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ABSTRACT

In fatigue, both monotonic and cyclic plastic zones are formed ahead
of the crack tip, inside which the strain history can be studied on
the basis of stable hysteresis loops and their development.
A 516 Gr. 70 piping steel was prefatigued to. represent the material
structure anticipated in. the . process. zone ‘and in the area of the
maximum tensile stress ahead of the crack-tip. = With these materials,
slow strain rate tests were performed both in bulk PWR-environments
and *in = the simulated :crack-tip =~ environments = (MnS-contaminated
water). Environment-sensitive  cracking occurred 'in  the ~simulated
crack ‘tip ‘environments and in tests where external polarization was
used to  polarize - the 'specimens  to 0.0 mV(SHE)  in. both the MnS-
contaminated and pure PWR-water.  No. marked difference was observed
between as-received material and prefatigued materials.  Usually the
residual hydrogen content of the gage length section was increased
after SSRT-testing, but based on the limited number of tests no clear
conclusions could be drawn.
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1. INTRODUCTION

Reactor pressure vessel and piping carbon steels are known to crack in
oxygenated high temperature pure water (BWR conditions) by a stress
corrosion - cracking  (SCC) mechanism both in static (Ref. 1) and in
dynamic SSRT tests  (Refs. 2 to 11). Also, reactor pressure vessel
steels are known to be susceptible to  SCC in high-temperature, 'PWR
primary side ‘water if the corrosion potential  is  raised above
-200 mV(SHE) by external potential control (Refs. 3, 12 to 14). Thus,
there seems to be both in BWR and PWR water a critical potential for
crack “initiation at about -200 mV(SHE). However, . there - are
indications - in - SSRT tests that, “e.g., ~ the  MnS inclusions in - the
SSRT specimen surface debond from the matrix and form crevices inside
which an' aggressive enviromment 1is generated by dissolution of MnS.
In these crevices, the minimum cracking potential can be lowered (for
A 508-2gteel) to about -400 mV(SHE) (Ref. 2). Similarly, Klemetti
and: Hanninen, (Ref. 11), observed SCC in the ICCGR round robin test in
which the corrosion potential  was decreased from the susceptible  SCC
potential region into the anticipated safe region." ~Sulfate: additions
to high: temperature water: have produced 'a marked -decrease “in ‘the
critical potential for SCC of pressure vessel steels.  (Ref. 15)

Phenomenologically, environment-sensitive ¢racking occurs in
SSRT testing of  reactor pressure vessel and piping steels in high
temperature - water with effects similar to the case of corrosion
fatigue. Marked  ‘environmental énhancement can occur 'in corrosion
fatigue of pressure vessel and piping steels in PWR primary water
conditions: where the corrosion potential is ‘about -700 mV(SHE), which
is much lower than the minimum stress corrosion cracking potential
obtained in SSRT tests, about:-200 mV(SHE).

Speidel * and  Magdowski, 1987 (Ref. 1), after ~summarizing ' the
environment-sensitive crack growth data of pressure vessel steels 'in
high temperature water, were able to conclude that sulfur content of
the steel has no measurable effect on the stress corrosion crack
growth rate and that there is no measurable indication of the effect
of "oxygen content or corrosion potential on growth rates of stress
corrosion cracks. Only a small percentage of their fracture mechanics
specimens indicated crack growth, suggesting it was important that the
crack tip was initially located in a metallurgically inhomogeneous
region. If so, it would be probable that this region was able to
change the crack-tip conditions with respect to the bulk water, e.g.,
through dissolution of MnS sulfide particles as proposed by Hanninen
et al. (Ref. 16),  and Klemetti et al.  (Ref. 17). Effects of
dissolution of MnS particles on crevice chemistry have been also shown
experimentally by using artifical crevices by Ford et al. (Ref. 18)
and I1li et al., (Ref. 19); therefore: when the amount of aggressive
species 1increases, the pH reduces, and conductivity increases.
Klemetti and Hanninen (Ref. 11), and Hanninen et al. (Ref. 20) have
shown that in simulated local crack-tip conditions, (i.e., saturated
MnS solution), pressure vessel steels are susceptible to SCC even at
very low corrosion potentials at 80°C. Also, the cracking
susceptibility seems to correlate with the potential dependence of
hydrogen absorption into the steel in hydrogen sulfide containing



environments. However, Congleton (Ref: 21) was able to show that in
primary. . PWR-water mno cracking was occurring and even the existing
cracks - were.. cathodically protected  at -700. mV(SHE). These
observations suggest. that once the conditions for crack growth at the
crack tip are obtained and can be sustained, cracking continues over a
wide ‘potential range. However, ‘the initiation of ecracking in bulk
reactor water is.only possible above the critical corrosion potential,
where 'pitting corrosion at the MnS inclusions occurs and local sites
for crack initiation are generated.

In corrosion fatigue crack growth; hydrogen sulfide has been proven to
be the principal species responsible for observed enhancement of the
fatigue crack growth rates in light water reactor conditions. Van Der
Sluys ~and: Emanuelson (Ref.  22) demonstrated this 'by “injection of
ppm levels of hydrogen sulfide into the corrosion fatigue crack tip of
a low sulfur 'steel, Earlier it had been well established that the
sulfur ‘content of the pressure vessel steels 'is one of: the: major
variables. in determining the corrosion fatigue crack growth in- LWR
environments (Ref. 26, 23 to 26). Recently by ~using modern
spectroscopic techniques it has been shown that sulfur which dissolves
from MnS ‘inclusions ‘also. stays inside the - crack and is present in the
corrosion product as ‘iron. sulfide (Ref. 27). Iron sulfide is ‘also
soluble din. the crack-tip. environment -and . can supply  the hydrogen
sulfide mnecessary. to sustain enhanced crack growth, as happened in the
case  of Van Der Sluys and Emanuelson's ‘experiment  (Ref. 22), where
high crack growth rate continued even after injection of hydrogen
sulfide into. the crack tip of low 'sulfur pressure vessel 'steel had
ceased. . In order to understand mechanistically the role of sulfur in
corrosion ‘fatigue ‘crack ‘growth; the effects of sulfur in both anodic
dissolution and in hydrogen wuptake has been studied and discussed
(Refs. 28 to 32). Mechanistically, the problem is complex because the
chemistry and electrochemistry .inside the crack ‘seem to favor both
reactions (Ref. 28, .33-35).



2. WORKING HYPOTHESIS

Crack-tip strain and strain rate are the critical parameters affecting
fatigue, corrosion fatigue, as well as stress corrosion crack growth

rates. Estimates of crack-tip strain rates are generally performed
under conditions of cyclically loaded long cracks in small scale
yielding or monotonically loaded short cracks in large scale general
yielding. Crack-tip strain rate has often been considered as the
unifying parameter between corrosion fatigue (CF) and'stress corrosion
cracking (SCC) especially when slow strain rate testing technique

(SSRT). is used as a link between the two. Crack-tip strain rate can
also be wused: for correlating crack growth ‘data obtained under
different testing conditions. Fundamentally,  if' the strain 'rate at

the growing crack tips of short SCC cracks in the SSRT specimens and
of long CF cracks in the compact tension fracture mechanics specimens
satisfies the. required similitude, then similitude of the chemistry
and electrochemistry inside the cracks of both types of tests must
also be assured.

When the crack-tip strain rates from SSRT tests relating to short
crack propagation in fully plastic material are correlated with the
linear elastic. fracture mechanics specimens used in corrosion fatigue
testing, the eéyclic strain history of the material ahead of the
fatigue crack tip is not considered..  Ahead of the corrosion fatigue
crack tip, cyeclic strain is occurring inside the cyclic plastic zone,
which affects the metallurgical structure of this region by producing
a cyclically  stabilized - deformation -  structure = consisting ~ of - a
dislocation cell structure, where the size of the cells corresponds to
the . amount of- strain. Therefore, the flow properties inside this
cyclic plastic zone are very different from the as-received materials
typically used in SSRT tests. When the SSRT results are correlated
with the CF data, this difference should be considered more carefully.

SSRT testing in normal PWR conditions has not produced SCC cracking,
but' often "~ in ' CF testing marked environmental effects have been
observed in the crack growth rate. The reason for this discrepancy is
that at low corrosion potentials typical for PWR conditions, SCC
cracks do not initiate or grow, but inside the CF cracks the crevice
chemistry conditions prevail and the local enviromment at the crack
tip can be very ‘different from the bulk environment. It has been
shown that local dissolution of MnS inclusions of the steel injects
sulfur species into the crack-tip environment, including sulfides
which even at ppm levels produce marked enhancement of the crack
growth rate. This should be taken into account when SSRT tests are
used for predicting the crack growth rates in reactor conditions.

In this SSRT testing program of A 516 Gr. 70 piping steel, the above
mentioned discrepancies are avoided as much as possible in order to
more accurately simulate the corrosion fatigue crack-tip conditions.
Instead of wusing as-received material, prefatigued materials were
used, which represent the material structure anticipated in the crack-
tip process zone and in the area of maximum tensile stress ahead of
the crack tip. The SSRT tests are performed both in the inert and
bulk PWR environments as well as in the simulated crack-tip



environment corresponding to equilibrium dissolution of MnS in PWR-
conditions. Both 'smooth and mnotched specimens are used so . as to
produce the multiaxial stress state which: exists at the crack tip,
The maximum possible crack growth rates are expected to be obtained
for. the material having the strain history.of the corrosion: fatigue
crack tip . subjected to: the chemical and electrochemical conditions
simulating the real crack tip as well as possible.

Also, the common :use - of ‘as-received, wunstrained materials  in
laboratory test programs ‘does mnot take into account that the materials
under plant operation are subjected to . long. ‘and . complex load
histories. Therefore the = laboratory data may mnot efficiently
represent the in-service material properties. This study -also
addresses this issue.



3. EXPERIMENTAL METHODS

3.1 Test

Material

The piping steel studied was A 516 Gr. 70 steel pipe

(37 in. x

[940 mm x 83 mm

3.25 in.}] with chemical composition shown in Table 1. The
mechanical properties of the piping steel are presented in Table 2. A
generalized cutting diagram of A 516 Gr. 70 piping steel specimens is

presented in Fig. 1.
Table 1  Chemical Composition (wt. %) of the A 516 Gr. 70 Steel Pipe
C Mn P Si Ni Cr Mo Cu Al

0.260 1.060 0.009 0.012 0.220 0.093 0.600° 0.022 0.130 0.003 0.028

Table 2

at Different Temperatures

Mechanical Properties of the A 516 Gr. 70 Piping Steel

Specimen Orientation Temp . Yield Stress UTS Area Red. Elongation

ID

(°c) (MPa) (MPa) (%) (%)
F34-1 Longitudinal 22 257.0 499.0 18 24
F34-2 Longitudinal 22 270.0 514.0 18 24
F34-3 Longitudinal 149 241.0 451.0 67 29
F34-4 Longitudinal 149 237.0 446.0 67 29
BL-I2 Longitudinal 288 230.2 4844 64 33
BL-M2 Longitudinal 288 210.4 509.5 60 31
BL-02 Longitudinal 288 263.8 494 .4 64 30




Nine CERT Specimens Cut From
Each Prestrained Panel

panel for Cyclic Prestraining of Bulk Material

Ten Blanks Cut

A 516 Gr. 70 Pipe
Section

|

Figs. 1 Cutting diagram for prefatigue and ‘SSRT specimens from A 516’Gr. 70 pipe section



3.2 Cyclic Prestraining

Cyclic prestraining was performed by using large panel specimens on
two MTS test systems rated to 550 kN (110 kip) and 2500 kN (500 kip)
(Fig. 2). The cyclic stralning tests were conducted at 288°¢C (550°F)
in a stroke-controlled mode in case of high cyclic strain range and in
a strain-controlled mode in case of low cyclic strain range. Axial
strain was measured in the case of low cyclic strain range by a high
temperature clip gage attached to the specimen. The load vs. strain/
stroke data were plotted by an XY plotter.

Specimens were prefatigued in fully reversed axial strain cycles using
a sinusoidal wave form. The maximum strain (i.e., the cyclic strain
amplitude) was either 20% or 2%, and the corresponding mean strain
values were 10% or 1%. As a cyclic frequency, 0.017 Hz (one cycle per
minute) was used. The applied average strain rateg for the prefatigue
tests were equal to 6.7 x 1077 s™~ and 6.7 x 1077 s~ respectively.
No' buckling  took. place in. the specimens even-in high cyclic strain
range fatigue. However, - in this case slight necking in the gage
length was observed: after fatigue. - The number of applied cycles for
the materials fatigued in the high cyclic strain was 25, and in the
low strain range it was 100, Both " materials were essentially
cyclically stable after five initial cycles, and after that the
maximum. load increased only slightly. = It can be considered that in
case of high strain range, 25 cycles represent about the middle of the
fatigue 1life, since one: piping steel panel specimen cracked after
34 cycles, but:  in- this case, the . fatigue crack. initiated from a
thermocouple ' spot: weld, which was  erroneously. placed on. the gage
length; a second trial piping steel specimen cracked after 50
cycles. Prefatigue was  stopped - at’ zero : strain, i.e.;, in maximum
compression, and the specimens were then unlocaded. 1In case of high
strain range, where stroke was used as controlling the fatigue
process, the actual strains may be smaller. than intended values, since
some slipping of the specimen in the grips was taking place under high
stresses. The magnitude of slipping could not be traced back, and its
effects on strain and strain range values are not exactly known.

3.3 SSRT-Specimen Preparation

Following -cyclic prestraining, the panel specimen was machined into
SSRT specimens (Fig. 3). From each prefatigued panel specimen six
SSRT specimens were obtained. The reduced gage section and the notch
in the  SSRT specimens are centered: in the fully plasticized gage
length of a prefatigued panel specimen. The type of notch used was
that shown in Figure 3, with a 60° angle and a 0.007-in. notch root
radius, giving a K, factor of about 2 according to Peterson,
(Ref. 36).

3.4 SSRT-Testing Conditions

SSRT testing was conducted in small autoclaves made of zirconium

(Fig. 4). The specimens were electrically isolated from the autoclave
body by using oxidized (550°C for 6 h) Zr retaining rings for the
seals. This made the external potential control possible during
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SSRT testing. In all the measurements, the corrosion potential was

measured by external Ag/AgCl reference electrodes. As a  counter
electrode, : a wire-form electrode made  of Pt-Rh alloy (Engelhard,
Carteret, NJ) was used (Fig. 4). For controlled-potential testing,

EG&G Princeton Applied:Research potentiostat Model 362 was wused. = The
experiments were performed in deoxygenated PWR primary water (Table 3)
and  in MnS contaminated - PWR primary ‘water, which contained the
equilibrium solubility - of - MnS -at = the  test = temperature  and
conditions. MnS was packed into a crevice formed by heat-shrink
Teflon up to about 3/4 of the gage length so that the notch in the
middle of the gage length was covered by MnS. This ensured electrical
contact between the steel and the MnS as is the case inside the CF
crack when MnS inclusions are uncovered. A . deoxygenated aqueous
environment was obtained by evacuating the piping and autoclave, which
were then filled with deoxygenated water from the water make-up tank,
which was uwnder nitrogen gas pressure.

Most of _the_ SSRT tests were carried out at the strain rate of
3.5 x 10" % 87, but in some tests also 7 x 107" s “:was used. Strain-
ing was started when a low stable corrosion potential value was
obtained.

Table 3 Nominal Water Chemistry Specification

Boron (as boric acid) ‘ 1000 ppm
Lithium (as lithium hydroxide) 1 ppm
Chloride ions < 0.15 ppm
Fluoride ions <0.10 ppm
Dissolved oxygen ~ 1. ppb

Dissolved hydrogen (saturation) 30 to-50 cm3/kg water

All other metallic or 1ionic species should be at about
trace levels. Some iron, both in solid and soluble form
is-the inevitable result of a corroding specimen.

3.5 Analysis of the Test Results

SSRT-test " results were 'analyzed in the . same 'way as - tensile test

results. . Elongation to fracture (A) was obtained from nominal strain
rate and the test time. = Before starting the SSRT tests, the nominal
strain rate obtained from the motor speed and gear ratios was cali-
brated with an LVDT and a clip gage which were in good agreement with
each other. Reduction of area (Z) was measured directly from smooth
specimens by using a traveling microscope; in the case of notched
specimens, SEM pictures of the fracture surfaces were used to compute

Z. The equivalent plastic strain at fracture initiation, € °, was
also calculated (In (SO/S)) where S, and S are the initial and final
projected surface area. In ‘case of notched 'specimens, no attempts

were made to calculate the notch opening, the change in the notch root
radius of curvature or the change ‘in the notch angle, parameters which
could have been .also used in estimation: of the  equivalent plastic
strain at fracture. The yield stress, Iy and the wultimate tensile

10



strength, o, values were obtained directly from the load-time curves
plotted by an XY plotter. Because of the relatively low resolution of
this large strain plot, the yield stress was determined from the load
where the curve deviated from the Hookean law straight line, For
notched  specimens, the stresses are mnet section stresses' calculated
for the area at the bottom of the notch. ' This was thought to be a
reasonable approximation for the stress, ‘since the 'stress concentra-
tion: factor can only be used to calculate the maximum stress ‘in the
notch root, and it does not provide any information about the stress
distribution in the cross-section of the notch root: region.

The microstructure of the prefatigued specimens  was . determined by
using transmission electron microscopy (TEM). ~After SSRT testing, the
specimens  were = studied - fractographically = to  reveal the fracture
mode . In cases of “SCC crack 'growth, the maximum crack: length was
measured and the crack growth rate was determined by anticipating that
the “crack growth. started from the notch root at the 'yield stress.
This  procedure  is believed to  result:  in a reasonable estimate of
maximum  crack growth. rate in. different materials in the 'simulated
crack-tip environments: and under controlled electrochemical potentials
(ECP). After SSRT-testing (about 6 ‘months - later)  the  residual
hydrogen: contents were measured in - some ‘specimens by cutting a sample
containing the fracture surface and most of the gage length. For
measurement a Leybold-Hereaus Model H2A" 2002 test system based on
thermal conductivity was used.

11



4. RESULTS

4.1 Cyclic Prestraining

The cyclic .stress-strain- curves of A 516 Gr.. 7O piping steel are
presented in Figures 5a and 5b. When the number of cycles increases,
the cyclic stress-strain .curve ' is higher; as compared ‘to. previous
curves or  first cycle, indicating characteristics of cyclic
hardening. Cyclic hardening is more evident in the case of the small
2% strain amplitude, Figure 5a. . In the case of high strain amplitude
(nominally 20%), the lower values of stress when strain is small are
most probably due to slipping of ‘the ‘large specimens in the grips.
When' the 'strain is high, slight ‘¢cyclic hardening can be observed.
Possible slipping in the grips reduced the maximum ‘strain achieved
during fatigue of high cyclic strain panel specimens where stroke-
control was used for applying and measuring the strain. - However, the
amount of this was very difficult to estimate.

4.2 Microstructures

The ' metallographic = structures of  as-processed:  (unstrained) and
cyclically prestrained A 516 Gr. 70 specimens are shown in Figure 6.
Following cyclic prestrains no details of the microstructure in
optical micrographs do appear more distinguished, 'as compared ‘to as-
processed - unstrained  material: The  typical - ferritic-pearlitic
microstruecture can be observed with ferrite grain size of ASTM No. 8
corresponding to an average grain size of 22 pm.

Transmission . electron  microscopy - (TEM) studies:. - indicated - that
unstrained A 516 ‘Gr. 70 steel had a low dislocation density in. the
ferrite, Figure 7Ja 'to 7c¢;  and: the dislocations 'were:  straight and

showed some. knitting into. dislocation networks. ' Inside pearlite the
cementite ' lamellae seemed to pin  dislocation . lines which formed
straight “1lines between the ' cementite 'lamellae, Figure 7d. This

structure is typical . for . carbon steels after slow-cooling - heat
treatment.

Maximum cyclic strain of 2% produced an equiaxed (average cell size
0.7 pm to 1 pm) dislocation eell structure through ‘the ferrite phase,
Figures 7e and 7g. Almost all dislocations were tangled into the cell
walls and inside the dislocation cells only very few dislocations were
present.. During cyclic loading individual dislocations are only able
to propagate distances of the order of the cell wall spacing, in this
case of the ordexr of 1 um. Inside pearlite the dislocation density
had only slightly increased, Figures /f and 7h. = Cementite ‘lamellae
have  pinned more dislocations, which can be seen especially at the
phase boundaries in Figure 7h.

High maximum cyclic strain, mnominally 20%, had resulted in highly
dislocated microstructure; Figures 7i and 7j. In this case both
ferrite and pearlite had deformed. In the ferrite, the cell size
(where it is discernable) had decreased to 0.5 um to 0.7 um. = However,
there were areas in the microstructure which contained high amounts of
evenly distributed dislocations ‘through the matrix. Also the cell

12
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Optical microstructures  of as—processed unstrained and cyclically
prestrained A 516 Gr. 70 steel: (a) and (b) unstrained, (c¢) and (d)
2% maximum strain (100 cycles), and (e) and (f) 207 nominal maximum
strain (25 cycles).
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Transmission electron microscopy microstructures of as-—
processed and -cyclically prestrained A 516 Gr. 70
steel: (a) through (d) as 'received, unstrained;
(e) through (h) 2% maximum -strain (100 «cycles); and
(i) through (1) 20% maximum strain (25 cycles).
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walls in this ‘material: were much thicker, as compared to 2% maximum
strain material. This material also contains cells. which were not
usually ‘equiaxed; but exhibited the structure:. of ‘an elongated cube,
Figures 7j and 7k. Inside regions of pearlite the spacings between
cementite lamellae were mnow full of tangled dislocations, the density
of which showed some local :differences. No''clear dislocation cell
structure could be discerned in the pearlite, Fig. 71.

4.3 Slow Strain Rate Tests

The SSRT-test results in helium, pure water,; bulk and MnS-contaminated
PWR water for A 516 Gr. 7O piping steel in the as-received condition
and in prefatigued conditions are presented in Table 4.+ It can be
seen from this table that the notch with K_ = 2 markedly increased the
vield stress and the wultimate tensile stress of the specimens and
reduced  the elongation to fracture, The 'best mechanical properties
were obtained in helium, where prefatigued notched specimens with 10%
mean strain showed the highest elongation to fracture of all the

notched specimens. In pure and PWR-water the stress and the elonga-
tion values behaved similarly with respect to the level of
prefatigue. It 'seems that prefatigue does not: affect the material

mechanical properties in the SSRT-tensile test in conditions where SCC
is not taking place.

In as-received, unstrained condition, A 516 Gr. 70 piping steel failed
in a ductile manner in both deoxygenated pure and in deoxygenated PWR-
water, Figs. 8 and 9. In MnS-saturated PWR-water, SCC took place,
Fig. 10.

Low-strain, prefatigued A 516 Gr. 70 piping steel fajiled in deoxygen-
ated; pure PWR-conditions at free corrosion potential always in 'a

ductile manner, Fig. lla. Cathodic polarization to -1500 mV(SHE)
produced also ductile fracture, Fig. 1llb, with reduced elongation to
fracture and reduction of area. Anodic¢ polarization to 0.0 mV(SHE)

caused SCC -in pure deoxygenated PWR-water Figs., 1llc and 11d. Four
SSRT tests were performed for low strain prefatigued A 516 Gr. 70
piping steel in MnS-saturated deoxygenated PWR-water. The corrosion
potential was varying in each test; SCC occurred in three specimens,
Figs. 12a to 12c are examples, but did not occur in the specimen hav-
ing the lowest corrosion potential (E = =680 mV(SHE)), Fig. 12d.  Also
the crack growth rate of specimen having corrosion potential, E = -660
mV(SHE), was markedly lower than in case of the two other specimens
which showed clear SCC. The SCC  fracture surface was typical of
environment-sensitive cracking of low alloy steels, Figs, 13 .and 14,
Polarization to 0.0 mV(SHE) in MnS-saturated PWR-water resulted in the
highest crack growth rate in this testing series. In this case the
fracture surface was strongly attacked, Figs. 15a to 15c¢. Cathodic
polarization to -1500 mV(SHE) caused ductile fracture with reduced
elongation to fracture and reduction of area, Fig. 15d.

High strain prefatigued A 516 Gr. 70 piping steel was very ductile in
helium as well as in deoxygenated PWR-water at 288°C, Fig. 16. This
material condition showed SCC both in MnS-saturated, deoxygenated PWR-
water  at free corrosion potential, E = -570 mV(SHE), Fig. 17, and
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Table 4 Summs~ of the SSRT Test Results of the As-received and Prefatigued A 516 Gr. 70 Piping Steel Specimens in Helium,
Pure Deoxygenated, Deionized Water, and Pure and MnS-contaminated Deoxygenated PWR Water

Environment As-received Smooth or Type of Test Corrosion Yield Ultimate Elongation A 1n(S/So) Failure Mode

Pre-strained Notched Potential Potential Stress Stress to Fracture D = Ductile

§'2) (MPa) (MPa) % B:= Brittle
Pure Water As. Recvd. Smooth Free m—— 211 412 28.4 62.8 0.99 D
Pure Water As. Recvd. Notched Free ————— 405 519 10.8 35.7 0.44 D
Pure Water As. Recvd. Notched Free e 260 592 17.0 33.5 0.40 D
PWR Water As. Recvd. Smooth Free ———— 192 424 26.6 69.4 1.18 b
PWR Water As. Recvd. Notched Free —— 265 488 16.4 41.7 0.54 D
PWR Water+Mn$S As, Recvd. Notched Free ~0.65 207 467 8.3 17.4 0.19 B
PWR Water Low=Strain Notched Free -0.83 353 498 17.0 53.5 0.76 D
PWR Water+MnS Low-Strain Notched Free ~0.66 301 509 l4e1 41.9 0.54 B
PWR Water+Mn$S Low=Strain Notched Free -0.51 280 384 3.3 12.5 0.13 B
PWR Water+MnS Low=-Strain Notched Free ~0.68 332 530 18.8 53,5 0.77 D
PWR Water+Mn§ Low-Strain Notched Free -0.58 280 415 3.8 16.0 0.13 B
PWR Water Low-Strain Notched Applied 0.00 290 363 2.4 7.2 0.08 B
PWR Water Low=Strain Notched Applied ~1.50 343 509 11.3 35.8 0.44 D
PWR Water+Mn$S Low=Strain Notched Applied 0.00 301 410 3.8 8.8 0.09 B
PWR Water+Mn$ Low=-Strain Notched Applied -1.50 327 509 11.3 29.0 0.34 D
PWR Water+MnS Low=-Strain Notched Applied -1.50 322 485 9.1 26.7 0.31 D
Helium High-S8train Smooth - e 405 579 23.7 7543 1.40 D
Helium High-Strain Notched e e m——— 415 654 19.5 39.8 0.51 D
PWR Water High-Strain Smooth Free ~0.85 317 459 21.7 73.3 1.32 D
PWR Water High-Strain Notched Free -0.80 348 530 12.3 39.3 0.50 D
PWR Water High=-Strain Notched Free ... . oew—e- 369 561 22.0 75.8 1.42 D
PWR Water+Mn$S High~Strain Notched Free =04 57 358 540 11.6 33.5 Q.41 B
PWR Water+Mn$S, High-8train Notched Applied 0.00 — 514 3.3 9.9 0..10 B
Pure Water High-Strain Smooth Free ————— -— 462 18.9 65.0 1.05 D
Pure Water High-Strain Notched: Free ————— ——= 533 15.2 32.0 0.36 D




Fracture surfaces of as-received unstrained A 516
Gr. 70 “piping steel  SSRT—specimens: (a)  smooth
specimen, and (b) notched specimen in deoxygenated
pure water at 288°cC.

26



Fig. 9  Fracture surfaces of as-received unstrained A 516
Gr. 70 piping steel SSRT-specimens: (a) smooth, and
{b) notched specimen in deoxygenated PWR-water at
288°cC.
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Fracture surface of as-received unstrained notched specimen of A 516 Gr. 70 piping steel
tested in MnS-saturated PWR Water (E = =650 mV(SHE)) at 288°C. Note - ‘almost complete
penetration of specimen by -SCC. and that the fracture ‘surface has “been ‘attacked by the
environment.
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Fracture surfaces of low-strain prefatigued A 516 Gr. 70 piping. steel tested in deoxygenated
PWR-Water at 288°C: (a) free corrosion potential (E = -830 mV(SHE)), (b) controlled potential
at -1500 mV(SHE), (c) and (d) controlled potential at O mV(SHE). :
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Fig. 12 Fracture surfaces of four 1low—-strain prefatigued A 516 Gr. :70 piping steel mnotched
specimens tested in MnS-saturated deoxygenated PWR-Water at 288°C: (a) E = =510 mV(SHE),
(b) E = =580 mV(SHE), (c) E = =660 mV(SHE), and (d) E = -680 mV (SHE).
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13 Fracture surface of low-strain prefatigued A 516 Gr. 70 piping steel mnotched specimen

tested in MnS—-saturated deoxygenated PWR-Water "at 288°C (E = =510 mV (SHE). Lok



Fig. 14 Details of the fracture surface of :low-strain prefatigued A 516 Gr. 70 piping steel
specimen tested in MnS-saturated deoxygenated PWR-Water at 288°C, E = =580 mV(SHE).
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15 Fracture surfaces of low-strain ‘prefatigued A 516 Gr.
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70 steel notched specimens tested

under external potential control in MnS-saturated deoxygenated PWR-Water at 288°¢C: (a)

through (c¢) 0 mV(SHE), and (d)=1500 mV(SHE).
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Fracture surface of high—~strain prefatigued A 516 Gr.

70

tested in MnS-saturated deoxygenated PWR-Water at 288°C (E

piping steel notched 'specimen
=570 mV(SHE) )



Fig. 18 Fracture surface of high-strain prefatigued A 516
o Gr. 70 piping steel notched specimen tested in MnS-
saturated deoxygenated PWR-Water at 288°C under

external potential control at 0 mV(SHE).




under external anodic polarization to 0.0 mV(SHE), Fig. 18. At the
high potential the specimen was markedly attacked by:the environment,
Fig. 18b,

Stress corrosion occurred either in MnS-saturated PWR-water, ‘or in
pure PWR-water when specimens were anodically polarized to 0.0
mV(SHE). In Table 4 SCC can be seen as a short elongation to fracture
(A) and espécially low values of reduction of area (Z) and equivalent
plastic strain at fracture. The fracture surfaces of most  of the
specimens were shown in Figs. 8 to 18.

The observed SCC. crack growth rates are summarized in Table 5. < It can
be seen’ that at lower potentials ‘cracking - occurs —only in MnS-
saturated conditions, where corrosion potential 1is  between -510  to
-650 mV(SHE); lowering corrosion potential reduces ' the crack growth
rate. - When the specimen is polarized to 0.0 mV(SHE), the crack growth
rate is about the same in pure PWR-conditions, as  compared. to. MnS-
saturated PWR-water. Based “on ' these results' there are no. marked
differences between unstrained and prefatigued materials.

The crack growth rate values in Table 5 are based on the premise that
the initiation of cracks takes place when the yield stress, determined
from the load-time curve, 1is exceeded. If initiation  takes: place
later, the crack growth rate is' then correspondingly higher. These
crack growth rates are about the same as the time-based crack growth
rates generally determined for pressure vessel steels from tests with
large fracture mechanics “specimens in reactor water; typically thg
maximum crack growth rate from both cyclic and SSRT-tests is 7 x 10°
m/s (Ref. 37): In this case ‘the supply of needed sulfur comes from
the randomly distributed MnS-inclusions of the steels. =~ It can now be
stated that the above mentioned. value of  crack growth rate. is a
reliable ' estimate  for  worst case : situations - for- environmentally
enhanced,  time-based crack growth of  carbon and low alloy. steels.
Also it . can be: observed that the prefatigued materials ‘do not show
higher crack growth rates than the as-received virgin material.  This
also clarifies the similar behavior of environmentally enhanced crack
growth rates in cyclic: loading, where the crack tip material can be
considered to correspond the material used in this study, as compared
to SCC tests.

Another important factor was that the average eéxternal corrosion
potential in. MnS-saturated PWR-water: experiments was -590 mV(SHE) and
it = generally - was -750 to: -850 mV(SHE) in the: pure PWR-water
experiments.  On the basis of Pourbaix diagrams these higher potential
values ‘are - in the - areas of HyS, FeS and * FeS  which' are stable
corrosion products in this case. It can be argued that in corrosion
fatigue testing of steels in typical reactor water, the crack tip
environment which produces the high crack growth rate is similar to
that created in this study, in other words, the MnS-saturated PWR-
water. This means that in BWR-water, where the external potential is
high, the crack-tip potential is lower than the external corrosion
potential and in PWR-water where the external potential is low the
crack-tip potential can be higher near dissolving MnS inclusions.
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Table 5 The SCC ecrack growth rates: for notched A 516 -Gr. 70 piping
steel specimens, when the crack initiation stage is: estimated
to be while passing the yield point.

Material Condition Crack growth rate, m/s
As-received PWR 4+ MnS, E = -650 mV(SHE) 2.1 x 10'8
Low strain prefatigue PWR + MnS, E = -510 mV(SHE) 2.5x 10"8
Low strain prefatigue PWR -+ MnS, E: .= -580 mV(SHE) 2.7 % 10'8
Low strain prefatigue PWR + MnS, E = -660 mV(SHE) 2.8'x 10'9
Low strain prefatigue PWR + MnS, E (applied) = 0.0 mV(SHE) 3.3'x 10'8
Low strain prefatigue PWR-Water, E (applied) = 0.0 mV(SHE) 2.5 % 10'8
High strain prefatigue PWR + MnS, E = -570 mV(SHE) 1.2 x 1078

High strain prefatigue EWR + MnS,

=3

(applied) = 0.0 mV(SHE) 2.5 x 1078
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4 4 Residual Hydrogen Contents

In" order to evaluate the role of absorbed hydrogen in environment-
sensitive  cracking of these SSRT specimens some specimens were

selected for residual hydrogen analysis. Table 6 shows the results
obtained from A 516 Gr. 70 piping steel specimens evaluated more than
half a year following completion of actual SSRT-testing. The

reference hydrogen content was 2.2 ppm, and most of the specimens
showed increased hydrogen contents after exposure to environments.
Some comparisons between gage section and the thicker section of the
specimen - which had been exposed to the same autoclave environment
showed that the gage length was showing higher hydrogen contents. No
clear differences between SSRT specimens of unstrained material ‘and
prefatigued materials could be seen. A before and after effect was
observed when oxide removal was applied to ARSN-10 specimen,; but it
could not be adequately explained. Many of the gage length specimens
had experienced oxide removal a significant time before hydrogen

content measurement, in order to prepare the fracture surface for SEM
examination.
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Table 6 Residual Hydrogen contents of the A 516 Gr. 70 specimens after
SSRT-testing

Specimen Corrosion Location : H-content
_Potential
(mV) , - (ppm)
Reférence Material | S s —e s 2.2
(Unexposed)
PESPN-6; PWR-water. . .0 Fae- gage length 4.15.2.2
PFSPN-6, PWR-water ER thick section 2.1
PFSN-12, PWR-water 0 gage length 3.5;:2.6
PFSN-12, PWR-water 0 thick section 2.1
PFSN-15, PWR + MnS =510 gage ‘length 1:3;: 1.2
PFSN-15, PWR ++ MnS -510 thick section 1.8
PFSN-17, PWR-water -1500 gage length 2:9; 3.5
PESN-17;- PWR-water -1500 thick section 2.0
5.0;5.3.2

ARSN-10, “PWR + MnS -650 thick section
~ with oxide

ARSN-10, PWR + MnS 650 thick section 0.6, 0.4
after oxide removal

ARSN-10," PWR: + MnS - -650 gage length 4.9

PFSN-13, PWR. + MnS -660 gage length 3.5
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5. DISCUSSION

Ahead of the corrosion fatigue crack-tip, the most important mechanism
for the accomodation of large strains 1is the formation of the

dislocation cell structure. Just- ahead of : the crack-tip "at high
strains an equiaxed cell size 1is formed, where <cell walls are
impenetrable by  dislocations due- to: high misorientation. Similar

metallurgical conditions have been simulated in. this study. in order to
understand the micromechanisms of environmentally enhanced crack
growth 'and in order to obtain maximum possible crack growth rate
values. = SSRT-tests with "as-received materials as well as prefatigued
materials ‘showed that prefatigue affected only the yield and ultimate
tensile stress values, increasing them due to cyclic hardening of the
material. In tests where SCC did not ocecur, elongation to fracture
and reduction of area were even higher in highly prefatigued material
as compared to as-received material.

Liaw and Landes (Refs. 38 and 39) have . studied the effects of previous
load histories on fracture toughness properties of 4340 steel and AISI
316 stainless steel: They- observed ~"that the effects of ‘cyclic
prestrain on fracture toughness could be related to cyclic ‘softening
characteristies of the 4340 steel and cyclic hardening of AISI 316
steel, - respectively. Cyclic - softening - increased ~the fracture
toughness of 4340 steel  and decreased that of AISI 316 steel, i.e.,
the - toughness behavior -could be 'rationalized by material strength
levels. The results of this study indicate that in case of A 516 Gr.
70 steel, which showed slight cyclic hardening, the mechanical
properties are improved in SSRT-tests.

When SCC was taking place in MnS-contaminated: PWR-water or in pure as
well as MnS-contaminated PWR-water under external polarization to 0.0
mV(SHE) , the effect of mié¢rostruecture (as-received or. prefatigued) did
not seem to play any major role as far as the. effects on the maximum
crack  growth trates are considered. Also the fracture surfaces were
identical and mno signs of prefatigue dislocation cell structure can be
discerned from the SCC fracture surfaces. This explains also why the
environment-enhanced brittle-like corrosion fatigue fracture surface
is similar to SCC fracture surface (Figs.: 15 and 17) obtained e.g., in
conventional SSRT-tests. - Therefore, one can expect that' there must be
some kind of mechanism leading to breakdown of the dislocation cell
structure  formed .ahead of the advancing corrosion fatigue crack-tip
which ~then leads to . similar deformation mechanisms. which can take
place in as-received material in a conventional SSRT-type of test:

When the corrosion: fatigue crack-tip conditions were:simulated by MnS-
addition to -the  test ‘environment, the significant effect was an
increase of the- corrosion potential from a range of -750. to -850
mV(SHE) to. a range of =510 to -650 mV(SHE), i.e., into the area in the
potential-pH diagrams where H,S and FeS,/FeS are stable phases. This
increase 1in potential may be' explained by the acidification of the
environment if the corrosion potential follows the hydrogen line in
the diagram. . Only one specimen exposed to MnS-saturated water did not
show cracking in these tests and in this case for some unknown reason
the corrosion potential was an unexpectedly low -680 mV(SHE). Another
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specimen having a corrosion potential of -660 mV(SHE) exhibited minor

cracking compared to . cracking in ‘other specimens at higher free
corrosion potentials. Therefore ~even 'in  these MnS-contaminated
conditions there may be a corrosion potential threshold for
environment-sensitive ' cracking ' to ' ocecur, When specimens  were

cathodically polarized to -1500 mV(SHE) only reduced ductility with
ductile cracking could be observed and MnS did not seem to show any
effect. After polarizing to 0.0 mV(SHE) all the specimens cracked at
about the same rate and again MnS-contamination did not play any major
role, 'as compared with pure PWR-water. It may be concluded that MnS-
contamination in PWR-conditions reduces the threshold potential for
environment-sensitive cracking, as compared to pure PWR-water (~ -200
mV(SHE)).  The ‘lowest corrosion potential exhibiting cracking in MnS-
contaminated PWR-water was -660 mV{(SHE), whereas at -680 mV(SHE) no
cracking was observed 1in this study. Mechanistically it is still
unclear if a threshold potential for cracking really exists and which
are ‘the controlling parameters for that phenomenon.

A first attempt was made to measure the residual hydrogen contents of
the SSRT-test specimens, in order to understand if the conditions
causing  cracking also enhance markedly hydrogen uptake -into test
specimens., ‘Increased - residual = hydrogen contents  were clearly
observed, but since the measurements were performed more than half a
year after actual testing, there has been plenty of time for hydrogen
to diffuse out of the specimens. —In the future specimens should be
transferred directly from ‘the autoclave into a hydrogen analysis
instrument in order to obtain more reliable wvalues for absorbed
hydrogen.

Mechanistically, 'cracking 'was thought te -occur by hydrogen-induced
mechanism, where critical parameters are hydrogen-enhanced plasticity
and strain localization at shear bands at the notch root, which causes
the ' breakdown of " the dislocation :cell -structure in pre-fatigued
materials. . The fact of similar crack growth rates in both as-received
and pre-fatigued materials is not in favor of a slip dissolution-type
mechanism, because deformation processes in as- recelved and cycllcally
stabilized materials are very different.

By using this technique we expect that the measured crack growth
values are . the maximum values for this material environment system.
The major unknown. factor in determining these growth rate values is
the initiation of cracking which may eoccur after the yield point even
in notched specimens. Such a revaluation would change the results
obtained only slightly. This kind of testing could be used in the
future, for instance for measuring the activation energy for cracking,
the dependence of crack growth on applied potentlal and for hydrogen
uptake in crack-tip conditions, ‘
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6.

CONCLUSIONS

The following conclusions may be derived from this study:

In conditions where SCC did not occur, prefatigue  clearly
improved the mechanical properties of A 516 Gr. 70 piping steel.

Environment-sensitive cracking occurred in MnS-saturated PWR-
water conditions and under anodic polarization to 0.0 mV(SHE)
even in pure PWR-water.

MnS raised the electrochemical potential of  the steel to the
range of -510 to -650 mV(SHE) in PWR primary water, i.e.; in the
stability areas of FeS),, FeS and H,S. This  level of
polarization is also expected to develop inside the cracks due
to solubilizing MnS-inclusions.

Crack growth rate was_about the same in prefatigued materials,
(iie. ~ 2 to 3 x 10°° m/s,) @as in ‘as-received material. The
estimated crack growth rates are of the same order of magnitude
as the highest measured valueg for fracture mechanics specimens
of low alloy steels, ~ 7 x 10-8 m/s.

Mechanistically, cracking was  thought to occur by hydrogen-
induced mechanism, where. critical parameters are hydrogen-
enhanced plasticity and strain localization at shear bands at
the. notch root, which causes  the breakdown of the dislocation
cell structure in prefatigued materials.
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