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Abstract

It is suggested that the Higgs field in the Weinberg-

Salam theory is not fundamental, but made of &*b, eReL pairs,
1 ·                                                          which are analogous to Cooper  pairs in superconductivity.

The pair EReL forms a bound state by virtue of the Coulomb

interaction. Thus, there  wil]   be no Higgs bosons, only

vortex ring excltations. By a variational calculation, the

mass of a vortex ring containing the Zo ,field is estimated
*This work is supported in part through funds provided by the
U.S. DEPARTMENT OF ENERGY (DOE) under contract EY-76-C-02-3069. to be greater than 1000 GeV/(2.  Its decay will be specta-

cular.
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(1)       7///
One of the open questions in the Weinberg-Salam theory

Riggs##*iSR#m of unified electromagnetic and weak interactions concerns  the

nature of the Higgs field:  Is it an. independent field,  or a

**10 phenomenological device?  We have no evidence for or against

                                                                                                      either. view, because no dynamical effect of the Higgs field has
2*Al#imi

been observed so far.

*81* 41MII* PE I favor the phenomenological view, for two reasons. First,

it is always desirable to reduce the number of independent fields,

m * Secondly, the only Higgs field for which we have evidence is

that in superconductivity,  and thel it is a mean-field descrip-

£*#PA-F*R, weinberg-Salam Kibl tion of bound electron pairs --- Cooper pairs.

I suggest that the Higgs field in the Weinberg-Salam

09  H i  g  g.  * S  Ji ** 011.    is :e      ER  eL     #11£ <61 * 34 18 .
theory is a mean-field description of bound <ReL pairs, where eR

45**   ER .1  1' *i 6 0 l i* *1 4* .  4 j• *i j i*0 9 6. .O- and eL denotes respectively a right-handed and left-handed elec-

tront  The force responsible for the binding is.the  Coulcmb

per    *A *:    4 # . .    H i  g gs.* i *2$ #t.    iR * attraction between the patticles.  In the following I give some

f z.*665
qualitative arguments.f#**lt..$14&*04. m**** . *,4* 46*mtititt

Let the generators of SU(2) x U(1) be t and y/2, and the
-

*100 00 e v/0 t(1. 9 04* * Atill 4& *i *90 corresponding gauge fields be  16 and 8*  • The covariant deri-

vative is given by

DB= 3'L + iggA·t + .-,;- ig'EBAI (1)        -

The photon field A  and the neutral field Z l. are defined b*

B'U = A.14 cosew - ZAt sinOw  '
(2)

W; = AJ.6 sinew + 27'6 COSOw ,
(2)

where  Ow  is the Weinberg angle, given experimentally  by

g E sin2ew = 0.25 * 0.05                           (3)4 .f                                                                                                                                        f
-  Thus,

*.
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We see from Table I that, for arbitrary values of theDB. = 9 + ig(Wft, + Wflt2)                                                   1
Weinberg angle,

+  il(gsinew)t3  +  (g'cosew)  y/2) A'U                                                                                    EReL   rv.  fo  ,
+'i{(gcosew)t3 -  (%'cosew)  y/2] Ziu.         (4)                                                                                                                                   (10)

,   4% rv  *+,
a.·.       The c6rrect electromagnetic interaction is obtained by requiring

where - means having the same Q and Q'.  Thus, TRez. at least
gsinOw = %'cosew =e, (5)

Q=t 3+  y,                              (6)                        has the right 4uantum numbers to be the Higgs field  0.  The

field   0 need not be considered separately, because it can             '
where e is the absolute value of the electronic charge (e2/4K be  transformed  away  by a gauge transfonnation.
=  1/137),  and  Q  is the electric charge operator in units  of  e. Let us take

Thus,
1= sin20. " 4-

. (11)

DAL = a,u.+ ig(Wflti + w2*t2) + ieQA* + ie'Q'Z*, (7)
which is consistent with experiments.  Then,

: where opposite electric charge i e,
'                     ·                                                                                                                             (12)

12*  1 ER and el have '  equal neutral charge  e/ 3.
e   sinQw cosew     ' (8)

Hence there is·a net attractive force between·OR. and eL .

Q, =-t3 cos2Ow -  y sin2ew ·                     (91                          Incidentally,'111) imp3ies that all the neutral·charges in

' '  Table I are integer multiples of · a smallest unit e/43( 3).

Some eigenvalues of Q and Q' are ldsted in Table I.
In a massless theory without fundamental Higgs fields,

Table I.  Electric charge Q (in units of e), and the attraction between
E l

and eL should populate the bare

Neutral charge Q' (in units of e') vacuum with a condensate of TReL  bound pairs.  This would be

e'/e = (sinewcosew)-1 .,   3= sin20w
- (4),(5)          -

a concrete example of "dynamical symmetry breaking"

If this happens, one can describe the low-lying states of the
:    Particle            Q        9'        (e'/e)Q' for 1 = 1/4

PL          o      4 2/53 system by introducing the Higgs field as a mean-field appro-

eL           -1 1- ; -1/(5 ximation to the quantum field ER L ' in a manner Similar to

the Ginsbur/-Landau theory of superconductivity(6).

eR         -v       5         1/(3-
1                                                          To study the proposed mechanism, w

ork is in progress

Higis o     0 -2 4 1 FS              +
1                                                      to calculate the effective·potential. for the field E eL in a

field,#+ 1     2- $          1/l/5
-  massless gauge theory.  The object is to show that the effec-

tave potential  has a lowest minimum at <e R el> 4 0·  The
-3-
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Jethod is an extension of  that of Coleman and Weinberg(7),  who We  have  put     W =  AB =  0, and ignored leptons. A field  con-
consider the case of a scalar field. Results of this calcu-

figuration   that  minimizes E  is a solution   to the classical
lation will be published elsewhere(8).

equations of motiqn.  We seek a solution corresponding to a
If the Higgs field is phenomenological in the sense circular vortex ring, symmetric about the z-axis, as shown

described above, it should not be quantized; there would be                                i
in Fig. 1.

Zno Higgs bosons. However, .there would still be dynamical mani-
n

festation„ such as vortex rings.     I  now   turn   to a description

of these excitation.

By ana16gy with superconductivity, one might expect

a vortex line excitation, in which a quantized amount  of the .2    y
1

magnetic  flux  of  the Zo field is trapped   in  a  lang  tube,   in                                                                            ·

which the Higgs field falls to below its vacuum value   C 9     .                                                                                                                                                                                                         A' x                                             ··. Flux  of  #  =V x  Z
Such a vortex line, however, must have infinite energy, be-

cause the flux lines cannot end. A vortex ring, on the other Fig. 1 Vortex ring consisting of magnetic

hand, will have'finite energy.  If the Z' field is treated flux of the Z' field trapped in a
·        tube, in which the Higgs field has

classically, the vortex ring will.be stable, by virtue  of values below its vacuum value   *0.
flux quantization, which is a requirement for minimum energy.

Its decay is an effect involving quantum mechanical tunneling,
To minimize the energy, we must have

and is ignored in this discussion.

The size and the energy of a v6rtex ring can be esti- (V- iqt) *(f)  =O  ,
(15)

mated   by a variational calculation. For static fields   the - whereever B  = ·v x  -2  =  0.

classical energy is the negative action':' This: leads to the flux-quantization condition

B =„ d3*{;Ivi,  2 4 (V  - iql)*12 + V(*)} 0 (13)  f  d .2.1  -9.- . ( n = 0,+1,*2,...), (16)

2
q=- re ,

··                                                                                          where   the line, integral is taken   over any closed path along

-     where   (#) is,Ehe complex Higgs field, and ' which    = O . Taking the closed  path to be the z-axis plus

an infinite samicircle, and assuming  that  2 ve[nishes:  at  infi-
v((1>)  = A C +•p - p62)2   ,

nity fast enough, we have
(14)

to  = 11.4 m   , (mp= proton mass)0
-6-
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V A trial solution that satisfies all the conditions is

|dz Z  = --2EL  , ( n=0,£1,£2....). (17) -ine
5.0 Z q

0 04'e)   = +0 GUL) e , (n=41,1:2'...), ( 21)

The variational calculation (8  is formulated in terms
2(74,0)   =.8 -nr  FUl)  ,

of toroidal coordinates (10) JU, 0, 9':                                                             qa

x  = -*-  sinh,11 cosip ,                                       ' The conditions  on  the  two real arbitrary functions  GCU)  and  F(74

1 ---*- sinh#stinv, (18)
are

G(0) =1, G'(0) =0.
z = -*-  sin 0 (22)

F(0) =1, F'(0) =0, F (=4 =0.

where  a  is an arbitrary  soa] e parameter,
Using (21), we obtain

O  4 F < 00 , 040<2% , 04 9 4 27L ,
6.Z = - - (-1 ) F(Al) sine ,(19)

T a     cosh«11   -  cos e (23)

$    =-  -4     (-·q-)  F' 9)   0
The volume element is

3 The energy now readsdx dy dz = :45 ·  d(coshj*) de d{1. (20)
2

E - -(2702·'rd, A{xi-- (-t) (sinh 2,In (F')2Curves of··  constant 62 are toruses. Those -of constant  0  are

spheres. Their intersections with the z-x plane are shown in +a  02 [(G')2
+ n2(1-F)202  J

Fig.2. 3• A 4, coshA+ 1/2
)  (M2-1 )2. ..

4                            z                                                                                                                                                          .+  8 4 To  l. sinh l
(24)

e = constant  (os e Clm )

M I ,U =  constant  (   0561 <00 )
,

-F
To make the calculation simple, choose

IXJ
sin0\    4 r e-2.LU-410) (JO/,BO).

a  co„.---- ;''S,i.Il: , G(»)  = F('11')  = .   1                                                 (25)(.Al<»)
l  A '=.co,p

'X

Then + 2 I 2

-2 (.Al -,110)           ult>u o  

. It' T  'q)  e                             .....,
(26)

  Fig.2 Toboidal coordinates. There is rotational

symmetry about the z-axis. The surface of The two variational parameters  are  a  and  jto, in which  a  des-

a vortex ring corresponds to U=ao,  The                                                                                          two variational parameters  are  a  and   j,6. -8-
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pribes   the average radius   o f the vortex   ring,   and  ji,    describes                                                                               ·

its cross-sectional radius.  Define a dimensionless radius R ,

and an energy  scal:e  Eo  :                                                                                                                                                                             i  EA;  (n  =  1)

1        R  .ma   ,        m  s     9 *01, (27) 2(. .54
E  =  -ZIfm    ·=  EL  -xi&     =  400   GeV/c2                                                                                                                              1                                                    100    -
0     2   1 2    e

'.Figj Energy as
10 -

function ofThen

* 2       ·      1 ,    2 A/21
2.36

* - - 2 («- - 4 i . 2*1.-*:) + (->)R'KCM) I 10-610-4 1  104 106 108

2 Ao
(28)

0< se
, R= 1  I **0    a  (n=1)

where

K(0() ij  d,». cosh51 4 1/2   f.e-4(34 -JVo)-1. 2
Fig.4 Mean radius 0.566

sinh JIll parameter as 

= 16<8*3+408„-+(+1. 211  +80,2(*2- 1)  ln(,-t)J, (29)           '                                        function of f
 2  .  l                     7

- : 6/10
Variation with respect  to  R at fixed 0( gives 10-6 10-4 1  104 106  108

+  -  § 812   (4-  -k)   +   (1+  -8;  )  RJ    .                                (30)0                                                                                            -                                                                                                            aL =  eute     (n=1)
1,

where

R2 = 1  + "2/24    10+I    "2 .    )2('< - 31-) *- K("ll    -'-1.
4/2  j

(34/q2)K(W) 1+n   /24  '                                q
( 31 )                      Fig.5 cross-sectiona  --

radius pdrameter)

Variation with respect  to 0(  is done numerically. as function of  Nq2 0 ,     ,      'XI%,Final results depend on the ratio of dimensionless coup-
10-610-4 1   104 106 108

ling  constants X/q2, whose limiting values  have the following

correspondence with superconductors:                                                                                                                    ',
--.

 2 --,   00   Type II superconductor,
(32)

-  10

0    Type I superconductor .

The results for n=1 are represented in Figs. 3-5.

-9-
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