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ABSTRACT

A series of problems have been defined to evaluate structural and thermal 
codes. These problems were designed to simulate the hypothetical accident 
conditions given in Title 10 of the Code of Federal Regulation, Part 71 
(10CFR71) while retaining simple geometries. This produced a problem set that 
exercises the ability of the codes to model pertinent physical phenomena 
without requiring extensive use of computer resources.

The solutions that are presented are consensus solutions based on computer 
analyses done by both national laboratories and industry in the United States, 
United Kingdom, France, Italy, Sweden, and Japan.

The intent of this manual is to provide code users with a set of standard 
structural and thermal problems and solutions which can be used to evaluate 
individual codes.
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1.0 Introduction

An issue of significant concern in nuclear waste management is the 
ability of computer codes to correctly simulate the phenomena associated with 
the transport of radioactive materials. In particular, structural, thermal, 
criticality, and shielding codes must be able to simulate normal transport and 
hypothetical accident conditions and the corresponding package response in 
order to design and certify packages based on analysis.

The United States Department of Energy is funding programs to provide 
analytical code benchmarks and to evaluate the many codes used in the design 
and certification of casks. This report contains those problems and solutions 
developed for evaluating structural and thermal codes.

This effort is in conjunction with code intercomparisons being done under 
the auspices of the Organization for Economic Cooperation and Development^ 
(OECD) Nuclear Energy Agency Committee on Reactor Physics (CRP) and Committee 
on the Safety of Nuclear Installations (CSNI). A standard criticality
benchmark problem set has been completed (1) for the OECD. Similar efforts 
are underway in the areas of thermal (2) and shielding analysis.

These code comparison efforts are complemented with experimental programs 
at Sandia National Laboratories, which will provide data for comparison with 
numerical results. The remainder of this report presents the existing 
structural and thermal problems for which consensus solutions are available.

In 19S2 Sandia undertook the task of developing a set of standard
problems to be used in the evaluation of codes used in the design and
certification of radioactive materials transportation packages. These
problems were developed with the Battelle Pacific Northwest Laboratories. 
These problems were presented at the first Industry/Government Joint Code 
Information Exchange (3) in November 1982. At that meeting both government 
and industry participants were asked to provide solutions and input to the 
program.
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These solutions were compiled and presented to the participants at the 
second Industry/Government Joint Code Information Exchange (4) in October 
1984. The participants were asked to comment on the existing problem set and 
to provide input for an expanded problem set.

Based on the results of the second information exchange, Sandia developed 
a proposal for the international intercomparison of thermal codes to be hosted 
by the Organization for Economic Cooperation and Development (OECD). The heat 
transfer working group that was subsequently established has completed the 
definition and analysis of the thermal problem set.

Each problem set and the corresponding solutions (5, 6) have been 
incorporated into the sample problems contained in this document.

The constraints on the development of the problems were that they should 
be cask-like in nature, address a regulatory condition, and be as 
geometrically simple as possible.

These problems are intended to be used to evaluate the ability of codes 
to simulate realistic physical phenomena. They are not all inclusive. The 
problems do not address cask specific structural phenomena, such as crushing 
of impact limiters or buckling of fins. Cask specific thermal phenomena not 
addressed include phase change and natural convection. These problems do 
encompass the phenomena encountered in the analysis of casks, such as 
conduction, radiation, and a specified convective boundary.

The solutions that are presented are a consensus of the individual 
solutions. They are representative of the codes currently available for these 
types of analysis. In all cases the solutions have been reviewed by all 
participants, and only those agreed on have been included in this document. 
When a closed form analytical solution is available, it is also presented.

2.0 Structural Problems
The structural problems simulate the 30-foot free drop specified in Title 

10 of the Code of Federal Regulations, Part 71 (10CFR71). The regulations 
define the free drop as "A free drop through a distance of nine m (30 ft.)
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onto a flat, essentially unyielding, horizontal surface." This definition 
results in an initial impact velocity of 13.41 m/s (528 ips) and defines the 
impact boundary. These initial and boundary conditions are used in each of 
the structural problems. End and side impact problems are presented.

To completely model radioactive materials shipping casks, both elastic 
and inelastic response may be modeled. The U. S. Nuclear Regulatory 
Commission's Regulatory Guide 7.6 requires essentially elastic behavior of the 
containment boundary. There are, however, regions of the cask which will 
experience plastic deformation, either in an impact limiting component or 
during the puncture event. For these reasons the problems include both 
elastic only and elastic/plastic deformations.

Included in the solutions are gross cask body behavior, such as impact 
durations, rebound velocities, and total plastic deformations. For the 
elastic problems selected stresses are presented as a function of time. The 
tabular data include means and standard deviations. The graphical data 
presented envelops the numerical solutions.

The impact duration provides a check on the ability of codes to propagate 
the compressive stress wave. For an elastic response the impact duration is 
equal to the distance through which the wave is propagated divided by the wave 
speed.

The rebound velocity is a check on the code's conservation of energy. 
For an elastic response the impact and rebound velocities should be equal 
since no energy is dissipated. In an elastic/plastic impact, the rebound 
velocity is lessened according to the amount of energy dissipated in plastic 
deformation.

Gross plastic deformations (final axial deformation and ovalization) are 
used to evaluate the code's ability to predict nonlinear behavior. This is 
essential in predicting the postaccident configuration and, in particular, 
determining permanent deformation of the sealing surface.
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Stress plots are required to determine the ability of codes to predict 
localized response. In cask design this determines potential problem areas or 
potential failure initialization zones.

The codes used were HONDOII (7), HONDOIII (8), MANJUSRI- 2D, PISCES-2DELK, 
ANSYS (9), ABAQUS (10) , and DYNA2D (11). These codes include both finite 
element (HONDOII, HONDOIII, DYNA2D, ANSYS, ABAQUS) and finite difference 
(PISCES-2DELK, MANJUSRI- 2D) types.

2.1 Model A

Model A, shown in Figure 1, represents a steel bar impacting an 
unyielding target with a velocity of 13.41 m/s (528 ips). This is the 
simplest problem. It tests the ability of the code to simulate a purely 
elastic response with an axisymmetric geometry. It is incorporated because it 
has an approximate analytical solution based on Love's theory (12). The 
material properties are given in Table I. These are representative of the 
elastic properties of stainless steel.

Table I: Elastic Steel Properties

Young's Modulus, E 
Poisson's Ratio, v 
Density, p

1.9305 x 105 MPa (28 x 106 psi)
0.3
8,027 kg/m (0.29 Ibm/in )

The results required for this problem are: (1) impact duration 
(milliseconds), T; (2) rebound velocity (m/s); and (3) plot of stress (MPa) 
versus rod length (m) at T/4.

The impact duration can be determined by one of three methods. These are 
when (1) the model separates from the rigid target, (2) all velocities in the 
model become opposite in sign from the initial velocity, or (3) the velocity
of the center of gravity becomes opposite in sign from its initial velocity.j
Each of the methods requires different code or post processing capability.

The reboUnd velocity should be determined from the center of gravity. 
This eliminates the natural vibrational modes which would be included in 
individual node or element responses.
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4.521 m 
(178 in.)

0.101 m DIA. 
(4 in.)

V0 = 13.41 m/s 
(528 ips)

z

Figure 1. Model A--Elastic Steel Rod
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Table II contains the tabular results for this problem.

Table II: Model A--End Impact of an Elastic Rod: Results

Impact Duration Rebound Velocity
(ms) (m/s)

Mean 1.86 13.3
Standard Deviation 0.02 0.15

Figure 2 shows the axial stress as a function of rod length based on Love's 
theory and the envelope of the numerical solutions.

2.2 Model B

Model 
unyielding 
in Table 
nonlinear 
geometry.

B, shown in Figure 3, consists of an annular cylinder impacting an 
target at 13.41 m/s (528 ips). The material properties are given

III. This problem tests the ability of the code to simulate the 
behavior associated with plastic deformation in an axisymmetric

Table III: Elastic/Perfectly Plastic Steel Properties

Young's Modulus, E 
Poisson's Ratio, i/ 
Density, p 
Yield Strength, a

1.9305 x 105 (28 x 106 psi)
°-3 3 3
8,027 kg/m (0.29 Ibm/in )
206.8 MPa (30,000 psi)

The results required for this problem are: (1) impact duration 
(milliseconds), (2) rebound velocity (m/s), and (3) final axial deformation 
(m). The final axial deformation should be determined by time averaging the 
distance between extreme axial nodes during rebound. This again eliminates 
the vibrational response of the cylinder.
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0.330 m RADIUS 
(13 in.)

0.178 m RADIUS 
(7 in.)

Figure 3. Model B--End Impact of an Elastic/Perfectly Plastic Cylinder
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Table IV contains the tabular results for this problem.

Table IV: Model B--End Impact of an Elastic/Perfectly Plastic Rod: Results

Impact Duration Rebound Velocity Final Axial Deformation
(ms) (m/s) (m)

Mean 3.46 3.30 0.0146
Standard Deviation 0.27 0.45 0.0008

2.3 Model C

Model C, as shown in Figure 4, represents an annular steel cylinder 
impacting an unyielding target at 13.41 m/s (528 ips). The material 
properties are given in Table I. Plane strain is assumed. This problem tests 
the code's ability to predict elastic response for a plane strain problem 
typical of side impacts. The required results are: (1) impact duration (ms), 
(2) rebound-velocity (m/s), and (3) the horizontal stress (MPa) versus time 
(ms) at the inside radius impact point.

Table V contains the tabular results for this problem.

Table V: Model C--Side Impact of an Annular Elastic Steel Cylinder: Results

Impact Duration Rebound Velocity 
(ms) (ms)

Mean 0.78 13.1
Standard Deviation 0.038 0.23

Figure 5 shows an envelope of the horizontal stress as a function of time for 
the inner radius of the cylinder at the impact point.

2.4 Model D

Model D, as shown in Figure 6, simulates an annular steel cylinder 
impacting an unyielding target of 13.41 m/s (528 ips). It provides a direct 
measure of the effect of plasticity. The geometry and initial conditions 
duplicate Model C with the substitution of the elastic/plastic material
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Vq=13.41 m/s 
(528 ips)

Figure 4. Model C--Side Impact of an Annular Elastic Steel Cylinder
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properties given in Table III. The requested results are: (1) impact 
duration (ms), (2) rebound velocity (m/s), (3) permanent horizontal 
ovalization (%), and (4) permanent vertical ovalization (%).

The permanent ovalizations are determined by the ratio of the change in 
outside diameter to the original diameter. Again, the vibrational response of 
the model requires that averaged differences between opposing nodes should be 
used instead of single time values.

Table VI contains the tabular results for this problem.

Table VI: Model D--Side Impact of an Annular Elastic/ 
Perfectly Plastic Steel Cylinder: Results

Mean
Standard Deviation

Rebound 
Velocity 
(m/s)

1.15 3.43
0.11 0.40

Horizontal Vertical
Ovalization Ovalization

(%) (%)

0.29 0.88
0.063 0.12

Impact Duration 
(ms)

2.5 Model E

Model E, as shown in Figure 7, simulates a steel clad lead cylinder. The 
lead and steel are attached at the impacting end. The cylinder impacts an 
unyielding target with an initial velocity of 13.41 m/s (528 ips). The 
steel/lead interface should be treated as frictionless. The steel properties 
are given in Table III, and the lead properties are given in Table VII. This 
problem will test both interface capability and the simulation of much greater 
plasticity. This is reflected in the lower rebound velocity.

Table VII: Elastic/Perfectly Plastic Lead Properties

Young's Modulus 
Poisson's Ratio 
Density, p 
Yield Strength,

E
v

ay

1.3789 x 104 MPA
°-45 4 3
1.135 x 10 kg/m

13.78 MPa

(2 x 10^ psi)

(0.41 Ibm/in3) 
(2,000 psi)

reg7045 -12-



0.1 78 m RADIUS (7 in.)

0.330 m RADIUS 
(13 in.)

V =1 3.41 m/s 
(528 ips)

Figure 6. Model D--Side Impact of an Annular Elastic/Perfectly Plastic Steel 
Cylinder
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0.330 m RADIUS (13 in.)

Figure 7

0.178 m RADIUS 
(7 in.)

0.0254 m (1 in.)

Model E--End Impact of an Elastic/Perfectly Plastic, Steel-Clad 
Annular Lead Cylinder
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The results required for this problem are: (1) the impact duration (ms), (2) 
average lead rebound velocity (m/s), (3) final lead axial deformation (m), and
(4) final steel cladding deformation (m). Each deformation is determined by 
time averaging the distance between extreme axial nodes during rebound.

Table VIII contains the tabular results for this problem.

Table VIII: Model E--End Impact of an Elastic/Perfectly Plastic 
Steel Clad Annular Lead Cylinder: Results

Impact Lead Rebound Axial Lead Axial Steel
Duration Velocity Deformation Deformation

(ms) (m/s) (m) (m)

Mean 29.0 0.83 0.18 0.022
Standard Deviation 3.01 0.028 0.036 0.000

3.0 Thermal Problems

The thermal problems simulate normal transport and accident conditions 
specified in 10CFR71. The regulations define a thermal event as "exposure of 
the whole specimen for not less than 30 minutes to a heat flux not less than 
that of a radiation environment of 800°C (1475°F) with an emissivity 
coefficient of at least 0.9. For purposes of calculation, the surface 
absorptivity must be either that value which the package may be expected to 
possess if exposed to a fire or 0.8, whichever is greater."

To completely model the thermal event requires simulating conduction, 
convection, and radiation. The problems included in this manual will exercise 
these facets of a code. There are additional phenomena that are not included 
in this problem set, such as phase change (lead melt) and boiling water heat 
transfer.

The codes whose results are used here were COYOTE (13) , HEATING-5 (14), 
Q/TRAN (15), TAG-2D (16), TEMPEST (17), and TRUMP (18). Subsequently, 
HEATING-6 (19), DELFINE, and TAU have been used. These additional codes' 
results agreed with the initial results.
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3.1 Model A

Model A, shown in Figure 8, is a two-region cylinder. The interior 
region (Region I) contains a volumetric heat source representative of the 
internal decay heat of irradiated fuel. This energy is dissipated at the 
outer surface by convection. This problem, which has a closed form analytical 
solution, tests the ability of the codes to simulate conduction and a 
convective boundary condition.

The geometric and thermal characteristics are given in Table IX.
Table IX: Model A--Cylinder with Internal Heat Generation: Characteristics

Region I Region II

Radius, r 
Length, L 
Density, p 
Specific Heat, C 
Conductivity, k

Heat Source, Q 
Convective 
Coefficient, h

r = 27.43 cm (10.8 in.)
457.2 cm (15 ft.)
16.02 kg/rn (1 Ibm/ft )

1 cal/gm - °C (1 Btu/lbm°F)
0.0692 kw/m°C (40 Btu/hr ft °F)
11.09 kw/m3 (1071.5 Btu/hr ft3)

r = 91.44 cm (36 in.)
457.2 cm (15 ft.)
16.02 kg/rn (1 Ibm/ft )

1 cal/gm °C (1 Btu/lbm°F) 
0.0346 kw/m°C 
(20 Btu/hr ft °F)
5.67 x 10‘3 kw/m2°C 
(1 Btu/hr ft2 °F)

The ambient environment and initial cask temperature are each 54.4°C (130°F).

The steady state results requested for this problem are: (1) centerline 
temperature, (2) interface temperature (r^), (3) outer edge temperature, and 
(4) plot of temperature versus normalized radial position.

The closed form analytical and numerical solutions reported to 1° accuracy are 
given in Table X, and the graphical solution reported to 0.1° accuracy in 
Figure 9.

Table X: Model A--Cylinder with Internal Heat Source: Results

Centerline
(°C)

Interface
(°C)

Outer Edge 
(°C)

Exact (closed form) 152 149
Mean 152 149

135
135
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Figure 8. Model A--Cylinder with Internal Heat Generation
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3.2 Model B

Model B, shown in Figure 10, is based on a prototypic cask configuration 
consisting of several different annular regions. Region I contains a 
volumetric heat source simulating irradiated fuel decay heat. Region II 
represents a monolithic cask wall. Region III is a voided neutron shield, and 
Region IV the thermal radiation shield. Regions II and IV exchange heat 
solely by thermal radiation. Heat is also exchanged with the surrounding 
environment by thermal radiation. For simplicity, all surfaces and the 
environment are assumed black (e = cc =1).

This problem simulates exposure to the regulatory fire. This involves 
three regimes. First, a steady state solution, with radiant heat loss to a 
54.4°C (130°F) environment, is required. Second, using the steady state
solution for the initial conditions, the fire is simulated by a step increase 
of the ambient temperature to 800°C (1475°F) for 30 minutes. A cool down 
period of 60 minutes follows the fire with the ambient temperature returned to 
54.4°C (130°F). In each case, heat transfer between the cask and the
environment is solely by black body radiation.

The geometric and thermal characteristics for Model B are given in 
Table XI.

Table XI: Model B--Cask with Annular Regions: Characteristics

Region I Region II Region III Region IV

Radius, r 16.51 cm 38.74 cm 53.98 cm 54.61 cm

Density, p
(6.9 in)
2707 kg/m

(15.25 in)
7832.8 kg/m

(21.25 in) (21.5 in)
7832 kg/m

Specific Heat, C
(169 Ibm/ft ) 
0.214 cal/gm - °C

(489 Ibm/ft )
0.113 cal/gm°C _ _

(489 Ibm/ft
0.113 cal/gm°CP (0.214 Btu/lbm ° F) (0.113 Btu/lbm°F) (0.113 Btu/lbm0F

Conductivity, k 0.242 kw/m°C 0.045 kw/m°C 0.045kw/m°C

Heat Source, Q
(139.7 Btu/hr 
38.32 kw/rn

ft°F) (26 Btu/hr ft°F) 26 Btu/hr ft °F)

(3702.6 Btu/hr ft3)
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Figure 10. Model B--Cask with Annular Regions
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The results requested for this problem are temperatures at: (1) the 
exterior surface, T3; (2) the interface between Region II and Region III, T8; 
and (3) the interface between Region I and Region II, T4, as shown in Figure 
10. The temperatures are requested in tabular form within 1°C accuaacy at 0, 
30, and 90 minutes and in graphical form with temperature versus time. The 
tabular results are given in Table XII, and the graphical results in Figures 
11 through 13. The greatest temperature deviation from the mean in the 
tabular data was 6°C at the interface between Region II and Region III at 90 
minutes.

Table XII: Model B--Cask with Annular Regions: Results
(Minutes) T3

(°C)
T8
(°C)

T4
(°C)

0 137 204 214
30 689 376 263
90 203 298 313

3.3 Model C

Model C is a modification of Model B. A flat plate has been added as 
shown in Figure 14. This plate simulates a truck bed which acts as a thermal 
shield. The addition of this plate forces the code to simulate a two- 
dimensional thermal radiation problem. Radiant heat transfer occurs between 
the cask and the ambient and also between the cask and the shield. The 
remainder of the problem is as described for Model B. The properties of the 
shield are given in Table XIII.

Table XIII: Model C--Shield Characteristics

Width, W 
Thickness, S 
Distance from Cask, D 
Density, p 
Specific Heat, C Conductivity, k ^

109.2 cm (43 in.)
2.54 cm (1 in.)

30.48 cm 112 in.)
7832.8 kg/m (489 Ibm/ft )
0.113 cal/gm°C (0.113 Btu/lbm°F) 
0.045 kw/m°C (26 Btu/hr ft°F)

The results requested are tabular data at: (1) the center of the shield 
exposed to the environment, T1; (2) the cask exterior facing the shield 
center, T3; (3) the interface between Region II and Region III, T8; (4) the 
interface between Region I and Region II, T4; and (5) the exterior of the
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Figure 12. Model B--Temperature Versus Time at Interface Between Region II 
and Region III
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Figure 13. Model B--Temperature Versus Time at Interface Between Region I and 
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Figure 14. Model C--Cask with Annular Regions and Shield
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cask, T6, as shown in Figure 14. This data is requested at 0, 30, and 90 
minutes. The graphical data requested are temperature versus time plots at 
these locations. Three of the original codes solve explicit two-dimensional 
thermal radiation problems. These are CINDA-3G, Q/TRAN, and TAG-2D. The 
tabular results given in Table XIV and the graphical results in Figures 15 
through 19 represent only these three codes.

Table XIV: Model C--Cask with Annular Regions and Shield: Results

Time (Minutes) T1
(°C)

T3
(°C)

T4
(°C)

T6
(°C)

T8
(°C)

0 89 147 217 139 208
30 765 662 261 689 350
90 206 245 314 203 301

The largest deviation from the mean temperatures was 4°C at Location T4 after 
30 minutes.

4.0 Conclusion

This report contains structural and thermal problems and the 
corresponding numerical solutions. These solutions were obtained from several 
codes and code types. These results can be used in evaluating codes being 
used in the design and certification of radioactive materials packagings. 
They can also be used by analysts as a check on code usage including choice of 
mesh size, time step, and materials model.
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Figure 15. Model C--Temperature Versus Time on Shield
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Figure 16. Model C--Temperature Versus Time at Cask Surface Facing Shield
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Figure 17. Model C--Temperature Versus Time at Voided Region Interface
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