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I . Introduction DE88 004712 

In inertial confinement fusion (ICF) experiments, the high electro­

magnetic fields propagating through a relatively dense plasma can result in a 

transverse instability, causing the matter and light to form filaments 

oriented parallel to the light beam [}-i). We examine whether a similar 

instability exists in the electron beam of a free-electron laser, where such 

an Instability could Interfere with the transfer of beam kinetic energy Into 

optical wuve energy. 

In Section II we heuristically examine the instability in a relativistic 

beam through which an intense laser beam is propagating. We ignore the FFL 

effects (i.e., bunching of the electrons and the motion of the electrons 

through the wiggler). In Section III we estimate how the altered index of 

refraction (cf.. refs. [6] or [7]) in an FEL affects the dispersion relation 

obtained in Section II. In Section IV we estimate the effect that the 

instability could have on the phase coherence of a particle as it transits an 

FEL. 

II. Heuristic Estimate 

The instability of a laser beam propagating through a plasnw to 

transverse density perturbations can be qualitatively understood by the 

following arguments. In the frame in which the plasma is at rest, suppose a £ 1 3 

perturbation in density 4n' exists (say in 1 = in' exp[ik' x'J) such that the 

perturbation wave vector k' is oriented perpendicular to the laser-beam w.\ve 

vector k', assumed parallel to the z-axis. In the comoving electron frame the _ 
? 1/2 -"""sXn 

index of refraction is n' = (1 - (*>' /«') ) . Here and throughout prinir*. ;, ^ 
OlSTW.STIuN Of THIS DOCUMENT IS UMUSHTW-
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denote quantities in the comoving frame, u' is the comoving plasma frequency, 
and o' is the comoving laser frequency. Since n' is smaller in the high 
density region, the phase velocity of the laser is higher there so the laser 
will be refracted out, leaving a smaller electric field. The resulting low 
ponderomotive force in the high density region results in a higher density and 
thus the instability grows. 

Quantitatively, the momentum equation is: 

at' 2p' \u' J - 8* p' 2"'*Sli • ID 

where v is the fluid velocity, E. is the laser electric field resulting in a 
2 2 

ponderomotive pressure I/? (u' /u>') (E 1 /8«), P' is the comoving pressure, and 
£' is the electrostatic field due to the perturbation. If 4v'. in', 4F.', 

r't' etc., are growing exponentially (e.g., in' - in 1 e ), then Eq. (1), in the 

limit when ponderomotive pressure dominates, yields 

.2 Ik' /u'V E' 4E1 

r'4V 
m 

where 4E' is the change in the electric field due to refraction by the density 
perturbation. Similarly the continuity equation relates 4v' to 4n' through 

~ = - v • n'v' = > r'4n' 2 -k|n^4v' (3) 

Thus Eqs. (1) and (3) imply 

1^~. 2 2 
~*' 3 2 4n' - C ki 
C'O no 

Ut)"-
where a' - eE' /mu'c. In calculating the electric field response to the 

density perturbation, we note that in the regime in which the perturbation 

wavelength is long in a growth time (r' ) the rays will be refracted 
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away from the density peak a distance ix' « 2«/k i'. Conservation of Poynting 
f'"!X suggests JE* - k ' E' 4x'. The ray trajectories are given by geometric 
optics where dx /dt = W a k x , dkx/dt = -au/dx, (cf., [8]), which can be 
combined to give the ray trajectory: 

2 i \? 
d x' ' l-'^ 

dt S--^) (i;*) • 
Here x' Is the x-coordinate of the ray and we have used the dispersion 

2 2 ? 2 
relation u' = c k' + u' . In the long wavelength limit 

r< 
(r' » k ' dx' /dt') we assume the density perturbation obeys in' ~ *n' e rt' and we try a ray trajectory of the form x 1 - x'„ + ixe sin k ' x 1 . This o 1 0 

gives the approximate result 

M-^^W . <6) 
~ 2 r ' ? W no 

The resul t ing e lect r ic f i e l d perturbation thus sat is f ies 

, .? J / . . . \2 i l l - ^ / i V t e l 
£o " " 2r'2 W no (7) 

In the large k ' regime, the growth time is much longer than a ray crossing 
time so that the density perturbation may be regarded as fixed, and the 
geometric optics equation becomes: 

d 2< f c;*;> 2 7 C V 2 in' 
—- = tr sin k'x' ; where, a' = — 5 - «•' *-,- (8) 

dt' 2 x 2u' 2 p n o 
The rays oscillate back and forth about a density minimum like skiers making 
their way down a narrow chute. 

At large k ', however, geometric optics is no longer strictly valid 
because dilfraction effects become important. Ihese tend to give, any 
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2 ,2 
il' viref ..2 ,2 Ji. An 
I' 2 ,4. 4 ,?LI? n' 0 idiff c kx c k' 0 

ray a perpendicular velocity v 1 .... ~ (ck '/u)c, since the density perturbation 
acts like an aperture of diameter 2«/k '. The refractive effects give 
perpendicular velocities v' . - fl/k '. Analogous to the density of particles 
in a potential well with random velocities v. , we may expect the electric 
field (being proportional to the density of rays) to satisfy; 

(9) 

tquation (9) may more rigorously be derived directly from the wave equation: 

2 2 , a (n't') 
tf'E' - -4 V" * ° • 0°) 

c' 3t , < ; 

If t'(x', y \ z \ t') = I 1 / ? exp[ikS] exp[ik'z' - u't'J. then substitute 
into tq. (10) and linearize about a solution with temporally and spatially 
constant intensity I and phase S , we obtain the following equations for 
the linearized intensity I. and phase S.: 

n' . a l . a l , , . ain' ro 1 1 , „2 r 4 . r ,,,, 
— a v + J F = - l o \ Sl " F ' o l F • <"> 

n' aS, 3S, , , in' -ro__L _1 = _J 2 _ r 
c at' a/' , k , ? , V l + n ; 0 ' ( , ? ) 

o 

ik x' + r ' t ' 
If S. and 1 ~ e. , we f ind that 

dIEM i l l C ? k x l1 ' "" V ' ^ N 4" r 
E o " ? I o " 2 r ? n ^ r o [ l + c V / ( 4 r ' ? n ' 2

r o k ^ ) ] "ro 
(13) 

f-or wave propagation in a uniform plasma, 

* nr * " 2 < u p 2 / " ' ? ) («"Vn^) . (14) 



In the limit ck » ck (k /2k 1) » r', to within factors of order unity, Eq. ± x i 
(9) is obtained, while if ck^ » r' » ck^ (kx/2k') then Eq. (7) is obtained. 
Combining the hydrodynamics (Eq. 4) with the field response Eqs. (7) and (9), 
yields: 

,1/2 

A - / ° for k; ^a; 1 / ^^?) 
,.1/2 V ' 

r = < -\" / " for k' r C ' l . ^ • (15) 

ft) 0 p 

In the lab frame this corresponds to a spatial growth rate of: 

J / 2 k. ,» ,_ , , ,„ < < 

.3/4 \ o ) °0 , 1/2 / \ l / 2 3/4 \o J a0 

f / i \ 1 / 2 ! o ^ 

fc* < f ° r K i74~l^j c • < 1 6 > 
1/2 a u. 

? : 

2 2 Here all quantities are measured in the lab frame, u' = 4we n„/m . Be is the p o e 
parallel velocity (s c) and y is the Lorentz factor. A more formal 
derivation based on a three wave interaction analysis [5] yields the same 
asymptotic results [10]. 

Although the above estimate ignores space-charge and thermal effects 
(which we will soon proceed to show act to stabilize the electron beam), the 
above formula should act as a rough upper limit to the growth rate. We compare 
the corresponding minimum growth length to the wiggler length in Table 1 for 
increasingly higher frequency and higher power FELs. It is apparent that 
progressively higher frequency FELs require larger Lorentz factors, which give 
effectively higher particle inertia and smaller growth rates. For comparison 
we list typical parameters from an ICF experiment. The growth rate can be 
much higher, since the plasma frequency can be higher, and more importantly 
the plasma is at rest, so y = 1. (Note that in this column the ion-plasma 
frequency has replaced the electron-plasma frequency in calculating the growth 
length). _5_ 



He may now consider the dispersion relation when the neglected terms in 
Eq. (1) are included. The third term arises because of space-charge effects. 
Using Poisson's equation, we obtain 

£' = -i(4«e/k )«n" . (17) 

The second term represents thermal effects. Using an isothermal equation 

of stats to represent the finite width of the velocity distribution (i.e., the 

finite emittance), the pressure gradient can be written: 

VP' £ ik m c ^ in' . (18) 

1/5 

Here C - (aP/ap) is the sound speed in the comoving electron beam. Thus 

Eq. (4) should read (upon inclusion of thermal and space-charge effects): 

When combined with (13) and (14) this yields the dispersion relation: 

, I c V k ' 2 - 4 r ' 2 k ' ? n- 2 1 a ' ? c V u ' 2 

s L p i c V • 4r' ?k' ? n' ? 2*' ? 
(20) 

i ro 

In the large k limit and in the lab frame this yields the spatial growth rate: 

•tf-'H-K • (21) 

Here c = c' /y s cc/a, where c is the beam emittance and a is the radius of 
2 

the electron beam. The growth rate r becomes imaginary if a < 2 or if the 

sound speed is sufficiently large, such that the sound transit time across the 

perturbation is shorter than the growth time in the absence of thermal effects. 

The three terms in Eq. (21.) correspond to the ponderomotive, space-charge, and 
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thermal terms in the momentum equation, cf., Eq. (1). If ions had been present 
as they are in ICF applications, space-charge forces would be negligible 
because the ions would maintain charge neutrality at the relatively low 
frequency associated with filamentation and so the second term above would be 
absent. In an electron beam, however, there are no neutralizing particles so 
the self-electric fields of the perturbations prevent instability unless the 
laser field is very intense indeed. The required field for filamentation is 
larger than any present or proposed FEL. 

III. FEL Effects 
In Section II we investigated filamentation in a homogeneous relativistic 

electron beam. In an actual FEL, the electron beam is bunched and it undulates 
as it passes through the wiggler. We may estimate these effects by a 
consideration of the resulting index of refraction. 

The dispersion relation for the signal wave in an FEL is (cf. [6]): 

2 2 
2 u « <o a / \ 

(In Eq. (22) we have set the imaginary part to zero; i.e. gain effects have 
been neglected.) Here <> denote averages over the period of the FEL 
ponderomotive potential well, with wavelength 2«/(k + k); + is the phase 
within the well; k w is the wiggler wave vector; a is the amplitude of the 

2 wiggler vector potential, a = eAymc ; * is the phase of the laser field; 
a = a cos(kz - i»t + $); and prime denotes the derivative with respect to z. 
The effective index of refraction is given by (cf. [7]): 
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Since <cos ik/v > is positive and on the order of 1/Y„, and since a /=i » 1 
o wo 

it is apparent that the phase velocity of the laser signal wave is largest 
where the density is smallest, a property which causes the wave fronts to tend 
to be focused into the beam (optical guiding, cf., ref. [7]). Thus if the 
density striations are perpendicular to the laser wave vector, regions of high 
density will tend to be regions of high field strength, opposite to that which 
is needed for filamentatlon. 

We Illustrate this quantitatively by redoing the estimate of Section II, 
using the altered index of refraction above. 

In the >arge k limit, we find that (in the lab frame) Eq. (13) yields: 

f-^-in

r • W 
co kj r 

Perturbing Eq. (23) we f i n d : 

2 
"o "p in 4E 
2W "o " 0 l E o 

where 

&nr = -t-fzZ-^t • ( 2 5 ) 

• o " ' 

2 
T o w / c p s * \ , . w %_ aw /cos i i \ 

Using the lab frame equivalent of Eq. (2 ) , I . e . , 

cV 2 ,2 2 40 _ U \ L 2 it , , , , if c « - - - - g - a | - . (26) 
0 0 

we f ind a spat ial growth rate K obeying 

... ,? ,2 

*2 a " , > \ ^ ) -? • (27) 
2(1 + Z a ^ / k * ) \ C / Y 3 

The growth rate again becomes imaginary and so benign in the limit of large 
Y 0(a /a ) <cos +/Y>, even in the absence of space charge or thermal effects. 
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IV. Variation in Phase Oue to Filamentation 
Although our resists indicate that growth of the instability is not 

likely to occur, high efficiency in the FEl requires that particles maintain 
their phase coherence (i.e., stay within the bucket) during the transit of the 
FEL. Perpendicular motions induced by the density perturbations could cause 
parallel velocity perturbations. We estimate an upper limit to the change in 
phase from these effects. 

Equation (3) indicates that 4v - w/k 4n/n 0. Ihe phase 
* * (k w + k)z - «t Implies thai +' • k w - * 11 + Y* B * ] / ? Y ? . ref. Ie>j. 

2 
Thus the change in *' from the perturbation, tit' ~ k M W 2 ~ k(l (J . Using 

3/2 an upper limit on Av - «/k , an upper limit on » ~ u / y c, and a lower 
5/2 limit on k - 2«/a we find that fl* „ = a*'L = -kLa%, u / ( Y ck,), x ma x w p i, 

where L is the length of the wiggler. Table 11 lists these quantities for the 
three Ftls of interest and finds that A*/2ir - a few, for these upper limits. 
Thus we conclude if 4n/n « l, then A* « 2« and so phase variation will be 
negligible. 

V. Conclusion 
We have calculated the growth rate for filamentalion of a relativistic 

beam in the presence of an electromagnetic wave propagating parallel to the 
beam. We find that space-charge and thermal effects prevent growth of 
filaments in such beams, if the velocities, densities, and laser field 
strengths are similar to those of current or proposed FELs. Our analysis 
indicates that the bunched and undulating beam in an actual H I alters the 
index of refraction from that of a homogeneous beam such as to inhibit 
filamentation, although a more formal analysis is required to confirm this 
aspect. We also find that phase coherence of particles would be maintained, 
even if the instability occurred, unmitigated by space-charge, thermal, or FtL 
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effects. A somewhat more rigorous version of this work can be found in 

ref. [10]. 
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Table I. Comparison of Growth Length with FEL Wiggler Length 

Quantity 
ETA 
(ELF) 

"Typical" 
Laser-

Higher Target 
ATA Power Parameters 

IPALADIN) FEL ICF 

Current I (kA) 

Energy y mc (MeV) 3.5 SO 300 kT - 0.01 
Beam a (cm) 0.6 0.5 0.? 
Radius 

Peak Laser (W cm ) 
Intensity 109 10 1 1 10 1* 10 1" 

Plasma Frea. W P 
Optical Freq. u 0.09 3x10"" 7xl0" 5 0.? 

Optical Freq. u (rad s" 
• ' ) 

2.4X101' l.BxlO 1 4 2xl0 1 S 2xl0 l b 

Oimensionless a 
0 0.093 l.lxlO"3 6.15xl0"4 9xlO~ 3 

Vector Potential 

Electric ^ ., , , 
Field V k a o (' cm" 0 ) 0.73 6.4 39 570 

W i " 1 e r L (cm) Length L * c m' 400 1500 104 30.0* 

Length (cm) 180 3x10 3xl0 u 0.039* 

(Also shown are comparable parameters for an ICF experiment.) 
*The "wiggler length" has been replaced with c x (pulse time) and the "growth 
length" has been replaced with c/temporal growth rate in the lCf column for 
comparison. Also, the ion plasma frequency replaced u p in calculating the 
growth rate in that column. 
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Table II: Naximum Change 1n Particle Phase Due to Filamentation 

ETA 

k (cm"1) 7.85 

L (cm) 400 
a w"2 2.5 

w (rad s" ) 2 x 10 

Y 6.85 

kx mln (el»''» 10.5 

a*max no". 

10 

?« 

A1A Hiqh Power 

5.9 x 103 6.? x \0A 

1500 104 

1.2 2.9 

5 x ! 0 1 0 1.2 x 10 1 1 

100 590 

12 31 

3.5 6.4 
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