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ABSTRACT

In [3], a benchmark parallel implementation of the Van Slyke and Wets algorithm for 
stochastic linear programs, and the results of a carefully designed numerical experiment 
on the Sequent/Balance using the implementation were presented. An important use of 
this implementation is as a benchmark to assess the performance of approximation algo­
rithms for stochastic linear programs described in [4]. These approximation algorithms are 
best suited for implementation on parallel vector processors like the Alliant FX/8. There­
fore, the performance of the benchmark implementation on the Alliant FX/8 is of interest. 
In this paper, we present results observed when a portion of the numerical experiment 
described in [3] is performed on the Alliant FX/8. These results indicate that the imple­
mentation makes satisfactory use of the concurrency capabilities of the Alliant FX/8. They 
also indicate that the vectorization capabilities of the Alliant FX/8 are not satisfactorily 
utilized by the implementation.



1. Introduction. The two-stage stochastic program with recourse, and with a dis­
cretely distributed random variable with a finite number of realizations, is the following:

Find x* G K"1 such that when x := x* 
z{x) cTx + Q(x) is minimized, and 
Ax = b, x > 0, where

Q(x) := £[Q(x,h,T)] = £ pkQ(x, hk,Tk),
k=l

Q(x,h,T):= inf {qTy : My = h - Tx,y > 0),

A E 3JmiXni, b G 3Jmi, c G 3R711, q G 5ftn2, M G Km2Xn2 are deterministic and given 
and h G K"12, T G SRm2Xni are random with (h,T) having the given probability 
distribution F := {((hk,Tk),pk), k = 1,2,..., K}. (1)

Problem (1) arises in operations research problem areas including industrial management, 
scheduling and transportation; in control theory; and in economics. The monograph [5] for 
example, contains details of specific applications.

A popular algorithm for (1) is due to Van Slyke and Wets [8]. In [3], a parallel bench­
mark implementation of the Van Slyke and Wets Algorithm for (1), and the results of a 
carefully designed numerical experiment on the Sequent/Balance were presented. An im­
portant use of this implementation is as a benchmark to assess the performance of the 
approximate algorithms for (1) described in [4, 2]. These approximate algorithms are best 
suited for implementation on parallel vector processors like the Alliant FX/8. Therefore, 
the performance of the benchmark implementation on the Alliant FX/8 is of interest. In 
this paper, we present a slightly modified version of the implementation given in [3] that 
is better suited for the Alliant FX/8. We have performed a portion of the numerical ex­
periment described in [3] using this implementation on the Alliant FX/8. We indicate the 
results observed. 2

2. A Parallel Benchmark Implementation of the Van Slyke and Wets Algo­
rithm on the Alliant FX/8. As in [3], throughout the paper we shall make the following 
assumptions regarding (1).

(Al) The set {x : Ax = 6, a: > 0} is nonempty and bounded.

(A2) The set {w : My — w,y > 0} = 3?m2.

(A3) The set {u : MTv < <7} is nonempty.

It can be verified that when (Al), (A2) and (A3) are satisfied, (1) has a finite minimum. 
Therefore, issues of unboundedness and infeasibility of (1) do not arise.

We now present the pseudo code on which our Fortran implementation on the Alliant 
FX/8 is based.



Algorithm 1:

input:
mi; ni; m2; n2; Ar; A; c; 6; M; g; A := {({hk,Tk),pk),k = 1,2,.. .,K}\ 
nprocs; maxcut] tol.

I* we assume that K > nprocs */

output: 
x; z.

begin
/* begin initializations */ 
t := 0;
for / := 1 to maxcut do 

El := 0; e' := 0; 
end do;
{call DPLO to solve the Ip 

find x > 0, 0 € 3? such that 
cTx + 0 is minimized, and 
Ax = b,
(El)Tx + 6 > el, l = 1,2,..., maxcut 
from scratch};

call optimality.cut (m2, n2, K, M, q, F, x, nprocs, E, e, Q); 
t:=t + 1;
E{ := E\ e1 := e;
call lowerbound (mi, n\, t, A, b, (El,el,l= 1,2,.. .,t), maxcut, x, 6, z); 
call optimality.cut (m2, n2, K, M, q, F, x, nprocs, E, e, Q)',

/* end initializations */ 
while \Q — 0|/ max{l, |Q|} < tol do 

*:=*+!;
if t > maxcut then

{report that more cuts than maxcut need to be added and stop}; 
else

E* := E-, e4 := e;
call lowerbound (mi, ni, t, A, b, (El,el,l = l,2,...,t), maxcut, x, 9, z)] 
call optimality.cut (m2, n2, K, M, q, F, x, nprocs, E, e, QJ; 

end if; 
end while; 

end.
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optimality-cut: 

input:
m2; 712; K\ M] g; jF1; x; nprocs.

output:
E; e; Q.

begin
Etemp := 0; etemp := 0; l? := 0; e := 0;

/* dimensions of Etemp and etemp are ni x nprocs and nprocs respectively */

bnchsz [K/nprocs\;
for bunch 1 to nprocs in parallel do 

firstk := (bunch — 1) * bnchsz + 1; 
if bunch 7^ nprocs then 

lastk := bunch * bnchsz 
else

lastk := K 
end if;
call dobnch(firstk, lastk, m2, n2, M, q, F, x, Etemp(l : n-^, bunch), etemp(bunch));

end do;
for bunch := 1 to nprocs do 

E := E + Etemp(l : ni, bunch)-, 
e := e + etemp{bunch)\ 

end do;
Q e — Etx-, 
return; 

end.

dobnch:

input:
firstk] lastk] m2] n2] M] q] F] x.

output:
E] e.

begin
for k := firstk to lastk do
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w hk — Tkx] 
if /c = firstk then

{call DPLO to solve the Ip 
find y >0 such that 
qTy is nainimized, and 
My = w

from scratch to obtain dual maximizer u}; 
else

{call DPLO with restart procedure and with new options to prevent 
disk reads, and to prevent forming LU factorization of initial basis 
to solve the Ip

find y > 0 such that 
qTy is minimized, and 
My = w

to obtain dual maximizer u}; 
end if;
E := E + pk(Tk)Tv- 
e := e + pk(hk)Tv, 

end do; 
return; 

end.

lowerbound:

input:
mi; ni; t; A; b; El, e1, l = 1,2,...,/; maxcut.

output:
x\ 6] z. 

begin
{call DPLO with restart procedure, and with new option to prevent 
disk reads, and with a specification that (mi + Z)-th row of constraint 
matrix changes to [(£*), 1], to solve the Ip 

find x > 0, 0 G 5? such that 
cTx + 0 is minimized, and 
Ax = b,
(El)Tx + 9 > el, l — 1,2..maxcut}; 

z := cTx + 9]
return;

end.
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In Algorithm 1, nprocs is the number of processors. The input parameter maxcut 
essentially places an upper bound on the number of calls to routine optimality-cut, while 
the input parameter tol is a tolerance used in the stopping criterion. Justification for using 
these parameters is given in [3].

Algorithm 1 and Algorithm 2 of [3] are equivalent (in exact arithmetic). Algorithm 2 
of [3] does not contain a routine dobnch, and the steps of routine dobnch of Algorithm 1 are 
explicitly included in routine optimality.cut of Algorithm 2 of [3]. This however, prevented 
the Alliant Fortran compiler from choosing the ‘parallel do loop’ in routine optimality.cut 
of Algorithm 2 of [3] for concurrent execution. The reorganization of Algorithm 2 of [3] into 
Algorithm 1 above by introducing the routine dobnch makes the Alliant Fortran compiler 
choose the ‘parallel do loop’ in Algorithm 1 for concurrent execution as desired.

The routine DPLO referred to in Algorithm 1 is an Ip solver due to Hanson and Hiebert 
[6]. The modifications to DPLO mentioned in Algorithm 1 are all described in [3]. In addi­
tion to the modifications to DPLO described in [3], concurrent execution of the ‘parallel do 
loop’ in routine optimality.cut on the Alliant FX/8 requires modifications to eliminate cer­
tain COMMON blocks. (See [1, Section 5.7.11].) When we refer to DPLO in the statement 
of Algorithm 1 we mean a version in which we have made these additional modifications.

3. Performance Results. We have developed a Fortran implementation of Algorithm 
1 on the Alliant FX/8. Using this implementation we have performed a portion of the 
numerical experiment described in [3]. The numerical experiment described in [3] is quite 
comprehensive consisting of four parts (a), (b), (c) and (d). Since the numerical results in 
[3] indicate that each part could be used to assess the performance of the implementation 
adequately, we selected part (b) as our experiment here. Part (b) of the experiment in [3] 
involves four problem sizes denoted by (i), (ii), (iii) and (iv). Problem sizes (i), (ii), (iii) and 
(iv) respectively correspond to dimension values mi := 40, ni := 60, m2 := 10, 712 := 15; 
mi := 60, 771 := 88, m2 := 15, n2 22; mi := 80, Tii := 120, m2 20, n2 := 30; and 
mi := 100, 77i := 148, m2 := 25, n2 := 37. For each problem size we use a binomial-related 
multivariate distribution (see [3] for details) F with K 100, K 1000 and K := 10000. 
For each case characterized by problem size and value of K we generate three random 
instances of problem (1) and run our implementation on these three instances. Any cpu 
time value we quote henceforth is the average of the three cpu time values observed for the 
corresponding three random instances of (1). We observe two cpu time values for each case 
characterized by problem size and value of K: the cpu time for the overall algorithm, and 
the total cpu time used by routine optimality.cut. The latter cpu time is important because 
when K is ‘large’, the computations in Algorithm 1 is dominated by the computations in 
routine optimality.cut (see [3] for a discussion of this fact). In fact, as described in [3], the 
parallel implementation of the Van Slyke and Wets Algorithm given in [3] and in Algorithm 
1 is motivated by this observation.



Before presenting timing results we mention four options that may be used to compile 
and link a code on the Alliant FX/8. More details about these options can be found in 
[1, Chapters 4,5]. These options are global optimizations (also referred to as general or 
scalar optimizations which generally optimize the code for better performance), associativ­
ity (which recognizes certain code forms that perform computations equivalent to intrinsic 
functions that have been implemented for good performance), vectorization and concur­
rency.

In Table 1 below we report the cpu time values observed with global optimizations, 
associativity, vectorization and concurrency used to compile and link the code and all eight 
processors used to run the resulting executable. These and all other timing results reported 
in this paper were obtained on the Alliant FX/8 at the Advanced Computing Research 
Facility of Argonne National Laboratory, Argonne, Illinois. In order to measure the effect 
of concurrency, we ran the same executable on a single processor. (This and all other single 
processor runs mentioned in this paper were made using the Alliant command execute -cl.) 
The observed cpu time values are reported in Table 2, while the resulting speed-up (referred 
to as speed-up 1) values are indicated in Table 3.

problem
size

overall cpu time when K is optimality-cut cpu time when K is
100 1000 10000 100 1000 10000

(i) 10.8 42.2 388.4 7.5 39.7 384.8
(ii) 21.1 152.7 1543.5 15.1 143.1 1529.7
(iii) 62.3 345.7 1039.4 43.1 321.2 1029.4
(iv) 80.8 254.6 1981.3 50.9 230.9 1955.4

Table 1. Cpu time (sec.) observed on eight processors with global 

optimizations, associativity, vectorization and concurrency

problem
size

overall cpu time when K is optimality.cut cpu time when K is
100 1000 10000 100 1000 10000

0) 51.1 264.7 2451.3 47.4 261.8 2447.1
(ii) 101.4 931.2 9809.2 94.3 919.7 9792.8
(iii) 277.8 2162.4 7070.7 254.6 2132.3 7058.5
(iv) 325.9 1407.9 12486.9 289.1 1378.9 12454.9

Table 2. Cpu time (sec.) observed on a single processor with global 

optimizations, associativity, vectorization and concurrency
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problem
size

overall speed-up when K is optimality.cut speed-up when K is
100 1000 10000 100 1000 10000

(i) 4.7 6.3 6.3 6.3 6.6 6.4
(ii) 4.8 6.1 6.4 6.2 6.4 6.4
(iii) 4.5 6.3 6.8 5.9 6.6 6.9
(iv) 4.0 5.5 6.3 5.7 6.0 6.4

Table 3. Values of speed-up 1

The speed-up values in Table 3 are satisfactory for an eight processor configuration 
and indicate that the concurrency capabilities of the Alliant FX/8 are utilized satisfacto­
rily. They also compare well with similarly computed speed-up values quoted in [7] for an 
algorithm for bound constrained optimization problems.

As mentioned earlier, apart from concurrency, the Alliant FX/8 can enhance perfor­
mance through global optimizations, associativity and vectorization. In order to see how 
our implementation utilizes these features, we obtained timing values by repeating part (b) 
of the experiment in [3], on a single processor with the code compiled and linked as follows: 
with no global optimizations, no associativity, no vectorization and no concurrency; with 
global optimizations, but with no associativity, no vectorization and no concurrency; and 
with global optimizations, associativity and vectorization but with no concurrency. The 
cpu time values observed are indicated in Tables 4, 5 and 6 respectively.

problem
size

overall cpu time when K is optimality.cut cpu time when K is
100 1000 10000 100 1000 10000

0) 79.1 454.3 4755.0 72.9 449.6 4748.3
(ii) 164.5 1663.5 18733.5 153.1 1643.1 18703.7
(iii) 467.5 3917.6 13743.2 423.8 3860.2 13723.7
(iv) 542.0 2552.6 24023.4 481.0 2507.1 23973.3

Table 4. Cpu time (sec.) observed on a single processor with no global

optimizations, no associativity, no vectorization and no concurrency
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problem
size

overall cpu time when K is optimality .cut cpu time when K is
100 1000 10000 100 1000 10000

0) 37.8 213.2 2198.1 34.8 210.9 2194.9
(n) 76.6 760.8 8573.1 71.1 751.3 8559.5
(iii) 215.2 1776.8 6215.0 194.9 1750.9 6205.5
(iv) 245.0 1144.8 10729.1 217.1 1123.7 10705.9

Table 5. Cpu time (sec.) observed on a single processor

with global optimizations, but with no associativity, 

no vectorization and no concurrency

problem
size

overall cpu time when K is optimality-cut cpu time when K is
100 1000 10000 100 1000 10000

(i) 35.4 182.1 1722.0 32.5 179.8 1718.9
(ii) 68.5 622.6 6558.9 63.3 613.8 6546.5
(iii) 185.4 1397.2 4598.6 166.4 1373.7 4589.2
(iv) 212.8 893.5 7965.2 185.0 871.9 7941.8

Table 6. Cpu time (sec.) observed on a single processor 

with global optimizations, associativity and 

vectorization, but with no concurrency

Before examining the cpu time values in Tables 4, 5 and 6, let us observe that a speed­
up (referred to as speed-up 2) alternative to speed-up 1 above may be defined as follows 
to measure the utilization of concurrency by the implementation: speed-up 2 is cpu time 
observed on a single processor with the code compiled and linked with global optimizations, 
associativity and vectorization but with no concurrency divided by the cpu time observed on 
eight processors with the code compiled and linked with global optimizations, associativity, 
vectorization and concurrency. Therefore, speed-up 2 values are computed using cpu time 
values in Tables 6 and 1 instead of the cpu time values in Tables 2 and 1 used in computing 
speed-up 1 values. The values of speed-up 2 that result are reported in Table 7 below.
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problem
size

overall speed-up when K is optimality.cut speed-up when K is
100 1000 10000 100 1000 10000

(i) 3.3 4.3 4.4 4.3 4.5 4.5
(ii) 3.2 4.1 4.2 4.2 4.3 4.3
(iii) 3.0 4.0 4.4 3.9 4.3 4.6
(iv) 2.6 3.5 4.0 3.6 3.8 4.1

Table 7. Values of speed-up 2

The speed-up 2 values in Table 7 compare well with similarly computed values reported 
in [9] for a quadratic programming algorithm.

Let us now consider the utilization of the vectorization capabilities of the Alliant FX/8 
by our implementation. To measure this we computed a speed-up (referred to as speed­
up 3) by dividing the cpu time observed with the code compiled and linked with global 
optimizations only and run on a single processor, by the cpu time for the code compiled 
and linked with global optimizations, associativity and vectorization and run on a single 
processor. Speed-up 3 values are thus computed using corresponding values in Tables 5 and
6. We report the values that result in Table 8 below.

problem
size

overall speed-up when K is optimality.cut speed-up when K is
100 1000 10000 100 1000 10000

0) 1.1 1.2 1.3 1.1 1.2 1.3
(ii) 1.1 1.2 1.3 1.1 1.2 1.3
(iii) 1.2 1.3 1.4 1.2 1.3 1.4
(iv) 1.2 1.3 1.4 1.2 1.3 1.4

Table 8. Values of speed-up 3

The speed-up values in Table 8 are not satisfactory. (The possibility of vectorization 
speeding up computations by a factor of two to four is mentioned in [1, Section 1.2.2].) 
Since the computation in Algorithm 1 is dominated by work in routine optimality .cut (es­
pecially for large K), and routine optimality.cut essentially involves calls to DPLO, the 
poor vectorization indicated by speed-up 3 values in Table 8 is due to poor vectorization of 
DPLO. DPLO is a large package of subroutines and in the runs mentioned in this paper we 
have not attempted to manually introduce Alliant compiler directives into DPLO for bet­
ter performance, i.e. only the automatic optimizations (including vectorization) introduced 
by the Alliant compiler were in effect. The speed-up 3 values in Table 8 suggest that we 
may be able to improve the performance by manually tuning routines in DPLO for better 
vectorization.
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Let us now examine the effect of global optimizations on the performance of our imple­
mentation. A convenient way to do that would be by examining the values of a speed-up 
(referred to as speed-up 4) obtained by dividing the cpu time on a single processor for the 
code compiled and linked with no global optimizations, no associativity, no vectorization 
and no concurrency by the corresponding cpu time on a single processor for the code com­
piled and linked with global optimizations, but with no associativity, no vectorization and 
no concurrency. The values of speed-up 4 are indicated in Table 9 below.

problem
size

overall speed-up when K is optimality-cut speed-up when K is
100 1000 10000 100 1000 10000

(i) 2.1 2.1 2.2 2.1 2.1 2.2
(ii) 2.1 2.2 2.2 2.2 2.2 2.2
(iii) 2.2 2.2 2.2 2.2 2.2 2.2
(iv) 2.2 2.2 2.2 2.2 2.2 2.2

Table 9. Values of speed-up 4

Speed-up 4 values in Table 9 indicate that the global optimizations can speed-up the 
performance of the unoptimized code by a factor of about two. Again, since most of the 
computation takes place within subroutines of DPLO (especially when K is large) this 
performance improvement occurs in those subroutines.

We end this paper by observing that the above performance results indicate that the 
implementation satisfactorily utilizes all the major performance improvement features of the 
Alliant FX/8 except its vectorization capabilities, and that it may be possible to manually 
tune DPLO to make the implementation utilize vectorization better.
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