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ABSTRACT

In [3], a benchmark parallel implementation of the Van Slyke and Wets algorithm for
stochastic linear programs, and the results of a carefully designed numerical experiment
on the Sequent/Balance using the implementation were presented. An important use of
this implementation is as a benchmark to assess the performance of approximation algo-
rithms for stochastic linear programs described in [4]. These approximation algorithms are
best suited for implementation on parallel vector processors like the Alliant FX/8. There-
fore, the performance of the benchmark implementation on the Alliant FX/8 is of interest.
In this paper, we present results observed when a portion of the numerical experiment
described in [3] is performed on the Alliant FX/8. These results indicate that the imple-
mentation makes satisfactory use of the concurrency capabilities of the Alliant FX/8. They
also indicate that the vectorization capabilities of the Alliant FX/8 are not satisfactorily
utilized by the implementation.



1. Introduction. The two-stage stochastic program with recourse, and with a dis-
cretely distributed random variable with a finite number of realizations, is the following:

Find x* G K"l such that when x := x*

z{x)  c¢Ix + Q(x) is minimized, and

Ax = b, x > 0, where

O() := £[Q(xh.T)] = £ pkO(s, bk, TH)

O(x.hT)i= inf tqTy My = h - Tx.p > 0)

A E 3JmiXni, b G 3Jmi, ¢ G 3R7ll, ¢ G 5fin2, M G Km2Xn2 are deterministic and given

and 2 G K"12, T G SRm2Xni are random with (%,7) having the given probability
distribution F := {((hk, Tk).pk), k = 1,2,..., K} (1)

Problem (1) arises in operations research problem areas including industrial management,
scheduling and transportation; in control theory; and in economics. The monograph [5] for
example, contains details of specific applications.

A popular algorithm for (1) is due to Van Slyke and Wets [8]. In [3], a parallel bench-
mark implementation of the Van Slyke and Wets Algorithm for (1), and the results of a
carefully designed numerical experiment on the Sequent/Balance were presented. An im-
portant use of this implementation is as a benchmark to assess the performance of the
approximate algorithms for (1) described in [4, 2]. These approximate algorithms are best
suited for implementation on parallel vector processors like the Alliant FX/8. Therefore,
the performance of the benchmark implementation on the Alliant FX/8 is of interest. In
this paper, we present a slightly modified version of the implementation given in [3] that
is better suited for the Alliant FX/8. We have performed a portion of the numerical ex-
periment described in [3] using this implementation on the Alliant FX/8. We indicate the
results observed.2

2. A Parallel Benchmark Implementation of the Van Slyke and Wets Algo-
rithm on the Alliant FX/8. As in [3], throughout the paper we shall make the following
assumptions regarding (1).

(Al) The set {x : Ax = 6,2 > 0} is nonempty and bounded.
(A2) The set {w: My — w,y > 0} = 3Im2.
(A3) The set {u: MTv < <J} is nonempty.

It can be verified that when (Al), (A2) and (A3) are satisfied, (1) has a finite minimum.
Therefore, issues of unboundedness and infeasibility of (1) do not arise.

We now present the pseudo code on which our Fortran implementation on the Alliant
FX/8 is based.



Algorithm 1:

input:
mi; ni; m2; n2; Ar; A; c; 6; M; g A = {({hk, Tk),pk),k = 1,2,.. ,K}\
nprocs; maxcut] tol.

I* we assume that K > nprocs */

output.

X, Z.

begin
/* begin initializations */
t:=0;
for / .= 1 to maxcut do
El:=0;¢ =0;
end do;
{call DPLO to solve the Ip
find x > 0, 0 € 3? such that
c¢Tx + 0 is minimized, and
Ax = b,
(EDTx + 6 >el |l = 1,2,..., maxcut
from scratch};
call optimality.cut (m2, n2, K, M, q, F, x, nprocs, E, e, Q);
t:=t+ I,
El:=FE\el =g
call lowerbound (mi, n\, t, A, b, (El.el,l= 1,2,.. .,t), maxcut, x, 6, z);
call optimality.cut (m2, n2, K, M, g, F, x, nprocs, E, e, Q)

/* end initializations */
while \Q — 0]/ max{l, |Q|} < tol do
sk ::*_|_! ;
ift > maxcut then

{report that more cuts than maxcut need to be added and stop};

else
E* :=E- et :=¢
call lowerbound (mi, ni, t, A, b, (Elel,l=1,2,..., 1), maxcut, x, 9, z)]
call optimality.cut (m2, n2, K, M, q, F, x, nprocs, E, e, QJ;
end if;
end while;

end.



optimality-cut:

input:
m2; 712; K\ M] g; JF; x; nprocs.

output:
E e O

begin
Etemp = 0; etemp = 0; 17 :==0; ¢ := 0;
/* dimensions of Etemp and etemp are ni X nprocs and nprocs respectively */

bnchsz  [K/nprocs)\;
for bunch 1 to mprocs in parallel do
firstk = (bunch — 1) * bnchsz + 1,
if bunch 7" nprocs then
lastk := bunch * bnchsz

else
lastk := K
end if;
call dobnch(firstk, lastk, m2, n2, M, q, F, x, Etemp(l : n-", bunch), etemp(bunch)),
end do;

for bunch := 1 to nprocs do
E := E + Etemp(l : ni, bunch)-,
e = e + etemp{bunch)\

end do;

Q0 e—ETX

return;

end.

dobnch:
input:
firstk] lastk] m2] n2] M] q] F] x.

output.
E] e

begin
for k = firstk to lastk do



w  hk — Thx]
if t = firstk then
{call DPLO to solve the Ip
find y >0 such that
qTy is nainimized, and
My =w

from scratch to obtain dual maximizer u};
else

{call DPLO with restart procedure and with new options to prevent

disk reads, and to prevent forming LU factorization of initial basis
to solve the Ip

find y > 0 such that
qTy is minimized, and
My =w
to obtain dual maximizer u};
end if;
E := E + pk(Tk)Tv-
e :=e+ pk(hk)Tv,
end do;
return;

end.

lowerbound.:

input:

mi; ni; t; A; by El el, [ = 1,2,...,/; maxcut.

output.
x\ 0] z
begin

{call DPLO with restart procedure, and with new option to prevent

disk reads, and with a specification that (mi + Z)-th row of constraint
matrix changes to [(£%*), 1], to solve the Ip
find x > 0, 0 G 5? such that

c¢Tx + 0 is minimized, and

Ax = b,

(EDTx + 9 >el | — 7,2..maxcut};
z:=cIx+Y9
return;

end.



In Algorithm 1, nprocs is the number of processors. The input parameter maxcut
essentially places an upper bound on the number of calls to routine optimality-cut, while
the input parameter fo/ is a tolerance used in the stopping criterion. Justification for using

these parameters is given in [3].

Algorithm | and Algorithm 2 of [3] are equivalent (in exact arithmetic). Algorithm 2
of [3] does not contain a routine dobnch, and the steps of routine dobnch of Algorithm | are
explicitly included in routine optimality.cut of Algorithm 2 of [3]. This however, prevented
the Alliant Fortran compiler from choosing the ‘parallel do loop’ in routine optimality.cut
of Algorithm 2 of [3] for concurrent execution. The reorganization of Algorithm 2 of [3] into
Algorithm | above by introducing the routine dobnch makes the Alliant Fortran compiler
choose the ‘parallel do loop’ in Algorithm | for concurrent execution as desired.

The routine DPLO referred to in Algorithm 1 is an Ip solver due to Hanson and Hiebert
[6]. The modifications to DPLO mentioned in Algorithm 1 are all described in [3]. In addi-
tion to the modifications to DPLO described in [3], concurrent execution of the ‘parallel do
loop’ in routine optimality.cut on the Alliant FX/8 requires modifications to eliminate cer-
tain COMMON blocks. (See [1, Section 5.7.11].) When we refer to DPLO in the statement
of Algorithm | we mean a version in which we have made these additional modifications.

3. Performance Results. We have developed a Fortran implementation of Algorithm
1 on the Alliant FX/8. Using this implementation we have performed a portion of the
numerical experiment described in [3]. The numerical experiment described in [3] is quite
comprehensive consisting of four parts (a), (b), (c) and (d). Since the numerical results in
[3] indicate that each part could be used to assess the performance of the implementation
adequately, we selected part (b) as our experiment here. Part (b) of the experiment in [3]
involves four problem sizes denoted by (i), (i), (iii) and (iv). Problem sizes (i), (ii), (iii) and

(iv) respectively correspond to dimension values mi := 40, ni := 60, m2 = 10, 712 = 15;
mi := 60, 771 := 88, m2 := 15, n? 22; mi = 80, Ti := 120, m? 20, n2 := 30; and
mi := 100, 77i := 148, m2 := 25, n) := 37. For each problem size we use a binomial-related

multivariate distribution (see [3] for details) /" with K 100, K 1000 and K := 10000.
For each case characterized by problem size and value of K we generate three random
instances of problem (1) and run our implementation on these three instances. Any cpu
time value we quote henceforth is the average of the three cpu time values observed for the
corresponding three random instances of (1). We observe two cpu time values for each case
characterized by problem size and value of K: the cpu time for the overall algorithm, and
the total cpu time used by routine optimality.cut. The latter cpu time is important because
when K is ‘large’, the computations in Algorithm | is dominated by the computations in
routine optimality.cut (see [3] for a discussion of this fact). In fact, as described in [3], the
parallel implementation of the Van Slyke and Wets Algorithm given in [3] and in Algorithm
| is motivated by this observation.



Before presenting timing results we mention four options that may be used to compile
and link a code on the Alliant FX/8. More details about these options can be found in
[1, Chapters 4,5]. These options are global optimizations (also referred to as general or
scalar optimizations which generally optimize the code for better performance), associativ-
ity (which recognizes certain code forms that perform computations equivalent to intrinsic
functions that have been implemented for good performance), vectorization and concur-

rency.

In Table | below we report the cpu time values observed with global optimizations,
associativity, vectorization and concurrency used to compile and link the code and all eight
processors used to run the resulting executable. These and all other timing results reported
in this paper were obtained on the Alliant FX/8 at the Advanced Computing Research
Facility of Argonne National Laboratory, Argonne, Illinois. In order to measure the effect
of concurrency, we ran the same executable on a single processor. (This and all other single
processor runs mentioned in this paper were made using the Alliant command execute -cl.)
The observed cpu time values are reported in Table 2, while the resulting speed-up (referred
to as speed-up 1) values are indicated in Table 3.

problem  overall cpu time when K is optimality-cut cpu time when K is

size 100 1000 10000 100 1000 10000
(1) 10.8 42.2 388.4 7.5 39.7 384.8
(ii) 21.1 152.7 1543.5 15.1 143.1 1529.7
(iii) 62.3 345.7 1039.4 43.1 321.2 1029.4
@iv) 80.8 254.6 1981.3 50.9 230.9 1955.4

Table 1. Cpu time (sec.) observed on eight processors with global

optimizations, associativity, vectorization and concurrency

problem overall cpu time when K is optimality.cut cpu time when K is
size 100 1000 10000 100 1000 10000
0) 51.1 264.7 2451.3 47.4 261.8 24471
(ii) 101.4 931.2 9809.2 94.3 919.7 9792.8
(iii) 277.8 2162.4 7070.7 254.6 21323 7058.5
(iv) 325.9 1407.9 12486.9 289.1 1378.9 12454.9

Table 2. Cpu time (sec.) observed on a single processor with global

optimizations, associativity, vectorization and concurrency



problem  overall speed-up when K is optimality.cut speed-up when K is

size 100 1000 10000 100 1000 10000
(i) 4.7 6.3 6.3 6.3 6.6 6.4
(i) 48 6.1 6.4 6.2 6.4 6.4
(iif) 4.5 6.3 6.8 5.9 6.6 6.9
(iv) 4.0 5.5 6.3 5.7 6.0 6.4

Table 3. Values of speed-up |

The speed-up values in Table 3 are satisfactory for an eight processor configuration
and indicate that the concurrency capabilities of the Alliant FX/8 are utilized satisfacto-
rily. They also compare well with similarly computed speed-up values quoted in [7] for an

algorithm for bound constrained optimization problems.

As mentioned earlier, apart from concurrency, the Alliant FX/8 can enhance perfor-
mance through global optimizations, associativity and vectorization. In order to see how
our implementation utilizes these features, we obtained timing values by repeating part (b)
of the experiment in [3], on a single processor with the code compiled and linked as follows:
with no global optimizations, no associativity, no vectorization and no concurrency; with
global optimizations, but with no associativity, no vectorization and no concurrency; and
with global optimizations, associativity and vectorization but with no concurrency. The
cpu time values observed are indicated in Tables 4, 5 and 6 respectively.

problem overall cpu time when K is optimality.cut cpu time when K is
size 100 1000 10000 100 1000 10000
0) 79.1 4543 4755.0 72.9 449.6 4748.3
(ii) 164.5 1663.5 18733.5 153.1 1643.1 18703.7
(iii) 467.5 3917.6 13743.2 423.8 3860.2 13723.7
(iv) 542.0 2552.6 24023.4 481.0 2507.1 23973.3

Table 4. Cpu time (sec.) observed on a single processor with no global

optimizations, no associativity, no vectorization and no concurrency



problem overall cpu time when K is optimality.cut cpu time when K is
size 100 1000 10000 100 1000 10000
0) 37.8 213.2 2198.1 34.8 210.9 2194.9
(n) 76.6 760.8 8573.1 71.1 751.3 8559.5
(iii) 215.2 1776.8 6215.0 194.9 1750.9 6205.5
@iv) 245.0 1144.8 10729.1 217.1 1123.7 10705.9

Table 5. Cpu time (sec.) observed on a single processor
with global optimizations, but with no associativity,

no vectorization and no concurrency

problem overall cpu time when K is  optimality-cut cpu time when K is
size 100 1000 10000 100 1000 10000
(i) 354 182.1 1722.0 32.5 179.8 1718.9
(i1) 68.5 622.6 6558.9 63.3 613.8 6546.5
(iii) 185.4 1397.2 4598.6 166.4 1373.7 4589.2
(iv) 212.8 893.5 7965.2 185.0 871.9 7941.8

Table 6. Cpu time (sec.) observed on a single processor
with global optimizations, associativity and

vectorization, but with no concurrency

Before examining the cpu time values in Tables 4, 5 and 6, let us observe that a speed-
up (referred to as speed-up 2) alternative to speed-up | above may be defined as follows
to measure the utilization of concurrency by the implementation: speed-up 2 is cpu time
observed on a single processor with the code compiled and linked with global optimizations,
associativity and vectorization but with no concurrency divided by the cpu time observed on
eight processors with the code compiled and linked with global optimizations, associativity,
vectorization and concurrency. Therefore, speed-up 2 values are computed using cpu time
values in Tables 6 and | instead of the cpu time values in Tables 2 and | used in computing

speed-up | values. The values of speed-up 2 that result are reported in Table 7 below.



problem  overall speed-up when K is optimality.cut speed-up when K is

size 100 1000 10000 100 1000 10000
(1) 33 4.3 4.4 4.3 4.5 4.5
(ii) 32 4.1 4.2 4.2 43 43
(iii) 3.0 4.0 4.4 3.9 43 4.6
@iv) 2.6 3.5 4.0 3.6 3.8 4.1

Table 7. Values of speed-up 2

The speed-up 2 values in Table 7 compare well with similarly computed values reported
in [9] for a quadratic programming algorithm.

Let us now consider the utilization of the vectorization capabilities of the Alliant FX/8
by our implementation. To measure this we computed a speed-up (referred to as speed-
up 3) by dividing the cpu time observed with the code compiled and linked with global
optimizations only and run on a single processor, by the cpu time for the code compiled
and linked with global optimizations, associativity and vectorization and run on a single
processor. Speed-up 3 values are thus computed using corresponding values in Tables 5 and
6. We report the values that result in Table 8 below.

problem  overall speed-up when K is  optimality.cut speed-up when K is

size 100 1000 10000 100 1000 10000
0) 1.1 1.2 13 1.1 1.2 1.3
(i) 1.1 12 13 1.1 1.2 1.3
(iif) 12 13 1.4 1.2 13 1.4
(iv) 1.2 13 1.4 1.2 13 1.4

Table 8. Values of speed-up 3

The speed-up values in Table 8 are not satisfactory. (The possibility of vectorization
speeding up computations by a factor of two to four is mentioned in [I, Section 1.2.2].)
Since the computation in Algorithm | is dominated by work in routine optimality.cut (es-
pecially for large K), and routine optimality.cut essentially involves calls to DPLO, the
poor vectorization indicated by speed-up 3 values in Table 8 is due to poor vectorization of
DPLO. DPLO is a large package of subroutines and in the runs mentioned in this paper we
have not attempted to manually introduce Alliant compiler directives into DPLO for bet-
ter performance, i.e. only the automatic optimizations (including vectorization) introduced
by the Alliant compiler were in effect. The speed-up 3 values in Table § suggest that we
may be able to improve the performance by manually tuning routines in DPLO for better

vectorization.
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Let us now examine the effect of global optimizations on the performance of our imple-
mentation. A convenient way to do that would be by examining the values of a speed-up
(referred to as speed-up 4) obtained by dividing the cpu time on a single processor for the
code compiled and linked with no global optimizations, no associativity, no vectorization
and no concurrency by the corresponding cpu time on a single processor for the code com-
piled and linked with global optimizations, but with no associativity, no vectorization and

no concurrency. The values of speed-up 4 are indicated in Table 9 below.

problem  overall speed-up when K is optimality-cut speed-up when K is

size 100 1000 10000 100 1000 10000
(i) 2.1 2.1 22 2.1 2.1 22
(i) 2.1 22 22 22 22 22
(iii) 22 22 22 22 22 22
(iv) 22 22 22 22 22 22

Table 9. Values of speed-up 4

Speed-up 4 values in Table 9 indicate that the global optimizations can speed-up the
performance of the unoptimized code by a factor of about two. Again, since most of the
computation takes place within subroutines of DPLO (especially when K is large) this

performance improvement occurs in those subroutines.

We end this paper by observing that the above performance results indicate that the
implementation satisfactorily utilizes all the major performance improvement features of the
Alliant FX/8 except its vectorization capabilities, and that it may be possible to manually

tune DPLO to make the implementation utilize vectorization better.
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