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.
niques ~“’ to study the 1-D Peierls-Hubbard model, with particular emphasis un the
optical absorption properties, including the spectrum of akorpt ions as a function ui

.
photon energy. Despite the discreteness of the eigenst at es in our finite clusters. wc
are able to obtain optical spectra that, in cases where independent tests can be made.
nqree well ~virh the known exact results for the infinite system. Thus wc feel t Iliit
this cmnbinut ion of techniques represents an important and viable means of stu(lying
umny illt t.mwr ing novel materials involving Stnmgly correlated electrons.

THF 1-D PEIERLS-HCDBARD MODEL

~lver the past several ymrs the Peimls-Htlbbard Hamiltonian 5 llnS emergtxl il~

illl importrmt Imxkl in which to anrdyze the competing (or synergetic ) P!%CCS tjf

ulcct ron-phonon ( e-p) and electron-electron (e-e) interactions in a variety of f]uasi -
one-dimensional .Yystems. including charge transfers salts, halogen-bridged met nllic

chnins. nnd conducting polymers. In the context appropriate to describe ham-( CH )~
Ithe slmci!ic material on which we shall focus here), the Hamiltonian takes the form

\\-t* wnsider H (Mined un a ring of .V sites and note that C;c( cte ) meatm ~Ml-

Ilillililtt’s ) ill] {~lertron in the \Vannim orbittd at site ~, n?e = c~@cte, rl~ = nfr + rlfl.

~ (C; mrt+l U+cj+l ~~te t~t.f-l = -“ ) lo is the hopping integral for the uniform (C’11)
iollir lilt t ire=. (~ is the ektron-phonon coupling describing the modification of the h(q)-

p!ng bvtwwm adjacent sites due to the distortion of the underlying lattice, dt is rho

trlitt i~~’[Iisldw.wment between the (CJY ) units at sites ( and f + 1, and 1{ rPprmmits
thr cost of distorting the lattice, The Coulomb repulsions among elect rons [m ])it -

ri\:n:.’tt’riA with [“ and l“. describing the on-site and nearrst -neighbor intc’ract ilms.
respect ivrly, In the limit [~ = O = t’, (’qn. ( 1) reduces to the familiar Su-Srlmi{~tYt~r-
Hcqyw (SSH ) model 0 of trans-( Cll)r, Since one of our p:imary interests in t!w
ptv’wmt wtldy is the influence of non.pertudative e-e intmactitms, we sM1 typirnlly

invrst ignte tIw intermediate-coupling regime hy cnusiking [r = AtO, which is till’ flill
si;lql(”-lmrtirle l)iUldWidth.

Ft)r stlltliw of the opticrd transition, we shall need the rurrrut lqmrtttor

‘q=up-’’’’++’J’.’+’.



THE L.AXCZOS METHOD

Our very large-scale dirtgonalizat ion studies are made feasible hy the Lmczm
Inctlml 1“~,which in essence involves expressing the Hiimihonian in a cle~ erly chmm
hmis. one starts generating the basis mt by normalizing some trid wwfunct ion.
\vlIkll we typical!y express in terms of real space occupations. Although there are

acivantagesi including improved convergence) to starting with a good estimate of the
grould state. u-e ha~.e usually chosen to start from a random wavefunctiou. suhjoct
l)d~ to the constraint that S: = 0, where S: is the :-component of the total spin.
Sinm the Hamiltonian does not alter totnl spin. we are guararitee(l to stay within
the 5: = (I manifold. Choosing e random starting ~rave function does not Cost much
t-’xtra computing time in most cases anti. importantly. it statistically prevents one from
l~irkinq a wnvefunction with the wrong symmetry.

The Lanczos procedure is to generate the matrix elements of the Hamiltoninn in
:1 Imsis tllilt is built up from this trial state, The basis is incremented one wavtwM.-
r(]r at a time by operating on the la..t h,asis state with the Hamiltonitm and then
ortlmnormalizing the product to all previous basis states. Xotice, however. that by
rtmst ruct ion Hli > will have no overlap with states numbered higher than Ii + 1 >.

Since the Hamiltonian is Hermitisn. it must also be true that JYli > will have overlap
\vitil no state numbered lower than Ii - 1 >. In generating a new basis state. then.
wv nwl to orthogonedize Hli > against only two states, Ii > and Ii -1 >. in order to
form ~i+ 1>. and hence the recursive procedure for generating basis states dom not
+1(nv (il)wll as t be basis set grows. T’owithin roundoff errors, this approach maintains
an (wthogcmal set of vector9.

\Yir l]iu this set of orthormrmal wctors, that linear combination of states with
t lilI ii m’st vxlwctrd mlergy fom~s a new estimate of the ground state. one fhld~ this
~“t][:ll~i:l:lri(ul l~y (Iiaqfmalizing the Hamiltcmian. which is tridingcmal in this hnsis. TILp

iJWis Wll] ])I(JIJiLbl~ lid k COIIl@?te: We g~nedy wi~ truncate it Wkn we havf? r~~Il ()~lt

t~i {’OIlll Jilt Vr I1wIlwry, when the estimate of the ground-state energy stops droppiiqg,

Im w] m tk rrsidual of a new State, after ort hogonalizing to other components. is
ll(s~li~il)b,

fh’lJHWIltiII~ the Hnmiltrmian in this recursively constructed h.sis has ninny iL(l-

Vllnt ;Igmm First, t h? Hami]tonian will he tridiagonal and. so, very mwy to Study. \Itw41
inq)t mant Iy, solutions for ground states and optical spectra do not rrquirc the gPil-
rrnr i(xt f)f r(mqdet? sets of states, For example, in working on htdf-fillwl twrlw’-sit~’
rill~s. the Hilbmt space has nearly loti dimensions. Formally. solutions w~)ldd rmlllirl~
I“(mlpkt P I)nm, involving nmrly 106 iterat iom (If H m-ting on nouw [u’ > Ilot

fI) Iill’mi(~tl 1Iw companion orthogomdizht itm~ nml ll[~rllll~lizntic)ll~ ()[ t Iwsv Wry l:lr~l’
iv;lvt’flllll’ti{)tls. EvPn if (me workwl in n wIINpnrP tjf hi~h synmwtry, n cfm]Id~’tfs sIIl~-
1,;l,-i- Wt)ll!ll f’lltnil, nt the wry lmwt. mnny trm {)f thousnmls t)f surll ctml])lltltt it~ll~o
[:1 111:1(’~iI”I’. li,jlvf~vvr, I)M ~Im wt,imntv t]iv jgr(nlll(l-stntc’ wnw’flmrti(m with lli~ll Ire’.

f-;-h III I●;I:-, IAlI)ll;l(l.>t :Ito vnwgitw tc)tiw (Iwild lhw) tising tmly :1 frw (Itm’11 Ililsis

.t; lfl’< IIVI~[l .+Iilrfillg rr(~lll II r[\llIIIIIll tri;d vwl(w, ~f)[lll)lltpr IIIIqIII)~y ~f~(llli~~’illf’ilt,a

;Ii II iillilti’11 tt I ●II uill~ n rl’l;ltivf’ly Hlllilll llll[,ll~f’r l~f tv[ivc’flllit”li(~llso

Illl]lIIll:llllly. fINBr;ilrtllnt i(}ll%IJf (q)tir:d nlJh I)t’]Mitm slm.t 11! 1111(111(’111’(’;ll~ll

‘<;li l.. I“lllllilll’f l~”ilif~s, 1111(1 ●11*1”111)1I;)ililit’k ;IIV f’:l~ily cnrriwl (nit I)y gmlcwntillg Ii ill

:1 ,Illtdl,it’ IJ:IS15. I:llr ttlc’ Iq)til’ltl nl}ww]~fillll, wllirh is I}lir Iwiuulry Iwi’st’llt il]tlw’~t.

tv~’ til ~1 I.;II,’111:11(’ 111~’~lt)llllil ●ltltr. !1,.,, ● Ilsillg t Iw tvrhllililw (Ic’srrilml nlMJvt.. \\”,”

t 111’11i!f’ll~”lilft’ II Ilf”w Imsis, llsill~ Jv!t’,l . ns tlIII tird wtnff’ nlhl (~l}tnillillg slllk(’Illlf”llf

=?;111’-11:”11,(. ;ll]lllir:~fil~ll (d’ H. [ )IIIW t Ilf” Imsis IIIIS IWII g~’lwriltrtl, t IN* IWCIIAIII1



of calculating a(J) reduces to finding the spectral weight of this first state for the
t ridiagonal Hamiltonian. In essence. this amounts to determining the spectrum by
measuring the moments of H n and using the cumulant expansion. Again. converglmce
with the number of basis states is very good: typically. only a few dozen states are

recluired. Even for a low-symmetry. large-space problem such as a soliton on ml
tllirtpen-site ring, fewer than 200 stat es are needed to achieve convergence of the

qwccrum to the eye. %me features of the spectra. slwh as the gap energy. cnn be
,!(Ytc.rlllilled to high precision with far smaller bFW?S.

GiI-(ll C!IL’mizt’ of r IN’diagonalizat ions. t hc cakulat ions are r~’markaldy fast. TI )
.+fvwl) a p:i Xil Ill(?!(’r rcanqe -— say, a dozen different v~alues of the dimerizatiou -– t rdws

akut tw-rnry Ixlinutt+ on a CR.AY supercomputcr fur a l?-site ~ystem. On the (Jthm
Im:d. such a c~icuiat ion requires several million words of computer xnernory and bo’11
the time and memory requirements grow by a factor cf four for each additional site.
Thus if one avoids the ( slow) process of using external memory. the present limitation
in sYs[cm size is of order 14-13. even using the largest clm-ent completers. Thollgh \ve

do not report those measurements here. we have run 111,to l.hsite lattices and could

run l$site clmins on a C’R.AY 2 without incorporation t)f additional symmetries.

There are two points concerning the method which we should emphasize. First.
\ve could ckar!y study somewhat (hut not substantially) larger-sized systems by incor-
purr[ing a([(ii:iomd symmetries. such as restricting to a given total spin ~alue ( rather

than just n specified talue of S1 ) or using mirror plane or other spatial symmetries.
Imlued. is nlllnber of stl.dies (see, ego. ~9 ) using ‘“\=lence bond diagrams” (see. e.g.
1“) hnve examined specific pr(q~erties of syswms similar in size to ours on considerably
:nlaller con~puters. by making extensive me of symrnet ries. Howe\”ei, apart frotn the
(luustion of simplicity. the virtue of using a code that does not depend on a particular
spat ial symnwt ry is that me can study ionic geomet nes in which this symmetry is not
prpsent, TIAtNfor (’xample. it is straightforward for us to study solitom, or the effm-rs
I~fe-~ 1:11llr;lc”tioIIS ox] tile phonon dispersion relation. sin)ply hy rr-diagmmlizing H ill
a (Ii!ft=rent ( and generally non-9 ymrnctric ) ionic geomet ~.

Secowl, as we noted in the introduction. for (small) finite clusters with any givtm
Ixmrldary t“tmdit ions. the !at tice size dependence in numerical calculations is great.
This is i“cry fanliliw in the band theory limit ( weak ~-e interactions), in which t hr
t !~tllsity (J s[{itr i for a finite-sizp lattice is a series of delta-function spikes at tl~f*
~“ \“:LIIIIIS d!( WV(VI l)y I he tmundary conditions, Silwe the h)w-etwrgy ]dlysi~’s of tlNI
-v<tf~ltl (lvl)~:),is oll the states n~ar the Fermi enmgy, this physics is Ilighly deper.flrnt
~N] ~vlwt IWr ~lll”il n sl)ike lies on (Jr rwar the Fermi sllrfacr (m not.

A sli~l’t iy different perspective on t 1]!s stroi~g fitiitc size (lO]wtAvIrP I)rf)viflvs :111
I[l:lj,mrult Ilint aa to how to improve the sitlmti(m. in an i[llinitply ~lrrp I)llt !iIlirt’ly
\vIIh* wllmre w~ll p{~tfm[ial thr {{umitlu]l Plwrgy lrvrl~ me fiiwrf=tr. with s])a4.illg ill
(’nrrgy fl~tcrmined by t h~ width of t he well. T() tls~ a WVII of A git”ml wi(lt h to [Ili!llitm

n \virlt=r WPII. with tlmrp closely spare ell{*rqy Itwv=ls,w~ ro~;l(l “])lny” with tlw WRIIHto
rl}li(l(mlizv t IN’])tmw mvry time the ~’lwt r(nl “illtwwts’” with tho wnll, tn tlw f.l]rwllt]y
rl’1~’imlitC;IMO{)f n f)l~{”-rliillrt]sior.nl sywm]l (whirh WP will (solllrwlmt A)])])ily ) rrff*r t f)

“1;1<;1 “1 I;ill: “ I 1]11*(llllllltlllll l)]IR~P{)fnII f~]m’trf)ll trIlvrl]lIl~ (U I III(* f.lIJUII Is wv[] j)rfw~rtx’( I

II tl~f’ I“l~iIIII is .~mt For ring I)olm(lnry ~“oll(litioll:i,”,LIIVltWGtr(HI,trnvc’lli[)g IIri)llliIl IIIIJ
Illlu. . +!111“’lf’1111’IlIlIcI15°its l)lm.’t” hfltsr IOollil)lt’tlllg n fill] lhirmlit, F(]rol)(~ll-f~l)(l~”(lcll:lill>,
;11]rl!,,l”~[’1111,!),)llll~’illu t)~ 1111,IIIIIIS, lIIIi~Il:. III) NI:I\”II+ill t]I~I I)lllk, T!t IIs, jllst ;IS ill 1] 11’

!’~1-1” ill t i,l’ ,1,11 u:” lIS\”I”5 III ;i SIIJI;.10 \\ fI1l. !111” I{ll:llltlllll ll:lllll’f ’ Ilf Illf%t’ rll;lrgv 1’:11’1If I -

!II;III. II) r!III IIl;lli,l’ll .l’llsill~lly 1111,1/11 ;IIIII l),)llll,llltif~s,

III ;,1, Il,!illlfl’ !’1,;1111, I)t l’O1ll -1”, Illllf ’111’11111’111IJf f] IfI lI(NIII(lNIV l.oll(litlotl~.” :Iti I’11’1”
.

?I(,ll ]S ill)! gl)llic 10 ~1) il’.vlly 111141l’1)11)(,lJnl”k \\.ltll Idlmw 111!:11’! T(I ttlillli(’ tllih lMSII;III(II



on finite chains. one can try as in the case of the square well to ‘-randomize”’ the phase
artificially; techniques to do this would include changing, as examples. a local hopping
or an on-site energy or a Coulomb repulsion somewhere on the chain. Results from
many such calculations could be averaged together to obtain a ‘“phase-randomized”’ re-
sult. In the next section, \ve discuss this procedure in more detail and present evidence
of its efficacy.

PH-\SE R.\ XDOMIZATIOX

.+lthough there has been some limited earlier work on using modified b~lln(liir~

conditions in the context of the Hubbard model 34. there is as yet no provably accurate

prescription for randomizing the phase Mectively for arbitrary [“ and 1’. The most
ob~.icms scheme is to change the complex phase of one of the hoppings on a closed

ring 3.4 . Physically, this corresponds to putting a magnetic flux through the riug
and changes the locations of the momentum-space states, For t- = V = O. one can
show. using arguments analogous to those used to prove Bloch”s theorem. that tl~is
approach makes it possible to construct ezacdy larger units from smaller units by
averaging over many different boundary conditions cm the smaller units 1‘. In Fig.
1 woe demonstrate this result, To he fair. in the case of dimerizat ion \“ersus L? t h~
best results, which are essentially indistinguishable from the infinite-chain limit over
most of the range of C. come from second-order - i ,e., 1/.V and l/.V2 - extrapolations

fror,l results fr~m finite chains which are constrained to have uniform dimerization.
Nevertheless. Fig. 1 does show the promise of phase randomization, Again. we note
that for this bond-phase/magnetic-flux scheme, the U = O limit is recovered ~xartly
for every Iat t ice size,

In generd.howevm. in the absence of any provable prescription, one must rel!’ (m
the follmving intuitive ‘-rules” for rhoosing a randomization scheme. First, whatever
chml,ge is nude to randon]ize the phase must, of course. randomize the phase etiPc-
t ively, \\-e will show t b w this seemingly obvious point is not content-free in our later
discussit>n. %cond. the change in the system : :st be negligible as the lattice size k
incrwiscd to infinity; for example, if only one bond or site is varied from calculation to
cnlculntion, then the effect of such a change is immaterial in the thermodynamic limit.
Fiually. the Iwhavior for smail lattice sizes must be illustrative of the infinite-~ize limit,
Put u~othcr way, one must study results on various lattice sizes and still make SOXIW
sort of extlapolatiun to the infinite chain,

Xnively. it is possible to study t l~e groutid State but not to recover infmmnt iiMl
:d)f)llt ~~.xcltwl states using Lanczos nwthods, It is p{;ssible, how~ver, to work witl~il~
n Illwlif(d(i of di!fment symmetry frmn th~ grotm(l stnte to explore gaps of rnriolls
~vlll;lwtri(ls, Furth~r. it is aiw~possilde to stluly s~wrtrnl (distributions \Ming tlw wiry.
●;IIIIO I)nsis grlwration IIsr=d to ])ro(lucr tlw grmm(.i stntt=, one c~n prodwr ful(l till’11

lq~(”rntf’ IUI tlw grotul(l state witli, for o.xnmpk, th rtwent operator to stlldy till’
()~)ti~.111illlxlll”~)til)ll. Tlwn, st nrting \vit 11t Ilis tww st ntr. (NW(SIU1tmce ngnin golwtwtv N
Illlsis ill lvlli,’11!lI(I }{n[]lilt,t)[~inll is tri(litlgolln.1 Iulfl stll(lytlirHpfv”trlil(listrit~llt,i{nl of tll(’

~Jlltil’illl~!’x(’itc”ll stnt(” ill n rrlllicnt(”fl slll)~l~nrr. \Vr Hllnll (Iiw.llss this il])l)roh(’ti :11111

:1s lIIsIIlfs ill tlII* II(lxt s(v’tioIl. il’f(n’v ~)r(wrvlliug. ll~mwwr. we sI)(NIM itl(iit.ntr II(II II

:1 (Ii!li(.lllly tlmt till’ (q)ticni nl~sf)rl)rit)tl stll(lif’s will lNM* for tlw t)f:ll(l-l)lll\,*’/ lllllqll(*ti(’
t!ll~ “l:lll(ll]lllizitl~.’ Ill)l}r(mi”ll illtr(~tlll(’vfl IIl)I)vfI 111111 tl14’ tw~v)llitif)ll of rllis (Iitti(.lll t!” II)’
IIW, I)( ;Illot Ilflr. 1)1’f*viotls]y Illlstll(lifi(l. I)II:IWI riIII([IIIIIizlil ioli t[’f’ll[ti(llw.

I“(lr tllf’ 11;11[ tillf’(1 l~nt]tl s~Ktf’I]ls Rv’ nrf’ (.llrrf’llt Iy lm[jllsi(]f’rillg, iIl t Ill’ \t I(}tl*ly II II

rf’hlt~’11Iilllit /.- -. w ill cvlII, ( 1) fIiw’r:o “1,.lt(’ 111tllt~ ~rtJllll~l s//llt* is slllqly (M’I’111111 I

“rll~’ ~’1ll”t’1’[lt 1)~)(’t’lit(~t’ (,hw.ril)ilig !Iif’ illlwll~lli(lll ,,!’ II !lll,,!(,ll) (.tx’ll!(’s C’x(’it(}llll.~’~)111
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Fig. 1. Self-consistent tiimerization (b ) as
ft~r sert~ral X ~vith 4S/>” (lifferent phase bmlndary

20 3(J

a function of Hubbard [-
conditions summed (solid

!incs ) (.~ll]pared to the extrapolation to 4S sites from the chain constrained to
have uniform dimerization (dashed line). Note the counter-intuitive ~~crease
~~fd \vitll L“ can he seen on systems as small as S-sites. The phase-averaged
result on 10 sites is compared in the inset with the lf)-site chain (short-
dashed ) md 10-site ring with periodic or anti-periodic boundary conditions
(tlasl]ed ), \vhere finite-size effects obscure this enhancerner~t.

p(mexits - a (Iouble (Mcupancy and a hole - each of \\*llich moves as a free particle (n-(’r
iifl (J!f’m.tive!}’nmltral background. Since tlwse excitonic components are oppositely
charged, tliej’ pick ~.ipopposite phases as they travel around the ring, through which
\ve vnry the magnetic fltlx, Thus. the eifect of the flux is eliminate{i to lowest ordt>r
iiri(i the bond-phase scheme becomes irwffect ivt= in the st rong-couplilng lilt~it. T(J cir-
{’~lll]t”ent t~lis (difficulty. we shall instetd multiply one of tile hoppings by a real numl)(’r
r ill t 11(Yrange -1 ~ ~ < 1. T)lis affects the dotlble occupancy anfi the hole equally all(l
l’ti’(’(.tivt’iy ~i~ll(!OI~li~~s tylect ronic phase in the strollg-{;(jtl[)liflg Iin]it, Xote that t his
ii])] )Ioil(’11 (’1{’ ii I’l J’ inc(jrporatm not f)[Jj’ f“asrs of tilt’ 1:(’rio(lic (J = 1) ;u]fl ax]tiperio(lic

[t= -1 j rillus but also the case of the open chain ( .r = ()), Thus it is in accorfi tvitll
~)llr (’OI[l 111(1Ilt S ht)ollt “fillirl,q in” t]~e k-vialINY in tlw Bri]]otlin zone. .4s tve sIM1l wv’

[{~ST..I.’1S FOR OPTICAL .4 BSORPTIC)X IN lD CORRELATED B.4XDS



t?xciratiuns .— ‘mkink”’solitons. polarons. and bipolarcms -- produce cle;m signil[llrt% ill
the form of midgnp nbsorptions with well-defineci relative intensit ies MY. f!.g.. “ f,,l

a summary of the these features]. Conversely, motivated by potent iai applications to
certain classes of charge-transfer salts 14. the case of dominant e-e int erart ions has also

been studied extensively 7.15.1~.171]8.both within the Hart ree-Fock approximnt ion 1;

and using various strong-coupling approaches ls’l 7’18 or diagonalizat ion of small sys-

tems 7. In this strong-coupling limit, the spectra — at least for weakly dimeriz{ (1
systems — me typically shifted to higher frequencies and do not exhibit the charar-
rrrist ic ~cltlim~-root” sin,g~darity at t he onset of absorpticm. Similarly. the chiirarrerisr ir
midgap absorption associated with the localized nonlinear excitations are also shifted
substiultinlly — and. in some cases. essentially removed 19 — from their posit ions ill
the e-e interaction case.

In view of these substantial qualitative differences. it is hardly surprising that in
the continuing debate about the relm ire strength of e-p versus e-e interactions in ccm-
duct ing polymers. considerable recent attention has focused on the optical absorption

spectra. To go beyond the purely e-p models in the the regime of weak e-e interac-
t ions. pert urbat ion theory has been invoked 19’20, whereas for strong e-e interactions.
leading-order estimates and qualitative arguments have been presented ‘g. These anal-
yses leave open the vital quest ion oft he characteristics oft he opt iced abso~t ion spectra
for intermediate coupling, where the contributions of both the e-p and e-e interactions
are expected to be significant and a priori neither interaction can be neglected or be
t rem ed in pert urbat ion theory. Earlier studies in this intermediate-coupling rrgimr.
using valence-bond techniques to obtain (numerically) exact results for the full many-
Imly problem on small finite systems 21’22’23, focused primarily on the value of the
‘“opt icrd gap”- — more precisely. on the Iocat ion of the first optically allowed 1D ~ st nt e
— and 011 t k two-photon allowed 2 1.4~ state and did not attempt to study directly
a [-’ ). the optical absorption as a function of frequency. Our present Lanczos approach.
rotlplecl wit lLthe ph~-rmdomizat ion/ boundMy-condit ion-averaging technique allows
us for the first time to produce high-resolution spectra on small systems,

To begin our discussion we r&ll the anal~tic forms for tb- optical absorption
spectra that are available i.n a wide range of limiting cases. In the absence of eleccrcmir
correhtt ions. the Peierls- Hubbard model reduces to the SSH model. Here a numhm
of analytic results are available, particularly if one works in the continuum limit,
an approximation valid if, as is the case for truns-( Cll)=, the optical gap is Smidl
compnred to the bandwidth and the excitations ( e.g., solitona md polarons ) extend
t)v~r many h-itt ice spacings, The uniform dimerization of the lattice caused by t hr e-l)
cmlpling oprns Up a gap between the valence and conduction bands. while clrfmts iII

rhv Ilnifrmn llistortion appear as localized statm in the giIp. For tht? purdv (li]n(hriz(vl
f’iih(i 11,

.

(l(d) x 1 / d~~, , 1,;1

11;1



~vhile solne\vhat bleaching tlw interband spectrum. This midgap absorption has the

same singular structure due. again. to the divergent density-of-states at the gap e@e.

In the limit of large [: (compared to fo ). the optical absorption is expected to
be quite different. Since no t \vo elect rons. independent of spin, may occupy the same

site. at half-filling, the sites are all “jammed”. each has exactly one electron and

none of the electrons may move. Indeed, in this limit one may prove to leading or-
cler in tO/[- the equivalence of the system to a completeljf filled (and therefore inert)
band of ypzn/ess fermions 24. If. on the other hand. one electron is removed. then
(he 1%’SLll[M;t hole IllOVeS M a free particle aga. ins ! this packed backgrolmfi Ivith the
sanle cner$y c~ = –2t,)cos( k ) as an electron moving in an other~vise empty band.
\Iean\vhile. although adding ~in extra electron to the half-filled lattice costs the large
energy [-, once that energy has been paid, the do~lble occupancy also moves a: a
free particle. \\”ith energy [- + ~k. Starting with the fully filled background, then,
t lie optical excitations crest e double occupancies and holes in pairs at a total ener,~v

[- i- % k relati~-e to the ground state: hence the range of the absorption should be
from [- – .lto < J < [- + 4to. Longer-range Coulomb repulsions produce an att~actiue
interact iou bettveen the double occupancy ar, 3 the hole – the standard excitonic bind-
ing mechanism- and thus skew the absorption specttmrn toward lower energies. If the
system is dimerized, the Brillouin zone is hal~’ed, giving rise to + ~+ (A/?)* bands
fur the hole ~d [. + ~~ bands for the double occupancy. The gap which

opens up in the bands opens a companion gap around the line J = [~ in the optical
absorption. These arguments show us where allowable transitions may occur. \lore
detailed ca.lculations 16’17’18,which incorporate information about the density of states

and transition matrix elements, are needed to determine the shape of the spectra.
\\-e can obtain further insight by considering a difierent “solvable” sit uat ion.

In t!]e lil~lit of large dirnerization - which, for purposes of illustration, we assume
to be jixed, i.e. not self-consistently determined as a function of L’ – the hopping
i:itegral on the long bonds vanishes exponentially. For the model Hamiltonian in
tvln ( 1), this overlap vanishes completely for dimerization Jo satisfying to – ado = 0.

In tilis ‘“decoupled dimer’”limit, the chain may be thought of as being composed of
ili(lrp~!ldent, two-site systems, each having two electrons with an enhanced hopping
I>nranlcter t’ = f~ + oh. Further, each t we-site cell harr only one optical transition,
at t’nergy ~! = L’/2 + J( [-/2)2 + (M’ )2, which, in strong coupling, is the absorption
J = [“ described above.

.4rmed \vith these u.a!ytic results for the limiting cases of strong and weak cou-
plill,g Mid the “decoupled dimers”. we investigate the optical absorption using exact
IIiagonaiizat ions. Specifically, we t)perate in a real-space basis, expressing rlectr(jnic
\viivefllllctions as prod~tcts of up-electron and do~vn-electr-on wavefunctions. .4s Ii(lt:’(1
iit)()~~. the only space-reducing symmetry we use is St, \vllich given tile forxn of H
is itl ljra.’ti~w equivalent to conservation of the number of, individually, Ilp iiIld (Iowm

(I]w.tr(llls.\\.l)ileincorporation of other s~rnmetries WOU1(Iin practice rwiuce ti’,e sizr.
of t]lf’ Hlll)(’rt s~)ace -- and. consequent Iy, of c(m]put m time and memory rwluiremellts

•li~.11ill~’(jrpor,atlon” ‘vollld come at a great cost, in the complexity of the cmnpll?(’r
(Sljll(,. ;ili[i. :!!I)u’ ilA);)f)rtantly. in fIw gcnvrality of l)rol)hI1’s, espfvially with regmxi to
!~tltil”l’ (listort~OIls.”



zero. Hence. for these rings these two definitions of the gap are not equiwikmt and
produce different r~sults.;

In Fig. 2. we plot the optical gap as a function of [-. T!le gap was calculated 011
S-. 10-. and 12-site chains and then exrrapolatefi ti] the infinite-rhriin limit using J =
a ~ h/.V +c/.V2. Chain geometries offer the best finite-size ext rapolat ions since all even-
.Y chains have single-particle states which straddle the fermi energy. In cent rast. the
structure of che single- particle density of w ates varies dramatically for even and odd
rings, The solid lines in the figure are the infinite-chain extrapolations for dimerized
lilttice distortions ~t = ( – )t# of amplitudes d = O.00.~. 0.07.~. and 0.14.$. The
dashed lines me strong-coupling expr~ssions for t he gap to O1h. lsl. and 2nd ord~’r.
T!lroughout. we will use the standard SSH parameter values for tram-( CH )Z: to =
2,fieV. a = 4.leV/.~. and. though it does not enter here. 1( = 21eV/.~2. Numerically

clitierent iat ing the gap energy with respect tc dimerization. we find that the increase
of the gap due to dirnerizat ion is greatest for intermediate couplings t“ s 4t0 = 10el..

All the same. even for intermediate couplings, the gap is already dominated by the
cent ribut ion from e-e interactions rather than by that from the lat t lce distortion.
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Fiq. 2 Optical gap M a function of Hubbard CW,●xt rripolated to inftnite
rhains. The three solid lines are for d = O.WL~.0.07.~, and 0.14;~, respectively.
The dashed lines are the strong-coupling expansions to O1h. 191. and 2n4 order.



gap will decrease with I- as .Y z x only whrn :!le off-site Coulomb force is str~mg

enough to bind the excitcm.

The most difficult aspect m measuring spectra is the sparseness of the spectral
peaks for finite-size systems. Clearly. there will only he a limited number oft m.nsit itms

for a finitesize system. one might imagine that. since che number of states in the
sywem. grows exponentially with the number. .V. of spatial sites. the finite sampling of

the infinite-ring spectrwm presents no great diiiiculties. In fact. however, the number
of significant transitions typically grows only linearly with .V. In the limit. of weak
e!ect ronic correlations. for example, the electrons are essentially nonint eract ing and
the opt ictd transitions can be described in terms of the .Y different single-particle
energ~. let-els. Meanwhile. when the Hubbard [“ is very large, the electrons essentially
become ncminteracting. spinless fermions. whose transitions. again. are charbcterize(l

by .V different energies. Further. even in intermediate coupling ( U = 10eV) and on
fairly large ( .V = 12) rings. one gets only four absorption peaks for ~eriodi~ ~cmndrwv

. .
~ for the dimcnzed lattice. Clearly all this depends on the symmetry of
the lattice distortion as well as on the strength of the electronic interactions. In

highl}- asymmetrical cases the non-randomized spectra may have reasonable numbers
of peaks. However. in these ~ymmetric cases it is typically difi.cult to distill the
essential physics from the spectra. In sum. we find that for any fixed set of boundary
conclit ions the optical spectra are sampled in a (disappointingly !) sparse manner over
the entire range of electronic comelations: said another way, finite-size effects appear
in a decidedly quantum fashion in the absorption spectra.

\%wehave already indicated that ‘“phase randomization techniques” can help us
resolve this problem and further given some quedit ative arguments about what to
expect, In Fig. 3 we show plots of phase-randomized spectrum - using the “bond
phaae/ magnetic flux”” method 3’4 discussed in the previous section - for two values
of [- in the weak coupling coupling regime : [’ = let” and ~ = 4eV, with the ban(l-
width taken to be 4tJ = 10el’. Note that in the Fig. 3 we have already ‘smoot bed..
the tt-funct ion spik~ by replacing them by Lorent zians of width 0.5eV to produce a
continuous spectrum. lVhile the U = leV cume (the lower, smoother one) is remn-
able, the L’ = 4 eV curve is starting to shows signs of fairly sparse structure, despite
ihe Lurentzisn smoothing. This indicates the breakdown, anticipated in our earlier
discussion, of the ‘“magnetic flux/bond phase”’ randomization scheme,

TG transcend the limitations of this “bond phase/magnetic flux” approach. we
have adopted the “scaled hopping” procedure discussed in the previous section nnd
haw randomized the phase hy averaging the different spectra t hat are found by varying
the magnitude of the “boundary” hopping -i.e.. between sites 1 and .V from –( tll –
nt.v) to +[to - ab~ ) in ten equal steps. Again we smooth the spectrum by rrplaring
the d-function spikes by Lorentzians of width 0.5eV.
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Fig. 3. The optical absorption spectra calculated using the ‘-bond phnse/
magnet ic f!ux” phase ra.ndomizat ion method for [y = leV (lower smoother
curve j and for [- = 4eV (upper, more jagged curve) for the CM” in which the
full band width 4t0 = 10eV. Note the “’sparseness’” of the spt tmm in the
latter case.

met nc. with. again. a sharp onset on the low-energy side. The undimerized abstmpt ion
is noticeably depleted on the high-energy side of the absorption peak, corresponding
to the gap which opens up in the strong-coupling absorption 18 due to the gaps in tlw
single part icle bands. ‘i’here may be a companion depletion on the low-mmrgy si[1!S.
but it appears to disappear with increasing ring ‘,lze.
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For intermediate coupling U = 4to = 10eV, Fig. 5 shows phsse-randomized

spectra fof a uniform lattice ( iS = O, solid iine ) and for a strongly distorted lattice
(J = 0,14.4, d~hed line) of 12 sites. The scale of o(w). of course, is greater than in
the Cxe of stronger coupling shown in Fig. 4, as one would predicted from the f-sum

7,25,26rule .

I I I
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Fig. 5 The phase randomized optical spectra obtained using the “scaled-
hopping” approach described in the text for 12-site rings at intermediate
coupling ([: = 10eV ) The solid and dash?d lines are for the uniform am!
(Iinwrized ( A = 0014.1 ) lattices, respectively.

The resldts in Fig. 5 are truly hybrids of the weak- and strong-couplire absmp-
t ions. The undimmized spectrum might be thought of as strong-coupling absorption
16_ M in Fig, 4 — which has been strongly skewed to the low.energy side, as we

w(jllld expect from the small value of [“. A more natural picture, however, might hc
to assoriate the gap-edge peak with the square-root singularity y from the diverging

( lens ity-of-statm. as in the noninteractiIlg case, despite the fairly subt antial Ynl IIC*

( )f C”, LMq)it r t i~is interpretation, vw shdd x ress that, as a comparison of t hr two
~’llrvm ill Fig, 5 dmmmstrates, the gnp is due nlostly to e-~ int.mnrtions, Tlw tlillwr-

izntion raises the gap somewhat --- more here, in any cast=. than for tile [’ = 30r\”
CM(*sl~(nvtl in Fig, 4 . h?,lt its principal vffect is t{) give ris( to a “[1(’(.t)ll~)lc’tl-(lilll{’r ‘
lwJIk, rllmm”tcrjstic of strong r(mplingm If WWwme to plot sprrtm f’)r ~trongly IIis
tlmttvl Intticm ovrr a wide rangr of [’, ldl 011 the wUIlf’ ])k)t, WP W(,lllll t)lmvnw tlv(l
(’llvl’hqmsl one envek)p~ wouhl trace out t hr (le(”ou~)lcd-(li:]lcr prnk. pronollnrwl nt

l:lr~v [“ nli[l swnll(wrtl llp nt smwll [“ by tlw wtmk-roupling ntxw]rpt ion. ~t)llvrrs~d}..
tlW f)t !wr vilvf’lfq)f’, (“orrrspon(lit]g” to tlw rlrllsit y-o f-stl~tcs I)(vik, WI NIhl flolllinntf” Iit
%[ll:~il(.. I)llt tilt’;l ~liw~l)lwnr Ilil({f’r tlw (lmx)IIl)lfvl ~li:lwr l)rnk nt. l~igf’r twmKi{*s. III

illfl’rlm’ll]ntr rt)lll)lillg, I:t}tll strlwtlm’~ nw (“f)Ill]):~IIiLl)lfs,X~)tirf’, fit)nl]yq tl,nt, 1111:11f
fl”t)lll II Hligllf . fntl]~liu (Iq)h’tioll III) tlif” lli~tl-f’11(’rgy si(l(~ of tll~~ I)f’nk. ill Fig. 3 tlII’
II ($(’olll)lt~(lll]l]lf,t l)f~nk Iil)l)fwrs I?(); to I) I(s;II’11 tllf’ Illi(lilllf’rizfyl sl)fv’trlllll I)llt s,i[lll)l)” Ii)

ilwrfm;isf’ I III’ ititr*~rntf’11 wrigl)t l~f llw sl)(v-trlll;l ‘1’llis is r(*lnttI~l I)y tll~’ fslllll rlIII* ‘:-’ ‘“
?(I f~l(I lllf’lf~:ls(~ ill t!if~ lll(~gllltll[lf~ of” t]lII ,lf*]l)(,ll]l#:ltjoll f,llf~r~y ILS t]lf~ (111111,1’l~lltif)ll~;III

is IIl)f*t IIIIl II]),

\\-I. IIILV,S IIISI) l;lvf~stl~lit(v] I ]IV f,~f.t.t l){ II llf~lilf~st ll[~i~lll)or 1.011 1]111 IIl)wItl)t iitl,



spectrum. .4t half-filling, the effect in strong coupling of V’ on the grmti stat? is
almost exactly to reduce the effective value of [’ to C – ~’. For optical spectra, 1’
only qualitatively reduces the effective value of [’. .As noted earlier, V is sometvhat

ineffectual in reducing the gap energy until it is st~ong enough to bind the optically
excited exciton. on the other hand, the centroid of the spectrum, which we define as

j’~’20(&’)/ f~Icr(~), is quite nearly equal to [“ – 1‘, Hence, 1’ skews the absorpt iorl

tmvard lo~ver energies, much as for a reduced [“. Turning on 1’ is also like a reduced
L“ in that 1’ supprt sse:; the decoupled-dimer peak.

Finally, Fig. 6 shows the absorption of a neutral and of a charged soliton m

a n-site ring. Phase randomization has not been used to produce these spectra in
part because the reduced symmetry of the problem gives richer structure b~lt mainly
because we have been unable to find a scheme which effectively randomizes electronic:

phases while lorking the “bmidgap” state at midgap. .+s a consequence, the figure is not
extremely illllminating. It does serve to show, as discussed in a number of articles,
that the effect of an intermediate ~’ = 4to = 10e V is to shift the charged midgap
absorption ( dashed line) to lower energy vihile shifting the neutral soliton (solid lint?)
t o higher WI.\vhere it blends into the iut ergap absorption,
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lattice &stofiiom help ustounderstmd results inthedfficult intermediate-coupling
regime. In the limit of infinite L’, half-filled rings show wide, rm.mded absorpt iotl
gPectr8 centered about ~ = [-. As [. is decreased or I” is turned on, this structure
is skewed toward lower energies. In the limit of vnnishing t:, the skewed absorption
t urr,s into a peak at the gap edge as a square-root divergence develops in the density-
of-states. For infinite [w. dimerization int reduces a strong peak. corresponding to the
limit of decoupled two-site c!irners. in t he middle of t he absorption. Dimerizntion opens
up gaps in the single. particle bands and so should also open up gaps in the opt icrd
al-wrpt km mound the decoupled-dirner peak. In finite t’, the deccmpled-dimer peak
is suppressed and the grips in the absorption are somewhat washed out, particularly
on the lov’-energy side of the peak, In weak coupling. theie are neut rtd- and chnrgml-
scdit on absorpt ions at midgap, For finite [“, the neui ral-soliton absorption is shift ml
m higher energies while the charged-soliton midgap peak moves to lower ~.

Clearly much work remains. In particular. we have begun to perform these diagn-
nalizat ions in moment urn space to gain full cent rol of electronic phase randomization.
our analyses of solitons and other localized defects are very preliminary, itnd OIW
could indeed argue that since both our phase rmdomization technique and these in-
t rinsic defects can be viewed as 1/.V e!fects, it may prove very difficult to extract
more reliable information about solitons than is already available. However. we hope
to he able to incorp~~rat~ our knowledge of important physical features — e.g., midgap
~tates — of one-dimensional electron-phonon models to a gr~ater extent in calculating
high-rcscdution spectra in the presmce of difficult excitations, such M solitons and
polarons.
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