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Abstract

Simulated DHLW (Defense High Level Waste) package performance tests were
carried out at the WIPP (Waste Isolation Pilot Plant) by emplacing a number
of waste canisters containing electrical beaters into the floor of the mine.
Peak temperatures were about 130°C, and the tests ran for three years.
During this time, an unanticipated large amount of water was collected from
heater hole B042, A study was, therefore, undertaken to determine if this

fluid was derived from normal weep brines. This was accomplished by
comparing the amount of salt deposited by the dried weep brines with the
volume of condensed steam collected during the test. In sampling this
condensate, it was noted that the fluid was strongly acid (pH 0.7). High

temperature hydrolysis of the magnesium from the brine was found to be the
cause of this acid condition, so the effect is of no relevance to a low-
level waste repository.

Documenting the post-test condition of the wvarious backfills was the
other objective of this report. In spite of being exposed to acidic vapors,
the bentonite-sand backfill retained its mineralogic integrity. However,
the bentonite-sand backfill compacted between the canister and the wall only
achieved a density that was about three quarters that of a pore-free
material. The bentonite backfill also showed evidence of hair-line cracks
through which steam had left the vicinity of the canister. In contrast,
compacted crushed salt backfill exhibited no evidence of through-going
cracks and was compacted to better than 99% of that of pure nonporous sodium
chloride. Thus, the seal provided by a crushed salt backfill appears to be
superior to that provided by bentonite.
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INTRODUCTION

The Waste Package Performance Technology Experiments for Simulated DHLW
(Defense High Level Waste) are a series of in situ experiments to evaluate
the performance of barrier materials interposed between waste and the host

rock of a repository (Molecke, 1984). The tests were carried out at a depth
of about 2150 feet in salt beds of the lower Salado Formation at the WIPP
(Waste Isolation Pilot Plant), near Carlsbad, New Mexico. Each test

consisted of a full-sized waste canister fabricated from a programmatically
relevant alloy (Table 1).

Table 1
Heater Test Specifications

Heater B047 B048 B042 B045
Canister Material TiCode TiCode Steel Steel
Backfill Bent.+Sand Bent.+Sand None Crushed Salt
Hole Diameter# 36" 36" 36" 36"
Canister Diameter 2 24" 24" 24"

Brine Injected ## 100 ml 100 ml None 100 ml

Canisters were emplaced vertically into holes in the mine floor such
that the top of the can was about 88 inches below the mine floor. Each
heater was sealed at the top with an air-tight cap. Heat was supplied
internally by Calrod electric heating elements. The maximum hole wall
temperature for most of the test was about 130°C. A variety of conditions
existed in the annular spaces between the canisters and hole walls. In some
cases, such as with B042, the hole was simply left empty after the heater
was 1inserted. In other experiments, the remaining space was filled with
crushed rock salt (B045) or 70% wt. bentonite clay mixed with 30% wt. silica
sand (B047 and B048). In every case the salt deformed plastically during
the tests so that the free space in the hole was eliminated. In the
process, this either compacted the backfill or, when no intervening material
existed, brought rock salt into direct contact with the heater.

This report summarizes a variety of observations made relative to the
influence of brine during these tests. Initially, the question of how much
brine actually entered heater hole B042 is considered in some detail. This
is of importance because, unlike heater hole B048 that received about 100 1
of artificially introduced brine A (Molecke, M.A., 1983), the flow into B042

was all natural fluid derived from the formation. The next matter addressed
is the ability of boiling Dbrine to create strongly acidic environments
around the experiments. Finally, the relative performance of crushed salt

and bentonite backfills are evaluated.



HEATER B042 SITE STUDIES

Assessing the amount of natural weep brine 1likely to migrate toward a
heater (or to a waste canister) was an important objective of these tests
(Nowak, 1985). Hence, the space between the canister and hole wall was
continuously purged with dry nitrogen, and the scavenged moisture was
recovered by passing the gas over a molecular sieve specific to water (Nowak
and McTigue, 1987). The general pattern of brine influx found involved a
high initial delivery rate that fell with time. In the first 600 days a
total of 35 1 of brine were collected. Because this amount of brine has
significant technical implications, an independent check on this figure was
sought. This was performed by measuring the amount of salt deposited from
the dried weep brines, and then using that value to estimate the total brine
influx into the heater hole

The condensate was also found to be so acidic that it readily corroded
the stainless steel fittings 1in the collection system. A combined
theoretical and laboratory approach 1is taken to demonstrate that this
condition was a natural consequence of drying a typical weep brine at
temperatures above about 100°C. Finally, the mild steel corrosion products
forming on the canister surface are documented.

Estimate of Brine Influx based on Weep Salt Deposition

At the termination of the experiment, the heater and adjacent salt were
recovered using a 37 inch core barrel. After removing the core from the
hole, the exterior surface of the heated canister was exposed by splitting
off the six inch thick skin of rock salt comprising the outer part of the
core. At this point, it became apparent that during the test the rock salt
had flowed inward eliminating the space that originally existed between the
canister and the hole wall. Caught between the canister and the rock salt
was a porous irregular layer of discolored salts (Table 2). In part, this
layer was comprised of salts 1left behind by evaporating weep brines,
Because of the hole closure, however, it was 1impossible to assess whether
these salts were initially deposited on the canister surface or the hole
wall. This layer was also contaminated with crushed salt (used to seal the
top of the hole), rust (from the canister), and in the hole bottom, silica
sand. In general, the layer was thinnest and appeared to be least
contaminated over the midsection of the canister. Table 2 summarizes the
apparent thicknesses of these accumulations.

At first glance, it might seem that this data could be used to estimate

the brine influx. However, three factors preclude such an application: (1)
in both the top and bottom of the hole, crushed rock salt from the formation
collected and contributed to the mass of material in the annulus, (2) the

dried weep salts form a porous mass that 1is distributed in an irregular,
patchy manner, and (3) much of the material accumulated over the midsection
of the heater 1is rust rather than salts deposited from dried weep fluids.



Table 2
Thickness of Salts Deposited on Heater B042

Distance From Bottom Thickness Distance From Bottom Thickness
(inches) (inches) (inches) (inches)
0o = 2 60 0.20
6 % 2 72 0.20
9 * 1.5 89 0.20
12 = 0.75 90 0.38
18 0.44 93 0.38
24 0.31 96 % 0.56
36 0.25 102 * 0.75
48 0.20 110 * 1.06

“"Powdered salt or sand adds to the amount of material accumulated.

Because of 1its heteogeneous nature, an analytic procedure was required
to quantitatively evaluate the amount of weep salt incorporated into the
layer Dbetween the canister surface and the rock salt. Several large
sections of overcored salt came off the canister intact, covering about 84
percent of the total canister surface area. A portion of the dried weep
salts remained on the inner surface of the overcore, while the rest remained
firmly attached to the heater. The material on the heater was sampled by
scraping off all the salts (along with some rust from the corroded heater)
in a 1 foot wide strip over the length of the heater. The weep salts were
also removed from the inner surface of the overcore, though this required a
somewhat different technique. Pieces of overcore were first divided into
one foot sections and the area measured (Fig.l). The inner surface was then
chipped off with a pneumatic chisel. These chips were then collected and
weighed. Next, the chips were leached with deionized water to determine how
much rust was incorporated into the samples. The resulting solution was
also analyzed to determine the proportions of rock salt and weep salts in
the samples. Taken together, this information was then used to estimate the
amount of brine that had flowed into the hole (Appendix A).

Depending on the assumptions used, these calculations implied that
anywhere between 20 and 23 1 of water might have entered the hole. In
comparing these numbers with the field test data, it 1is important to realize
that once the hole wall was above the boiling point of brine, additional
salts could not be deposited by brine drying on the hole wall.
Consequently, weep salt accumulation at the interface would cease, even
though boiling behind the interface continued to contribute steam to the
hole (which then could be collected). Taking a Time - Wall Temperature
profile at the heater midplane (Fig. 2B - taken from Nowak and McTigue,
1987) , it was estimated that this occurred sometime between 250 and 400 days
into the test. Longer times are more likely because 1in order for salt
accumulation to effectively stop more than just the midsection of the hole,
it would have to reach the brine boiling point. Nowak and McTigue (1987)
found that the cumulative brine influx at 250 days was about 15.5 1, and at
400 days about 26.5 1 (Fig 2A). In short, there 1is remarkably good agreement
between the fluid volumes collected during the field test, and the influx
predicted based on the residual salts. It also follows that the fluid
collected during the test can be ascribed to normal weep fluids, and 1is not
a manifestation of some extraneous unanticipated moisture source.



Source of Acid Condensate

The other feature of this particular heater experiment was the highly

acidic nature of the condensate. Values as low as pH 0.7 were routinely
measured 1in the field. Further, the dark green color imparted Dby the
dissolved nickel (from instrumentation of test hardware), suggested that

some of the hydrogen ion initially in solution had also been consumed
through corrosion of Inconel fittings in the collection line prior to making
the pH measurement. The origin of the acid in the condensate has been
recognized for some time (Krumhansl, 1986, Sandia Internal Memo to M.A.
Molecke) as the hydrolysis of the magnesium salts deposited from the weep
fluids. This was verified experimentally by taking WIPP salts, placing them
at the bottom of a closed quartz tube and then placing the lower half of the

tube 1in a furnace at various temperatures. The condensate forming in the
cool end of the tube was collected and the pH value measured (Fig. 3). At
temperatures below 350°C, there was no odor of sulfur therefore, HCl was the
principal acid given off. Above this temperature, a distinctly sulfurous

smell was detected so that under these conditions, sulfuric acid can
apparently be evolved by the hydrolysis of magnesium sulfate.

The process of acid generation was investigated further by boiling an
idealized weep fluid (26.82 g NaCl, 23.75 g MgCl2.6H20, 4.87 g KC1l, 3.27g
Na2S0il, 100 g H20) to dryness. The first condensate derived from boiling
fluid at 106°C had a pH of 3.5. As boiling progressed, the condensate pH
gradually climbed to around 4.7. Finally, as the crystal mush congealed and
the last water was lost, the condensate pH plummeted to around 1.2. The
experiment was extended further by slowly dripping water on the salt cake
and collecting the condensate. The rate of water addition was adjusted so
that the salt cake remained just moist enough that a trace of boiling brine
resided in the pores in the bottom of the salt cake. The temperature of the

brine saturated salt cake was variously measured as being between 115 and
160°C.
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In this manner 3.5 Is of fluid was passed over the salts deposited in the
bottom of the flask. The pH of this condensate varied between 1.9 and 2.0
The phases detected in the dried salts from the flask include halite Race,
Carnallite (KMgCl3.6H20) , KC1 (sylvite) , and possibly traces of Mg (0H)2
Mg2 (OH) 3Cl, and bischofite (MgSOA.6H20) . Halite, ~carnallite and traces of
sylvite, kieserite, and bischofite were also detected in x-ray diffraction
patterns obtained from salts deposited on the heater (Table 3).

Table 3
Mineralogy of B042 Heater Scale
(Distance are downward from the top of the heater)

JS 57 From 0 to 1 foot down - halite.

JS 58 From 1 to 2 feet down - mostly halite and traces of bischofite and
sylvite

Js 59 From 2 to 3 down - mostly halite, a few good carnallite x-ray
diffraction peaks (a few important ones missing between 24 and
26.5°%). Possibly traces of kieserite, bischofite and sylvite.

JS 60 From 3 to 4 feet down - mostly halite but the carnallite x-ray
diffraction peaks are well represented in this sample; possibly a
trace of bischofite also.

Js 61 From 4 to 5 feet down - halite, carnallite and sylvite.

JS 62 From 5 to 6 feet down - some small clear gemmy non-cubic crystals
which proved to be pure carnallite. The bulk of the sample was
halite with a lesser, Dbut significant, amount of carnallite. May

contain traces of bischofite as well.
Js 63 From 6 to 7 feet down - halite and probably a little carnallite.

JS 64 From 7 to 8 feet 4 inches down - halite and a definite, though
minor, amount of carnallite. (This sample originated from the
junction between the bottom of the weep salt accumulations and the
top of the crushed salt filling the hole bottom)

Js 65 From 8§ feet 4 1inches to the heater bottom. Essentially pure
halite.
JS 66 Hardpan heater scale taken from the dense salt - halite and

possibly a little bischofite.
None of the pH values obtained experimentally, however, are as low as
those obtained in the field. This discrepancy can be readily explained from
theoretical arguments, based on a simplified model of the acid generation

process:

KMgC13.6H20 ——————- > KC1 + Mg (0H)2 + 2HCL + 4H20 (1)

-11.



The van't Hoff equation was employed to calculate the influence of
temperature and steam pressure variations on the efficiency of the acid

production mechanism illustrated by Equation (1), (Table 4) . The enthalpy
for carnallite at 25°C was taken from Naumov, et al.(1971) the free energy
of carnallite at 25°C came from Harvie et al., (1984) and the remaining
thermodynamic data were taken from Robie, et al (1978). Unfortunately, only
qualitative agreement between calculations and experimental and field test
data are possible (Fig. 3). This arises because of the poor quality of the

thermochemical data available for carnallite, and because complex salts such
as Mg2(0H)2C12.nH20 may, in fact, form in preference to brucite (Mg(OH)z) as
stated above (1):

Table 4
Condensate pH Calculated for Reaction

T P- Steam

(°c) 1 atm 0.5 atm 0.1 atm 0.01
100 6.4 5.5 3.4 0.4

115 5.2 4.3 2.2 -0.8

130 4.1 3.2 1.1

150 2 8 1.9 L8 —

These results 1illustrate three features of the physical chemistry of
this reaction. One, condensate pH clearly decreases sharply as the source-
term temperature rises. Thus, steam produced at the midplane is 1likely to
be far more acidic than that produced at either end of a heater. Secondly,
and of great importance since the heater cavity was constantly purged by dry
nitrogen (to collect the water) , 1is the fact that HC1l production is much
enhanced if the partial pressure of water vapor 1is kept low (Fig. 3). In
fact, the lower right part of Table 3 illustrates a situation where
virtually all the water present in a system 1is converted to hydrochloric
acid. This 1s probably why the pH of condensate from the field experiments
was so much lower than that of the laboratory studies, since the latter were
all done at essentially one atmosphere of steam pressure. Finally, heat and
dissolved magnesium are all that are required to make acid. Hence, the
brine A that was introduced artificially to "overtest" the durability of
certain canisters should have been as effective as producing acid as the
natural weep brine.

Iron Corrosion Products

Canister corrosion products were found to be dominated by three phases,

the minerals magnetite (Fe304), limonite (FeO(OH)), and akaganeite (/3-
FeO(OH,C1)) . The corrosion products also contained a high proportion of
amorphous material (principally hydrous iron oxide). This follows from the

observation that the peaks obtainable by x-ray diffraction were relatively
weak reflections in proportion to the amount of material in the sample being
x—-rayed

Examination of the rust with a scanning electron microscope equipped
with an EDS unit for semiquantitative elemental analysis contributed further

-12.



to the catalogue of phases formed due to corrosion. In particular, a bladed

material (Fig. 4) occurred repeatedly. The composition, however, 1is
variable as illustrated by the contrasting results obtained when four
similarly crystallized areas were analyzed (Table 5). This 1is obviously a

salt of considerable complexity, with variable amounts of sodium, magnesium,
sulfate, and chloride in addition to the hydrous iron oxides typical of
rust. Other components such as Al and Si probably reflect a small amount of
contamination from formation clays.

Table 5
Compositions (atom %) of phases such are illustrated in Fig. 4

Sample 1 Sample 2 Sample 3 Sample 4
$Na 4. 25 8..85 1.,22 4, 35
$Mg 5.,59 25.,23 5..44 7..54
$Al 0. 31 0..00 1..57 0..54
$S1i 0.,63 0,.29 4,.85 1..35
%S 2,.46 3.,95 1,.16 1.,38
$C1 5,.57 6,.82 1,.16 1..85
%K 0..77 1,.09 0 .58 0..43
$Ca 0..17 0.14 0.13 0 .09
$Fe 31 .41 5.42 30 .95 32..32
$Ti 0 .02 0.00 0 .00 0 .05
$0* 48 .83 48 .20 52 .95 50 .10

* Oxygen by difference
OBSERVATIONS REGARDING BACKFILL PERFORMANCE

Once the extent of acid generation was realized, it was also recognized
that a detailed mineralogic study of the heated bentonite would be a
necessary part of the post-test backfill characterization process. Whereas
the mineralogical stability of bentonite at these temperatures had
previously been investigated (Krumhansl, 1984; Couture, 1985; Allen et al.,
1984), none of these studies had anticipated the possibility of strongly
acidic conditions. Even at modest temperatures, the author has found that
in acidic aqueous systems Dbentonite reacts rapidly forming kaolinite,
hematite, and amorphous silica. Further, the occurrence of kaolinite as an
alteration product of the rocks surrounding acidic hot springs systems
(i.e., Ellis and Mahon, 1977) shows such changes occur commonly in nature,
as well as 1in laboratory experiments. If this happened in an actual
repository, it could have a detrimental effect on a backfill's ability to
sorb radionuclides or swell when wetted.

The Dbackfill surrounding both B047 and B048 had areas of intense red
discoloration along cracks where steam apparently escaped. Two samples of
this material were selected (JS 92R and JS 95R) , along with a sample of
lighter colored bentonite-sand (JS 95W), that had been heated to a similar
temperature. For comparison, a sample of unheated bentonite was also
examined (JS 186). Samples were prepared for analysis by washing them free
of soluble salts and then allowing a dilute suspension of the clay to dry on
a glass slide. The possibility of gross mineralogic alteration was
immediately ruled out when the x-ray diffraction pattern from the unheated
bentonite (Lower Trace, Fig. 5) was found to be very similar to that of the

-13.



heated samples. In particular, note that there is no indication of a peak
between 12.2 and 12.3° two theta, where the principal kaolinite peak would
appear had this mineral formed to a significant degree.

In a search for more subtle changes, these four samples were also
examined by transmission electron microscopy, but again no significant
changes were apparent. Electron diffraction patterns (Fig. 7) complement
the data obtained by x-ray diffraction because the former non-basal
reflections are obtained (as would be the case with an unoriented clay
mount), while the oriented clay mounts used for x-ray diffraction accentuate

the (001) reflections. As with the x-ray diffraction, heated and unheated
materials gave the same patterns (Fig. 7). The unheated clay (Fig 6A and
6B) appeared similar to the other samples (Fig. 6C - 6H), and there was not

even a clear increase in the number of granular clumps high in iron
(presumably the hematite responsible for the red coloration) in the heated
materials. Finally, it was clear the compositions of the clays were not
significantly altered by the process (Table 6).

Table 6
Thin Film X-ray Analysis of Clays

o\

Sample  %Si $Mg Al K sCa sFe

Heated Clay

1 JS92R 63.7 4.3 25.5 0.8 1.4 4.2
2 JS92R 63.9 4.1 26.0 0.3 1. 4.
3 JS92R 62.4 4.2 26.0 0.4 2.2 4.8
4  JS95R 62.2 4.5 25.1 1.1 2.3 4.7
JS95R 63.3 6.4 24.5 0.5 1.5 3.9
6 JS95R 64.0 4.4 24.7 0.6 1.8 4.5
7 JsS95wW 62.1 3.4 27.9 0.6 2.5 3.6
8 JS95W 63.7 3.3 26.1 0.6 2 9

9 JS95W 63.4 3.5 26.1 0.6 1.6 4.8

Unheated Clay

10 Js186 62.9 4.1 25.8 1.0 1.6 4.7
11 Js186 63.0 3.4 26.8 1.1 1.4 4.2
12 Jsls8e 63.7 3.0 27.2 1.1 1.9 3.2
13 Js18¢6 63.3 3.1 26.1 0.7 1.8 5.1

* atom$%
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The other post-Btest observation made on the backfill was a comparison of
the influences of icompaction on backfill performance. Density measurements
made on bentonite samples obtained by coring between the hole wall and
heater B047 ranged between 1.9 and 2.2 (g/cm3). Since the theoretical grain
density of this material is close to 2.7, it follows that this compacted
material still had a considerable porosity. Porosity in the bentonite was
not restricted to the small pores in the bulk material since the brick-red
coloration noted along a number of hair-line cracks 1in the bentonite-sand
backfill around B047 and B048 presumably reflect the passage of acid gases
following brine injection. In contrast, the crushed salt backfill around
the B045 heater was compacted to a density of 2.16; essentially that of
pore-free sodium chloride. It also showed no sign that fluids having moved
through the backfill, in spite of the 100 1 of brine A were artificially
injected at the start of the test. The tight seal formed by the crushed
salt backfill limited corrosion to a small fraction of that found around
similar mild steel canisters such as B042 where no backfill was used.
(Parenthetically, unlike the mild steel canisters, the titanium-clad heaters
showed no evidence of corrosion.)

Summary and Conclusions

The first part of this report addressed the influx of brine around
heater B042. A method was devised, based on the accumulation of weep salts
that verified brine influx measurements made by the on-line moisture
collection system during the test. It follows that the brine entering this
site was derived from normal weep fluids, and not from some anthropogenic
source. In the course of this investigation, the chemical environment
created by this evaporating brine was also examined. Of particular note was
the acidic nature of the condensed steam collected from this hole.

At high temperatures the magnesium in the weep brines hydrolizes,
resulting 1in acid formation. As the temperature falls, however, the
equilibrium in reaction (1) shifts to the left. Consequently, this
phenomenon will not occur in the WIPP if only low level (non heat producing)
wastes are buried there. In examining materials from the heater surface, it
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was found that carnallite was the principal bittern mineral deposited from
the evaporating brine, and that a variety of materials were derived from the
corroding mild steel canister (amorphous iron oxy-hydroxide, magnetite,
limonite, akaganeite, an unnamed phase containing, in addition to iron and
hydroxide, lesser amounts of sodium, magnesium, sulfate, and chloride). The
extensive corrosion of the iron canisters stands in contrast to that
observed on the titanium canisters, which at the test's conclusion appeared
as fresh as when the test started.

The last half of this report documents the post-test condition of the
bentonite-sand and crushed salt backfills emplaced around several of these
canisters. At the conclusion of the test, no significant mineralogic
alteration of the bentonite was observed. The red discoloration noted in
some areas exposed to acidic vapors was traced to the formation of minute
quantities of hematite. In comparing crushed salt and bentonite backfills,
it appeared that the crushed salt did a better Jjob of sealing around the
canister. It compacted to essentially the density of pure salt, as compared
to the density of compacted bentonite, that was only about 75% of that
expected for pore-free material. Also, wunlike the crushed salt, the
bentonite backfill showed clear evidence that channels and cracks existed
along which steam exited when brine was artificially injected. There is no
evidence suggesting these features originated as a direct result of the
brine injection. It 1is, therefore, concluded that they are an artifact of
the compression occurring during hole closure. In terms of programmatic
conclusions, it would appear that the rationale for including a bentonite
backfill lies in its sorptive properties rather than its ability to provide
a superior seal.
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Appendix A

Because the weep salts had strongly adhered to the inner surface of the
hole wall as well as the heater surface, the raw weights of the samples
collected contained contributions from chips of wall rock halite as well as
scale from the corroded heater. The magnitude of each contribution was
assessed by performing a chemical analysis on a split from each chip sample.
The moisture content of a sample was obtained by drying a split of each

sample at 133°C and determining the weight loss. The amount of insoluble
residue was then obtained by washing each split free of soluble salts and
weighing the dried residue. Contamination from the halite wall rock was
estimated by an analysis of the leach fluid. The raw data generated in this

manner 1is summarized in Table A-1, below.

In reducing the data it was assumed that this soluble fraction
consisted of a simple mixture of two components; pure NaCl from the wall
rock, and the mixture of salts that would be obtained if the average weep
(Krumhansl, et al, 1990) were evaporated to dryness (Table A-2, column 2).
It was also assumed that the brines did not change composition until they
reached the face of the hole and dried.

Table A-1
Weight Percent of Salts Used in Computation

Element Wall Rock Average Weep Salt

Ca 0 0.16
Mg 0 6.71
K 0 5.45
Na 39.34 24.3

Cl 60.66 58.2

Br 0 0.58
504 0 4.60

Two properties of the weep fluids were particularly important in

reducing the compositional data from the leach fluids (Fig. 1A) ; that
Na/ (K+Mg) = 2.1, s.d. = 0.1, and that K/Mg = 0.8, s.d. = #0.1. In the
simplest case it was also assumed that all the salts from such a fluid were
deposited. Thus, 1if the leach fluid analysis for a particular sample had a

Na/ (K+Mg) ratio of 26.94, the question first asked was how much sodium would
have to be mixed with 100 grams of evaporated weep salt (Column 3, Table 2A)
to form this mixture. Letting X be this quantity we can write (using the
analyses from Column 2 Table 2):

------------- = 26.94. (2)
(5.45 + 6.71)

With a 1little algebraic manipulation it follows that 303 grams of sodium,
and thus 770.9 grams of sodium chloride, would have to be mixed with the 100
grams of dried weep salt to arrive at the experimentally measured ratio for
this sample. Thus the chip sample was only 13% weep salt. If further, the
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total weight of chips from this sample was 1470.9 grams, and the total
dissolved salt load in 1 kg of brine 1is 290.8 grams, it follows that the
grams of water that evaporated to give the weep salts, Y, can be given from
the following equation.

Y = 0.1297 x 1470.9 x (1000 - 290.8)/290.8 = 465.3 g of water. (3)

In addition to computing the water coming from each segment sampled, two
further corrections were applied to arrive at the total water influx. These
were required because only 84% of the overcore was recovered and only 15.9%
of the heater surface was scraped clean of salts. Thus, each evaluation of
the brine influx was revised upward in proportion to the amount of unsampled
surface area.

A second method of calculation involved an additional correction to
take into account the fact that in a number of the samples analyzed the K/Mg
ratio in the 1leach fluid was significantly larger than the value of a
typical weep fluid, 1i.e. 0.8. It is known that, although a fluid such as
brine A will boil essentially to dryness at 130°C., there may remain a small
amount of magnesium chloride melt. It is suggested that this may have been
pulled back from the interface by capillary action, and hence 1is missing
from the chemical analysis. The second method of estimating brine influx
involves computationally adding enough magnesium to the leach fluid analysis
so that the K/Mg ratio 1is, 1in fact, lowered to 0.8. This theoretically
altered bulk fluid composition 1is then used to compute a new Na/(K+Mg)
ratio. After that the computational procedure 1is the same as outlined
above. The net effect of this procedure was to increase the weight of the
weep salts which, in theory, were associated with the rock salt chips in any
given sample. Hence, fluid influx predictions using this methodology are
slightly larger than with the first method outlined.

Table A-2
Analytic Results For Chip Samples

Fig. 1 - Sample 1

% Na 37.3 $ Cl 59.6
$ K .91 % Br N.D.
$ Mg . 54 % sok 1.29
% Ca .33

Fig. 1 - Sample 2

% Na 32.6 ¥ Cl 57.9
$ K 3.4 % Br N.D.
$ Mg 2.4 % S0, 3.6
% Ca 0.08

Fig. 1 - Sample 3

% Na 35.3 ¥ Cl 59.3
$ K 1.7 $ Br N.D.
% Mg 1.6 % 505, 1.9
% Ca 0.08
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Heater, ©—77 feet down from the top, Sample 39

% Na 18.3 s c1 60.8
$ K 6.0 3 Br 0.91
$ Mg 10.3 $ so* 3.6
% Cca 0.07

Heater, 7 —8 feet down from the top, Sample 40

% Na 26.1 % Cl1 58.3

$ K 5.0 % Br 0.62

$ Mg 5.7 % SO* 4.1

% Ca 0.008

Heater, 8 - 8.33 feet down from the top, Sample
% Na 33.7 % Cl 58.8

% K 2.6 % Br N.D.

$ Mg 1.9 % SO* 2.6

% Ca 0.33

0 — 1st set
« " 2nd set
x " 3rd set

Na/(K+Mg)
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