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<^2I 0 |^> <^ 2| 0 (#2> - A 

<* 3| o |^> <* 3| o |* 2> 

Table 5.2 lists matrix elements of 0" and quadratic terms which are 

not removed by Eq.(5.63). 

Since all matrix elements are zero for 0" operators it can be 

concluded that they do not affect the first order spectrum. The presence 

of the scalar interaction of 0(J), therefore, quenches the samll terms 

and the decoupling performance is little affected. This is another 

situation where the offset-dependent small terms are stabilized by a 

larger offset-insensitive residual term, as discussed in a previous 

chapter. 

Because Iial2a (a~li2,3) do have matrix elements, the deviation 

from the scalar may be problematical. However, as long as the composite 

pulse produces a good scalar, the deviation from the scalar should be 

small, and further refinements in making a better scalar can be achieved 

by expanding the sequence with phase shifts and cyclic permutations. 

V.3.D. Evaluation of decoupling schemes 

Schemes using 90 degree pulses 

With Sections V.3.B and V.3.C as a guideline, various composite 

pulses are found: Using v' ' and v' ' we find the initial candidates, 

then these candidates are optimized by numerically calculating the 

<*!l 0 |*3> 

«t>2\ 0 | * 3 > 

<<f,j 0\f> > - X 

- 0. (5.65) 
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Table 5.3 Phase-Alternating Composite 90 Pulses for Two Coupled 

Spins-1/2. 

Label Sequence Bandwidth3 Length 

P x 395 330 25 ±0.15 750 

P 2 40 290 380 40 ±0.2 750 

P 3 55 280 310 65 305 285 50 ±0.3 1350 

P 4 20 100 335 170 300 35 140 335 170 315 80 ±0.6 2000 

a Given in terms of the parameter Aw/a>2. 

Total rotation of the composite pulse in degrees. 
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underlying Hamiltonian around 5j - 0. A criterion is to reduce the 

deviation from the scalar as a function of offset. Then they are further 

optimized by the method suggested by Waugh • which has been much used 
13 for improving composite pulses for decoupling, which allows bandwidth 

extension without making the Hamiltonian deviate much from the scalar. 

Table 5.3 lists pulses with 90 flip angle along x axis and they are 

labeled Pj-P^. The lengh of each pulse is given in degrees, with 

overbars denoting a 180 phase shift, and the bandwidths are given as a 

fraction of w 2. All bandwidths are smaller than those of the single-spin 

case. This may be attributed to having more constraints Eqs.(5.44)-

(5.51) in optimization. 

This restricted bandwidth in principle may be expanded by using 

the 12-pulse based schemes. However, the schemes, as discussed in a 

previous chapter, are not efficient in removing the linear terms, 

although they are highly efficient in averaging the quadratic terms. 

Also from the experience in the single-spin case, it is well known that 

the use of nominally orthogonal channels are highly susceptible to the 

exact radio-frequency phase shifts. MLEV sequences with 90 x 180 90 x 

composite pulse are a good example. 
3 

Fig.5.2 shows the Waugh scaling factors for the (x y x y) 

sequence with the composite pulse P 3 . A 5% reduction in w2 from the 

nominal value W2/2JT — 2 kHz significantly degrades the decoupling 

performance, showing that the sequence does not have sufficient 

compensation for the l inear terms. Interestingly, however, the phase 

shi f t errors up to 1 do not have a perceptible effect on the decoupling 
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Figure 5.2 Sensitivity of (X Y X Y ) J to rf inhomogeneity or phase 

shift errors using the composite pulse P s. The top plot shows the Waugh 

scaling factor for the correctly adjusted sequence. Directly 

underneath, the effect of a 5% reduction in w2/2« (to 1900 Hz) is shown. 

There is a significant degradation in performance. Phase shift errors 

as large as 1 on either Y (next trace) or X (bottom trace) channels are 

harmless, as a comparison with the correctly adjusted sequence shows. 
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Fig. 5.3 Scaling factors for the indicated composite 90 pulses 

of Table 5.3 when used in the simple sequence (X Y X Y) . The scaling 

factors are shown as a function of J p the offset of the directly 

coupled I spin, for the case 62 - 0, and assuming a homonuclear coupling 

of 10 Hz and a 2 kHz rf field. For small 6t the signature in each case 

is that of a pure scalar operator, but the effective bandwidth of the 

more elaborate composite pulses P 3 and V4 is larger. Near the edge of 

the bandwidth the compensation fails and the "triplet" states are no 

longer degenerate. 
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performance. These behaviors are common to all composite 90 pulses in 

Table.5.2. Consequently, these may be considered the properties of the 

sequence itself. 

Figure 5.3 shows the scaling factors given by Eq.(5.31) for the 

case of J - 10 Hz, W2/2JT - 2 kHz, values typical to broadband proton 

decoupling in liquids. It is obvious from Table 5.3 and these Figures 

that the bandwidth is largely determined by the composite pulse and 

within their respective bandwidths the averaging of Ii al2 a * s 

excellent. 
__ 2 _ 2 

If the (x y x y x y) (x y x y x y) sequence is used instead, 

there is a small improvement as Fig.5.4 shows. The sequence is also 

quite sensitive to the rf inhomogeneity. However, the sequence is 

insensitive to phase shift errors upto 1 unlike MLEV sequences. 

Fig. 5.5 shows the scaling factors with 1 phase shift error in y 

and x channels for the above sequences when the composite pulse P 4 is 

used. Same Uj and J values are used. 

In principle, a longer composite pulse with a 36- or 48-pulse 

sequence obtained by the expansion procedure developed in an earlier 

section can be used to get an improved result. However, at the low 

cycling rates of these longer sequences other imperfections due to, for 

example, sample spinning and relaxation would degrade the calculated 

decoupling performance. 
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Figure 5.4 Scaling factors for the 24-pulse sequence 

(X Y X Y X Y ) 2 (X Y X Y X Y ) 2 under the same conditions as Fig.5.3. 
_ 3 There is a slight improvement compared with the (X Y X Y) sequence. 
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Figure 5.5(a) Scaling factors of the sequence ( x y x y ) with 1 phase 

shift error in x or y channel. The composite pulse used is P 4. 
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Fig. 5.5(b) Same as Fig. 5.5(a), except that the sequence 
_ o _ 9 

(x y x y x y) (x y x y x y) is used instead. 
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Sequences using 180 degree pulses and 180 degree phase shifts 

Table 5.4. lists phase alternating 180 composite pulses found 

using the same method as the one employed for the 90 pulses. These 

pulses then are assembled to have the form UUUU, which again reduces the 

linear and bilinear cross terms further. These are termed DIPSI 

("Decoupling In the Presence of Scalar Interactions") sequences, and 

they are labeled by the index n, the same one used to label the 

composite pulses. 

Waugh scaling factors for the DIPSI sequences are shown in Fig. 

5.6. Also shown in the figure is the one for the WALTZ-16 sequence for 

comparison. WALTZ-16 sequence has the biggest bandwidth, reflecting that 

the less constraints were needed to design it. Within their respective 

bandwidths the DIPSI sequences are predicted to offer very good 
- 3 

decoupling for the single-spin case, since X are kept well below 10 

The cycling rate with W2/2JT - 2 kHz is 130.4 Hz for DIPSI-1, so it has a 

length and complexity comparable to WALTZ-8. DIPSI-2 and -3 are 

comparable to WALTZ-16 and -32 respectively in cycling rate. 

Fig.5.7 shows scaling factors for DIPSI-1, -2 and -3 sequences. 

The scaling factor for WALTZ-16 Is also included for comparison. WALTZ-

16 shows the largest deviation from the scalar for the most of its 

bandwidth. Thus it would give a spectrum consisting of four lines. DIPSI 

sequences, on the other hand, render very good scalars. Thus the 

spectrum would consist of a nearly degenerate "triplet" state and a 

singlet. Here again, it is possible to improve the degeneracy of the 

scalar by averaging the coefficients of Ii a*2 a- F°r example, Fig. 5.8 



Table 5.4 Phase-Alternating Composite 180 Pulses for Two 

Coulped Spins-1/2 

Label Sequence Bandwidth8 Length 

R x 365 295 65 305 350 ± 0.4 1380 

R 2 320 410 290 285 30 245 375 265 370 ± 0.6 2590 

R 3 245 395 250 275 30 230 360 245 370 340 350 ±0.8 4890 

260 270 30 225 365 255 395 

a Given in terms of the parameter Aw/u2. 

Total rotation in degrees. 
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Figure 5.6 Single-spin scaling factors for DIPSI-1, -2, -3 and 

WALTZ-16. All the sequences offer excellent single-spin performance 

over their bandwidths, but WALTZ-16 gives the largest bandwidth. 
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Figure 5.7 Scaling factors for DIPSI-1, -2 , -3 and WALTZ-16, 

using the same conditions as in Fig. 5.3. Even though the DIPSI 

sequences use only 180 phase shifts, a pure scalar propagator is 

approached quite closely. By contrast, WALTZ-16 gives a different 

signature, showing non-scalar behavior and resulting in four different 

transitions. 
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Fig. 5.8 Scaling factors for the expanded sequence C C with the 
x y 

composite pulses Ri, R5, and R3. It is seen that very good scalar 

operators result. However, the slopes of the scalars as a function of 

the offset do not change appreciably. 
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shows the averaging of the coefficients for the sequence C XC , where C Q 

denote RRRR with a composite 180 pulse R applied along a axis in the 

rotating frame. For most practical applications, however, small 

deviations from the scalar as in DIPSI sequences go unnoticed and the 

numerical value of the scalar does not change as the sequence is 

expanded. Furthermore, the sequence expanded using orthogonal phases may 

be very sesitive to imperfections such as phase shift errors and rf 

field inhomogeneity as well as other imperfections such as relaxation 

effects. Hence, in the experiments to be discussed in a later section, 

the regular D1FSI sequences are employed. 

V.4. The Offset-Dependence of the Scalar Interaction. 

The splitting (AS) given by Eq.(5.37) was first discovered 

emperically . For a simple case of coherent-decoupling, • • * it is 

possible to derive a qualitative dependence of AS on parameters Jjc, J. 

w 2, tj, and fi2. First consider the Hamiltonian given by Eqs.(5.38)-

(5.40). For coherent-decoupling the subscript k is immaterial. The 

evolution operator may be separated as 

U(t) - exp(-it(«2Ix + * 1I l a)) 3exp(-ijfj 1^1,, dt') , (5.66) 

where 

\ l 2 - exp(it(u2Ix + S^j) I^Ig e*p(-lt<M I + « I )).<5.67) 
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Since u3/2n is about 2 kHz and J is about 10 Hz, it is well to 

approximate U(t) such that 

3exp(-iJj T t T 2 dt') = exp(-ij| \'T-2 dt') . (5.68) 

The calculation of Eq.(5.67) gives terms Ii al2 a
 a s well as cross terms 

I x I 2o (.on*f}) . Because only the qualitative offset-dependence of the 

scalar part is of interest, it may be well to consider terms l x I 2 . 

With Eqs.(4.4)-(4.7), the relevant part becomes 

- - 2 2 
I."I„ a I.. I- (cos 8 cosu t + sin 6) 

+ I, I„ (cosu t cosw„t - sinw_t sinu t sinfl) (5.69) ly 2y e 2 2 e 

2 2 + I, I„ (cos 8 cosw_t + sin 8 cosw t cosw_t). lz zz l e l 

Furthermore, to see only the qualitative behavior it suffices to 

consider only the coefficient of any one of these operators. If the 

coefficient of I l xI 2 xi f° r example, is chosen with the understanding 

that w 2r - lit and in tl.s limit u>a»S1 , it reduces to r(3/2)(fi 1
2/« 2

2). 

Thus the splitting AS chaves as 

A S ~ Jis I T - ~i- si < 5 - 7 0 > 
1 « 2 

correctly showing the dependence on parameters J T S , J, W 2 , and S1 as in 

Eq.(5.37). For this simple case f(fi) - 6. 

In Section V.3.B the "natural" slope of f(fi1) for each composite 

pulse was discussed. Furthermore, an inspection of Figures 5.3, 5.4, 



151 

5.7, and 5.8 shows an interesting feature; the slopes are nearly the 

same. The calculation based on the AHT is once again a good tool to 

assess the slopes. In the limit u2»S1, a calculation up to V*1 ' is 

sufficient to show the offset-dependence of the scalar part, because 

V v ' is the first term in which deviations from the scalar operator 

appear. If the decoupling sequence makes linear and bilinear cross terms 

vanishingly small, or if consideration is confined only to the scalar 

part because linear and bilinear cross terms are not relevant to 

determining the slope, the evolution operator to second order becomes 

U(r) - TT «P(-V klj -P[-itk{ J V I 2 + -^2 
(5.71) 

X [ c ^ T I_ +c< k>I. I, +c< k>T I 11. 
I x lx 2x y ly 2y z lz 2zJJ 

where the following notations are used: 

w k " ( ' 1 ) k w 2 ' 

(k) . , s l k 
c x - -4 + 6 —— - 2 c , . 

Vk l k 

(k) 3 3 s 2 k ^ 3*lk _,_ c 2 k 
(5.72) 

-y 2 4 V k V f c 4 

C W . . | + 3 _f2k + 3flk . !|k . 2 

2 4 V k "khc 4 l k 

with 
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s j k - s i n ( j W k t k ) 
(5 .73) 

c„_ - cosCjw^) . j k 

Since I X'I 2 commutes with the rest of the operators in Eq.(5.71), the 

evolution operator may be rewritten as 

U(r) - exp(-irJ I^lJ Pjjy • • P ^ (5.74) 

-o(o PkPk.1---P1 ( F H - V ^ < pk.i"" pi)- piS pi ur 
where 

P k - exp(-it k U kI x). (5.75) 

With the definition 

p(k) ... p 

- «P(" Ui '» (-1)m V x ) 
- exp( - i a ( k > l j 

the transformation of U*k by p ( k - l ) becomes 

„2 

(5.76) 

(p< k- 1>)-\p< k" 1 >--P , 2 L x lx 2x y 1 ly 2y 

2 (k-1) ̂  _ _ . 2 (k-1) f T T _,_ T T -. . (k-1) x cos a + I l z I 2 z sin a^ - [ l ^ + 1 ^ ) sin a^ 

(k)f cos £->} • .oo^ ^ ,_,._ _ 2 (k-1) ̂  T _ , 2 (k-1) ̂  + c iln I- cos a + 1 , I„ sin a + z I lz 2z ly 2y 

rT T ^ T T 1 * (k-1) (k-l)\ Ply^z + I l * I 2 y ) a l n a C O S J 
(5.77) 

Now the product of operators in Eq.(5.74) can be expressed in a single 

exponential form by using the BCH formula, once again ignoring the cross 
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terms. Then U(r) reduces to 

U(r) - Uj(r) P ( k ) exp -3W c (k>- 1 x + c ( k > - 1 

x lx 2x y ly 2y 

+ c (k) 

where 

Xz^z}. 
(5.78) 

,00' _ (k) 
"x x 

y 
(k)' (k) 2 (k-11 (k) , 2 (k-1) c - c cos a + c ' sin a . 

c ( k> c o s V ^ ^ + c ( k ) .i„2.<k-1> 
y z 

(5.79) 

If the sequence is to make a scalar, 

kv.w'-W (k)' ScV. (k)' (5.80) 

must hold. The numerical value of the coefficient for the scalar 

interaction is given by 

4^{-r + c ( k > ' + c<k> 
y z ' } (5.81) 

Then Eq.(5.78) becomes 
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U(r) - Uj(r) P (k ) 
exp • J ^ C T T 

• ir ^ I , I , 6u, 2 1 2 
(5 .82) 

Eq.(5.82) i s the basis to estimate the "natural" offset dependence of 

the residual Hamiltonian associated with the composite pulses l i s t ed in 

Tables 5.3 and 5.4. 

For the simple sequence (360 x)(360^), the residual Hamiltonian 

becomes 

,2 ^ 
(5 .83) Ji 2J*1 

3 u„ 
Y X 2 

So the s p l i t t i n g i s 

AS 4 J l S \ < « 2 » « x ) (5.84) 

For more complicated pulses, Eq.(5.82) is calculated using the computer. 

The result is listed in Table 5.5. It can be shown that all pulses 

listed give very similar but not identical slopes, confirming the 

earlier observation. The second order average Hamiltonian calculation 

predicts that the offset dependence of the splitting is linear: 

J I S J 

AS - -*§- 6 r (5.85) 

so that 

f(«!) - 61 (5.86) 

as in the case of the simple coherent decoupling. The next term in the 

Magnus expansion which contains Ii al2 a term should be v' ', admixing 

terms proportional to Sl. Thus in general, f(f) can be expressed as a 

polynomial of odd powers of 6: 
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Table 5.5 Slopes of the composite pulses P!-P4 and R 2-R 3 

* 1 -1.2128733 
p 2 -1.1255166 
p 3 -1.1414866 

p« -0.9625433 

Ri -1.2724800 

R2 -1.1944533 

R3 -1.1579233 

The slope is defined as the proportionality constant in 

Eq.(5.85). 
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V<n 2k-1 
f ( S l ) " X-l a2k-l6l ' ( S 2 " °" ° n r e s o n a n c e > - ( 5 C ?) 

V.5. Experimental Details. 

The sample used for decoupling experiments consists of a mixture 

of CH3I and CHSCH2I in acetone-d6. The acetone-d6 is used as an internal 

lock. The protons in the methyl iodide, being equivalent, are used to 

test the single-spin bandwidths for the decoupling sequences. The 

linewidth of the carbon-13 of the molecule was used as an internal 

standard. A Briicker AM-400 with a 10 mm broadband probe was used for 

this search test under routine operating conditions. The effect of 

homonuclear coupling was examined by looking at the carbon-13 resonance 

of the methyl group in the ethyl iodide molecule. To observe fine 

structure in the carbon-13 spectra due to the homonuclear interaction a 

5 mm broadband probe was used and the experiments were carried out on a 

Brucker AM-500. The AM-500 spectrometer turns out to have much better B 2 

homogeneity than the AM-400. 

A method for checking the spatial inhomogeneity of the B 2 field 
13 has been discussed in the literature. Fig.5.9(a) shows an experimental 

spectrum of 1 3C of the methyl iodide on the AM-400 with 180x180s pulse 

sequence irradiating the proton spins in the molecule. A decoupler 

resonance offset of 200 Hz resulted 11.80 Hz splitting between peaks. 

With the measured value of J-u - 151 Hz, the B 2 field was calibrated to 

give 2551.50 Hz. The distorted lineshape in the Figure results from the 

B 2 inhomogeneity. In Figure 5.9(b) a portion in Fig. 5.9(a) marked by an 
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Fig. 5.9 (a) C spectrum of the methyl iodide with proton 

decoupling. The splitting 11.80 Hz between two adjacent peaks results 

from a 200 Hz decoupler offset, (b) The expanded view of the peak marked 

by an arrow in (a). The B 2 field distribution at half of the maximum 

height around the nominal value 2551.50 Hz is 1.52 Hz. The small peaks 

at ± 15 Hz are spinning sidebands. 
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arrow is expanded to clearly show the distortion and to facilitate the 

extraction of the distribution of B 2 field from the line shape. A 1.52 

Hz deviation from the nominal value at half of the maximum intensity is 

found. 

For all decoupling experiments, care was taken to ensure a 

constant temperature around the sample. One reason is that the 

temperature change may cause a shift of resonance frequencies. The 

temperature dependence of the C-13 peak of the methyl iodide in the 

sample is shown in Fig. 5.10. In the Figure, the peak at the far left 

corresponds to the reference peak with the decoupler level at 2551.50 Hz 

with the sample at 301 . Then the temperature was suddenly raised to 

307 K. The signals were sampled at the interval of 5 minutes. The 

temperature change not only caused the shift of the resonance frequency, 

but also broadened the resonance linewidth. It is observed that about 15 

minutes are required for the sample to reach the normal state. Another 

reason to keep the temperature constant is to prevent thermal expansion 

or contraction of the decoupler coil, which would lead to the 

fluctuation of the decoupler level. Irradiation of the decoupling field 

will invariably cause a temperature rise in the sample; a method for 

keeping the temperature stable is setting the temperature at a level 

higher than the room temperature by turning up the temperature control 

knob, so that the preheated N2 gas may pass around the sample. Another 

advantage of turning up the temperature is that at higher temperatures 

the viscosity of the sample tends to decrease, a favorable condition for 

line narrowing. However, if the temperature is too high, the sample can 

evaporate. It was found that at 307 K the temperature was most stable 
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Fig. 5.10 The temperature dependence of the C-13 peak of the 

XBL 8711-5956 
methyl iodide. The peak at the far left is the one before the 

temperature change, and after the temperature was changed signals were 

obtained at 5 minute intervals. 
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while the decoupler was on, and the sample did not evaporate. After the 

pulsing with decoupling sequence? the cw decoupling field was turned on, 

because otherwise the temperature of the sample dropped under these 

conditions. Magnet shimming was also done at the same temperature. It 
1 8 

was possible to shim the magnet to obtain a C linewidth as narrow as 

0.12 Hz with on-resonance proton decoupling. 

Figure 5.11 shows the experimentally observed resonance of carbon-

13 in methyl iodide (JQJ - 151 Hz) on the AM-400 as a function of proton 

decoupler offset for various decoupling sequences. The 10 mm sample tube 

was spun constantly at 6 Hz, because at high spinning rates the surface 

of the sample (in the bigger 10 mm tube) may be vortexing, which would 

introduce more inhomogeneity than what the spinning is intended to 

eliminate. Most of the time during the experiments the magnet was 

shimmed so that the on-resonance coherent decoupling gave linewidths 

within 0.2 Hz. To enhance the sensitivity, a line broadening of 0.5 Hz 

was added, giving a final linewidth of 0.25 Hz. The same setting was 

used for all the decoupling sequences. The decoupler level was 

calibrated using the method suggested by Ernst. The decoupler level at 

1480 Hz was used to perform a stringent test for each sequence. The 

decoupler offset was incremented in 200 Hz steps over the range ±1400 Hz 

about the exact resonance. 

WALTZ-16, which was designed primarily for single-spin cases, 

gives the biggest bandwidth as expected. Bandwidths for WALTZ-16 and 

DIPSI-2 agree well with the theoretically predicted bandwidths. However, 

the bandwidth for the DIPSI-3 is less than the theoretical one. A cause 

for this discrepancy may be attributed to the low cycling rate of 27.2 
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Figure 5.11 Carbon-13 resonance of methyl iodide showing the 

offset dependence of DIPSI-2, DIPSI-3,WALTZ-16, a 12 and a 24 pulse 

sequence, and COMARO. The decoupler offset has been stepped in 200 Hz 

increments over a ± 1400 Hz range about exact resonance. Sequences (a)-

(c) give narrow resonances over their bandwidths, but WALTZ-16 decouples 

over the largest range. The variations in peak height are attributable 

to poor « 2 homogeneity over the sample volume. Sequences (d)-(f) have 

very limited single-spin bandwidths, and are not suitable for 

decoupling in liquids 
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Hz of DIPSI-3. Nonetheless, DIPSI-3 gives more uniform and higher peak 

heights, an evidence of enhanced tolerance to B2 inhomogeneity. 

Single-spin bandwidths for schemes using 90 pulses with 

orthogonal channels are very small as Figs. 5.11(d)-(f) show. In Figs. 

5.11(d) and (e) the seven-pulse composite 90 is plugged into the 
3 3 3 3 ^ 

sequences (x y x y) and (x y) (x y) (x y) (x y) (Eq.(4.50)). There is 

a very small improvement in bandwith of the 24-pulse sequence over that 

of the 12-pulse sequence, except at resonance. In Fig. 5.11(f), the 

performance of C0MAR0-4 is shown. The sequence does not even work at 

resonance. The only difference between C0MAR0-4 and the above 24-pulse 

sequence is the composite 90 pulses used. It follows that the composite 

pulse should be used carefully depending on the situation at hand. A 

similar discussion can be found in the literature in connection to 
18 0 

multiple-quantum NMR. Common to all these composite 90 pulses are 

very restricted bandwidths and intolerance to I$2 field inhomogeneity. 

Consequently, these sequences are not suitable for liquid decoupling 

experiments. 

Now consider the case where there is a homonuclear coupling 

between two inequivalent protons, as in the case of most molecules of 

interest. In order to observe the fine structure due to homonuclear 

coupling the AM-500 spectrometer with a 5 mm probe was used. Once 

again, a sample consisting of methyl and ethyl iodide in acetone-d6 is 

used. Fig. 5.12 shows the resonance peak of a methyl carbon-13 in ethyl 

iodide. The coupling constant J m between methyl protons and methylene 

protons is measured as 7 Hz. The magnet was once again shimmed until the 

linewidth resulting from coherent decoupling would gave 0.2 Hz. 
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Figure 5.12 Carbon-13 methyl resonance of ethyl iodide using 

three different values of u 2. Due to the effect of scalar coupling 

between the protons, distorted lineshapes are obtained with UALTZ-16 

(left-hand spectra). DIPSI-2 gives better results, as shown on the 

right. 



167 

No line broadening was added. Decoupler offset was set on resonance at 

the methyl protons, then the methylene protons are 690 Hz off resonance. 

Decoupler levels used were 1100, 1460, and 1930 Hz and sample was spun 

at 15 Hz, faster than the rate for the 10 mm tube. The number of scans 

is 64 for each spectrum. 

WALTZ-16 at w2/2»r - 1100 Hz gives a very broad multiplet. As B 2 

field increases from 1100 Hz to 1460 Hz to 1930 Hz, a slight narrowing 

is achieved. However, even at the highest decoupler level there still 

exists distinct multiplet structure with a linewidth of 1.0 Hz. 

Furthermore, at all decoupler levels tested the "wing" at the base of 

each of the peak is seen to persist, but decreases as the B 2 field is 

increased. The wing is due to the "quartet effect" i' , , t" of the C-13 

quartet: The outer lines of the methyl quartet experience an effective 

decoupling three times as large as the inner lines, and they are three 

times more sensitive to the spatial inhomogeneity of the proton 

decoupling field B 2. 

The right-hand series of spectra are the results of the DIPSI-2 

sequence on the same sample with the same experimental settings. The 

result of DIPSI-2, with its similar cycling rate and complexity, is 

directly comparable to the result of WALTZ-16. At the decoupler level of 

1100 Hz a slight trace of the wing is observed and splitting between the 

singlet state and the "triplet" state is seen. However, the performance 

is already better than that of WALTZ-16 at the highest decoupler level. 

As the B 2 level increased the lineshape approaches more closely the 3:1 

pattern with the splitting unresolved, and at 1930 Hz the peak is 

essentially a singlet. Intensity enhancement of DIPSI-2 over WALTZ-16 
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COOH 

XBL 8711-5961 

Fig. 5.13 The trans-cinnamic acid structure. The protons labeled 

1 and 2 are a good approximation to an isolated pair of homonuclear-

coupled spins, which are also coupled to the carbon-13 labeled with an 

asterisk. 
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is about 25 %. The linewidth of the peak obtained with DIPSI-2 at 

1930 Hz is about 0.62 Hz as compared with 1 Hz linewidth obtained with 

WALTZ-16. One reason for the high intensity of the peak resulting from 

WALTZ-16, despite the breadth of the line may be inferred from Fig. 5.7. 

It can be seen that although the WALTZ-16 fails to make a scalar for the 

most part of the bandwidth, two scaling factors belonging to the 

"triplet" manifold stay quite close together and in fact closer than the 

overall spread of the three scaling factors for the DIPSI-2 sequence. 

Thus the two closely located scaling factors for the WALTZ-16 sequence 

accounts for the sharp center peak in Fig. 5.12. While DIFSI sequences 

manage to make the overall scalar better, the resultant scaling factors 

are separated slightly more than the two scaling factors for the WALTZ-

16 sequence. In theory, therefore, the intensity of the spectrum for the 

DIP3I sequence can be enhanced by lengthening the sequence to C XC , of 

which scaling factors lie much closer to each other as can be seen in 

Fig. 5.8. However, because sequences employing orthogonal channels are 

quite sensitive to instrumental imperfections, the possibility of 

improvement in performance of the lengthened sequence is questionable. 

To compare the performances of the sequences in more complicated 

molecules, trans-clnnamic acid was chosen as the sample. The structure 

of the trans-clnnamic acid Is shown in Fig. 5.13. In the Figure C 

denotes the C-13. Because of the small homonuclear coupling between 

methylene protons and ring protons, and the proton in the acid part of 

the molecule, the metvjlene protonr can h« considered to form a nearly 

isolated two-spin system. The coupling ccnstirt between the two 
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Figure 5.14 Low-field ethylene resonance of trans-cinnamic acid 

under conditions of broadband decoupling. WALTZ-16 gives broad 

multiplets, and at the lowest decoupler level all four lines are 

resolved. DIPSI-2 narrows the resonance considerably, resulting in 

better sensitivity and resolution. 
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Figure 5.15 Comparison between simulation and experiment for 

trans-cinnamic acid using WALTZ-16 (left) and DIPSI-2 (right). The 

parameters used in the simulation are ua/2ir — 1100 Hz, Sx - 0 Hz, fi2 - -

584 Hz, \J C H - 150 Hz, 2 J C H - 0 Hz and J^ - 16 Hz. The simulations 

assume a completely homogeneous u2 field, and have been artificially 

line broadened tc match the linewidths of the experimental spectra. No 

attempt has been made to fit the experimental spectra. 
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methylene protons is 16 Hz. The molecule has previously been used to see 

the effect of homonuclear interaction on the broadband heteronuclear 

decoupling experiment. Decoupler offset was ŝ t at the resonance 

frequency of the proton (labeled as Hj) directly attached to C , and the 

resonance offset of the indirectly coupled proton (H2) is -584 Hz. Fig. 

5.14 compares the spectra resulting from the decoupling sequences DIPSI-

2 and WALTZ-16 at the decoupler levels 1100 Hz and 1930 Hz. At 1100 Hz 

WALTZ-16 gives a spectrum showing four broad lines, while DIPSI-2 gives 

a much narrower linewidth and an intensity twice as big. Even at the 

higher decoupler level of 1930 Hz WALTZ-16 still does not give a 3:1 

pattern comparable to those of the spectrum obtained with DIPSI-2 at 

the lowest decoupleL level of 1100 Hz. By contrast, DIPSI-2 results in 

almost a singlet at 1930 Hz with an Intensity 50 % higher than that of 

the corresponding spectrum resulting from WALTZ-16. Fig. 5.15 shows the 

good agreement between the simulated and the experimental spectra for 

WALTZ-16 and DIPSI-2 at 1100 Hz. 
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CHAPTER VI. The Hodulation of the Spatial Coordinates of the 

Sample 

VI.1. Introduction 

As discussed In chapter I, the Hamlltonlan for a system of nuclear 

spins is composed of coordinate and spin parts. If there were no 

external magneic field present, the Hamiltonian retains the full 

isotropic symmetry. In other words, the Hamiltonian becomes a scalar, 

and consequently there Is no preferred orientation. The use of no 

magnetic field has been devised in the early days of NMR and the 
9 

recently Introduced method of time-domain zero-field NMR has been 

quite successful in structure determination in randomly distributed 

spins in solids. Without the external magnetic field however, valuable 

information is lost; namely the chemical shift cannot be recovered with 

the zero-field NMR technique. Thus the vast majority of NMR experiments 

are performed in high magnetic fields. Furthermore, the trend is to use 

higher magnetic fields to achieve better resolution. 

In the presence of the high magnetic field only the terms which 

commute with the Zeeman term survive, and other terms are "truncated". 

Unfortunately, this makes the Hamiltonlan assume cylindrical symmetry, 

and preferred orientation of nuclear Interactions sets in. In liquids, 

the orientation dependence Is averaged away naturally by molecular 

motions faster than the Larmor frequency. Nuclear spins In solids, in 

contrast, are locked In a rigid lattice and do not enjoy this benefit. 
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Hence the NHR spectra of powdered solids exhibit broad, and in many 

instances featureless, signatures reflecting the effects of the 

anisotropies of the spin interactions. 

One way to overcome line broadening is the application of 

multiple pulses, and this is one of the main goals of chapter III. If 

transformed into an appropriate frame, the spins acquire time 

dependence. Because of technological limitations on the amplitude and 

phases of pulses, it is futile to imitate nature and apply the pulses 

randomly. Thus most pulsed NMR techniques use carefully designed 

sequences of pulses, with the exception of stochastic excitation. 

(Recently, Tycko et.al introduced highly efficient iterative schemes, 

in which at high iterations the pulse sequences behave stochastically. 

However, this method is different than the random modulations such as 

"white noise".) Unfortunately, the chemical shift anisotropy cannot be 

removed with the multiple-pulse method without removing the isotropic 

chemical shift at the same time. 

On the other hand, because of the duality of the spin Hamiltonian 

it is equally possible to achieve line narrowing by mechanical 

modulation on the spatial coordinates. The rotation of samples was 

introduced almost three decades ago and has been used ever since. 

Provided that the rotation speed exceeds the coupling constant of the 

spin interaction under consideration, the rotation of the sample 

"truncates" the coordinate part of the Hamiltonian along the spinner 

axis much like the magnetic field truncates the spin part. In 

particular, if the spinner axis is tilted by the "magic" angle, 6 m -

54.7 , the truncated value of the (first order) anisotropy is equal to 
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zero. The magic angle spinning (MAS) method has been the major method 

for obtaining isotropic chemical shifts. However, for abundant spins -

1/2 or for nuclei with spin angular momenta greater than 1/2, the 

rotational speed has to exceed dipole or quadrupole coupling constants. 

Considering that currently the highest spinning speed rarely exceeds 20 

kHz, the application of MAS to systems other than dilute spins-1/2 

seems to be unfeasible. 

A method to get around this problem is the use of multiple pulses 

to remove dipolar (or possibly quadrupolar) interactions while using 

MAS to remove the chemical shift anisotropy (CSA). The method was 
12 suggested by Haeberlen and Waugh and experimentally implemented by 

13 Gerstein et.al. Unfortunately, the application of multiple pulses 

scales the chemical shift range, and thus degrades the resolution. The 

use of higher magnetic fields may be a solution. However, this again is 

limited by the technically achievable spinning speed. 

Recently, Maciel et. al. showed how to recover the isotropic 

chemical shift without spinning the sample. Instead, the sample is 

discretely hopped by 120 around an axis tilted by the magic angle from 

the laboratory z axis along with appropriate sequences of pulses to 

initiate and terminate the evolution of the density operator. This 

obviates the necessity for rapid spinning, and thus constitutes a 

significant development in high resolution NMR of powdered solids. 

However, the application of the hopping technique is still confined to 

the case of dilute spins-1/2 such as C. The reason is that for 

abundant spins-1/2 or for spins with angular momenta greater than 1/2, 

dipole or quadrupole interactions have to be considered. The hopping 
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technique may be generalized to treat these problems. However, the 

evolution under these Interactions as well as the chemical shift, can 

no longer be regarded as rotations. Thus it is very difficult to 

express the resulting density matrix in terms of functions with closed 
2 

form. In fact for spins I fc 3/2 the basis operators, (21 + 1) in 

number, have yet to be developed. 

For these cases a solution may be once again the application of 

multiple pulses. But the scaling of the chemical shift range is 

unavoidable. Furthermore, because the resulting quantization axis would 

be different from z axis, the evolution of the density matrix under 

this effective Hamiltonian would be very complicated. Consequently, the 

design of schemes for removing CSA would be quite difficult. Another 

setback of this technique Is that even for the removal of CS.1 four 

experiments are required for quadrature detection. The requirement 

stems from the inherent method of "storing" only half of the 

information about the evolution as a Zeeman order. In addition, the 

hopping time t^ must be T 2 < tj, < T|, so that the unwanted information 

may depha.se completely. Although the condition is easily met, half of 

the information is wasted (which is recovered only after doing three 

other experiments) and decay of the signal occurs because of the spin-

lattice relaxation during t^. This may be particularly serious for a 

system for which Tj is not substantially longer than T 2. A superior 

approach then should be one which does not have the lower limit on t^. 

In this chapter, the magic-angle hopping technique will be 

generalized to be applicable to abundant spins-1/2 and, in principle, 

spins I M as well as dilute tpins-1/2. Basically, the extension 

http://depha.se
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consists of the application of multiple pulses at appropriate times in 

addition to hopping of the sample. Also it will be shovm that with this 

approach only one experiment is necessary for full quadrature 

detection. Furthermore, if more than one angle is allowed to be used, 

other anisotropics such as the second order quadrupole effects can also 

be removed. 

VI.2. The Hamiltonlan 

As dicussed in Chapter I, in the laboratory frame (LAB) a general 

form of the internal spin Hamiltonian consisting of chemical shifts 

(CS), dipole (D), and quadrupole (Q) terms may be written as 

2 i 

* • I L L / " 1 * 1 1 1 R*- T*° «-<*>»•<» <*-i> 
where the sphrerical tensors ft and T denote spatial and spin parts 

respectively. T^ m - 0 unless i - 2 for A - D, Q. For A - CS, the term 

corresponding to i - 1 (the antisymmetry part) does not contribute to 

the spectra to first order and thus will be ignored. Then Eq.(6.1) may 

be rewritten as 

""So1™ •»!• 
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Since H^ has a common structure for all A, it suffices to consider a 

representative case and suppress the summation over A. Ro-m *-n ^1 c a n 

be expressed in terms of tensors in the principal axis system (PAS) as 

is given by Eq.(1.17). Thus 

2 

Once again dmD> denotes the Wigner rotation matrix connecting the LAB 

and PAS. Now consider a tilted space frame, related to the LAB by 

2)^(0). With the notation Z£b(fl) - 2>ab and Z>ab(n') - Z>ab, Eq.(6.3) in 

the tilted frame becomes 

*1 " *A ̂ n<- 1> m T2m ^ 0-m-M{jf D-M0 + f (B-M2 + ^ H - J } ' <6"*> 

In NMR, measurements are usually made in the rotating (spin) frame, 

which is defined by the transformation 

R - exp(iw0t i j . (6.5) 

Then from Eq.(1 .12) the Hamiltonian becomes (henceforth t he subscr ip t 

" 1 " w i l l be dropped) 

9 ' L ( - 1 ) , n R2-m L ' T2m' * - • (M.*<t>) • < 6- 6> 

Because of the rotational symmetry around the z axis \/> can be set to 
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zero. 8-0 because the axis of the rotation is along the z direction. 

Then 

«2!C.o.««>) - «_. . t a 'v • <"> 

where ^(t) - unt is used. The Hamiltonian thus becomes 

»(t, - ̂  ,.«" T 2„ ̂  ,<», ,;.„ J-O*. (6.8) 

where 

"2-M- Jl^MO + f IP-*2 + D'.H.J- ( 6 9 ) 

H(t) vanishes over a cycle w0r - 2* unless m - 0. Thus 

» ( 0 ) - "A T20 i V M >2-M ' ( 6 " 1 0 ) 

and this corresponds to the usual truncation. 

VI.3. The Removal of the First Order Anisotropies 

Magic angle experiments 

It is well known that T20 in dipole and quadrupole Hamiltonians 

can be removed by either continuous coherent averaging with the 
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radiofrequency field tilted by the magic angle as in the Lee-Goldburg 

experiment or the discrete isotropic average resulting from multiple-

pulse sequences such as the WHH-4 sequence 

T x + T^ + T Z - 0 (* 11) 
20 20 20 ' l ' 

where 

^ O - i ^ a V " ^ « " X , y, z (6.12) 

Thus three configurations such as x, y, and z are needed. In view of 

the analogy discussed in Chapter 1, it is clear that the same 

continuous averaging around the magic angle and the three 

configurations can also be used to remove the spatial part of the spin 

Hamiltonian. Note that the configurations can be reached by 120 

rotations around the (111) axis. The removal of the spatial part will 

now be shown by detailed calculation. The principal equation to be used 

is Eq.(6.10), where the Vigner rotation matrix DQ-H is a function of 

two angles 0 and 7, namely Q - (0, fi, 7). p Is the tilt angle of the 

symmetry axis from the LAB z axis, and 7 is the azimuthal angle of the 

symmetry axis. 

(1) Sample Spinning Experiments 

These correspond to the continuous coherent averaging method. In 

this case Eq.(6.10) becomes 
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* ( t ) " "A T20 5l °0-M 4-M e" 1 M W r t' < 6 1 3 > 

of which average vanishes over the cycle urr - 2ir unless M - 0. Thus 

once again 8 is truncated along the direction of the spinner axis: 

* " -A T20 B00 "20- < 6- 1 4> 

Note that 

B 0 0(0) - ?2(cos0) - 1/2 (3 cos20 -I). (6.15) 

Thence 3f - 0 if /} - 6 (the magic angle), and this is the origin of the 

magic angle spinning (MAS) experiments. 

It is interesting to note that in principle there is an 

infinite number of angles /Ji. which make ?2(cos/?) vanish in the sense 

that 

I JJ ?2(cos 0 k) - 0. (6.16) 

N is the number of degrees of freedom for choosing angles. For N - i 

there i= only one angle which satisfies the above equation and this is 

the magic angle. For n — 2 there is an infinite number of sets of such 

angles. It will be shown in a later section that the increased number 

of degrees of freedom opens up possibilities of doing unusual 

experiments. 
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As discussed in the introduction to this chapter, it is 

difficult to achieve spinning speeds greater than the dipole (and of 

course the quadrupole) interactions. Thus, the MAS is mostly confined 
1 3 

to dilute spins-1/2 such as C, whose spectra is broadened 

predominantly by the CSA. Foe dipole coupled spins-1/2, the dipole 

interactions can be removed by the application of multiple pulses, 

while the CSA is removed by the MAS. This method is termed "CRAMPS11 

(the Combined Rotational And Multiple Pulse Spectroscopy)13,16 CRAMPS 

is currently the most widely used method for extracting the isotropic 

chemical shifts of the abundant spins-1/2. However, the disadvantage of 

the method is, as pointed out earlier, that the the chemical shift 

range is scaled by the multiple pulses applied, degrading the 

resolution. This may be problematical for a system of spins with a wide 

range of closely spaced chemical shifts. The application of higher 

static magnetic field to separate these resonance lines are hampered by 

the limitation of the spinning speed available. 

(ii) Sample Hopping Experiments 

The spatial analog of the coherent averaging with discrete 

piecewise-constant configurations is the sample hopping experiment. 

The solid angles corresponding to the configurations x, y, and z are 

n x - (0, 0, 0), n 2 - (0, ir/2. 0), and n 3 - (0, ir/2, */2). For 

simplicity the following notation will be used: 
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K ° > - ^ ° O - M { ] | S ' M O + I 0>-M2 + D'.n.2)}-liDo.Hp2-n^17) 

At those three solid angles A(fl) becomes 

A « V - "20 

A(02) - -\ p'2Q + J | [p'22+ p'2_2) 

A(03) - -\ P'2Q - J | ( p ; 2 + P 2_ 2) (6.18) 

I t follows that 

^ A(fy - 0, (6.19) 

showing that indeed the three configurations remove all (first order) 

anisotropies. It can easily be proved that if the sample is not spun, 

the first order anisotropies cannot be removed with angles fewer than 

three. Thus the minimum number of degrees of freedom for this case is 

three. 

Implementation 

A question arises Immediately: How can one implement Eq.(6.19) 

experimentally? Of course, Eq.(6.19) cannot be satisfied in the sense 

of time-averaging, because the time scale for manipulation of the 
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spatial coordinates is much bigger than that of the spin coordinates. 

For dilute spins-l/2 the experimental implementation of Eq.(6.19) can 

be done with the hopping technique developed by Maciel et. al. 

Consider the Hamiltonian for spins-l/2 in powdered solids consisting of 

the Zeeman(8 ) and the chemical shift(B ) terms. For simplicity only a 

representative crystallite will be considered. However, the result 

holds for a system with an arbitrary number of crystallites as well. 

The Hamiltonian in the rotating spin, tilted space frame may be 

written as 

where the index M runs from -2 to 2, and o^SQ is the isotropic 

shielding tensor. 

First position the sample axis at 0 X and apply a ir/2 pulse along 

the (-y) direction. Then the initial density operator is allowed to 

evolve under the Hamiltonian corresponding to the angle for the 

duration of r/3. The density operator at r - r/3 is thus 

,(§> - expf-i^lj I x expfi^lj 

I cos ̂ *,+ I sin ̂ , (6.21) 
x 3 1 y 3 1 

where 

*1 " "Ciso + "o X M V M ( ° I > "2-M(n'>- < 6- 2 2> 
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The x component is stored by applying a second ir/2 pulse along the y 

axis and the sample axis is hopped to the next angle 0 2. A v/2 pulse 

along (-y) allows the magnetization to evolve, and after another period 

T/3 the density operator becomes 

/>(t) - exp(-i^*2lj yjos^ \ exp(i^*2lj. (6.23) 

The procedure is continued until the angle dependence of the 

magnetization becomes 

f1 - exp(-i| # 3) cos| 4>2 cos| ̂ . (6.24) 

Three other experiments to store various components result 

f2 iexp(-i^ # 3 ) c o s | 4>2 sin^ <f>l 

f3 - - iexp(- i j ^ 3 ) s i n | 4>2 co s | ^ 

f4 - -expf-i j ^ 3 ) s i n | ^ sin^ ^ . (6.25) 

I t follows that 

) U ' k - « P ( - * I < V * 2 + *3)) 
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JL 
2 l_y 

H z (O,) 

P(0) - I 

Hop 

H z=0 Hz(fi2) 

3 

Hop 

H 2=0 W 

XBL 8711-5970 

Fig. 6.1(a) Schematic diagram of the experiment for removal of 

the first order anisotropies. The initial density operator created by a 

90 pulse along -y axis evolves under 3!fz(0̂ ). See text for the 

definition of the Hamiltonian. The Hamiltonian is made to vanish during 

fc , the individual hopping period. Overall evolution time is t^. 
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XBL 8711-5953 

Fig. 6.1(b) The three orientations of the sample 0^ to be used 

for the experiment given in Fig. 6.1(a). The sample is hopped about an 

axis tilted by the magic angle, 8 with respect to the z axis. 
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Here 

*! + * 2 + * 3 - 3u 0a i s o (6.26) 

Thus the isotropic chemical shift is recovered. However, a disadvantage 

of the meU. >d is that four experiments are required for quadrature 

detection. A superior method is to recover the isotropic chemical shift 

in one experiment. The key is not to discard half of the information 

while storing the remainder. To achieve this, consider the experiment 

shown in Fig.6.1. 

The evolution operator for the scheme at time t - tj + 2t n is 

t t t1 

U(t) - exp(-iSz(n3)3±) exp(-i»a(02)jt) exp(-13^(0^) 

t-
- expf-i^CC^) + »z(fi2) + *z<03)}£). (6.28) 

where #z(fi],) denotes the high field truncated Hamiltonian with the 

sample oriented along 0^. The second equality in Eq.(6.28) follows from 

the fact that 

[ J fz< ni ) - V D j > ] " °- *••! " 1'2'3 < 6" 2 9> 

From Eqs.(6.2), (6.20) and (6.28) it follows that 
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U(t) - expf-it^ T $ 

' exp(-it l W o£ k a l s o k I kJ (6.30) 

where o. * is the isotropic shilding tensor for the kth spin. 

Consequently the spectrum should show sharp lines at their respective 

chemical shift values. 

The procedure also holds when there are dipole and/or quadrupole 

interactions present as well as the chemical shift term in the 

Hamiltonian. If the hopping procedure of Maciel et. al. is followed, it 

is extremely difficult to express the density matrix evolved under the 

Hamiltonian. Furthermore, for spins I > 3/2, it is not even known 

whether one can write down the density operator at all, let alone 

decipher the information and design schemes to remove unwanted terms. A 

straightforward method analogous to CRAMPS is to apply multiple pulses 

to remove the dipole (and quadrupole interactions), while the hopping 

technique is used to remove the CSA. However, once again the chemical 

shift range would be scaled and the resulting quantization axis would 

be different from I , which makes the design of the schemes very 

difficult. Thus the present method may be the most versatile one. The 

crucial point is to make H- 0 during the hopping periods, to which 

the next section is devoted. 

VI.4. The Design of Dead Time for Evolution 

The general approach adopted here to make U(t. ) - 1 during hopping 
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periods is the Average Hamiltonian Theory (AHT). Of course other 

approaches such as iterative schemes can be incorporated. 

First consider a Hamiltonian containing only the chemical shift 

term. As usual, the density operator starts evolution by a */2 pulse 

along the -y direction. Instead of terminating the evolution by another 

7r/2 pulse, apply 2ff pulses continuously while the sample is hopped. 

Then the density operator at t - r/3 + t, becomes 

,(§ + t h ) - •7«p(-lJ^hdt'{»(§ + f )Iz + W lI y}] expf-i^lj I x 

x expfi^lj a ^ e x p ^ P df {*(§ + t')Iz + W lI y}] 

- expf-it^^Iy) 3ex P[-ij\tpdt'{*(| + t') yt)}] U ^ 

x uj CZ^expfij " dtf dt'{*(^ + t') I^t^jexpfit^I ) (6.31) 

Here 0 is the time-ordering operator, 

U x - expf-i^rl.^), (6.32) 

*(t) - W „ a i s o + u>0 l H D0.M(n(t)] p 2. M(0'), (6.33) 

with 0(0) - /9-p and 0 ( t h ) - fi2- Finally, 

I z ( t ) - e x p f i t ^ I ) I z expf-ito^I ) . (6.34) 
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1 - 1.0 

V - 0.5 

1 - 0.0 

Fig. 6.2 Simulated spectra of a powder sample of dilute spins-1/2 

with asyimnetry parameters IJ - 1.0, 0.5, and 0.0. The three spectra on 

the left are for the static sample, while those on the right are 

spectra predicted to result from the experiment. 
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Supposing that u>^ » | * |, one may approximate the time-ordered 

integration of the "switched" operator I z(t) in Eq.(6.31) by the zeroth 

order average over the duration 

Tf0)- H H ( t > dt, (6.35) 
ti^O z Vo z 

which vanishes if Bit - 2nwr, m - 1,2,"''. Furthermore, because the 2% 

pulse imparts cycl.'.«_*ty to the switched Hamiltonian, all odd order 

correction terms vanish. Similarly, the Hamiltonian is made zero with 

the 2ir pulses during the second hopping period. Hence, to this degree 

of approximation, at t - r + t_ the density operator becomes 

,(t> = exp(-il \ X K X J \ «*(lI \ X K TJ <6"36> 
- exp[-ir«„<7. i l l expfiTu„CT. I ] r v o iso 2.' x r»- o iso z-* 

Therefore, once again the isotropic chemical shift is recovered. 

However, it is achieved in one experiment. The continuous irradiation 

of 2K pulses may be somewhat demanding. A better way may be to apply it 

pulses at appropriate times to create a spin-echo while the sample is 

hopped. 

Fig.6.2 shows the simulated spectra of a powdered sample of dilute 

spins-1/2 with r\ values 0, 0.5, and 1.0. Fig.6.2(a) is for a static 

sample and displays full powder pattern. Fig.6.2(b) shows a sharp 

single line which is predicted to result from the experiment proposed 

in Fig.6.1. 

For a dipolar or a quadrupolar system it is easy to create an 
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XBL 8711-5960 

Fig. 6.3 Trajectory of I 2 for the sequence (x y) . Note that the 

trajectory traverses all six points, where the three coordinate axes 

intersect the unit sphere. 



196 

echo by applying (jr/2)x(w/2) pulse sequence. However, if the 

Hamiltonian contains the chemical shift term in addition to dipole and 

quadrupole terms, there are no time-reversal sequences for creating the 

echo. Consequently, sequences to get rid of all these terms must be 

designed. For a general discussion of methods to average various terms 

the reader is referred to Chapter III. As discussed earlier, it 

requires three configurations to remove the T20 terms in the dipole 

(and quadrupole) Hamiltonian to zeroth order. In addition, two 
cs cs 

configurations are are required to remove I z terms (T 0 0 and T 2 0 ) . Since 

these two averaging processes are independent of each other, at least 

six configurations (or six pulses) are required. 
3 

Two examples of such sequences are (x y) and (y x 2x x y), where 
— 3 

x, y, x, and y are Vu pulses with four quadrature phases. The 

trajectory of I_(t) resulting from the sequence (x y) is shown in 

Fig.6.3. It is well known that for symmetric cycles all odd order terms 18 vanish. As shown in Appendix 5, such a sequence can be constructed by 
concatenating an inverse sequence with an original sequence..Examples 

are given in Figure 6.4. 

VI.5. The Second-Order Quadrupole Effect 

VI.5.1. The problem 1 9" 2 1 

For a powder sample of spins I £ 1 the biggest broadening is due 

to the anisotropic quadrupole effects. The first order quadrupole 

effect was treated in the last few sections. It will be shown in this 
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(a) 

y" x x" y 

i_U l_L 
i Z X 2Y X Z 

(b) 

y" x 2x x" y 

1 I I H J I 
! Z X Y Y X 

Fig. 6.4 Two sequences which 

operators, and thus make all odd o: 

expansion vanish. 

2y y x x y 

I 
Z X 2Y X Z 

y x 2x x y 

I I II I I ; 
2Z X Y Y X i 

XBL 8711-5971 

produce symmetric evo lu t ion 

rder c o r r e c t i o n terms in the Magnus 
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section that the geometrical arguments associated with the magic angle 

are no longer tenable for the higher order anisotropies. Nonetheless, 

there are some interesting symmetries for these higher order 

anisotropies, which will be exploited to design experiments for the 

removal of the anisotropy associated with the second order quadrupole. 

The second order quadrupole effect is most prominent for nuclei 

with half-integer spins. Especially, for these spins the first order 

effect does not manifest itself in the central transition m — -1/2 *» 

m - 1/2 of the spectrum. Figure 6.5 shows this situation schematically. 

To see this mathematically, consider the signal resulting from the 

secular quadrupolar Hamiltonian %k ' qiven by Eq.(6.10) with w^ - UJQ: 

Sx(t) - Tr( I xI x(t)). (6.37) 

where 

Ix(t) - exp(-it»<°>) I x exp(it»<°>). (6.38) 

Now consider only the subspace connected by the transition between 

m «= -1/2 and m - 1/2, which is relevant to the discussion. Then 

S+i / 2 - I± <±V2| I x Ix(t)|±l/2> 

" I ^ m ^ f l \ K ^ l l exp(-it^°>)|m2Xm2| I x |m3> 

X <m 3| exp(it»<0)) |±|> 
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_3 
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2 

2 

1 
2 

1 

1 

i 

<°1 

XBL 6711-5976 

Fig. 6.5 Central portion of the energy levels of a nucleus with a 

half-integer spin. The Zeeman energy levels are perturbed by the first 

order quadrupole interaction. However, the energy level difference 

between m — 1/2 and m — -1/2 remains unchanged. 
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^ <±|| I x I ^ X ^ I ex P ( - i t ^ 0 ) ) |4> 

x < r | | I x | ± | x ± f | exp(it»<°>) \±\> 

- \ M i \ '4>i " K - ^ c ^ -eQ±}5}- ( 6 - 3 9 > 

Since 

<1/2| T 2 0 | l /2> - < - l / 2 | T 2 0 | - l /2> , (6.40) 

<£°> - 6^°) - 0. (6.41) 

Thus the broadening in the central transition is due to the second 

order quadrupole interaction. 

VI.5.2. Mathematical Formulation for the Removal of the 

Second Order Effect 

In a tilted space, rotating spin frame the first order correction 

term is given by 

5(1) JL V , -.m+m' A A' 
2r /\,A',i,i',m,m' WA WA'^" i ; £-m i'-m' 

where 
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Vi-m 5. D-m-M "2-M- ( 6 4 3 ) 

Amonp the various cross terms only the terms A — A' — Q and i -= £' — 2 
ai.e responsible for the second order quadrupole effect. After some 
algebra it can be shown that the part of the Hamiltonian which gives 
rise to the second order quadrupole effect reduces to 

2 

" V2-m V2m [ T2m' T2-m ]}> < 6' 4 4> 

^ - " Si L o i ( - 1 ) m { 2 V2-m V20 t T2m" T20 1 

where the label Q is suppressed for simplicity except for WQ in the 
expression. 

Table 6.1 lists commutation relatioships among various operators 
T^ m. In the basis of the Zeeman interaction only [ T2 m, 1 ^ ^ J (m -
1,2) are nonzero, and thus these are the terms which contribute to the 
first order energy shifts to the energy levels determined by the Zeeman 
and 8A ' term. Therefore, these are ultimately responsible for the 
second order quadrupole effects. 

It is easy to show that 

<-l/2| [ T 2 m , T 2 . m ] |-l/2> - <1/2| [ T 2 m < T 2 . m ] |l/2> - 16 
m - 1,2. (6.45) 

Thus the second order frequency shift is given by 
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Table 6.1 Commutation Relations for Various Spin Operators 

Expressed in Terms of Spherical Tensors 

Here 

[ T2±i- T2o ] V7T fe + Wz + V') 2 J6 

2 l l C T2±2-T20 ] - * ^ T C 1 ! 1 , + 2 V,1! + lA) 

3 
[ V r T2-i ] " ( 1 7 1 z - 4 I z ) 

L 2±1 ' 2+2 J " ± 

[ T 2 + 2 • T2-2 ] " " -2 ( 4 *z " 3 3 \ ) 

I± - I x ± I I y . 
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(2) -^•«-^o^^v.v 

Eq.(6.46) is the principal expression to be utilized for the design of 

the schemes for the removal of the second order quadrupole effects. 

Spinning Experiments 

Now consider the case in which the sample is spun around a tilted 

axis. With the definition of Vou given by Eq.(6.43) and the following 

property of the Wigner rotation matrix 

a-m-M - <- 1> M~ m4 <«•") 

the second order shift reduces after some lengthy calculations to 

•42 )-14i.Jiv.*Ji0fe ^M.2)I2 

{ i v 2 + \\J2 - l a v 2 • IB2-BI 2) }< 6- 4 8 ' 

More explicit expression of Eq.(6.48) is prohibitively complicated. The 

geometry of the scheme for the removal of uk ' can be found as follows: 

The line broadening is due to the distribution of the orientations 

O'(0,/3',7') of the spins in the powder sample. The orientation 

dependence can be expanded in terms of independent basis functions of 
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P' and 7 ' . Thus 

<*Q2>-)jk V ^ V ^ (6 .49) 

E x p l i c i t c a l c u l a t i o n of Eq. (6 .49) shows tha t 

u>i2^ - \ C (O) cos(2mfl) cos(2n7*) 
Q 4^-0,1,2 m n 

(6 .50) 

Here m — n — 0 correponds to the orientation-independent terms, which 

give rise to the isotropic shift. The isotropic shift can be calculated 

to give 

o ( 2 ) 

Q.iso o) - 3 L M Y " 1 * :;> * ">} 
,12 r 9 fx + 2 0 f 2 + 3 5 f 3 ^ 

I 64 } :, (6.51) 

where 

- , 2 2 3 4 f.. - 3 s c -<r s 

f

2 - i l ( 9 ° 4 + 6 c* - 7 3 
f 3 - J (9 c 4 - 6 c 2 + l) 

(6.52) 

with 
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0 _ [sin ft 
[cos p) , (6.53) 

P being the tilt angle of the spinner axis from the LAB z axis. It is 

interesting that the sum of the coefficients of f̂. in each parenthesis 

is equal to 1. 

The coefficients C in Eq.(6.50) are determined by the orienta­

tion of the spinner axis. The removal of the second order quadrupole 

effect thus reduces to making 

C m n - 0 (m,n- 0,1,2), (6.54) 

except the coefficient of the isotropic shift CQQ. C can also be ex­

panded in terms of f̂ , and it can be shown that Eq.(6.54) is achieved 

when 

f 1 - f 2 - f3. (6.55) 

Note that 

f x - f 2 - f x - f 3 - A 7 4 + B ? 2, (6.56) 

where 
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XBL 8711-5959 

Fig. 6.6 The second and fourth order Legendre polynomials. 

c^ - cos^ k (k - 1,2) where /3̂  and fl^ a r e angles which make the 

polynomials vanish simultaneously. 
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?4(cos p) - | (35 cos4/3 - 30 cos2/9 + 3) (6.57) 

is the fourth order Legendre polynomial and once again 

?2(cos 0) - \ (3 cos2/9 - 1) . (6.58) 

The second and fourth order Legendre polynomials are shown in Fig.6.6. 

Thus it may be conjectured that the removal of an nth order anisotropy 

by mechanical sample spinning is associated with a function g^ having 

the form 

^ ^ ^ y - ^ - <6-59> 

However, the rigorous proof of Eq.(6.59) for n £ 3 requires more work 

and is of no further interest here. 

In view of Eq.(6.56), the angles which satisfy Eq.(6.55) must be 

the roots of the simultaneous equations 

?2(cos 0k) - 0 (6.60) 

and 

?4(cos 0k) - 0. (6.61) 
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Fig. 6.7 Simulated spectra for a powder sample which is spun 

around an axis tilted from the z axis by fix and $2 respectively. The 

line broadening is due to the CSA and the second order quadrupole 

interaction. 
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In this case the minimum number of degrees of freedom, N, is two. 

Unlike the case of the first order anisotropies, there is only one set 

of two angles which satisfy Eqs.(6.60) and (6.61). 

Recently the variable-angle sample spinning (VASS) method has 
22 27 been introduced to deal with the line broadening due to the CSA 

and the second order quadrupole effect. The VASS studies show that 

there is no "magic" angle which satisfies Eqs.(6.60) and (6.61) sim­

ultaneously, although there are angles at which the overall 

anisotropies are minimum. The optimal angles sould be different for 

different samples. Another interesting feature observed in the VASS 

studies is that at certain two angles the resulting powder patterns are 

exactly opposite to each other. This behavior is shown in Fig.6.7. 

These angles are the roots fi-^ - 37.377365° and fi2 " 79.187691° of the 

above simultaneous equations. It follows that the two angles also 

remove the first order anisotropies, which are proportional to 

?2(cos /3). 

VI.5.3. Implementation 

In principle Eqs.(6.60) and (6.61) may be achieved by hopping the 

sample between fi-> and fo a s shown schematically in Fig.6.8(a). Because 
2 7 

many nuclei of interest such as Al (I- 5/2) have the quadrupole 

coupling constants of 0(10 ) Hz, it is impractical to apply multiple-

pulse sequences to make the Hamiltonian vanish during hopping periods. 

Another possibility is shown in Fig.6.8(b). Instead of hopping, the 

sample axis is rapidly rotated about an axis orthogonal to the sample 
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(a) 

(b) 

XBL 8711-5972 

Fig. 6.8 Two experiments for the removal of the CSA and the 

second order quadrupole interaction. In (a), the spinner axis is hopped 

between two angles p-, and P2. In (b), the spinner is quickly rotated 

from p^ to p^. 
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spinning axis. In this case the angles (denoted as p? and p.) must be 

found from the integral equations 

i *4 p ?2(cos p) dp - 0 (6.62) 

and 

t J* ?,(cos P) dp - 0 (6.63) 
/*3 4 

rather than the discrete summation Eqs.(6.60) and (6.61). They are: 

/Sg - 19 and p. - 99 . The summation or the integration is possible 

because the portions of the Hamiltonian responsible for the first order 

anisotropies and the second order quadrupole effect commute with 

themselves at all times during the experimental methods proposed above. 

The rotation of the sample axis requires time of 0(10" ) seconds with 

current technology. Consequently, many sidebands may clutter the 

spectrum. However, in principle, these side bands can be suppressed 

with the techniques developed for the MAS experiments or the extensions 

thereof.28"37 

VI.6 Remarks 

A technique used throughout this Dissertation is the AHT. The 

connection between the zeroth order term in the AHT and the first order 
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perturbation theory has been discussed by Haeberlen. It was shown in 

Chapter II that the first order correction term in the AHT gives a 

result identical to the first order correction term in the Taylor 

series expansion of the exact theory of the interaction of a spin-1/2 

with the quantized-electromagnetic theory. It can be shown that the 

second-order quadrupole effects as calculated in this chapter by using 

the first-order correction term in the AHT results in an expression 

identical to the second-order perturbation theory. An advantage of the 

AHT over perturbation theory is the explicit appearance of the 

operators in the expressions, allowing a quick decision on which 

operator terms are important for the situation under consideration. 

The increased number of degrees of freedom in selecting angles 

will undoubtly shed light on the design of schemes for the removal of 

various anisotropics. Although the large magnitude of the quadrupole 

coupling constants prevents the modulation of the spin degrees of 

freedom by the application of pulses, in general the complementary 

modulation of spin and spatial coordinates will be the most versatile 

tool for the high-resolution NMR spectroscopy. In fact, a combined 
39 approach of multiple pulses and mechanical motion has been proposed 

for achieving one of the ultimate goals of NMR reducing the 

Hamiltonian to a scalar. 
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Appendix 1 

To prove that a second rank tensor may be regarded as a direct 

product of two vectors, first note the following transformation 

properties of a second rank tensor and a vector: 

Tmn~Iki Cmk Cni Tki <A1.1) 

V ; ~ I m a a m V m - < A 1 - 2 > 

Let 

T«0-Pafy' ( A 1 3 ) 

where p a and q~ are components of vectors p and q respectively. Then 

Val'fi " (Xm aam PJ En a0n *»J 

™ Mnn aam a/?n mn 
- T^. (Q.E.D.) (A1.4) 

Appendix 2 

Consider the total Hamiltonian consisting of an internalCS^) and 

a time-dependent external(S^) parts: 

X - Jfj/t) + 3^. (A2.1) 
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The evolution operator for the Hamiltonian satisfies 

dU/dt - -i SU. (A2.2) 

Now suppose U can be separated into two parts: 

U - U XU V, (A2.3) 

with Ui satisfying 

dUj/dt - - i JfjUp (A2.4) 

Then Eq.(A2.2) becomes 

dU/dt - ( d U j / d t ) ! ^ + U ^ d l ^ / d t ) 

- - i »XU + ^ ( d u y d t ) 

- - i ( * L + S p u . (A2.5) 

It follows that 

dUv/dt - -i U{ « V U 1 . (A2.6) 

Therefore 



219 

rt , 
U v - D exP(-ij dt Uj » v u J . ( A 2.7) 

Appendix 3 

List of 24 pulse sequences which removes all linear and bilinear 

cross terms. The definition of phases is: 0 = x , 1 • y, 2 = x, and 
3 - y. 

032123210323210301032101 
030103232123210323032101 
032101210323210323032101 
012101230323030121232101 
012101232303230121232101 
012103010123230121232101 
012301030123230121232101 
012303010323230121232101 
012101230301212321232101 
030103010323212321232101 
030103010301030103010301 
012101210121030103010301 
032123212321230103010301 
012321232123230103010301 
012123212301012103010301 
012321232301012103010301 
012323010121012103010301 
032303012123212303010301 
030121232123212303010301 
032303012321232303010301 
032303012323010123010301 
012123212301210123010301 
012321232301210123010301 
012303230121232123010301 
030123030121230101210301 
012323012321230101210301 
012303230123230101210301 
012323032123230101210301 
030121232123012101230301 
030123230123212301012301 
030123032301232301012301 
012303230123230121012301 



012101012101012101012101 
030103010301012101012101 
030301030301012101012101 
012101210121012101012101 
030103030103012101012101 
032"«032303230121010121M1 
032323032323012101012101 
03M323032303212101812101 
032303232303212101012101 
012321232123212101012101 
030323230323212101012101 
012303230323032101812101 
012323032323032101012iei 
0121232123212321B1012101 
032121030321010301012101 
0121030183030103B1B12101 
012123032303230301812101 
0121232303232303B1012101 
030101230301212301012101 
012103230323032301B12101 
B12123032323032301B12101 
B3B10301030121B121B12101 
038183030103210121812101 
032303230323210121012101 
030323032101030121012101 
032303232101030121012101 
032321010301030121012101 
032321030103030121812101 
030323632183810321812181 
032303232103010321012101 
0323210103030103210121B1 
03632303230103B321B12101 
03230323230103032.1812101 
030323230321038321012181 
012321218303230321812101 
032123218303230321012181 
012103032303230321012181 
012103230323230321B12101 
012101232123212321B12101 
032321032303210103012181 
012321210323210103012101 
032123210323210103012101 
032321230323210103012181 
03232123210103B103B12101 
032121030321030103B12101 
032121032303210303012101 
032121230323210303012101 
012101230323032303012181 
012123032303012123012101 
0121232303230121230121B1 
012301012323012123012101 
012123038121232123012101 
012101212321232123012101 
012101230323230323012101 
012123030123212323012181 
012103232123210303212101 
012103212183032303212101 
012103212183232181832101 
032321030323010301032181 
032321032303210301032101 

03O.C1232123210323210101 
830323212323210323210101 
032101032323210323210101 
830323032323030323210101 
032303012121230323210101 
030121232121230323210101 
030123212321230323210101 
030321232321230323210101 
03fcjl23232123230323210101 
830123232301012323210101 
012323012121012323210101 
012103030123212323210101 
038101032323212323210101 
030101030101030101830181 
Bl 21010121010301810."1101 
030103018381030101838181 
030301030301030101030101 
01210121012103010103P1B1 
812121012121030101030181 
838103030103030101030181 
030323030323030101030181 
032303230323030101030181 
032323032323030101030101 
012101212101230101030181 
632121232121230101030101 
612321212321230101030181 
032123212321230101030101 
032321232321230101030101 
630323032303230101030101 
032303232303230101030101 
012123212123236101030101 
01232123212323010103B101 
032123232123230101030101 
03032323B32323010103B101 
012323212323230101030101 
032303030101012101030101 
012121232101012101030181 
812123212301012101030101 
012321232301012101038101 
032123232301012101030101 
0123230101216121010301B1 
030101218121012101038101 
030121012121012101030101 
012323012101212101030101 
030123212123212101030101 
030321232123212101038181 
030323212323212101030161 
036323032323032101030181 
832303012121232101030101 
030121232121232101838181 
830123212321232101030101 
030321232321232101030101 
812121230381010301030101 
B12101012103010301030101 
830183010303810361630181 
612181218123010301036161 
012121012123010301838101 
B12101012301030301B30101 
030163230303230301030101 
830123032303230301638161 



e 3e101032101012101010101 
0l210321-1230121010J01 01 
038101036301010301010101 
01?10101-301010301010101 
03K123030323010301010101 
010301230303210301010101 
03fI 03230303210301010101 
030123032303210301010101 
030123230323210301010101 
03H3R1012323210301010101 
030123232101030301010101 
030303212123030301010101 
030303212101010121010181 
030101030121010121010101 
012101012121010121010101 
030103010321010121JU0101 
030301030321010121010101 
030101032101210121010101 
012103212123210121010101 
012101232121230121010101 
012103212321230121010101 
012103232123230121010101 
012121010323230121010101 
012103232301B121210101B1 
030101032121012121010101 
030321212103212121010101 
030101010303212121010101 
012121230303212121010101 
03030323232321212101B1B1 
030303210303032121010101 
030101010301010103010101 
01212123030101010301B101 
030303232321010103010101 
03010103B1B301B183B1B101 
0121010121B301B1B3018101 
03B1030103030101B301B101 
B3B3B10303B301B1B30101B1 
01210121B123B1B1B301B1B1 
31212101212301010301B1B1 
030101030301030103010101 
012101012301030103010101 
B30123030323030103010101 
B301B32303032301B3B1B1B1 
0301230323032301B3010101 
B3012323032323010301B1B1 
030301012323230103010101 
0303230303B12121B301B1B1 
032303230301212103010101 
0323230323012121B301B1B1 
030301010121212103010101 
032323230321212103010181 
0301212123212121B30101B1 
032303012123212103010101 
03012123212321210301B101 
030123212323212103010101 
830321232323212103010101 
03032121B3B30321B301B101 
030103032303032103010101 
030103230323032103010101 
030123032323032103010101 

032J030123212321B301B101 
0301212323212321030101 Bl 
030103232303232103010101 
032303032123232103010101 
e32323230101010303010101 
030121212101010303010101 
030103232321010303010101 
030101B30303B10303010101 
612101012303010303010101 
012123030301230303010101 
012101010121230303*10101 
B32323212121230383010101 
B32321B101032303B3010101 
830101012323230303010161 
012121232323238303010101 
B30123030301212303010101 
012121230121212303010101 
032303012323212303010101 
030121232323212303010101 
030121232323212303010101 
030121210303032303010101 
032321810123032303010101 
032303012121030323010101 
030121232121030323010101 
030123212321B303238181B1 
030321232321B3B323B101B1 
030123232123030323010101 
03012121030323032301B1B1 
03232101012323032301B181 
0303032301010123230101B1 
030323032101012323010101 
B323032321010123230101B1 
032321010301012323010101 
032321030103012323010101 
032323010383012323010161 
032321030301032323010101 
03012121B32303232301B1B1 
030303212121232323010101 
B3232323O303232323B1B1B1 
B301212123032323230101B1 
012101010121010101210101 
032323212121B1B10121B101 
03232101B1B301B1B121B101 
030101012323010101210101 
012121232323010101210101 
0301B1B3B1012101B1210101 
012101012101210101210101 
0301B3B1030121B1B1210101 
030301030301210101210101 
01210121B1212101B12101B1 
B30103030163210101210101 
032303B323B321B1012101B1 
638323838323210181210101 
0323032303232181B1210101 
0323230323232101012101B1 
630303230101830101210101 
63032303210ie301B121B181 
032303232101630101210101 
632321ei0301038101210101 
032321030103030101210101 



032121012121032121210101 
0301O3B10103032121210101 
030301030103032121216101 
012103212121030321210101 
032323212103030321210101 
032321030323030321210101 
032321032303230321210101 
012321210323230321210181 
032123210323230321210101 
03232123032323032121B101 
012103032323230321210101 
012103030121212321210101 
030101032321212321210181 
012323010103212321210101 
030101210103212321210101 
030121012103212321210181 
032101212103212321210101 
030121210123212321210101 
032321212323212321210161 
032321032323032321210181 
030121230321232321210101 
032101010321010103210101 
032321032323210103216101 
030323032103030103210101 
032383232103030103210101 
B301232321032303032101B1 
B323030121218323032101B1 
B3B12123212103230321B101 
630123212321032303216161 
630321232321032303210101 
B30123232123032303216161 
630121210303232303210101 
632321810123232303216101 
612321210303012123210101 
632123210303012123210101 
632321230303012123210101 
612103032303012123210101 
612103230323012123218101 
612123032323012123210161 
632321010101212123210101 
612103232383212123218101 
630101032123212123218181 
012103030121232123210101 
030181032321232123218181 
612323010103232123210101 
630101218103232123210101 
630121012103232123218181 
032101212103232123210101 
630121210123232123218101 
01212321230101032321B1B1 
012321232301010323218101 
632123232301810323210101 
012323010121010323210101 
030101210121010323218101 
030121012121018323210101 
012323812101210323218101 
830101212101210323210101 
012323210121210323210101 
030321212321210323210181 
03012321212321832321B101 

p32323B103e303018l21B101 
e3B3O321210101210l21HlBl 
030101B30121012101210101 
B1210101212101210121O101 
830103010321012101210101 
030301030321012101210101 
pJH101032101212101210101 
012103212123212101210101 
012103212123212101210101 
0121 PI 232121232101210101 
0121^32123212321012101O1 
012103232123232101210101 
012121010323232101210101 
030303210301010301210101 
030303230103010301210101 
830323832103010301210101 
032303232103010301210101 
032321010303010301210101 
0303032303010303B1210101 
830323032301030301210101 
032303232301030301210101 
012321232121030301210181 
032123232121030301210101 
030323230321030301210101 
012323212321030301210101 
812121010103030301210101 
0J0303012123830301210101 
812103030323030301210101 
012321210303230301218101 
832123218383230301210101 
B3232123830323030121B161 
012103032303230381218101 
812183238323230301216101 
812123032323230301210101 
012123030121212301210101 
012101212321212301210101 
012101232123212301210101 
012103212323212301210181 
B323210323B303230121B101 
B1232121B3230323B121B101 
632123210323832301210181 
832321238323032381210101 
012103032323032301210101 
012181232321232381210181 
8321212321032323B121B101 
B12321212303232301218181 
832123212303232301216161 
832321232303232301210101 
83232301B1232323012161B1 
8121B3030301B10121210101 
030303210121010121210101 
812101232323018121218181 
830303212101210121210101 
03010103812121B121210181 
030103810321210121210101 
830301030321210121210101 
632101012101032121210101 
030301010301032121210101 
6301210101210323 21210101 
632181210121032121218101 



030301012323012123030101 
03030103010121212303B101 
012323230301212123030101 
030123232303212123030101 
012323012123212123030101 
030101212123212123030101 
030123030121232123030101 
012323012321232123030101 
030101212321232123030101 
012303230123232123030101 
012101030101230323030101 
012103010301230323030101 
012301030301230323030101 
012103030103230323030101 
030101230323230323030101 
030123030123212323030101 
012323012323212323030101 
030101212323212323030101 
012103030123032323030101 
012301010123010101230101 
030123030123230101230101 
012323012323230101230101 
030123030301012101230101 
032303012323012101230101 
012321232301212101230101 
032303012323210121230101 
032321010123630121230101 
012103232301232121230101 
012321210303012321230101 
032123210303012321230101 
032321230303012321230101 
012103032303012321230101 
012103230323ei2321230101 
012123032323012321230101 
012103232303212321230101 
030103212321210303230101 
030103212321210303230101 
030103232123210303230101 
030121010323210303230101 
032101210323210303230101 
032121012323210303230101 
030103212103032303230101 
012101012323032303230101 
012101030101232303230101 
012103010301232303230101 
012301030301232303230101 
012103030103232303230101 
032121030321010123230101 
012101030103010123230101 
012103010303010123230101 
012101030301030123230101 
012123030323030123230101 
012123032303230123230101 
012123230323230123230101 
012301012323230123230101 
0121032303r3B32123230101 
012123032323032123230101 
012103232303232123230101 
030103212103230323230101 
012101012323230323230101 

e30123230323230301030101 
03e3ei01232323030103B101 
032303230301212301030101 
032323032301212301030101 
030301010121212301030101 
030121212321212301030101 
032303B12123212301030101 
030121232123212301030101 
030123212323212301030101 
030103230323032301030101 
030123032323032301030101 
032303012321232301030101 
030121232321232301030101 
030103232303232301030101 
032303032123232301030101 
030123030301010121030101 
012121230121010121030101 
032303012323010121030101 
030121232323010121030101 
032303030101210121030101 
012121232101210121030101 
012123212301210121030101 
012321232301210121030101 
032123232301210121030101 
012323010121210121030101 
012303232303012121030101 
012123232123012121030101 
012303230121232121030101 
012323032121232121030101 
030101232121232121030101 
030103212321232121030101 
030321232121030321030101 
030323212321030321030101 
032101032321030321030101 
030321210303230321030101 
030103032303230321030101 
030103230323230321030101 
030123030121212321030101 
612323012321212321030101 
e30101212321212321030101 
012303230123212321030101 
012323032123212321030101 
030101232123212321030101 
030103212323212321030101 
030321210323032321030101 
030103032323032321030101 
012303032301232321030101 
030321210323210103030101 
012121230301830103030101 
012101012103030103030101 
012101210123030103030101 
0121210121230301C3030101 
012301010301012303030101 
012121010121012303030101 
012301030103012303030101 
012303010303012303030101 
012101210101212303030101 
012121012101212303030101 
030123032303012123030101 
030123230323012123030101 



Appendix 4. Some useful commutation rules. 

[ I 1
, I 2 , ag ] - ± i fiy' (+ sign for k - 1, - sign fo 

[ I^Ij , fiy- ] - Q-/21 

[ I^Ij , a + ] - 0 

[ Ix-l2 , af}+ ] - 0 

[ I i ' I 2 > a l a 2 J " ° 

where 

a,f},y — x,y,z and cyclic permutations. 

or — ai ± oo 

07* - 0]7 2 ± 7^2" 

With the above commutation rules it is easy to show that 

expf-iJtl^'l^) a" expfitJI-̂ '12) 

- a" cosJt + 2/97" sinJt. 

Appendix 5 
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In this Appendix it will be shown that any sequence of pulses of 

the type (Px•''P )(Px"""P ) makes the switched Hamiltonian cyclic, if 

[» . IJ - 0. (A5.1) 

(pf.) Consider the following evolution operator with n piecewise-

constant Hamiltonians 

U - exp(-ir(-WlI + »))... expf-irC-^I + »)) 
1 n 

K : 7" 1TT k" 1 exp[-ir(-WlI +»)], * - ±x, ±y. (A5.2) 
k 

where J is the time-ordering opertor. Eq.(A.2) can be rewritten as 

U - e 1 * 1 2 D-lJ]k exp^irC^I + »)) e " 1 ^ 2 

k 

- L i n l z 3H k ex P(ir(W lI + l ) ) a " 1 * 1 * } * 
v. k •* 

- { ? TTk eitpfirc-w^ + a>j}T 

= { 3 H k
 e^p(-i'-(«1I^ - »))}*• (A5.3) 

'k 

Now separate the rf part from the internal Hamiltonian: 
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U - exp(-Ir(WlI + »)) 
k 

- exp(-irWlI^ ] aexp(-ijj dt S^t)) 

P kV k. (A5.4) 

In general, the exact form of Vu cannot be calculated, but it may be 

expressed in terms of (21 + 1) basis operators 0 . 

V k-exp(-irE ma mOj. (A5.5) 

It follows that 

• x p ( - i r ( ^ I - « ) - P k e x p t i r ^ . 0 J 
k 

- v l - < A 5 6> 

Thus Eq.(A5.3) may be rewr i t ten as 

u - ( * n k p kv k) t 

- J 7 " 1 T L V. P f , (A5.7) 
1 ' k , m k m 

where 

Vj " ( P j - 1 •• P l ) f V j ( P j - 1 •• P l ) - ^ 2 < A 5 - 8 > 

and 
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Vj_ - V T. (A5.9) 

Therefore, for a sequence of the type (Pi...P )(Pi ...P ) , the total 

evolution operator becomes 

Dtot-C3"1nk i-VD(3 FTTk. i,.p..\o 
-V.... V V ... V.. (Q.E.D.) (A5.10) 

1 n n 1 


