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LANCZOS DIAGONALIZATIONS OF THE 1-D PEIERLS-HUBBARD MODEL

E. Y. Loh, Jr.. D. K. Campbell, and J. Tinka Gammel
Tlieoretical Division and Center for Nonlinear Studies,
Los Alamos National Laboratory. Los Alamoes, NM 87545, USA

INTRODUCTION

In contrast to the relative simplicity of independent electron theories, models de-
seribing interacting electrons are in general difficult to treat adequately. In their full
complexity, many-electron problems involving N electronic orbitals -each of which enn
be empty. singly occupied with an electron of either spin, or doubly occupied - require
the solution of Hamiltonian matrices of size roughly 4 by 4¥. For a given problem,
synunetries and selection rules (total spin, mirrer plane or electron-hole symmetry,
ete ) ecan be used to reduce the <ize of the matrix, but its growth with .V will still
be exponential. Often one attempts to avoid this difficulty by use of approximations
invoiving effective single-particle methods  such as Hartree-Fock or Fermi liquid the-
ary  which nssume that the full problem can be treated in terms of self-consistent (or
renormalized) nearly independent quasi-particle states. In Hartree-Fock, for example,
one assumes that the full many-body wavefunction can be written ns a single Slater de-
tertinant of one-particle wave functions. Accordingly, the problem for an .V orbital
swatem involves only an .V by .V matrix. albeit typically with self-consisteney con-
straints on the parameters occurring in the Hamiltonian. Unfortunately, for strongly
corvelated svstems such mean-field approaches ean brenk down entirely: when the
physienl systems invelve electronic motion in reduced dinensions, where sirong quan.
tun flnctuations can dominate the physies, this brenkdown is particularly likely.

Thus in studies of “interacting electrons in reduced dimensions™ one s tenpped
between the Seylla of exponential growth of the number of states iu any exact many-
hody basis and the Charybdis of the failure of mean-ield theovies to eapture ade
quately the effects of interactions. In the present article we focus on one technigque
the Lanezos method  which. at least in the enase of the 1-D DPejerls- Hubbard model, ap
penrs (to continne the metaphor) to allow us to snil the nnrrow chinnnel hetween these
two liards, In conteast to Quantwm Monte Carlo methods, which eivenmvent the
exponentind growth of states by statistical techuiques and importanee smnpling., tee
Liatiesos approach attachs this problem head on by dingonnlizing the full Hamiltoninn,
Given the testietions of present comgmters, this o pronch is thas limited to soadying
tinte clusters of ronghly 12 11 sites, Fortnnately, i one dimeasion, such elusters are
watally sutficient for exteneting maay of the properties of the infinice system provaded
that ane tiades full vse of the ability to vy the honndary conditions, In this mneie
wee wall apply the Lanezos methodology L4 d novel “phinse randomization™ tech



niques 34 to study the 1-D Peierls-Hubbard model, with particular emphasis on the
optical absorption properties, including the spectrum of absorptions as a function orf
photon energy. Despite the discreteness of the eigenstates in our finite clusters. we
are able to obtain optical spectra that, in cases where independent tests can be made.
agree well with the known exact results for the infinite system. Thus we feel that
this combiunation of techniques represents an important and viable means of studying
many interesring novel materials involving strongly correlared electrons.

THF 1-D PEIERLS-HUBBARD MODEL

Over the past several years the Peierls-Hubbard Hamiltonian * has emergzed as
an important model in which to analyze the competing (or synergetic) effects of
clectron-phonon (e-p) and electron-electron (e-e) interactions in a variety of quasi -
one-dimensional systems. including charge transfers salts, halogen-bridged metallic
chains. and conducting polymers. In the context appropriate to describe trans-(CH),
(the specific material on which we shall focus here), the Hamiltonian takes the form

(% - . .
H=-~ Z(to —at)Bees) + 5 Z’:oi + U El:u”n“ +1 ;nuuﬂ . (1)
t

We consider H defined on a ring of .V sites and note that c:,(q,) creates {an-
nilillates) an electron in the Wannier orbital at site ¢, nyp = c},c,,. e = nep + 1.
Bt = :,,(c: #Cl4l @ +":+| »Ct ). to is the hopping integral for the uniform (CH)
ionic lattice. a is the electron-phonon coupling describing the modification of the hop-
ping between adjacent sites due to the distortion of the underlying lattice, &, is the
relative displacement between the (C'H) units at sites € and € + 1, and R represents
the cost of distorting the lattice. The Coulomb repulsions among electrons ure pa-
rameterized with U and V', describing the on-site and nearest-neighbor interactions.
respectively, In the limit ' = 0 = V', eqn. (1) reduces to the familiar Su-Schrietfor-
Heeger (SSH) model ® of trans-(CH),. Since one of our primary interests in the
present study is the influence of non-perturbative e-e interactions, we shall typically
investignte the intermediate-coupling regime by considering {7 = 4¢y, which is the full
single-particle bandwidth.

For studies of the optical transitions, we shall need the current operator

Jersr = tltg — ady) Z(f‘;ﬂ ote — f‘;.,"l+| e) h
[,
The Fourier reansfori of jg o4y iy

1
J., = _'Zr—""“.*)jl'{"l . 3
VN <

The aptical absorption coetficient a(w) is given by

1 4= \
) = = >_‘| - om0 - *Mw (E, - Egn . v
Due to the pathologres including violation of the f sumn rale nnd ditfienlties botly

with phyaeal mterpretation of the geametty 7 and with phase randomization 1l
arr-e when we attetupt to detine ot on o elosed N sjte l'illll; for 4 0, we will RURTTREN
the smaliewt allowed nonzero momenti value, ¢ - 27 /N,



THE LANCZOS METHOD

Our very large-scale diagonalization studies are made feasible by the Lanczos
method 12, which in essence involves expressing the Hamiltonian in a cleverly chosen
basis. One starts generating the basis ~et by normalizing some trial wavefunction.
which we typically express in terms of real space occupations. Although there are
advantagesiincluding improved convergence) to starting with a good estimate of the
ground state, we have usually chosen to start from a rendom wavefunction. subject
waly to the constraint that §; = 0, where S; is the :-component of the total spin.
Since the Hamiltonian does not alter total spin. we are guaranteed to stay within
the S. = 0 manifold. Choosing » random starting wave function does not cost much
eXtra computing time in most cases and. importantly. it statistically prevents one from
picking a wavefunction with the wrong symmetry.

The Lanczos procedure is to generate the matrix elements of the Hamiltonian in
a basis that is built up from this trial state. The basis is incremented one wavevec-
tor at a time by operating on the last basis state with the Hamiltonian and then
orthonormalizing the product to all previous basis states. Notice, however. that by
construction H|i > will have no overlap with states numbered higiier than |i +1 >.
Since the Hamiltonian is Hermitian. it must also be true that H|i > will have overlap
with no state numbered lower than [: — 1 >. In generating a new basis state. then.
we need to orthogonalize H|i > against only two states, |i > and [i = 1 >. in order to
form ii + 1 >. and hence the recursive procedure for generating basis states does not
slow down as the hasis set grows. To within roundoff errors, this approach maintains
an orthogounal set of vectors.

Within this set of orthonormal vectors, that linear combination of states with
the Jowest expected energy forms a new estimate of the ground state. One finds this
combination by diagonalizing the Hamiltonian, which is tridiagonal in this basis. The
basis will probably not be complete: we generally will truncate it when we have r:n out
of computer memory, when the estimate of the ground-state energy stops dropping.
or when the residual of a new state, after orthogonalizing to other components. is
negligible,

Representing the Hamiltonian in this recursively constructed basis has many ad-
vantages. First, the Hamiltonian will be tridiagonal and, so, very easy to study. More
importantly, solutions for ground states and optical spectra do not require the gen-
eration of complete sets of states. For example, in working on half-filled twelve-site
rings. the Hilbert space has nearly 10% dimensions. Formally, solutions would require
complete bases, involving nearly 10° iterations of H acting on some [+ > not
1o mention the companion orthogonalizations and normalizations of these very large
wavefunetions, Even if one worked in s subspace of high symmetry, a complete sub-
basis would entail, at the very least, many tens of thousands of such computations,
L practive, however, one can estimate the ground-state wavefunction with high pre-
ciston sy stontedstate energies to tive decimal places) using only a few dozen basis
states even starting from a random trial veetor, Computer memory requirenient s
are binatesl to storing arelatively siall nuaber of wavefunetions,

Luportantly, the ealeulntions of optical absorption speetra and henee also
wips. conedietvities, nnd siceeptivilities age easily carried out by generating 1 in
a autable basis. For the optical absorprion, which is our primazy present interest.
we titst ealenlate the gronnd state, Ly using the technigue deseribed nbove, We
then eenetate n new basis, using J vy - s the fiest state and obtaining subsequent
states by the application of . Onee the basis has been genernted, the problem



of calculating a(w) reduces to finding the spectral weight of this first state for the
tridiagonal Hamiltonian. In essence. this amounts to determining the spectrum by
measuring the moments of H" and using the cumulant expansion. Again. convergence
with the number of basis states is very good: typically. only a few dozen states are
required. Even for a low-symmetry. large-space problem such as a soliton on an
thirteen-site ring. fewer than 200 states are needed to achieve convergence of the
spectrum to the eye. Some features of the spectra. such as the gap energy. can be
determined to high precision with far smaller bases.

Given the size of the diagonalizations, the calculations are remarkably fast. To
sweep a parameter range -— say., a dozen different values of the dimerization -- takes
about twenty minutes on a CRAY supercomputer for a 12-site system. On the other
hand. such a caiculation requires several million words of computer mmemory and both
the time and memory requirements grow by a factor cf four for each additional site.
Thus if one avoids the (slow) process of using external memory. the present limitation
in systemn size is of order 14-13. even using the largest current computers. Though we
do not report those measurements here. we have run uj. to 14-site lattices and could
run 13-site chains on a CRAY 2 without incorporation of additional symmetries.

There are two points concerning the method which we should emphasize. First.
we could clearly study somewhat (but not substantially) larger-sized systerns by incor-
poreting addizional symmetries. such as restricting to a given total spin value (rather
than just a specified value of §,) or using mirror plane or other spatial symmetries.
Indeed. a number of strdies (see, e.g.. ) using "valence bond diagrams” (see. e.g.
10) have examined specific properties of sys.ems similar in size to ours on considerably
smaller computers, by making extensive use of symmetries. However, apart from the
question of simplicity, the virtue of using a code that does not depend on a particular
spatial symmetry is that one can study ionic geometries in which this sytametry is not
present. Thus for example, it is straightforward for us to study solitous, or the effecrs
of e-e Interactions on the phonon dispersion relation. simply by re-diagnualizing H in
a different (and generally non-symmetric) ionic geometry.

Second, as we noted in the introduction, for (small) finite clusters with any given
boundary conditions, the lattice size dependence in numerical calculations is great.
This is very familiar in the band theory iimit (weak e-e interactions), in which the
density of states for a finite-size lattice is a series of delta-function spikes at the
kovalues allowed by the houndary conditions. Since the low-energy physics of the
~vstem depenids on the states near the Fermi energy, this physies is highly dependent
on whethier such a spike lies on or near the Fermi surface or not.

A slightiy different perspective on this strong finite size dependence provides an
ueportant hint as to how to improve the situation. in an infinitely deep but finirely
wide square well potential the quantum energy levels are diserete, with spacing in
energy determined by the width of the well. To use a well of a given width to mimie
a wider well, with more closely space energy levels, we could “play” with the walls ro
toudomize the phase every time the electron “interacts” with the wall. In the currently
relevant case of aoone-dimensior.al system (which we will (somewhat sloppily) refer to
axac chaae™ o the guantam phase of an electron teavelling on the chuin is well preserved
it the chiun is - ort, For ring boundary conditions, an electron, travelling around the
ting. stll “tetmembers™ its phase after completing a fall eirenit, For open-ended chains,
an eleerpon, honneing off the ends, builds up waves inthe bulk, Thus, just as oo the
cise of the cnerey levels i sguare welll the quantun natare of these chiarge earticr -
e o the mnthed sensinvity on size and boundaries,

For anntinnre chian, of conrseindependent of the houndary conditions, an elee
fron s not goie to ko away ad come ek with phinse imtacr, To minaie this hehavior



on finite chains, one can try as in the case of the square well to “randomize” the phase
artificially: techniques to do this would include changing. as examples. a local hopping
or an on-site energy or a Coulomb repulsion somewhere on the chain. Results from
many such calculations could be averaged together to obtain a “phase-randomized™ re-
sult. In the next section. we discuss this procedure in more detail and present evidence
of its efficacy.

PHASE RANDOMIZATION

Although there has been some limited earlier work on using modified boundary
conditions in the context of the Hubbard model 3. there is as yet no provably accurate
prescription for randomizing the phase etfectively for arbitrary " and V. The most
obvious scheme is to change the complex phase of one of the hoppings on a closed
ring >* . Physically, this corresponds to putting a magnetic flux through the ring
and changes the locations of the momentum-space states. For I' = V' = 0. one can
show. using arguments analogous to those used to prove Bloch's theorem. that this
approach makes it possible to construct ezactly larger units from smaller units by
averaging over many different boundary conditions on the smaller units !!'. In Fig.
1 we demonstrate this result. To be fair. in the case of dimerization versus U’ the
best results, which are essentially indistinguishable from the infinite-chain limit over
most of the range of U. come from second-order - i.e., 1/N and 1/N? - extrapolations
froni results from finite chains which are constrained to have uniform dimerizaticn.
Nevertheless. Fig. 1 does show the promise of phase randomization. Again. we note
that for this bond-phase/magnetic-flux scheme, the U = 0 limit is recovered exactly
for every lattice size.

In general.however. in the absence of any provable prescription, one must rely on
the following intuitive “rules” for choosing a randomization scheme. First, whatever
change is made to randomize the phase must, of course. randomize the phase effec-
tively. \We will show that this seemingly obvious point is not content-free in our later
discussion. Second. the change in the system : 3t be negligible as the lattice size is
increased to infinity: for example. if only one bond or site is varied from calculation to
calculation. then the effect of such a change is immaterial in the thermodynamic limit.
Finally. the behavior for smail lattice sizes must be illustrative of the infinite-size limit.
Put another way. one must study results on various lattice sizes and still inake some
sort of extrapolation to the infinite chain.

Naively, it is possible to study the ground state but not to recover information
about excited states using Lanczos methods. It is pessible. however. to work within
a manifold of different symmetry from the ground state to explore gaps of varions
svmnetries. Further, it 14 also possible to study spectral distributions using the very
same basis generation used to produce the ground state, One can produce and then
operate on the ground state with, for example, the current operator to study the
optical absorption. Then, starting with this uew state, one can once again geuernte
basis in which the Hamilronian is tridingonal and study the spectral distribution of the
optically-exeited state in a traneated subspace. We shindl discuss this approach and
its results in the next section, Before proceeding, howsver, we should iudicate hotly
adifliendty that the optical absorption studies will pose for the band-phase/imagnetic
Hux “randomizing”™ approach introduced nhove and the resolution of rhis ditheulty by
use of another, previously unstudied, phase randomization techuique.

For the half tilled bana systems we are eurrently considering, in the strongly cor
relnted it U7 - xCineque (1) every site in the gronnd seate is singly ocenpued.
The current operator (deseribing the absorption of a photon) erentes exeitonie com
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Fig. 1. Self-consistent dimerization (¢) as a function of Hubbard U
for several N with 48/N different phase boundary conditions summed (solid
lines) compared to the extrapolation to 48 sites from the chain constrained to
have uniform dimerization (dashed line). Note the counter-intuitive ‘gcrease
of & with [ can be seen on systems as small as §-sites. The phase-averaged
result on 10 sites is compared in the inset with the 10-site chain (short-
dashed) and 10-site ring with periodic or anti-periodic boundary conditions
(dashed). where finite-size effects obscure this enhancement.

pouents - a double occupancy and a hole - each of which moves as a free particle over
an effectively neutral background. Since these excitonic components are oppositely
charged. they pick 1up opposite phases as they travel around the ring, through which
we vary the magnetic lux. Thus, the effect of the flux is eliminated to lowest order
and the bond-phase scheme becomes ineffective in the strong-coupling limit. To cir-
cumvent this ditficulty, we shall instead multiply one of the hoppings by a real number
o1 the range -1 € & <€ 1. This affects the double occupancy and the hole equally and
effectively randomizes electronic phase in the strong-coupling limit. Note that this
approach clearly incorporates not only cases of the periodiec (r = 1) and antiperiodic
(r = —1) rings but also the case of the open chain (r = 0). Thus it is in accord with
our comments about "filling 1" the k-values in the Brillonin zone. As we shall see
i the ensuing section, this “scaled-hopping™ phase randomization technique produces
results in good agreement with expectations based on both strong- and weak-coupling
perturbation theory arguments.

RESTULTS FOR OPTICAL ABSORPTION IN 1.D CORRELATED BANDS

The optical spectra of many novel solid-state materials provide crucial msiglits
mto borh the relative strength of electron phionon (e p) versus electron-electron (e e
iteractions and the nature of the charge carviers. The case of the dominant e-p inter
actions has heen widely stadied inapplications to quast-one-dimensional condueting
polviners. The elassie example @5 the appheation of the SweSchrietier Ho eger (SSHD
todel " tarians cCHoy o Herel thie opticad absorption specetram of the deally dimerzed
erovtid crare eshihits o squace root singulanty characteristic of one dimensional
tdependent electron systems s the edge of the optical gap. Further the nonlinear



excitations -— “kink” solitons. polarons. and bipolarons - produce clear signatures in
the form of midgap absorptions with well-defined relative intensities see. e.g.. "' fin
a summary of the these features). Conversely, motivated by potential applications to
certain classes of charge-transfer salts !4, the case of dominant e-e interactions has also
been studied extensively *+13:16:1718 'hoth within the Hartree-Fock approximation !
and using various strong-coupling approaches !*!*-1% or diagonalization of small sys-
tems '. Iu this strong-coupling limit, the spectra — at least for weakly dimeriz. d
systems — are typically shifted to higher frequencies and do not exhibit the charac-
teristic square-root singularity at the onset of absorption. Similarly. the characteristic
midgap absorptions associated with the localized nonlinear excitations are also shifted
substantially — and. in some cases. essentially removed ' — from their positions in
the e-e interaction case.

In view of these substantial qualitative differences. it is hardly surprising that in
the continuing debate about the relative strength of e-p versus e-e interactions in con-
ducting polymers. considerable recent attention has focused on the optical absorption
spectra. To go beyond the purely e-p models in the the regime of weak e-e interac-
tions. perturbation theory has been invoked %29, whereas for strong e-e interactions.
leading-order estimates and qualitative arguments have been presented !?. These anal-
vses leave open the vital question of the characteristics of the optical absorption spectra
for intermediate coupling, where the contributions of both the e-p and e-e interactions
are expected to be significant and a priori neither interaction can be neglected or be
treated in perturbation theory. Earlier studies in this intermediate-coupling regime.
using valence-bond techniques to obtain (numerically) exact results for the full many-
body problem on small finite systems ?!'22:23| focused primarily on the value of the
“optical gap” — more precisely. on the location of the first optically allowed ' B, stnte
— and on the two-photon allowed 2'.4, state and did not attempt to study directly
a(w). the optical absorption as a function of frequency. Our present Lanczos approach.
coupled with the phuse-randomization/boundary-condition-averaging technique allows
us for the first time to produce high-resolution spectra on small systems.

To begin our discussion we recall the analytic forms for the optical absorption
spectra that are available in a wide range of limiting cases. In the absence of electronic
correlations. the Peierls-Hubbard model reduces to the SSH model. Here a number
of analytic results are available, particularly if one works in the continuum limit.
an approximation valid if, as is the case for trans-(CH),, the optical gap is small
compared to the bandwidth and the excitations (e.g., solitons and polarons) extenl
over many lattice spacings. The uniform dimerization of the lattice caused by the e-p
coupling opens up a gap between the valence and conduction bands. while defects in
the uuiforin distortion appear as localized states in the gap. For the purely dimerized

Cihe “.

ﬂ(w') X 1 / *,'I w? - A\ . 1o

where 3 is the gap energy. There is a characteristic ..juare-root singularity at the
gap edge due to the divergence in the density of states for transitions from the top
of the valenee band to the bottom of the conduction band. For the lattice model,
the primary qualitative Herence is that the absorption is cut off at the bandwidrl
4ty with another squa- oot singulanty. Provided A is much less than to 4. this
difference is small. however. since it occurs at high energy. where all abseptions are
attenuated by the 1/ factor due both to vanishing matrix elements and large enerey
denominators, For asoliton. transitions betwaen the midgap state and one of the twe
hands give rise to a contribution of the formm '

fglw ) % ‘*'-' —'A/'._))..'—I,-' X ‘H('l'l[-'jl*': —‘AI,'.Z,.!,I/-' . Il;l



while somewhat bleaching the interband spectrum. This midgap absorption has the
same singular structure due. again. to the divergent density-of-states at the gap edge.

In the limit of large " (compared to ty). the optical absorption is expected to
be quite different. Since no two electrons. independent of spin. may occupy the same
site. at half-filling, the sites are all “jammed”. each has exactly one electron and
none of the electrons may move. Indeed, in this limit one may prove to leading or-
der in to/U" the equivalence of the system to a completely filled (and therefore inert)
band of spinless fermions ?*. If. on the other hand. one electron is removed. then
the resultant hole moves as a free particle against this packed background with the
same energy €, = —2tycos(k) as an electron moving in an otherwise empty band.
Meanwhile. although adding an extra electron to the half-filled lattice costs the large
energy [, once that energy has been paid. the double occupancy also moves ac a
free particle, with energy U + €. Starting with the fully filled background. then,
the optical excitations create double occupancies and holes in pairs at a total energy
U" + 2¢; relative to the ground state: hence the range of the absorption should be
from " — 49 < w < U" + 4ty. Longer-range Coulomb repulsions produce an attractive
interaction between the double occupancy and the hole - the standard excitonic bind-
ing mechanism- and thus skew the absorption spectrum toward lower energies. If the
system is dimerized. the Brillouin zone is halved. giving rise to £/€; + (2/2)? bands
for the hole and U + \/ez + (A/2)? bands for the double occupancy. The gap which
opens up in the bands opens a companion gap around the line w = U in the optical
absorption. These arguments show us where allowable transitions may occur. More
detailed calculations!® 1718 which incorporate information about the density of states
and transition matrix elements, are needed to determine the shape of the tpectra.

We can obtain further insight by considering a different “solvable” situation.
In the limit of large dimerization - which, for purposes of illustration, we assume
to be fired. i.e. not self-consistently determined as a function of U" - the hopping
integral on the long bonds vanishes exponentially. For the model Hamiltonian in
eqn (1), this overlap vanishes completely for dimerization 8, satisfving to — ady = 0.
In this “decoupled dimer”limit, the chain may be thought of as being composed of
independent, two-site systems, each having two electrons with an enhanced hopping
parameter t' = fy + ad. Further, each two-site cell has only one optical transition,
at energy « = [7/2 + \/(C"/‘Z)2 + (2t')2, which, in strong coupling, is the absorption
~ = U described above.

Armed with these analytic results for the limiting cases of strong and weak cou-
pling and the “decoupled dimers™. we investigate the optical absorption using exact
diagonalizations. Specifically, we operate in a real-space basis, expressing electronic
wavefunctions as products of up-electron and down-electron wavefunctions. As noted
above, the only space-reducing symmetry we use is S,, which given the form of H
is in practice equivalent to conservation of the number of, individually, up and down
electrons. While incorporation of other symmetries would in practice reduce the size
of the Hilberr space -- and, consequently, of computer timme and memory requirements

~nich incorporation 'vould come at a great cost in the complexity of the computer
code. and. more ioportantly, in che generality of problews, especially with regard to
Lattice distortions.

We Lave measured the optical gap as a function of Coulomb terms U7 and 17 and
lattiee distortion &, Our compnuted values for the gap for U and & agree with Soos
and Ramesesha % on both chiadns and rings to stated precision. (Actually, Soos and
Ramesesha simply measure the gap to the lowest excited state of the correct symmetry
while we measure the lowest energy absorption. For donbly-even rings. there exists a
low Ivine state for which the matrix element for excitation from the ground state s



zero. Hence. for these rings these two definitions of the gap are not equivalent and
produce different results. |

In Fig. 2. we plot the optical gap as a function of I". Tlie gap was calculated on
S-. 10-. and 12-site chains and then exrrapolated to the infinite-chain limit using A =
a+b/N +c/N?. Chain geometries offer the best finite-size extrapolations since all even-
N chains have single-particle states which straddle the fermi energy. In contrast, the
structure of the single-particle density of staies varies dramatically for even and odd
rings. The solid lines in the figure are the infinite-chain extrapolations for dimerized
lattice distortions & = (—)!6 of amplitudes ¢ = 0.004. 0.07A. and 0.144. The
dashed lines are strong-coupling expressions for the gap to 0'*, 1**, and 2" order.
Throughout. we will use the standard SSH parameter values for trans-(CH),: t, =
2.5eV. a = 4.1eV/ . and. though it does not enter here. K = 21eV' /A%, Numerically
differentiating the gap energy with respect tc dimerization. we find that the increase
of the gap due to dimerization is greatest for intermediate couplings U = 4to = 10eV".
All the same. even for intermediate couplings. the gap is already dominated by the
contribution from e-e interactions rather than by that from the lattice distortion.
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Fig. 2 Optical gap as a function of Hubbard L', extrapolated to infinite
chains. The three solid lines are for § = 0.004.0.074, and 0.14 4, respectively.
The dashed lines are the strong-coupling =xpansions to 0'*. 1**, and 2 order.

We have also measured the optical gap as a function of nearest-neighbor repulsion
1. using 8-, 10-, and 12-site chains and extrapolating to infinite chains. While 1
lowers the gap for the finite chains. the extrapolated result is remarkably flat in strong
coupling. To understand this result we recall our earlier remark that the effect of off-
site Coulomb interactions is to provide an attraction between the double oceupancy
(charge ¢~) and the hole (charge ¢) created in the aptically excited state '7, This
attraction lowers the expertation value of the egergy of that state and hence skews the
absorption spectrun to lower energy. The current operator has odd parity, however,
and thus a weak artraction will not be sutficient to bind the exeitonie components
(the donble occupancy and the hole) in the optically excited stare, In particular, (f
the Jowest-epergy copiponent of the state is unbound. the double oceupaney and the
liole will be delocalized nnd the ability of the electrostatic attraction between them
to deerease the gap energy will vanish with chiain length. Thus we conelude that the



gap will decrease with 1" as .V — xc only when the off-site Coulomb force is strong
enough to bind the exciton.

The most difficult aspect :n measuring spectra is the sparseness of the spectral
peaks for finite-size systems. Clearly. there will only be a limited number of transitions
for a finite-size system. One might imagine that. since the number of states in the
systemn grows exponentially with the number. .V. of spatial sites. the finite sampling of
the infinite-ring spectrum presents no great difficulties. In fact. however, the number
of significant transitions typically grows only linearly with .V. In the limit of weak
electronic correlations. for example. the electrons are essentially noninteracting and
the optical transitions can be described in terms of the .V different single-particle
energy levels. Meanwhile. wh=n the Hubbard U is very large. the electrons essentially
become noninteracting. spinless fermions. whose transitions. again. are charucterized
by .V different energies. Further. even in intermediate coupling (I" = 10eV’) and on
fairly large (V' = 12) rings. one gets only four absorption peaks for periodic boundary
conditions for the dimerized lattice. Clearly all this depends on the symmetry of
the lattice distorticn as well as on the strength of the electronic interactions. In
highly asymmetricai cases the non-randomized spectra may have reasonable numbers
of peaks. However. in these asymmetric cases it is typically difficult to distill the
essential physics from the spectra. In sum. we find that for any fixed set of boundary
conditions the optical spectra are sampled in a (disappointingly !) sparse manner over
the entire range of electronic correlations: said another way, finite-size effects appear
in a decidedly quantum fashion in the absorption spectra.

We have already indicated that “phase randomization techniques” can help us
resolve this problem aand further given some qualitative arguments about what to
expect. In Fig. 3 we show plots of phase-randomized spectrum - using the “bond
phase/ magnetic flux” method 3* discussed in the previous section - for two values
of U in the weak coupling coupling regime : I” = leV and U = 4eV, with the band-
width taken to be 4t; = [OeV. Note that in the Fig. 3 we have already “smoothed™
the ¢-function spikes by replacing them by Lorentzians of width 0.5eV to produce a
continuous spectrum. \While the U = leV curve (the lower, smoother one) is reason-
able, the " = 4 eV curve is starting to shows signs of fairly sparse structure, despite
che Lorentzian smoothing. This indicates the breakdown, anticipated in our earlier
discussion, of the "magnetic flux/bond phase” randomization scheme.

To transcend the limitations of this “bond phese/magnetic flux” apprnach. we
have adopted the “scaled hopping” procedure discussed in the previous section and
have randomized the phase hy averaging the different spectra that are found by varving
the maguitude of the “boundary™ hopping -i.e.. between sites 1 and .V from —(¢, —
n¢y) to +(tg — adn) in ten equal steps. Again we smooth the spectrum by replacing
the ¢-function spikes by Lorentzians of width 0.3eV".

[u Fig. 4, we show the phase-randomized spectra produced by this technique for
clectrons on a 12-site ring in the strongly interacting care w.ch U = 30eV for both
a uniform lattice (6 = 0, solid line) anc. for a strongly distorted lattice (& = ().14A.
dashed line). The gross features of the spectra are predicted by strong-coupiing cal-
culations ' The numerical spectra. hovever. show substantially more interesting
detail. The optical absorption, which to first order in the hopping is rounded, symmet-
ric. and extends from U7 - 4ty to [7 + 44, is shifted to higher energies in higher order,
[t is still centered abont & = 7 and so becomes skewed for tinite U, In particular. the
absorption has a fairly sharp onset at the gap while at Ligh energies a(w) vanishes with
a finite slope. In the presence of a strong dimerization, the gap is enhanced sligi.ily
and a strong absorption appears at U/2 4+ /(U/2)? +12t')2 = 31.2eV. as predicted by
the deconpled-dimer argument. The peak due 1o the dimerization is decidedly asvn-
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Fig. 3. The optical absorption spectra calculated using the “bond phase/
magnetic flux” phase randomization method for I" = leV (lower smoother
curve) and for " = 4eV (upper, more jagged curve) for the cas~ in which the
full band width 4to = 10eV. Note the "sparseness” of the spe trum in the
latter case.

metnc. with, again, a sharp onset on the low-energy side. The undimerized absorption
is noticeably depleted on the high-energy side of the absorption peak. corresponding
to the gap which opens up in the strong-coupling absorption !® due to the gaps in the
single-particle bands. There may be a companion depletion on the low-energy side.
but it appears to disappear with increasing ring -.ze.
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For intermediate coupling U = 4ty = 10eV, Fig. 5 shows phase-randomized
spectra for a uniform lattice (6 = 0, solid iine) and for a strongly distorted lattice
(6 = 0.144, dashed line) of 12 sites. The scale of a(w). of course, is greater than in
the case of stronger coupling shown in Fig. 4, as one would predicted from the f-sum

rule 7+25.26
R I | |
0.2 —
—~ -
3 -
\8' -
o- 1 cm—
A
o 1

20

w/eV

Fig. 5 The phase randomized optical spectra obtained using the “scaled-
hopping” approach described in the text for 12-site rings at intermediate
coupling (I” = 10eV) The solid and dash>d lines are for the uniform and
dimerized ( & = 0.14.) lattices, respectively.

The results in Fig. 5 are truly hybrids of the weak- and strong-couplir, absorp-
tions. The undimerized spectrumn might be thought of as strong-coupling absorption
1 — as in Fig. 4 — which has been strongly skewed to the low-energy side, as we
would expect from the small value of [". A more natural picture, however, might he
to associate the gap-edge peak with the square-root singulanty from the diverging
density-of-states, as in the noninteracting case. despite the fairly substantial value
of U, Despite this interpretation, v'e should stress that, as a comparison of the two
curves in Fig. 5 demonstrates, the gap is due mostly to e-e interactions, The dimer-
ization raises the gap somewhat --- more here, in any case. than for the [ = 30eV
case shown in Fig. 4 - but its principal effect is to give risc to a “decoupled-dimer
peak, characteristic of strong coupling. If we were to plot spectra for strongly Jis
torted lattices over a wide range of U7, all on the samne plot, we would observe two
envelopes. One envelope would trace out the decoupled-dimer peak. pronounced nt
large U nud swallowed up at smnll U by the weak-coupling absorption. Conversely,
the other envelope, corresponding to the density-of-states peak, would dominate at
stail UL but then disappear under the decoupled dimmer peak at higer energies. In
intermedinte coupling, both structures are comparable,  Notice, finnlly, that, apart
from a shight. tamiliar depletion on the high-energy side of the peak. in Fig. 5 the
deconpled-dimer penk appenrs 1o to bleach the nnditerized spectpam bat simply to
inerease the integeated weight of the speetrum. This is related by the fsam omle 7452
to the inerease in the magnitude of the deloenlization energy as the dimerizntion gap
1s opened up,

We hnve also investignted the effeet of o neavest neighbor Voon the absorntion



spectrum. At half-filling, the effect in strong coupling of V' on the ground state is
almost exactly to reduce the effective value of U" to U — V'. For optical spectra, V'
only qualitatively reduces the effective value of [". As noted earlier, V' is somewhat
ineffectual in reducing the gap energy until it is stvong enough to bind the optically
excited exciton. On the other hand, the centroid of the spectrum, which we define as
[«?a(w)/ [wa(w), is quite nearly equal to I” — 1. Hence, V" skews the absorption
toward lower energies, much as for a reduced U". Turning on V' is also like a reduced
U in that 1" suppresses the decoupled-dimer peak.

Finally, Fig. 6 shows the absorption of a neutral and of a charged soliton on
a 11-site ring. Phase rapdomization has not been used to produce these spectra in
part because the reduced symmetry of the problem gives richer structure but mainly
Lecause we have been unable to find a scheme which effectively randomizes electronic
phases while locking the "midgap” state at midgap. As a consequence, the figure is not
extremely illuminating. It does serve to show, as discussed in a number of articles,
that the effect of an intermediate " = 4ty = 10eV’ is to shift the charged midgap
absorption (dashed line) to lower energy while shifting the neutral soliton (solid line)
to higher &, where it blends into the intergap absorption.
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Fig. 6 The optical spectra for 11-site rings at mtermediate coupling
(L' = 10eV). The solid and dashed lines are for the uniform and dimerized (
o = 0.14.4) lattices, respectively.

CONCLUSIONS AND OPEN ISSUES

We believe thiat our results establish that the commbination of Lanczos exact ding:
onalizations with phiase randomization techniques ean be used to obtain nsight mto
many properties of strongly interacting electron systems from studies of (even smiall)
Hiute size systems

[n the case of optical absorption spectea, sinee electron phnses intorfere quantam
mechamenlly over the entire extent of sinall rings or chains, small systems are strongly
diserete and have very sparse specten. Phase randomization is essential to produee
hagh resolution speetva from exact dingonanhizitions on these small (np to 12 site) g
Sunple results from limits of strong and weak clectronie correlntions and of Targe



lattice distortions help us to understand results in the difficult intermediate-coupling
regime. In the limit of infinite ", half-filled rings show wide, rounded absorption
spectra centered about w = [". As U is decreased or 1" is turned on, this structure
is skewed toward lower energies. In the limit of vanishing L', the skewed absorption
turnis into a peak at the gap edge as a square-root divergence develops in the density-
of-states. For infinite ", dimerization introduces a strong peak. corresponding to the
limit of decoupled two-site dimers, in the middle of the absorption. Dimerization opens
up gaps in the single-particle bands and so should also open up gaps in the optical
absorption around the decoupled-dimer peak. In finite U", the decoupled-dimer peak
is suppressed and the gaps in the absorption are somewhat washed out. particularly
on the low-energy side of the peak. In weak coupling. thece are neutral- and charged-
soliton absorptions at midgap. For finite ", the neu.ral-soliton absorption is shifted
to higher energies while the charged-soliton midgap peak moves to lower w.

Clearly much work remains. In particular, we have begun to perform these diago-
nalizations in momentum space to gain full control of electronic phase randomization.
Our analyses of solitons and other localized defects are very preliminary, and one
could indeed argue that since both our phase randomization technique and these in-
trinsic defects can be viewed as 1/ effects, it may prove very difficult to extract
more reliable information about solitons than is already available. However, we hope
to be able to incorp. rate our knowledge of important physical features — e.g., midgap
states — of one-dimensional electron-phonon models to a greater extent in calculating
high-resolution spectra in the presence of difficult excitations, such as solitons and
polarons.
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