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I EFFECTS OF ACIDITY ON PRIMARY PRODUCTIVITY I N  U S :  
PHYTOPLAIXTON 

George R. Hendrey 
Land and Freshwater  Environmental  Sc i ences  Group 

. Department of Energy and Environment 
Brookhaven N a t i o n a l  Labora to ry  

Upton, New York 11973 

ABSTRACT 

R e l a t i o n s h i p s  between phytoplankton communities and l a k e  a c i d i t y  i n  

t h r e e  Adirondack Mountain Lakes a r e  being s t u d i e d  a t  Woods Lake (PH ca .  

4 .9) ,  ,Sagamore Lake (pH ca .  5 .5) ,  and Pan the r  Lake (pH ca. 7.0). Numbers o f  

phytoplankton  s p e c i e s  observed a s  of J u l y  31,  1979 a r e  Woods 27,  Sagamore 

38, and Pan the r  64, conforming t o  o b s e r v a t i o n s  a t  many o t h e r  s i t e s  t h a t  

s p e c i e s  numbers dec rease  wi th  i n c r e a s i n g  a c i d k t y .  Peak Chl. - a and produc- 

t i v i t y  v a l u e s ,  r e s p e c t i v e l y ,  were Woods 6.8 mg m'2 and 21 mg m'2 hr'l; Saga- 

more 1 2 . 2  mg m'2 and 16 mg m-2 h r - l ;  and Pan the r  23 mg m2 and 52 mg m-2 

h r - l .  P a t t e r n s  of i n c r e a s i n g  biomass and p r o d u c t i v i t y  i n  lJoods Lake may be  

a t y p i c a l  of s i m i l a r  o l i g o t t o p h i z  l a k e s  i n  t h a t  they develop r a t h e r  s lowly  t o  

maxima s i x  weeks a f t e r  i c e -ou t ,  i n s t e a d  of occurring very  c l o s e  t o  ice-out .  

Phytoplankton.  p r o d u c t i v i t y  averaged from ice-out  through J u l y  3 1 ,  1979, were 

12 mg m-2 h r - l ,  10  mg m-2 h r - l ,  arid 30 mg m-2 h r - l  f o r  Woods, Sagamore, and 

Panther .  C o n t r i b u t i o n s  of ne tp l ank ton  ( n e t  > 48 pin), nannoplankton  (48 > 

nanno > 20 p 1) and u l t r a p l a n k t o n  (20 > u l t r a  >0 .45 .pn)  t o  p r o d u c t i v i t y  p e r  

show . t h a t  t h e  sma l l e r  plankton a r e  r e l a t i v e l y  more impor tan t  i n  t h e  more 

a c i d  l a k e s ,  Woods > Sagamore > Pan the r  ( p  < .05) .  This  p a t t e r n  could  be 

determined by ~ u t r i e n t  a v a i l a b i l i t y  ( l a k e  a c i d i f i c a t i o n  is  s u s p e c t e d  of 

. l e a d i n g  t o  decreased  a v a i l a b i l i t y  of phosphorus) .  The amount of 



14c- label led  d i s so lved  photosynthate (14c-~0Pl), a s  a  percent  of t o t a l  pro- 

d u c t i v i t y ,  is ordered Woods > Sagamore > Panther. This is c o n s i s t e n t  wi th  a 

hypo thes i s  t h a t  microbia l  he te ro t roph ic  a c t i v i t y  is reduced wi th  i n c r e a s i n g  

a c i d i t y ,  but t h e  smal l e r  phytoplankton may be more "leaky" a t  low' pH. 
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. INTRODUCTION 

There have been few s t u d i e s  of t h e  e f f e c t s  of a c i d i f i c a t i o n  on phyto- 

p l ank ton  p r o d u c t i v i t y  i n  l a k e s  a f f e c t e d  by a c i d i c  p r e c i p i t a t i o n  and much of 

t h e  work c u r r e n t l y  i n  p rog res s  i s  not  g e n e r a l l y  a v a i l a b l e .  This  paper pre-  

s e n t s  p re l imina ry  r e s u l t s  of an ongoing i n v e s t i g a t i o n  which is fa r  from com- 

p l e t e  and f o r  which much of t h e  c r i t i c a l  d a t a  ana lyses  have not y e t  been 

done. The o b j e c t i v e  is t o  make o t h e r  i n t e r e s t e d  persons  aware of t h i s  

research e f f o r t  on t h e  e f f e c t s  of a c i d i c  p r e c i p i t a t i o n  on phytoplankton.  

The hypo thes i s  behind t h i s  paper ,  and the  work desc r ibed ,  i s  t h a t  a c i d i f i c a -  

t i o n  a l t e r s  both t h e  s t r u c t u r e  and functi nning of phy ~ o p l a n l c t o n  coavouniLles. 

C e r t a i n  l akes  have become more a c i d i c  over  t h e  p a s t  one t o  t h r e e  

decades ,  as a  consequence of d e p o s i t i o n  froin t h e  atmosphere of s t r o n g  min-,. 

e r a 1  a c i d  (H2S04, and HN03) and ac id ic - f  orming, subs t ances  ( e  . g . NH~+) which 

r e s u l t  i n  t h e  fo rma t ion  of a c i d s  when e n t e r i n g  t e r r e s t r i a l  o r  a q u a t i c  

ecosystems (Likens  e t  a l . ,  1977). Th i s  d e p o s i t i o n  and ensu ing  environmental  
, 

a l t e r a t i o n s  a r e  o f t e n  r e f e r r e d  t o  a s  t he  "ac id  r a i n "  problem. Decreased 

a l k a l i n i t y  and pH v a l u e s  have been r epor t ed  f o r  many l a k e s  and s t reams i n  

Norway (Wright and  Gjes s ing ,  1976; Wright ,  1977),  Sweden (Almer e t  a l . ,  

1944; Dicksen, 1975; Grahn, 1976),  Canada (Beamish and Harvey, 1972; Reami.sh 

and Van Loon, 1977; Watt er a l . ,  1979) and t h e  Uni ted  S t a t e s  ( S c h o f i e l d ,  

1976; Davis e t  a l . ,  1978).  The comparison of d a t a  ob ta ined  one o r  more 

decades ago t o  c u r r e n t  d a t a  has  been c r i t i c i z e d  on the  grounds t h a t  methods 

used e a r l i e r  a l t e r e d  the  chemistry of the  sample o r  were l a c k i n g  i n  accu- 

racy.  For example, Zimmerman and Harvey (1979) n o t e  t h a t  o l d e r  d a t a  f o r  



I '  a l k a l i n i t y  were determined by f i x e d  end poin t  po ten t iomet . r ic  o r  c o l o r i m e t r i c  

I t i t r a t i o n s .  I n  systems of l e s s  than  300 micro e q u i v a l e n t s  of a l k a l i n i t y  p e r  

I l i t e r  (where s p e c i e s  o t h e r  than  those  of t h e  ca rbona te  system a r e  s i g n i f i -  

I c a n t )  t h e s e  f i x e d  end p o i n t  t i t r a t i o n s  cannot  be expec ted  t o  g i v e  a c c u r a t e  

r e s u l t s .  The e r r o r  is an over -es t imate  of about  35 mic ro  e q u i v a l e n t s  pe r  

l i t e r ,  and t h e  e r r o r  is s o  inde terminant  " t h a t  l i t t l e  hope e x i s t s  f o r  any 

mathemat ica l  s a lvag ing  . o p e r a t i o n s , "  accord ing  t o  t h e s e  au tho r s .  Th i s  

s u b s t a n t i a l  and' h e l p f u l  c r i t i q u e  of temporal  comparat ive s t u d i e s  may c a l l  

i n t o  q u e s t i o n  much of t he  chemical evidence which i n d i c a t e s  t h a t  l a k e s  have 

been a c i d i f i e d  by a c i d i c  p r e c i p i t a t i o n .  

There i s ,  however, ano the r  independent l i n e  of ev idence ,  based on the  

a q u a t i c  b i o t a .  F i s h  have d isappeared  from many l a k e s  and s t r eams  i n  which 

a c i d i f i c a t i o n  is r e p o r t e d ,  and from many o t h e r s  where no chemica l  d a t a  from 

a n  e a r l i e r  per iod  a r e  a v a i l a b l e  ( S t a t e n s  ~ a t u r v z r d s v e r k ,  1975; Le ives t ed  e t  

: a l . ,  1976; S c h o f i e l d ,  1976). P rev ious ly  t h e  f i s h  were p r e s e n t ,  now they are 

1 a b s e n t ,  because t h e  water  is too  a c i d i c  and perhaps because the  concentra-  

t i o n s  of m a t e r i a l s  r e l a t e d  t o  watershed a c i d i f i c a t i o n  (e.g. aluminum) a r e  

t o o  h igh  (Almer e t  a l . ,  1978; Cronan and S c h o f i e l d ,  1979).  In f a c t ,  many 

I 

\ 
wate r s  former ly  renowned f o r  t h e i r  good f i s h i n g  a r e  now ba r ren  and so  a c i d i c  

t h a t  f i s h  cannot s u r v i v e  a t  a l l .  

I n t e g r a t e d  Lake-Watershed A c i d i f i c a t i o n  I n v e s t i g a t i o n s  (ILL~AI) 

Th i s  s tudy  of phytoplankton is a  component of an in t eg ra t ed ' ,  mul t i -  

disciplinary,.multiinstitutional r e sea rch  p r o j e c t  being conducted i n  t h r e e  

s e p a r a t e  l ake  watersheds i n  t he  Adirondack Mountains. The. p r o j e c t  known a s  



t h e  I n t e g r a t e d  Lake Watershed A c i d i f i c a t i o n  I n v e s t i g a t i o n  (ILWAI), s e e k s  t o  

d e s c r i b e  t h e  e f f e c t s  of a c i d  p r e c i p i t a t i o n  on lake-watershed ecosystems. 

The t h r e e  l akes  being s t u d i e d  a r e  l i s t e d  i n  Tab le s  1 and 2 ,  and the major 

components of t h i s  p r o j e c t  d i r e c t l y  r e l a t e d  t o  l a k e  s t u d i e s  are l i s t e d  i n  

Tab le  3. 

S t u d i e s  of phytoplankton p r o d u c t i v i t y  a r e  n e c e s s a r i l y  l i n k e d  t o  bo th  

p h y s i c a l  and chemical  limnology. Data on pH, c o n d u c t i v i t y ,  t empera tu re ,  

d i s s o l v e d  i n n r g s n i c  and uzganlc carbon (DIC, DOC.), and s e s t o n  a sh - f r ee  

dry-weight (AFDW) are determined by the  phytoplanktou p r o j e c t  a t  t h e  ILWAI 

l a b o r a t o r y ,  Raquet te  Lake, New York. I n  a d d i t i o n ,  chemical  samples  are col- 

lected from l a k e  p r o f i l e s  and from i n l e t  and o u t l e t  s t reams.  These a r e  

ana lyzed  by a coope ra t ing  l a b o r a t o r y  ( 3 .  Galloway, U n i v e r s i t y  of ~ i r g i n i a ) .  

f o r  a l k a l i n i t y  ( a c i d i t y ) ,  NHq, Na, K ,  Ca, Mg, ,,SiOq, SO4, N 0 3 ,  C 1 ,  Al, Fe, 

and Mn. Samples f o r  total .  P ana lyses  a r e  f r o z e n  and s t o r e d  f o r  a n a l y s i s  

d u r i n g  t h e  win te r  months a t  BNL. A l l  of t hese  d a t a  ob ta ined  by t h i s  p r o j e c t  

and a c l o s e l y  r e l a t e d  p r o j e c t  on ben th i c  p l a n t  conuauni.ties a r e  e n t e r e d  i n  a 

common d a t a  base maintained by T e t r a  Tech, Inc.  

PHYTOPLANKTON 

Phytoplankton  Methods 

Primary product ion  is  determined by 14c i n  s i t u  i n c u b a t i o n  a t  5 o r  6 -- 

d e p t h s  i n  each lake. Samples a r e  r e tu rned  t o  the l a b o r a t o r y  f o r  f i l t r a t i o n  

and a n a l y s i s  of c h l o r o p h y l l  - a  and phaeophyton ( f luoro lne t ry) ,  and  14c a c t i v -  

ity of p a r t i c u l a t e  and d i s s o l v e d  phases ( f i l t r a t i o n  and LSC). From August 



. . 

Tab le  1 

Lakes ' o f  t h e  i n t e g r a t e d  lake-watershed a c i d i f i c a t i o n  i n v e s t i g a t i o n  (ILWAI) 
USGS 

Name pH r ange  E l e v a t i o n  Coord ina t e s  Quadrangle  

Woods Lake 4.7 - 5.1 615 m 43O 53'  N Big Moose 
74" 57,' W 

Sagamore Lake , 5.0 - 6.4 Raque t t e Lake 

Pan the r  Lake 5.3 - 7.8 562 m .43" 41 '  N Old Forge 
74" 55' W 

Table  2 

Areal and h y d r o l o g i c a l  c h a r a c t e r i s t i c s  of t h e  ILIJAI wa te r sheds  and l a k e s  

Pan the r  Sagamore Woods 
. #  

Watershed Area,  km2 1.24 49.65 2.07 

Lakc Sur face  Area,. km2 0.18 0.72 0.23 

Su r f ace :  Watershed, r a t i o  1:6.9 1 :69 1:g.O 
6 3 Volume, 1 0  m 0.709 7.54 0.813 

Mean Depth,  me te r s  

Outflow, 10177-9178, cm yr-l 

Outflow, 10177-9178, l o 6  m3 yr-l 

F l u s h i n g  Time ( 
volume 

) >  
.mean annual  flow 

days  



Table 3 

Major components of the  ILIJAI 

OWRT = O f f i c e  of Water Research and Technology, Department of t h e  i n t e r i o r ;  
NYS-ERDA = New York S t a t e  Energy R@search and Development Au thor i ty ;  EPRI = 
E l e c t r i c  Power Research I n s t i t u t e ;  USGS = United S t a t e s  G e o l o g i c a l  Survey, 
Department of t he  I n t e r i o r .  ' 

P r i n c i p a l  
Task I n v e s t i g a t o r  Sponsor 

-- . -- 
Phytoplankton  G. Hendrey OW RT 

C o r n e l l  U n i v e r s i t y  

Ben th i c  P l a n t  Communities G. Hendrey and L. Conway NY S -E RDA 
Brookhaven Na t iona l  Labora tory  

Allochthonous L i t t e r  
.Decomposition 

Lake A c i d i f i c a t i o n  
I n v e s t i g a t i o n ,  
Chemical S t u d i e s  

Hydrologic  S t u d i e s  

P r e c i p i r a t i o n  S tud ie s  

G. Hendrey and A. J. F r a n c i s '  EPRI 
Broolchaven Nat i 'onal Labora tory  

J. Galloway 
U n i v e r s i t y  of V i r g i n i a  

J. P e t e r s  
U.S. Geologica l  Survey 

N. C l e s c e r i  
Rensse laer  Poly tesh .  I n s t .  

DaLa Elanagemenc and C. Chen 
Biogeochemical Elodeling T e t r a  Tech. Corp. 

EPRT 

USGS 

EPKI: 

EPRI 

Watershed Vegetation. and C. Cronan E P R I  
Groundwater Chemistry Dartn~outh U n i v e r s i t y  

- _  



1978 onward, Chl. a  and 14c product ion  samples were f i l t e r e d  through a frat- - 
t i o n a t i o n  s e r i e s  t o  de te rmine  t h e  c o n t r i b u t i o n s  from phytoplankton i n  t h e  

fo l lowing  s i z e  ranges:  ( a )  ne tp l ank ton  > 48 urn, ( b )  48 urn > nannoplankton 

> 20 urn, ( c )  20 Vm > u l t r a p l a n k t o n  > .45 pm, and the  d i s s o l v e d  pho tosyn tha t e  

14c - l abe l l ed  d i s so lved  o rgan ic  ma t t e r  (DON). Samples of phytoplankton and 

of zooplankton a r e  taken a long  wi th  t h e  pr imary p roduc t ion  samples and pre- 

s e r v e d  f o r  a n a l y s i s .  Phytoplankton have been c o l l e c t e d  i n  e i t h e r  a  van Dorn 

b o t t l e  o r  w i th  a p e r i s t a l t i c  pump, preserved  w i t h  a c i d  Lugol ' s  s o l u t i o n ,  

s e t t l e d  by the  ~ t e r m z h l  technique  and analyzed mic roscop ica l ly  u s tng  a '~i.1.d 

i n v e r t e d  microscope. 

Phytoplankton R e s u l t s  and Di scuss ion  

The s p e c i e s  of phytoplankton i d e n t i f i e d  i n  each l a k e  a r e  show-k i n  Table  

4. The t o t a l  number of s p e c i e s  i d e n t i f i e d .  a9 of J u l y  31 ,  1979 i n  each l a k e  

(F ig .  1 )  a r e  Woods 27, Sagamore 37 and Pan the r  64, d e c r e a s i n g  w i t h  i n c r e a s -  

i n g  a c i d i t y .  This  is  q u i t e  c o n s i s t e n t  w i th  obse rva t ions  i n  numerous o t h e r  

l o c a t i o n s  (Almer e t  a l .  , 1974; Kwiatkowski and  Roff , 1976; Hendrey and 

Wright ,  1976; Conroy e t  a l . ,  1976; Yan, 1979). 

Chlorophyl l  - a .  

Ch lo rophy l l  - a  (Chl. a)  c o n c e n t r a t i o n s  a r e  an i n d i c a t i o n  of photosyn- - 

t h e t i c a l l y  a c t i v e  a l g a e  and a r e  used he re  as a measure of biomass. Problems 

w i t h  e s t i m a t i n g  biomass by ch lo rophy l l  a r e  recognized. For example, a l g a l  

c e l l s  a r e  a b l e  t o  a d j u s t  the  cont.ent of pho tosyn the t i c  pigment i n  accordance 
. . 

w i t h  t h e i r  l i g h t  regime , ( Jd rgensen  and Steeman N i e l s e n ,  196'5). In  t h e s e  

l a k e s ,  t h e  l i g h t  e x t i n c t i o n  c o e f f i s i e n t s  a r e  Woods 0.,24, Sagamore 1.13, and 

Pan the r  0.39. Sagamore, a  brown-water l a k e ,  absorbs  l i g h t  more r a p i d l y  than  



Table  4 

Phytoplankton  t axa  i d e n t i f i e d  i n  Woods, Pan the r  and Sagamore Lakes,  
a s  of August 1979. R e l a t i v e  frequency of accuracy i n d i c a t e d :  
4 = dominant,  3 = common/frequent, 2 = o c c a s i o n a l ,  1 = r a r e / i n f r e q u e n t ,  - = absen t .  8 taxa  occu r r ing  i n  January-Apri l  samples ( w i n t e r )  are 
t a b u l a t e d  s e p a r a t e l y  from those  occu r r ing  i n  May-August samples.  
(Microscopic  examinat ions conducted by K. Baumgartner.) 

Woods Sagamore 

Feb Mar Apr J a n  Feb Mar 

Chlorophyta 
Ankistrodesums f a l c a t u s  - - - - - - 
C a r t e r i a  sp. - - - - - - 
Chlamydomonas - - 2 - - 1 
Oocys t i s  novae-semlias - - - - - - 
Oocys t i s  parva - - - 2 2 - 
Stau ras t rum megacanthum - - - - - - 

Cyanophyta 
Anabaena 
Chroococcus minimus 

Chrysophyceae 
Chromulina ( 3  . o r  l e s s )  
Chromulina (6  ) 
Chromulina (10  ) 
Dice ras  c h o d a t i  
Dinobryon bavaricum 
Dinobryon cy l indr icu in  
Dinobryon d ivergens  
Dinsrbsyu~~ s e r t u l a n a  
Chrysococcocys t is  ovoides 
Kephyrion s i t l a  
Ochromonas ( 4  ) 
Ochromonas (9 j 
Ochromonas nannos 
Ochromonas s c i n t i l l i n s  
Pseudoped ine l l a  g a l l i c a  

B a c i l l a r i o p h y c e a e  
d ia toms (unknown) 
A s t e r i o n e l l a  
Cocconeis 
Eunot i a  
Eunot i a  t r i o d o n  
Navicula  
N i t s c h i a  s igno idea  
T n b c l l a r i a  

P a n t h e r  

Feb Mar Apr 



Table 4 (cont) 

Woods Sagamore Panther 

Feb Mar Apr Jan Feb Mar Feb Mar Apr 

Gymnodinium varians 
Peridiniurn inconspicuum 

Cryptophyta 
Chroomonas acuta 
Chroomonas pulex 
Cryptomonas evosa 
Rhodomonas minuta 



Tab le  4 ( c o n t )  
..-- 

Woods Sagamore P a n t h e r  
M J J A  M J J A  M , J J A  

Chlorophyta  (g reens )  
Ankistrodesmus f a l c a t u s  - - - -  - - - -  - - 1 2  
Arthrodesmus i n c u s  - 1 - 1  - - - - - - 1 - 
Aste roco tcu3  - - - -  2 - - -  - - - -  
Ankistrodesmus convo lu tus ,  

v. minutus  - - 2 2  I I - -  - - - -  
Botryococcus Braun i i  - - - -  - - - 1 - - 2  - 
Chlamydomonas 2 2 1 2  2 2 - -  - 2 2 2  
C l o s t e r i o c o c c u s  v i e r h e i m e n s i s  

(Ankistrodesmus)  - - - -  2 - - -  - - - -  
Chlorococcum g i g a s  
Coelnstrum microporurn 
Cosmariug 

E l a k a t o t h r i x  g e l a t i n o s a  - - - -  - - - -  - 2 - 1  
Eudorina e l e g a n s  - - - -  - - - -  - 1 1 -  
G l o e o c y s t i s  ( s m a l l )  - - - -  - - 2  - - 1 1 -  
G l o e o c y s t i s  major - - - -  - - - -  - - 1 2  
Gloeocys t is  g i g a s  - - - - - - -  1 - - 2 1  
Oocys t is  bo rge i  - - - 2 - 2 - -  - 2 2 -  
Oocys t i s  novae-semliae - - - -  - - - -  - 3 3 2  

O o c y s t i s  parva  
O o s y s t i s  p u s i l l a  
Oocys t i s  subrnarina 

Ped ia s t rum t e t r a s  - - - -  
P l a n k r o s p h a e r i a  g e l a t i n o s a  - - - - 
Quadr igula  c h o d a t i i  - - - - 

Quadr igula  c l o s t e r i o i d e s  - - - - - - - -  - 2 2 -  
Quadr igula  l a c u s  t r i s  - - - -  - - - - - 2  - - 
Scenedesrnus abundans - - - -  - - - -  - 1 - -  

Ssendesmus d e n t i c u l a t u s  
Scenedesmus quadr icauda  
Sphaerocys t i s  
S t a u r a s  trum de jectruin 
S p h a e r o c y s t i s  S c h r o e t e r i  
S t au ra s t rum j acu l i f e rum 
Tet  r aed ron  caudatum 
Xanthidium 

- 2 2 1  
- - 1 1  - - - -  
- - 1 1  
- 3  4 4 
I - - -  
2 - - -  
l - l -  



Table  4  ( c o n t )  

Woods. Sagamore Pan the r  
M J J A  M ' J  J A  M J J A  

Cyanophyta (blue-greens)  
Aphanotheca n idu lans  - - - - - - - -  - - 

- - - -  3 3 
Anabaena f los -aquae  - - - -  - 2 - -  
Aphanocapsa e l a c h i s t a  - - - -  - - - -  - 2 2 2  
Chroococcus l i m n e t i c u s  - - - -  - - - -  - - 3 4  
Chroocoscus minimus - - - -  - - - -  - I - -  
Coeosphaerium naegelianum - - - -  - - - -  - 2 3 3  
Dacty lococcops is  s m i t h i i  - - - -  - - - -  - - -  2 
Merismopedia tenuiss ima - - - -  - 3 4 4  - - - -  
Dacty lococcops is  a c u l a r i s  - - - -  - - - 1 - - - - 
Nerismopedia g lauca  1 - 1 -  - - - -  - - - -  
O s c i l l a C u r i a  - - - -  - - - -  - - -  2 

Chrysophyta 
Chrysophyceae (golden)  

Chromulina ( 3  ) 
Chromulina ( 6  ) 
Chrysamoeba r a d i a n s  

Chrysococcus r a d i a n s  
Chrysoikos a n g u l a t u s  
Chrysosphae re l l a  l ong i sp ina  
Diceras-b 
Dice ra s  c h o d a t i  
Dinobryon bavaricum 
Dinobryon cy l indr icum 

Dinobryon d ive rgens  
Dinobryon s e r t u l a r i a  
Dinobryon s o c i a l e  
Kephyrion valkovnovi 
~ e ~ h ~ r i o n  s i t t a  
Mallomonas - A 
Mallomonas - B 

Mallomonas - C 
Mallomonas - D 
Mallomonas - E 
Mallomonas - F 
Ochrornonas 
Ochromonas nannos 
Ochromonas s s i n t i l l i n s  
Pseudopedine l la  g a l l i c a  
Uroglena americana 



Tab le  4  ( c o n t )  

Woods Sagamore P a n t h e r  
M J J A  M J J A  M J J A  

B a c i l l a r i o p h y c a e  (d ia toms)  
d ia toms ( g e n e r a l )  2 3 2 2  2 1 1 2  - - 2 2 2 2  
Melos i r a  c r o t o n e n s i s  1 - 2 1 - 1  1 - 1 -  
Euno t i a  - - - -  1 1 - 1  - - - -  
Navicula  2 3 2 2  - - -  1 2 2 1 -  
S t a u r o n e i s  - - 1  - 1 - - -  - - - -  
Frus  t u l i a  - 1 2 -  - I - -  - - 1  - 
S u r i r e l l a  - - 1  - - - - -  - - - -  
Synedra - - - -  - - - - 2 2 - -  
A s t e r i o n e l l a  formosa - - - -  - - -  2 - - . - -  

Cymballa - - - -  - - - -  - 2 - -  
T a b e l l a r i a  - 2 1 -  I - - -  - - -  - - - -  - - -  1  
N i t  z c h i a  1  - - 1  - 
Fragill-aria . - - - -  2 - - -  - _ _ _  
Pyrrhophyta  ( d i n o f l a g e l l a t e s )  
Gpmnodinium sp. - - 1 2  - - - -  - - - -  
Gymnodinium v a r i a n s  3 3 3 3  2 2 2 1  2 - 1 1  
Gymnodinium l a n t z s c h i a  - - - -  2 - - -  - - - - 
Gymnodinium paradoxurn 1 - - -  I - - -  _ _ _ _  
Ceratiurn h i r u n d i n e l l a  - - - -  - - - -  - - > 1 - 
P e r i d i n i u m  inconspicuum 2 3 2 2  - - 1 1  1 - 1 1  
P e r i d i n i u m  pus i l l um - .m. 1 1  - - - -  - - 1 - 
Cryptophyta  (cryptomonads) 
Chroomonas a c u t a  - - -  1 - 1 2 2  2 - 2 1  
Cryptomonas e r o s a  1 7 . 3 3  2 3 3 3  3 3 3 3  
Cryptomonas ova ta  1 1  1 2  2 - - -  4 2 2 1  
Cryptomonas mar s son i i  - - - -  - - - 2  - - - _  
Rhodononas m i  nut a - - - -  - I - -  - - - - 3 3 3 3  
Sennia  pa rvu la  - - - -  3 2 - -  
Cryptomonas n o r s t e d t i i  - - -  1 - - - -  - - - -  



do e i t h e r  Panther  o r  Woods so  t h a t  t h e  e u p h o t i t  zone i s  sha l lower .  The 
. . 

phytoplankton ,  mixing t o  t he  depth of t h e  thermocl ine ,  w i l l .  have l e s s  

a v a i l a b l e  l i g h t  i n  Sagamore than  i n  the  o t h e r  two l a k e s  and t h e  concent ra -  

t i o n  of Chl. a  per  c e l l  may i n c r e a s e .  This w i l l  be d e s c r i b e d  q u a n t i t a t i v e l y  - 
i n  subsequent  r e p o r t s ,  where Chl. a  w i l l  be analyzed a s  a f u n c t i o n  of c e l l  - 

volume determined by microscopy. 

Chl., a . concen t r a t ions  i n t e k r a t e d  over  t h e  water  columns (F igs .  2-4) of - 
t h e s e  l a k e s  a r e  t y p i c a l l y  low i n  w i n t e r  under i c e  cover  and i n c r e a s e  i n  

s p r i n g t i m e  a s  l i g h t  begins t o  p e n e t r a t e  through the  t h i n n i n g  ice-snow pack. 

I n  many o l i g o t r o p h i c  l a k e s ,  such a s  t h e s e  three. ,  i t  is common t o  s e e  a  r a p i d  

i n c r e a s e  i n  a l g a l  d e n s i t y  j u s t  a f t e r  ice-out and t h i s  d id  occur  i n  p a n t h e r ,  

and t o  some e x t e n t  i n  Sagamore. The p a t t e r n  i n  Woods Lake, however, is  

s l i g h t l y  a t y p i c a l  of normal o l i g o t r o p h i c  l akes .  Both p r o d u c t i v i t y  and 
' >  

Chl. a  b u i l d  more s lowly ,  i f  s t e a d i l y ,  t o  a  peak i n  June,  s ix  weeks a f t e r  - 

i ce-out  , i n  1979. It is not y e t  p o s s i b l e  t o  r e l a t e  t h e  Woods Lake observa- 

t i o n s  t o  chemical  changes s i n c e  n u t r i e n t  d a t a  a r e  not a v a i l a b l e  (samples a r e  

f r o z e n  f o r  a n a l y s i s  dur ing  the  w i n t e r ,  when f i e l d  work d e c r e a s e s )  .. 

Phytoplankton P r o d u c t i v i t y  

Phytoplankton p r o d u c t i v i t y ,  mg Cfixed m-2 hr'l,  i n t e g r a t e d  over  t he  

p h o t i c  zone was averaged from ice-out  (which occurred  a t  t he  end of A p r i l  

1979) through J u l y  1979 and is  shown i n  F igure  5. Th i s  ave rage  a r e a l  pro- 

d u c t i v i t y  was much g r e a t e r  i n  Panther  Lake than  i n  e i t h e r  of t h e  o t h e r  two 

l a k e s ,  wh i l e  Sagamore had the  lowest value (Panther  > Woods > Sagamore, p  < 

.05). A Li-Cor i n t e g r a t i n g '  PA? ( p h o t o s y n t h e t i c a l l y  a c t i v e  r a d i a t i o n )  me.ter 

o p e r a t e s  a t  each l ake  from A p r i l  i n t o  November. Data is c o l l e c t e d  on t ape  

and w i l l  be en t e red  a t  one time i n t o  the  ALP d a t a  base. When these  l i g h t  

va lues  become a v a i l a b l e ,  they w i l l  be used t o  c a l c u l a t e  d a i l y  and annual  



p r o d u c t i o n  v a l u e s  ( p r o d u c t i v i t y  is  t h e  hou r ly  r a t e  of p h o t o s y n t h e s i s ,  pro-  

d u c t i o n  is  t h e  mass of carbon  f i x e d  over  a  s p e c i f i e d  t i m e  p e r i o d ) .  

The means of t h e  maximum vo lume t r i c  p r o d u c t i v i t y  v a l u e s  observed i n  

each  l a k e  averaged  from ice-out  t o  J u l y  31 a r e  shown i n  F i g u r e  6 and t h e  

co r r e spond ing  Chl. - a v a l u e s  i n  F igu re  7. These were bo th  g r e a t e r  i n  P a n t h e r  

t h a n  i n  e i t h e r  of t h e  o t h e r  two l a k e s  (p  < .05). Mean s p e c i f i c  p r o d u c t i v i t y  

v a l u e s  ( P / B  = p r o d u c t i v i t y  /Chl. a ) ,  c a l c u l a t e d  f o r  each  of t h e  maximum - 

v o l u m e t r i c  p r o d u c t i v i t y  o b s e r v a t i o n s  then averaged  over t h e  co r r e spond ing  

t i m e  pe r iod  a r e  Woods 2.94 + 1.29 h r - l ,  Sagamore 3.16 t 1.19 hr'l, and 

P a n t h e r  3.57 f 2.04 hr - l .  This  may be an i n d i c a t i o n  t h a t  phytoplankton  

p h o t o s y n t h e s i s  was somewhat l e s s  e f f e c t i v e  i n  t h e  two more a c i d i c  l a k e s  f o r  

t h e  f i r s t  ha l f  of t h e  growing season  compared t o  phytoplankton  i n  P a n t h e r  

Lake. 
# 

I n  F i g u r e  8 ,  a l l  of t h e  a r e a l  p r o d u c t i v i t y  va lues  a r e  p l o t t e d  a g a i n s t  

pH ( t h e  ave rage  of t h e  hydrogen ion c o n c e n t r a t i o n s  over  t h e  5 o r  6 d e p t h s  a t  

which p r o d u c t i v i t y  was measured).  The pH of Woods Lake is always low, s o  no 

r e l a t i o n s h i p  of i n d i v i d u a l  p r o d u c t i v i t y  o b s e r v a t i o n s  t o  pH i s  e v i d e n t ,  

excep t  t h a t  t h e  o v e r a l l  ave rage  i s  low. I n  Sagamore Lake, on . t he  o t h e r  

hand, t h e r e  does appear  t o  be a  r e l a t i o n s h i p  between p r o d u c t i v i t y  and pH. 

I n  P a n t h e r  Lake, t h e  lowest  p r o d u c t i v i t y  va lue  is a s s o c i a t e d  w i t h  a s i n g l e  

low pH v a l u e s  of 5.97. 

The pe rcen t  c o n t r i b u t i o n s  of t h e  ne tp l ank ton  (> 48 pm) , nannoplankton  
' I , . 
! (48  > nanno > 20 ,pm) and u l t r a p l a n k t o n  (20 > u l t r a  > 0.45 pm) t o  a r e a l  

phytoplankton  p r o d u c t i b i t y ,  from ice-out  th rough J u l y  31, 1979, are shown i n  

F i g u r e  9 ,  and t h e  cor responding  Chl.  - a  c o n c e n t r a t i o n s  i n  F igu re  10. There  

is  an  obvious s h i f t  i n  both p r o d u c t i v i t y  and biomass (Chl. a ) ,  toward - 

s m a l l e r  c e l l  s i z e ,  go ing  from Pan the r  t o  Sagamore t o  Woods. T h i s  c e r t a i n l y  



may be r e l a t e d  t o  n u t r i e n t  a v a i l a b i l i t y ,  but i n t e r p r e t a t i o n  of t h e s e  t r e n d s  

must be de layed  u n t i l  n u t r i e n t  d a t a  become a v a i l a b l e .  

The pe rcen t  of phytoplankton  p r o d u c t i v i t y  which appea r s  i n  t h e  f i l t r a t e  

p a s s i n g  a n  0.45 ~ I U  f i l t e r ,  1 4 c - l a b e l l e d  DON, i s  presumed t o  have  been 

r e l e a s e d  by t h e  l i v i n g  phytoplankt  ers du r ing  t h e  I4c- incubat  i o n ,  bu t  ques- 

t i o n s  have been r a i s e d  a s  t o  whether  t h i s  r e l e a s e  might be i n f l u e n c e d  by t h e  

f i l t r a t i o n  p roces s ,  e s p e c i a l l y  from t h e  u l t r a  p lankton  (Sharp, 1977;  Fogg, 

1977). The pe rcen t  c o n t r i b u t i o n  of 1 4 c - l a b e l l e d  DOH t o  a r e a l  p r o d u c t i v i t y  

averaged from A p r i l  tlzruug1.i J u l y  is shown 1x1 Pilgure 12, and is s i g n i f i c a n t l y  

lower i n  P a n t h e r  Lake (p  < .05) t han  i n  t h e  o t h e r  l akes .  There  is a cons id-  

e r a b l e  ev idence  t h a t  l a k e  a c i d i f i c a t i o n  i n h i b i t s  m i c r o b i a l  decomposi t ion.  : .: 

Thi s  t o p i c  has  been p r e v i o u s l y  reviewed (Zendrey et al. ,  1976; Hendrey, '-. - .  

1979).  Microhe te ro t rophs  normally a r e  a b l e  t o  u t i l i z e  e x c r e t e d  a l g a l  photo- 
b 

s y n t h a t e  (DOM) and conve r t  it  i n t o  p a r t i c u l a t e  m a t e r i a l  r a t h e r  r a p i d l y  i f  

envi ronmenta l  c o n d i t i o n s  a r e  s u i t a b l e  ( P a e r l ,  1978). Only a s m a l l  p o r t i o n  . .. F 

of t h i s  a l g a l  DOX is r e f r a c t o r y  m a t e r i a l  l i k e l y  t o  s u r v i v e  l o n g e r  t h a n  24 i 

hou r s  (Saunders  and S t o r c h ,  1971).  The h ighe r  pe rcen t  of i n  t h e '  two ! 

a c i d i c  l a k e s  is  c o n s i s t e n t  w i t h  t h e  hypo thes i s  t h a t  m i c r o b i a l  a c t i v i t y  i s  

reduced i n  t h i s  more a c i d i c  environment ,  bu t  q u e s t i o n s  need t o  be r e s o l v e d  

concern ing  t h e  e f f e c t  of f i l t r a t i o n  on the  amount o f  l4~-II0?1 i n  the f i l t r a t e  

(Fogg, 1977; S to rch  and Saunders ,  1978; Sharp,  1978).  T h i s  may be caused by 

a  g r e a t e r  " l e a k i n e s s "  of u l t r a p l a n k t o n ,  which a r e  more s i g n i f i c a n t  i n  Woods 

Lake than  i n  t h e  o t h e r  two lakes .  

GENERAL DISCUSSION 

Lakes and s t r eams  which a r e  a c i d i f i e d  e x h i b i t  marked a l t e r a t i o n s  i n  t h e  

communities of phytoplankton and a t t a c h e d  a l g a e .  S e v e r a l  f a c t o r s  r e l a t e d  t o  

a c i d i f i c a t i o n  appear  t o  c o n t r i b u t e  t o  t he se  changes. Other  i n v e s t i g a t i o n s  



'. . 

T a b l e  5. V a r i a t i o n  i n  phytoplankton  dens i ty  i n  58 Swedish lakes grouped 

by pHa 

Number of  Lakes 7 16 8 9 18 

Phytoplankton  biomass 

micrograms p e r  l i t e r  

aSource:  Almer, B., IJ. Dickson, C. Ekstrom and E. Hornshrom. 1978. S u l f u r  
# 

p o l l u t i o n  and t h e  a q u a t i c  ecosystem. pp. 271-311. I N  J. 0. Nriagu (ed.), 

S u l f u r  i n  t h e  Environment,  P a r t  11: E c o l o g i c a l  impacts .  Wiley, New York. 

York. 482 p p .  



I *  have found t h a t  t he  numbers of s p e c i e s  of phytoplankton o c c u r r i n g  i n  l a k e s  

i s  r e l a t e d  t o  l a k e  a c i d i t y  (Almer e t  a l . ,  1974; Kwiatkowski and Roff ,  1976; 

Hendrey and Wright,  1976; Conroy e t  a l . ,  1976; Yan, 1979).  Some s t u d i e s  

have found t h e  biomass d e n s i t y  of phytoplankton t o  dec rease  a s  wel l .  

A n o t a b l e  f e a t u r e  of many a c i d i f i e d  l a k e s  is t h e i r  remarkable c l a r i t y .  

Thfs i s  e s p e c i a l l y  ev iden t  when viewed from a h i l l s i d e  above t h e  l a k e  o r  

from an a i r c r a f t .  Of t en , .  a c i d i c  l akes  have a  dark,  blue-green hue. S e v e r a l  

s t u d i e s  have documented i n c r e a s e s  in .  t h e  t r anspa rency  of l a k e s  a s  they  

I becuine a c i d i f l e d .  Almer er al. (1974) noted t h a t  t h e  t r anspa rency  of Lake 

S t o r a  SkarsjUn inc reased  by 7 meters  whi le  from 1943 t o  1973, pH dec reased  

from 6.2 t o  4.5 and t h e .  amount of o rgan ic  m a t e r i a l  i n  the  wa te r ,  measured a s  

1 KMnOq-dernand (C.O.D.) decreased from 24 t o  8 mg R-I :in t he  p e r i o d  195'8 and . . 

1973. I n c r e a s e s  i n  t ransparency  by a s  much a s  10 m were observed i n  o t h e r  
b 

a c i d i f i e d  lakes .  

There a r e  two mechanisms g e n e r a l l y  cons idered  t o  cause t h i s  i nc reased  

c l a r i t y  (Almer e t  a l . ,  1974). The f i r s t  i s  p r e c i p i t a t i o n  of humic co lo red  

subs t ances  a s  a  consequence of decreased  pH and inc reased  aluminum concen- 

t r a t i o n  (Almer e t  a l . ,  1978). The second is a r educ t ion  of phytoplankton 

d e n s i t y ,  which seems t o  be r e l a t e d  more c l o s e l y  t o  phosphorus c o n c e n t r a t i o n s  

than  t o  pH p e r  s e ,  a s  has  been noted i n  s e v e r a l  p rev ious  r e p o r t s  (e.g. Almer -- 

e t  a l . ,  1974; Grahn, 1976; Hendrey e t  a l . ,  1976; Yan, 1979).  

Perhaps the  most i n t e r e s t i n g  r e p o r t  on the  r e l a t i o n s h i p  between phyto- 

p l ank ton ,  pH and n u t r i e n t s  is t h a t  of Almer e t  a l .  (1978).  I n  f i f  t y - e igh t  

o l i g o t r o p h i c  l a k e s  of t h e  Swedish w e s t  c o a s t ,  t he  lowest  phytoplankton b io-  

mass was found i n  e i g h t  l akes  ranging i n  pH from 5.1 t o  5.6,  wh i l e  biomass 

d e n s i t y  was g r e a t e r  i n  l akes  of both h igher  and lower pH a s  shown i n  

Table 5. Although a l l  of t hese  Swedish l akes  had low c o n c e n t r a t i o n s  of 



phosphorus (<  10 vg/R), t h e s e  a u t h o r s  sugges ted  t h a t  aluminum complexing of 

phosphorus,  which they found t o  have a  maximum near  pH 5.5, might  p l ay  a n  

impor t an t  r o l e  i n  r e g u l a t i n g  the  a v a i l a b i l i t y  of t h e  l i m i t i n g  n u t r i e n t  t o  

t h e s e  a c i d i c  o r  a c i d i f y i n g  l a k e s .  Transparency of s i x  o t h e r  Swedish l a k e s  

i n c r e a s e d  wh i l e  pH decreased  by 1.4 t o  1.6 u n i t s .  Sirnil-ar o b s e r v a t i o n s  h a b e  
: 

been made i n  Adirondack Mountain l a k e s  ( S c h o f i e l d ,  1973). Yan (1979) found 

phytoplankton  biomass t o  be c o r r e l a t e d  t o  t h e  c o n c e n t r a t i o n  of phosphorus 

i n  a n  a c i d i f i e d  Sake r~ntarninaccd w i t h  l i r d v y  mecals, b u t  biomass was n o t  

r e l a t e d  t o  [H+]. The obse rva t ions  of Almer e t  a l .  (1978) and others t h a t  

phosphorus c o n c e n t r a t i o n  may be l i n k e d  t o  [H'] p rov ides  an  obvious  l i n k  

between decreased  phytoplankton biomass and l a k e  ac5 .d i f i ca t ion ,  t h e  d i r e c t  

r e l a t i o n s h i p  between [ P I  and phytoplankton  biomass being w e l l  e s t a b l i s h e d  

(Kal f f  and Knoechel,  1978). While t h e  maximum AR-P complexing o c c u r s  a t  
# 

abou t  pH 5.5, t h e  c o n c e n t r a t i o n  of AR i n c r e a s e s  wi th  water shed and l a k e  

a c i d i f i c a t i o n ,  s o  t h a t  more A2 is a v a i l a b l e  t o  complex phosphorus a t  lower 

pH. 

Whatever t h e  reason  for- the i n c r e a s e d  c l a r i t y  of a c i d i f i e d  l a k e s ,  t h e  

consequence i s  inc reased  l i g h t  p e n e t r a t i o n  and deepening of t he  e u p h o t i c  

zone. With t h e  r e s u l t a n t  i nc reased  th i ckness  of t he  t rophogen i s  l a y e r  i n  

a n  a c i d i f i e d  l a k e ,  t he  product ion  by phytoplankton per  squa re  meter  of l a k e  

s u r f a c e  may be a s  g r e a t  a s ,  o r  g r e a t e r  than ,  i t  is i n  a  more n e u t r a l  l ake .  

Th i s  s p e c u l a t i o n  was s t a t e d  by Almer e t  a l .  i n  1974 and ou r  knowledge h a s  

no t  y e t  improved much s i n c e  then. 

The i n t e g r a t e d ,  i n t e n s i v e  s tudy  of t h r e e  Adirondack Xountain l a k e s  and 

t h e i r  watersheds ,  ILIJAI ,  w i l l  p rovide  an oppor tun i ty  f o r  comparing t h e  pro- 

d u c t i v i t y  of a n  a c i d i f i e d  l a k e ,  i n c l u d i n g  n u t r i e n t  budgets  and phytoplankton  

removal mechanisms, t o  . s i m i l a r  d a t a  from nearby lalies which a r e  l e s s  a c i d i c .  
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FIGURE CAPTIONS 

F i g u r e  1. Number of phytoplankton  s p e c i e s  i d e n t i f i e d  a s  o f  7/31/79. 

.Figure 2. Woods Lake i n t e g r a t e d  c h l o r o p h y l l  a c o n c e n t r a t i o n  (Cj ) and - 

primary p r o d u c t i v i t y  (0).  

F i g u r e  3. Sagamore Lake i n t e g r a t e d  ch$orophyll  a c o n c e n t r a t i o n  ( C] ) - 

and pr imary p r o d u c t i v i t y  (0). 

F i g u r e  4. Pan the r  Lake i n t e g r a t e d  ch lorophyhl  a  c o n c e n t r a t i o n  ( G ) - 

and pr imary p r o d u c t i v i t y  (0). 

F i g u r e  5. P r o d u c t i v i t y  (mg C m-2 h r - l )  averaged  over  t h e  p e r i o d  A p r i l  

30 - J u l y  31,  1979. (Range = -, Standard  Dev ia t i on  = Q.) 

F i g u r e  6 .  Maximum p r o d u c t i v i t y  va lue  observed.  i n  each water column 

p r o f i l e  (mg C 13'~ hr'l). (Range = -, Standard  D e v i a t i o n  = 0 . )  

F i g u r e  7.  Chl. a  va lues  (mg I T I - ~ )  a s s o c i a t e d  wi th  t h e  maximum - 

p r o d u c t i v i t y  observed i n  each water  c n l t ~ m n  p r o f i l e .  

F i g u r e  8. I n t e g r a t e d  p r o d u c t i v i t y  as a  f u n c t i o n  of pH, t h e  mean H+ 

c o n c e n t r a t i o n  of t h e  e u p h o t i c  zone. Pan the r  = @, Sagamore = A ,  and Woods = 

h . Arrows i n d i c a t e  o v e r a l l  mean f o r  each lake .  

F i g u r e  9. Percent  c o n t r i b u t i o n  t o  t h e  p a r t i c u l a t e  f r a c t i o n  of 

phytoplankton  p r o d u c t i v i t y  (mg C m-2 h r - l ) .  (Range = -, Standa rd  D e v i a t i o n  

F i g u r e  10. Pe rcen t  c o n t r i b u t i o n  t o  a r e a l  Chl. a  c o n c e n t r a t i o n .  (Range - 

= -, Standa rd  Devia.t ion = 8 . )  

F i g u r e  11. pe rcen t  c o n t r i b u t i o n  of I 4 c  - l a b e l l e d  DOM t o  phytoplankton  
I 
I p r o d u c t i v i t y .  (Range = -, Standard  Dev ia t i on  = 8.. ) 



NUMBER OF PHYTOPLANKTON SPECIES 
IDENTIFIED AS OF 7/31/79 

Figu re  1 



WOODS LAKE INTEGRATED CHLOROPHYLL A - 
CONCENTRATION (0) AND PRIMARY PRODUCTIVITY ( 0 )  

MONTHS, 1979 

Figure  2 



MONTHS, 1979 

SAGAMORE L A K E  INTEGRATED CHLOROPHYLL A - 
CONCENTRATION (0) AND PR M A R Y  PRODUCTIVITY (0) 

Figure 3 
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PANTHER L A K E  INTEGRATED CHLOROPHYLL A - 
CONCENTRATION (0) AND PRIMARY PRODUCTIVITY (0) 

MONTHS, 1979 



-2 PRODUCTIVITY (mg C m hr-' ) 

AVERAGED OVER THE PERIOD APRl  L 30- 
JULY 31, 1979 (@= SD;= range ) .  

Figure  5 



MAXIMUM PRODUCTIVITY VALUE OBSERVED IN 
EACH WATER COLUMN PROFILE (mg C m-3 hr-I) 

( O  = SD, - = range 1. 

Figure 6 



CHL.  A VALUES ( mg m-3) ASSOCIATED WITH 
THE MAXIMUM PRODUCTIVITY OBSERVED IN 

EACH WATER C O L U M N  P R O F I L E  

Figure 7 



INTEGRATED PRODUCTIVITY AS A FUNCTION OF pH, THE 
MEAN H+ CONCENTRATION OF THE EUPHOTIC ZONE. 
PANTHER = o, SAGAMORE =A, AND WOODS =o. ARROWS 

INDICATE OVER-ALL MEAN FOR EACH LAKE. 

Figure  8 



PERCENT CONTRIBUTION TO THE PARTICULATE 
FRACTION OF PHYTOPLANKTON PRODUCTIVITY 

(mg C rn-*hr-l) (e = SD, - = range 1. 

ETNANNOUURA NETNANNOUURA NETNANNOULTRA 

Figure 9 



PERCENT CONTRIBUTION TO AREAL  CH L. 
A CONCENTRATION ( @  = SD, - = range). - 

WOODS SAGAMORE PANTHER 

Figure  10 



PERCENT CONTRl BUTION OF ' 4 ~ - ~ ~ ~ ~ ~ ~ ~ ~  

DOM TO PHYTOPLANKTON PRODUCTIVITY 

( 8  = SD, - = r a n g e  ). 

Figure 11 




