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I. Introduction DE88 004712

In inertial confinement fusion (ICF) experiments, the high electro-
magnetic fields propagating through a relatively dense plasma can result in a
transverse instability, causing the matter and light to form filaments
oriented parallel to the tight beam [1-5). We examine whether a similar
instability exists in the electron beam of a free-electron laser, where such
an instability could interfere with the transfer of beam kinetic energy into
optical wave energy.

In Section Il we heuristically examine the instability in a relativistic
beam through which an intense laser beam is propagating. We ignore the FfL
effects (i.e., bunching of the electrons and the motion of the electrons
through the wiggler). In Section 111 we estimate how the altered index of
refraction (cf., refs, {6] or (7)) in an FEL affects the dispersion relation
obtained in Section II. 1In Section [V we estimate the effect that the

instability could have on the phase coherence of a particle as it transits an

FEL.

11. Heuristic Estimate

The instability of a laser beam propagating through a plasmu to
transverse density perturbations can be qualitatively understood by the
tollowing arguments. In the frame in which the plasma is at rest, suppose a
perturbation in density &n' exists (say én' = 6n'° exp[ik’lx']) such that the
perturbation wave vectlor 5'1 is oriented perpendicular to the laser-beam wave

vector k', assumed parallel to the z-axis. In the comoving electron frame the
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denote quantities in the comoving frame, w'p is the comoving plasma frequency,
and »' is the comoving laser frequency. Since n'r is smaller in the high
density region, the phase velocity of the laser is higher there so the laser
will be refracted out, leaving a smaller electric field. The resulting low
ponderomotive force in the high density region results in a higher density and
thus the instability grows.

Quantitatively, the momentum equation is:
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where v is the fluid velocity, E is the laser electric field resulting in a
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ponderomotive pressure 1/2 (u'p/u')2 (E'2/8n). P' s the comoving pressure, and
g's is the electrostatic field due to the perturbation. If &v', &n', &f°',
etc., are growing exponentially (e.g., &n' = an'oer.t'). then Eg. (1), in the
1imit when ponderomotive pressure dominates, yieids
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where &' is the change in the electric field due to refraction by the density

perturbation. Similarly the continuity equation relates &v' to é&n' through

st . 9 en'v = r‘én' = -kinéév‘ . (3)

Thus EQs. (1) and (3) imply
2.2
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where a‘o = eE'Olmu'c. In calculating the electric field response to the

density perturbation, we note that in the regime in which the perturbation

wavelength is long in a growth time (r"]) the rays will be refracted
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away from the density peak a distance &x' << 2-/&1'. Conservalion of Poynting
frux suggests 3E' ~ kl' E‘° 8x'. The ray trajectories are given by geometric
optics where dx /dt = au/akx. dkx/dt = -3w/ax, (cf., {8]), which can be

combined to give the ray trajectory:

2., 22
ij_r__s_z(:’g) (&) )
dt'2 2 \w n, ax

Here x'r is the x-coordinate of the ray and we have used the dispersion

relation u'2 = czk‘2 + w'i. In the Yong wavelength limit

L ]

S & A kx‘ dx'r/dt') we assume the density perturbation obeys &n' ~ 6n'oer t
A

ang we try a ray trajectory of the form x' = x'o + 6xort sin kl‘ x'o. his

gives the approximate result

2 2
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The resulting electric field perturbation thus satisfies
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In the large kl' regime, the growth time is much longer than a ray crossing
time so that the density perturbation may be regarded as fixed, and the

geometric optics equation becomes:

2 2, .2

d (k'x') ¢ k! '

___g__r_ = 92 sin kix‘ H where, 92 S ; w'z ‘—':-',L (8)
g’ 220 P My

The rays oscillate back and forth about a density minimum like skiers making
their way down a narrow chute.
At large kL', however, geometric optics is no longer strictly valid

because diffraction effects become imporiant. These tend to give any
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ray a perpendicular velocity v‘lﬂiff ~ (ckl‘/u)c. since the densily perturbation
acts like an aperture of diameter 2'/k1" The refractive effects give
perpendicular velocities V'Lref -~ Q/kl" Analogous to the density of particles
in a potential well with random velocities Vipe We may expect the electric

field {being proportional to the density of rays) to satisfy:

2 . 2
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tquation (9) may more rigorously be derived directly from the wave equation:

2,2
2., _ 1 2(ntE")
vE - ST * 0o . (10}
c at'!

/2 exp{ikS) exp[ik'z' - »'t'), then substitute

e (xt, v, 2t t) = 1
into Eq. (10) and linearize about a solutipn with temporally and spatially
constant intensity l0 and phase So‘ we obtain the following equations for

the linearized intensity I] and phase S]:
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g6 1,1 e L4,

c st tar T LW St o an
L} L]

[ = ]
c at [-F4 ak.zl 11 "ro
0
iklx' + 't
1f S] and 1 ~ e , we find that
2,2 I 20, 2,,.2 2| :

$IET 1 il ) 4 k1 1 -4r! Mo /(¢ kl) iﬂ! 03)
£ 21 2 .2 2.4 2.2 2 l n'

o o 2r'n ro l] +C kll(dr' n ro k'") ro

For wave propagation in a uniform plasma,
on T -1 (wézlu‘z) (sn'/n) (14)
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In the 1imit CK¢ >> ckl (kl/2k') >> r', to within factors of order unity, Eq.
(9) is obtained, while if ckl >> ' >> Ckx (ki/Zk') then Eq. (7) is obtained.

Combining the hydrodynamics (Eq. 4) with the field response Egs. (7) and (9),

yields:
v\ 1/2
e RV << \1/2
~ )k G o 12 (%
r s for  k; 3 o . (15)
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In the 1ab Frame this corresponds to a spatial growth rate of:
K 172 e
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Here @11 quantities are measured in the 1ab frame, u§ = 4'e2"o/me' Be is the

parallel velocity (= ¢) and y is the Lorentz factor. A more formal

ﬂlo

derivation based on a three wave interaction analysis [5) yields the same
asymptotic results [10].

Although the above estimate ignores space-charge and therma) effects
(which we wili soon proceed to show act to stabilize the electron heam), the
above formula should act as a rough upper limit to the growth rate. We compare
the corresponding minimum growth length to the wiggler length in Table 1 for
increasingly higher frequency and higher power FELs. It is apparent that
progressively higher frequency FELs require larger Lorentz factors, which give
effectively higher particle inertia and smaller growth rates. For comparison
we Tist typical parameters from an ICF experiment. The growth rate can be
much higher, since the plasma freguency can be higher, and more importantly
the plasma is at rest, so y = 1. (Note that in this column the ion-plasma
frequency has replaced the electron-piasma frequency in calculating the growth

Jength). -5-



We may now consider the dispersion relation when the neglected terms in
. (1) are included. The third term arises because of space-charge effects.

Using Poisson's equation, we obtain

Es = -1(4-e/kl)6n . (1)

The second term represents thermal effects. Using an isothermal equation
of state to represent the finite width of the velocity distribution (i.e., the

finite emittance), the pressure gradient can be written:

2 (18)

o~ 3 [
gp' = 1klmcs

Here c's = (aP/ap)”2 is the sound speed in the comoving electron beam. 1lhus

£Eg. (4) should read {upon inclusion of thermal and space-charge effects):

]
2 2,2 2] an'_ o st
[r + c; k1 + wy ] = - . (19)

When combined with (13) and (14) this yields the dispersion relation:

czkzk,z a2 ae 2' 2 .2,

2
12 12 2 12 . l L D
[r +cg k]. + “p ] = 2 . (20)

B

In the large kl 1imit and in the lab frame this yields the spatial growth rate:

3

a Juz
0 _ p 22
3 1 ; cskL . {(21)

Here ¢ = C'S/Y = cc/a, where ¢ is the beam emittance and a is the radius of
the electron beam. The growth rate « becomes imaginary if ai < 2 or if the
sound speed is sufficiently large, such that the sound transit time across the
perturbation is shorter than the growth time in the absence of thermal effects.

The three terms in Eq. (21) correspond to the pondercmotive, space-charge, and

-6~



thermal terms in the momentum equation, c¢f., €q. (1). If jons had been present
as they are in ICF applications, space-charge forces would be negligible
because the ions would maintain charge neutrality at the relatively Tow
frequency associated with filamentation and so the second term above would be
absent. In an electron beam, however, there are no neutralizing particies so
the self-electric fields of the perturbations prevent instability unless the
laser field is very intense indeed. The required field for filamentation is

larger than any present or proposed FEL.

II1. FEL Effects

In Section Il we investigated filamentation in a homogeneous retativistic
electron beam. In an actual FEL, the electron beam is bunched and it undulates
as it passes through the wiggler. We may estimate these etfects by a
consideration of the resulting index of refraction.

The dispersion relation for the signal wave in an FEL is (cf. [6]):

2 2
2 W W a
“’_2__%_ (k+¢l)2=_ga.l' <Q:_\!> , (22)
[ ‘Yo C c [»]

(In Eq. (22) we have set the imaginary part to zero; i.e. gain effects have
been neglected.) Here <> denote averages over the period of the FEL
ponderomotive potential well, with wavelength Zwl(kw + k); ¥ is the phase
within the well; kw is the wiggler wave vector; a, is the amplitude of the
wiggler vector potential, a = eAw/ch; 4 is the phase of the laser field;

w

3, = ao'cos(kz - wt + ¢); and prime denotes the derivative with respect to z.

The effective index of refraction is given by (cf. [7]):

~N

2
= nwe, 2 _ -321__3_” €os ¥
n.s¢ (k +¢') /70 =1 02 Yo 3, Y . (23)



Since <cos y/y > is positive and on the order of l/yo. and since aw/ao >> 1
it is apparent that the phase velocity of the laser signal wave is largest
where the density is smallest, a property which causes the wave fronts to tend
to be focused into the beam (optical guiding, c¢f., ref. [(7]). Thus if the
density striations are perpendicular to the laser wave vector, regions of high
density will tend to be regions of high field strength, opposite to that which
is needed for filamentation.

We 11lustrate this quantitatively by redoing the estimate of Section 1I,
using the altered index of refraction above.

In the Farge kl 1imit, we find that (in the lab frame) £q. (13) yields:

2
. 2K
x5 anr . (24)
I
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Perturbing Eq. (23) we find:

2
a w
R A L R (25)
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v.a wz a
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0 Y 2“0 Y
Using the lab frame equivalent of Eq. (2), i.e.,
2,2
ck
2 2 238 L 2 4E
yoe© k" . =3t = . (26)
n 2 "o o
we find a spatial growth rate « obeying
2 .2
[ w a
< = —"’z—z(z”> 3 (21)
201 + Zq]k /kl) Y

The growth rate again becomes imaginary and so benign in the limit of large

Yo(au/ao) <cos ¢/y>, even in the absence of space charge or thermal effects.
-8-



Iv. variation in Phase Due to Filamentation

Although our resc*ts indicate that growth of the instability is not
Tikely to occur, high efficiency in the FEL requires that particles maintain
their phase coherence (i.e., stay within the bucket) during the transit of the
FEL. Perpendicular motions induced by the density perturbations could cause
parallel velocity perturbations. We estimate an upper 1imit {5 the change in
phase from these effects,

Equation (3) indicates that év ~ n/kL an/no. The phase

2 .2 2
¥ = (kw + k)z - wt impifes that ' = kw -x [1 ¢+ Yo Bl]/2y , ref. [6]).

Thus the change in ' from the perturbation, ay' ~ kAGE/Z ~ k“;o Bs' Using
an upper 1imit on 4v ~ x/kl, an upper 1limit on x ~ up/yalzc. and a lower

5/2
2 ~ 2 = 1 & -
limit on kl 2x/a we find that A*max ay'l kLaH up/(y ckl),

where L is the length of the wiggler. 1lable 11 lists these quantities for the
three FEls of interest and finds that ay/2« ~ a few, for these upper iimits.
Thus we canclude if An/no << 1, then 8¢ << 2« and so phase variation will be

negtigible.

V. Contlusion

We have calculated the growth rate for filamentation of a relativistic
beam in the presence of an electromagnetic wave propagating parallel to the
beam. We find that space-charge and thermal effects prevent growth of
filaments in-such beams, if the velocities, densities, and laser field
strengths are similar to those of current or proposed FELs. OQur analysis
indicates that the bunched and undulating beam in an actual FEL alters the
index of refraction from that of a homogeneous beam ‘such as to inhibit
filamentation, although a more formal analysis is required to confirm this
aspect. We also find that phase coherence of particles would be maintained,

even if the instability occurred, unmitigated by space-charge, thermal, or FEL



effects. A somewhat more rigorous version of this work can be found in

ref. [10].
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Table 1. Comparison of Growth length with FEL Wiggler Length

“Iypical"
Laser-
Higher Target
ETA ATA Power Parameters
Quantity (ELF) {PALADIN) FEL 1CF
Current 1 (kA) .8 3 3
Energy y mc2 (Mev) 3.5 50 300 k1 ~ 0.01
Beam a {cm) 0.6 0.5 0.2
Radius
-2

Peak Laser (Wcm °) 9 n 12 14
Intens ity 10 10 10 10
Plasma Freg. “p -4 -5
Optical Freq. o 0.09 X0 ™10 0.2
Optical Freg. w (rad s-]) 2.4x101‘ 1.8x10'¢ 2x10'? 2x10'°
Dimensionless a, 0.093 ° 100 easa0™ a0
Vector Potential
Flectric ek a  (em)  0.73 6.4 39 570
Wiggler 4 "
Length L (cm) 400 1500 10 30.0
Growth 1 5 6 .
Length . (cm) 180 3x10 3x10 0.039+

(Also shown are comparable parameters for an ICF experiment.)

*The “"wiggler length® has been replaced with ¢ x (pulse time) and the "growth
Tength* has been replaced with c/temporal growth rate in the ICF column for
comparison. Also, the ion plasma frequency replaced wp in calculating the
growth rate in that column.
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Table II: Maximum Change in Particle Phase Due to Filamentation
£TA ATA High Power__
k (em™ ) 7.85 5.9 x 10° 6.2 x 10°
L (cm) 400 1500 10°
W 2.5 1.2 2.9
v, (rad s7h 2 x10'0 5 x 100 1.2 x 10"
Y 6.85 100 590
-1
Kyin (€ 10.5 12 31
bv
Mma x
o> 0.95 3.8 6.4




