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. . . 
ABSTRACT 

One.of the ma'jor environmental consequences of Ocean Thermal 
Energy Conversion (OTEC) plants may be the artificial upwelling 
of nutrients to the surface waters ot oligotrophic ecosystems. 
Within a 10 km2 area, OTEC plants of 1000 M W e  total capacity, 
'could upweli the same amount of nutrients: as occurs naturally 
off Peru each day. The biological response to possible eutro- 
phication by OTEC plants may not be similar to that within 
coastal upwelling ecosystems, however,, Upwelling in offshore 
oceanic systems does not lead to increased primary production 

, , , . . 

despite high nutrient content of the euphotic zone. Cpntinuous 
grazing may not allow phytoplankton blooms to.develop in o- Leanic 
upwelling systens similar to the proposed OTEC sites. At present . 

,this is a hypothesis to be tested before full evaluation of OTEC 
induced upwelling can be made. 
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The p o t e n t i a l  exists f o r  fu ture  commercial development and 
deployment of Ocean Thermal Energy Conversion (OTEC) p l an t s  t o  
generate e l e c t r i c i t y  i n  t h e  sub-tropical regions of t h e  world 
ocean. The concept of pumping deep cold water t o  the  warm s u r -  
face of the sub-tropicdl ocean, thence using the  temperature d i f -  
f e r e n t i a l  t o  condense and vaporize a  working f l u i d ,  i n  order t o  
turn  turb ines  generating e l e c t r i c a l  power i s  not a  new idea 

< .  

(dtArsonval, 1881; Claude., 19.30) . Ov.er 5.0 .years.  ago, Georges 
8 i 

Claude bui ' l t  a  p i l o t .  p l an t  ' i n  Cuba ( O t h e r  and Roels, ' 1973) , ljut 
. . commercialization did not occur. Continuing s o c i e t a l  needs f o r  

increasing amounts of energy and for  a l t e r n a t i v e s  t o  consumption 
of f o s s i l  f u e l  now suggest t h a t  OTEC may be a  poss ib le  power 
source .£or  populations 1 o c a t e d . i n  the  .sub-tropics, i . e .  Hawaii, 
.Puerto Rico, and along t h e  Gulf of Mexico. The p o t e n t i a l  environ- 
mental impacts of such power p lan t s  i n  t h e  form of biocides ,  en- 
t ra inment ,  and thermal shock can be somewhat approximated by 

. . analogy t o  . r e s u l t s  .'from resear rh  conducted on .coastal  .power ' .  

p lan t s .  The e f f e c t s  of a r t i f i c i a l  upwelling by OTEC p lan t s  a r e  
r e l a t i v e l y  unknown, however, because none of t h e  proposed large-  
s c a l e  OTEC s t r u c t u r e s  a r e  operational  and l i t t l e  research has 
been conducted on the.  consequences of na tu ra l  upwelling within 
ol igotrophic  marine ecosystems. 

Small organisms charac ter ize  t r o p i c a l  ol igotrophic  (nu t r i -  
e n t  poor) ocean environments, where t h e  annual temperature var i -  
a t i o n  i s  l e s s  than 5 ' ~  and small food p a r t i c l e s  a r e  most e f -  
f i c i e n t l y  removed by small feeders (Sheldon e t  a l ,  1973). The 
l a rge  zooplankton a r e  usually omnivores or predators a s  p a r t  of . 

a long food chain which depend on the a v a i l a b i l i t y  of the  smaller  
zooplankton. These small phyto- and zooplankton and the high 
temperatures imply shor t  l i f e  times, i . e .  rapid turnover. Fur- 
thermore, most of these organisms cannot s t o r e  energy a s  compared.. 
t o  animals from temperate zones, suggesting t h a t  food supply has 
t o  be v i r t u a l l y  continuous f o r  t h e  surv iva l  of.most t r o p i c a l  zoo- 
plankton. The r a t e s  of l i f e  processes and element cycling ' ' 

(McCarthy and Goldman, 1 9 7 9 ) . a r e  very rapid compared t o  v e r t i c a l  
l o s s  r a t e s  by sinking. This means t h a t  the  ecosystem i s  very 
nearly "closed" and i n  a  steady s t a t e  of production balanced by . 



consumption, wi th  t h e  small  primary production dr iven by r e -  
cyc l ing  of n i t rogen  from exc re t ion  of zooplankton-and f i s h .  

I n  con t ras t , '  c o a s t a l  ecosystems y i e l d  99% of t h e  g loba l  f i s h  
ca tch  because of t h e i r  high primary production and r e l a t i v e l y  
s h o r t  f o o d c h a i n s .  Seasonal wind mixing and t i d a l  s t i r r i n g  a r e  . . 
a b l e  t o  reach decomposing organic  mat ter  on t h e  s h e l f  bottom 
( ~ 2 0 0  m dep th ) ,  with consequent r ap id  r e t u r n  of n u t r i e n t s  t o  the 
euphot ic  zone. I n  c o n t r a s t ,  t h e  permanent pycnocline of t h e  deep 
ocean i n h i b i t s  f a s t  r e t u r n  of n u t r i e n t s  t o  t he  water column, ex- 
c e p t  f o r  seasonal  over turn  (Menzel and Rytheri 1960; 1961) ,  and 

t i d a l  mixing i s  n e g l i g i b l e  such t h a t  t he  o en ocean usua l ly  has  
a  d a i l y  primary production (0.1-0.5 g C m-3 day-I) which i s  over 
an order  of magnitude less than t h a t  (1-10 g C m-2 day-') of s h e l f  
waters  (Walsh, 1976).  I n  some s h e l f - a r e a s , '  t h e  annual product ion 
i s  a l s o  h igher  than o the r  c o a s t a l  regions  a s  a  r e s u l t  of addi- 
t i o n a l  i n p u t  o f  n u t r i e n t s  from upwelling of water induced by 
favorable  winds throughout t h e  year .  

Wind even ts  a r e  an important  source of h a b i t a t  v a r i a b i l i t y  
on t h e  con t inen ta l '  s h e l f  i n  c o n t r a s t  t o  t h e  open ocean (Walsh, 
1976; Beardsley e t  a l . ,  '1976) and a r e  respons ib le  f o r  both t h e  
generat ion of  c u r r e n t s  and f o r  v e r t i c a l  over turn  of t h e  water 
column by seasonal  mixing. Because of the north-south a l ign-  
ment of t h e  ~ o r t h ~ m e r i c a n  con t inen t ,  f o r  example, a  sou the r ly  
wind tends  t o  fav0.r o f f shore  su r f ace  flow a s  a  r e s u l t  of t h e  
C o r i o l i s  fo rce  a c t i n g  upon t h e  wind-accele.rated f l u i d  o f f  t he  
e a s t  c o a s t  of t he  United S t a t e s  ( i .e.  t o  t h e  r i g h t  i n  t h e  nor- 
the rn  hemisphere) i n  c o n t r a s t  t o  t h e  same phenomenon induced by . . 

a no r the r ly  wind on t h e  west coas t .  Nut r ien t  r i c h ,  co ld  sub- 
su r f ace  water then moves onshore and upwells a t  the  c o a s t  t o  re- 
p l a c e  t h e  warmer, n u t r i e n t  impoverished su r f ace  water t r ans -  
por ted  o f f sho re  by these  winds favorable  t o  upwelling (Walsh, 
1975).  Coastal .  upwelling i s  a boundary process and most of t h e  
water i s  upwelled wi th in  a zone only 10-20 km from t h e  coas t ,  
wi th  o f f sho re  secondary cross-shel f  flows set  up a s  a  funct ion 
of t he  she l f  width (Walsh, 1977).  Most of t h e  major c o a s t a l  
upwelling a r e a s  a r e  loca ted  on t h e  w e s t  c o a s t s  of t h e  con t i -  
nents ,  eg. assoc ia ted  with e a s t e r n  boundary c u r r e n t s  o f f  Oregon- 
C a l i f o r n i a ,  Peru-Chile, Northwest Afr ica  and Southwest Af r i ca .  
wi th  t h e  exception of t he  monsoon-induced upwelling ecosystem 
found o f f .  t he  Somali Coast. 

Dif ferences  i n  t e rmina l  y i e l d  af  f i s h  and i n  o f f shore  nu- 
t r i e n t  g rad i en t s  wi thin-  t he se  e a s t e r n  boundary c u r r e n t s  can be  
r e l a t e d  t o  both  t h e  seasona l  . v a r i a b i l i t y  of upwelling (Walsh, 
1976) and e f f e c t s  of bottom :topography.. Greater  i n t e rmi t t ency  



of wind s t r e s s  and lower p o t e n t i a l  y i e ld  (Walsh, 1972) of these 
systems a r e  both associated with increasing l a t i t u d e .  The e s t i -  
mated annual primary production a l s o  dec l ines  with l a t i t u d e  from 
a s  much a s  ca. 1,000 g C m-2 yr-l off  Peru (15's) and ca. 600 
of f  Baja Ca1iforni.a ( 2 7 ' ~ )  t o  ca. 200 of f  Oregon ( 4 5 ' ~ ) ~  re- 
f l e c t i n g  d i f fe rences  i n  the  seasonal durat ion 'of l i g h t  and up- 

' well ing within those regions. .  The range i n  observed'daily pro-. 
duct ion a t  about. t he  same l a t i t u d e  and a t  the  same. time of year 
between t h e  p a c i f i c  (ca.  4-6 g C m'2 day--' a t  2 7 ' ~ )  and the  
A t l a n t i c  (ca. 1 - 2  g C m-2 day-l a t  2 2 ' ~ )  coas ta l  upwelling eco- 
systems ins tead  r e f l e c t s  shelf  width. 

A s  a r e s u l t  of upwelling and/or v e r t i c a l  mixing induced b 
t h e  equa to r i a l  undercurrents, high n u t r i e n t s  (-10 pg-at NO3 tWr) 

, a r e  a l s o  found i n  sur face  water along t h e  equator i n  the  deep 
P a c i f i c  (Walsh, 1976) and t h e  ~ t l a n t i c  (Voituriez and Herbland, 
1979) oceans. In  f a c t ,  the  hor izonta l  n u t r i e n t  gradient  from 
10 t o  0.5 pg-at NO3 &-I, north of the  Pac i f i c  equator ia l  diver-  
gence, i s  a t  l e a s t  an order of magnitude wider than t h a t  of the 
c o a s t a l  upwelling areas .  The wide northward ex ten t  of the  equa- 
t o r i a l  n u t r i e n t  gradient  appears t o  be a p a r s i s t e n t  feature ,  
analogous i n  o r i g i n  t o  a spreading from a l i n e  source a s  f a r  
w e s t  as 1 1 9 ' ~  (Love, L974), 1 4 0 ' ~  (Sverdrup e t  a l . ,  1942) , and 
1 6 0 ' ~  (Cromwell, 1953; Reid, 1965),  desp i t e  abundant l i g h t  and a 
t rans-Pac i f ic  t rend of lower n u t r i e n t s  within the  euphotic zone 
a s  one approaches the  western boundary (Gueredrat , 1971) . 

Light and n u t r i e n t s  thus  appear t o  be s u f f i c i e n t  f o r  phyto- 
plankton growth i n  the  equator ia l  divergences b u t  t h e  upwelled 
n u t r i e n t s  a r e  not  removed i n  these na tu ra l  upwelling systems of 
offshore,  ol igotrophic  waters. Notwithstanding suggestions of 
growth i n h i b i t i o n  i n  t h i s  region through lack of ava i lab le  
che la to r s  (Barber and Kyther, 1969), t h e  a s s i ~ ~ l i l d l i u l i  index ( m g  
C(mg Chl a ) - I  hV1) , an est imate  of p o t e n t i a l  growth of phyto- 
plankton, i n  t h e  equator ia l  divergence (Barber and Ryther, 1969) 
appears s imi la r  t o  t h a t  usuually found for  organisms i n  both 
coas ta l  upwelling systems (Barber e t  a l . ,  1971; Walsh e t  a l . ,  
1974; Estrada,  1974) and ol igotrophic  gyres (Thomas, 1970a; 
Eppley e t  a l . ,  1973). There i s  some argument a s  t o  whether che- 

. l a t o r s ,  eg. EDTA, a r e  required by phytoplankton t o  1) detoxify 
upwelled water by removing t r a c e  metals or 2 )  make ava i lab le  
e s s e n t i a l  t r a c e  metals fo r  growth. 

However, ni trogen enrichment experiments have been performed 
on phytoplankton from -- i n  s i t u  o l igot rophic  water i n  the  Cali- 
forn ia  Current (Eppley e t  a l . ,  1971) and near the  equator ia l  
divergence (Thomas, 1970b), which both gave about the  same maxi- 



ma1 a l g a l  d i v i s i o n  r a t e  of 0.7-1.5 doublings day-I, i .e .  s i m i l a r  
t o  those  of t h e  r i c h  Peru and Baja Ca l i fo rn i a  upwelling systems 
(Walsh, 1975; Walsh e t  a l . ,  1974).  Y e t ,  a seasonal  i npu t  of 
n i t r a t e  t o  su r f ace  waters  of t h e  A t l a n t i c ' e q u a t o r i a l  divergence 
l eads  t o  l i t t l e  change i n  primary production of t h e  euphotic  
zone (Voi tur iez  and Herbland, 1979) . Analysis  of variance of 
i n t e g r a t e d  primary production with 1 a t i t u d e . i . n  t h e  EASTROPAC 
observat ions  (Owen and Ze i tzsche l  , 1970) showed no s i g n i f i c a n t  
d i f f e r e n c e  i n  p roduc t iv i ty  along t h i s  zonal g rad i en t  of n u t r i -  
e n t s  ac ros s  t h e  P a c i f i c  equa to r i a l . d ive rgence  a s  well .  

Deep water h a s  a l s o  been a r t i f i c i a l l y  upwelled from 870 m 
o f f  S t .  Croix t o  provide n u t r i e n t s  f o r  continuous outdoor cul-  
t u r e s  of diatoms (Malone e t  a l . ,  1975).  I n  t h i s  case ,  a mixture 
of EDTA-trace metal-vitamin supplement was added t o  t h e  upwelled 
water ,  no zooplarlkton were i n i t i a l l y  p re sen t  i n  t h e  growth tanks,  
and a phytoplankton innoculum was introduced a t  t he  beginning of  
each experiment. Under condi t ions  of presumably l i t t l e  t r a c e  I 

metal t o x i c i t y ,  small  grazing s t r e s s ,  and a c o a s t a l  phytoplankton , 

spzc ies  r a t h e r  than an oceanic community of microalgae, the  n i -  
t r a t e  content  of t h e ' a r t i f i c i a l l y  upwelled water was depleted 
a f t e r  1-2 days of phytoplankton growth. These expzrimental re- 
s u l t s . s u g g e s t  t h a t  a r t i f i c i a l  upwel l ing 'can lead  t o  eutrophica-  
t i o n ,  i f  t h e  surface comnunity ' i s  d i sp laced  from t h e  equil ibrium 
condi t ions  of an o l igo t roph ic  ecosystem towards t h e  t r a n s i e n t  
condi t ions  of . t h e  c o a s t a l  upwelling ecosystem (Walsh, 1976) . 

There thus  appears t o  be  a n  anomaly of n a t u r a l  o f f shore  
ecosystems with r e l a t i v e l y  high n u t r i e n t s ,  h igh l i g h t ,  perhaps. 
no i n t r i n s i c  d i f f e r e n c e s , i n  , p o t e n t i a l  growth among the  dominant 
phytoplankton, and y e t  with ev iden t ly  low phytoplankton u t i l i -  
z a t i o n  of t h e  n u t r i e n t s  wi thin  oceanic upwelling a r eas ,  i.e- 
wider observed h o r i z o n t a l  n u t r i e n t  g rad i en t s ,  d e s p i t e  t h e  pre- 
sumably lower phys ica l  i npu t  of  n u t r i e n t s  i n  these .upwel l ing  
a r e a s  compared t o  t he  c o a s t a l  systems (Walsh, 1976). Di f fe r -  
e n t i a l  importance of herbivory i n  t hese  ecosystems may expla in  
t h e  c o n t r a s t  i n  h o r i z o n t a l  n u t r i e n t  g rad i en t s  among t h e  types 
of p e l a g i c  systems, fo r  t he  l o s s  r a t e  of a phytoplankton popu- 
l a t i o n  may a l s o , s e t  i t s  growth r a t e .  

The c e n t r a l  b i o t i c  provinces of t h e  oceans have been char- 
a c t e r i z e d  a s  high d i v e r s i t y  systems (Timonin, 1971) with > l i t t l e  
temporal v a r i a b i l i t y  of t h e  low zooplankton s tanding crop of 
small organisms (McGowan, 1974),  while t h e  e a s t e r n  boundary cur- 
r e n t s  appear t o  have zooplankton popula t ions  of low d i v e r s i t y ,  
high s tanding crop,  l a r g e  s i z e  and high v a r i a b i l i t y  (Longhurst, 
1967; Wickett ,  1967).  The phytoplankton-herbivore i n t e r a c t i o n s  



may thus be  q u a n t i t a t i v e l y  d i f f e r e n t  i n  t h e  nearshore coas ta l  
upwelling areas  from t h a t  of the  gyres and offshore divergences, 
with perhaps more cropping of phytoplankton by herbivores of f -  
shore. The r e l a t i v e  shor t  term constancy, or  seasonal pre- 
d i c t a b i l i t y ,  of the slowly varying physical  forcing functions 
within t h e  offshore h a b i t a t s  may .thus have allowed t h e  herbi-  

' v o r e s  t o  evolve evolutionary s t r a t e g i e s  such a s  seasonal migra- 
t i o n  i n  high l a t i t u d e s  t o  an t i c ipa te  phytoplankton blooms 
( M c A l l i s t e r  e t  a l . ,  1960, Voronina, 1972) and speciat ion i n  low 
l a t i t u d e s  t o  b i o l o g i c a l l y  expand t h e  number of niches i n  a r e l a -  
t i v e l y  s t a b l e  physical  h a b i t a t  with a wide d i v e r s i t y  of herbi-  
vores t o  graze a l l  s i z e  c l a s ses  of phytoplankton (Sheldon e t  a l . ,  
1973). 

The high n i t r a t e  contents of the  open North Pac i f i c  ocean 
(Anderson and Munson, 1972) and t h e  outer  Bering Sea shelf  
(Coachman and Walsh, 1980) a r e  a t t r i b u t e d  t o  e f f i c i e n t  grazing 
by copepods with an ontogenetic migration t h a t  occurs before t h e  
Sloom i n  con t ras t  t o  shelf  grazers  whose cohorts develop a f t e r  
the  spr ing bloom. Similar ly  i n  oceanic waters off Peru, t h e  
s t u d i e s  of the  EASTROPAC program (Love and Allen, 1971-1975) 
i n d i c a t e  t h a t :  (1) within A u  u s t  surface waters the re  a r e  a s  
much a s  18 t o  20 pg-at NO3 C-? a s  f a r  a s  170 km offshore;  ( 2 )  
t h e r e  are s t i l l  14 t o  16  pg-at NOj  i n  November a t  t h e  same 
d i s t ance  offshore,  and ( 3 )  only 2 t o  4 pg-at NO3 within t h i s  
of fshore  area i n  February. Such a seasonal increase i n  the  nu- 
t r i e n t  content of offshore Peruvian waters presents  an apparent 
paradox because of t h e  lack of u t i l i z a t i o n  of these nu t r i en t s  by 
phytoplankton s imi la r  t o  the  gradient  of unused nu t r i en t s  across  
t h e  equa to r i a l  and Antarc t ic  divergences (Walsh, 1976) . 

During August 1976, chlorophyll concentrations less than 
1 pg c h l  a 4 - I  were found offshore where a s  much a s  7 t o  8 
pg-at NOj  4-I w e r e  encountered. The occurrence of patches of 
b l u e  water and high n u t r i e n t  concentrations off Peru has been 
a t t r i b u t e d  t o  heavy grazing pressure (Str ickland,  Eppley and 
DeMendiola, 1969; Ryther, Menzel, Hulburt, Lorenzen and Corwin, 
1971). Based on measurements of zooplankton excretion and bio- 
mass (Walsh e t  a l . ,  1979) the  estimated ingest ion f lux  of a l l  
s i z e  c l a s s e s  of zooplankton amounted t o  0.60 g C m-2 day-l,  or  
69% of t h e  August 1976 offshore primary production (0.87 g C m-2 
day-'), i n  con t ras t  t o  an ingest ion f lux  of 1.05 g C m-2 day-l, 
o r  32% of the  nearshore Peru production (3.22 g C m-2 dayw1). 

One commercial Ocean Thermal Energy Conversion (OTEC) p l an t  
of 400 MWe capacity,  about ha l f  t h a t  of the  Three Mile Is land 
nuclear p lan t ,  might have a sea water flow-through of -2.8 x 10 8 



m3 day-' (Lockheed, 1975) . Assuming an equal  mixture of co ld  
water from 1000 m and warm water from 0-30 m ,  n u t r i e n t  r i c h  
source water (-30 mg-at NO3 me3) would be  a r t i f i c i a l l y  upwelled 

8  3 3  a t  a  r a t e  of -1.4 x 10 m day-' o r  -.14 km day-'. I f  t h i s  
n i t r a t e  f l u x  of 4.2 x 10' mg-at NO3 day-' w e r e  discharged by t h e  

OTEC p l a n t  over a  11 km2 a r e a .  of  a l l  of t h e  upper 200 m of an 
ocean ecosystem, a  d a i l y  n i t rogen  add i t i on  of -2 pg-at NOj  (.-l. 
day-' would occur. The mean n i t r a t e  concentra t ion of t h e ,  upper 
200 m of o l i go t roph ic  ocean water i s  now about 2 pg-at NO 4-I 3  
(Walsh, 1974).  A t  t h e  same time, t h e  su r f ace  temperature of  t h e  

water i n  t h e  11 km2 around the  OTEC p l a n t  would be lowered by 
-1.28 'C  athe hen, 1975) . 

I n  c o n t r a s t ,  wi th in  a  b a r o c l i n i c  r a d i u s  of deformation, 
-11 km of f  Peru, t h e  nearshore upwelled i n p u t  of n i t r a t e  i n t o  
a  20 m su r f ace  Ekman l a y e r  can be  es t imated by the  equation,  
a N 0 3  w ( a N O 3 )  
- =  

a t  where w i s  t h e  upwelling v e l o c i t y  (10 m day-')', 
az 

 NO^) i s  t h e  n i t r a t e  g rad ien t  between 15 and 25 m (5  pg-at NO3 
t-l) , and a z  i s  10 m (Walsh, 1975) . This  n i t r a t e  i npu t  of -5 
vg-at NO3 (,-I day-' i s  assoc ia ted  wi th  a  su r f ace  temperature 
(-16'~)  a t  t he  Peru coas t  which i s  about 3 ' ~  less than o f f s h ~ z - e  
waters  ( -19 '~) .  Thus, t h e  n u t r i e n t  i npu t  and sur face  ternpzra- 
t u r e  d e c l i n e  from 2.5 OTEC p l a n t s  wi th in  a  11 km2 area  might be - 

equiva len t  t o  t h a t  of a  s i m i l a r  a rea  o f f  Peru, t h e  wor ld ' s  most 
product ive  c o a s t a l  upwelling region (walsh, 1974) However, t h e  

i 2 nearshore Peru upwelling zone c o n s i s t s  of  -1 x 10 km and 2,500 
OTEC p l a n t s  of 400 MWe capac i ty  would be  required t o  support  a  
s i m i l a r  pe l ag i c  c lupe id  f i she ry ;  furthermore, t he  OTEC p l a n t s  
may en r i ch  of f shore  ecosystems no t  c o a s t a l  a r ea s .  

The n u t r i e n t  i npu t  of t h e  OTEC p l a n t s  may be  confined, how- 
ever ,  t o  depths  of 150-200 m, i . e .  below t h e  permanent pycno- 

I c l i n e .  For t h e  OTEC p l a n t s  t o  b e  e f f i c i e n t ,  t h e  temperature 
I grad ien t  between sur face  and deep water has t o  be  u t i l i z e d  a t  a  

maximum. This impl ies  t h a t  r e c i r c u l a t i o n  of mixed water (sur-  
face  and deep water)  i . e .  r een te r ing  of mixed discharge  back 
i n t o  p l a n t  i n t ake ,  must not  be allowed, s i n c e  a  decrease of 1 ' ~  
i n  t h e  thermal g rad i en t  would r e s u l t  i n  a  l o s s  of t h e  n e t  power 
ou tpu t  of t h e  OTEC p l a n t  by a b ~ u t  10%. Thus, a  p l a n t  designed 
fo r  a  thermal g rad i en t  of 20°C would l o s e  a s  much a s  20-25% of 
i t s  n e t  power output  i f  t h e  thermal g rad i en t  were t o  be  lowered 
t o  1 8 ' ~  (Allender e t  a l . ,  1978).  For t h i s  reason, c u r r e n t  OTEC 
research  i s  emphasizing p l a n t s  with combined discharge  a t  a  depth 
of about 150 t o  200 m ,  and t h i s  design w i l l  b e  used f o r  OTEC-1 
and subsequent t e s t  platforms.  



The temperature-salinity c h a r a c t e r i s t i c s  of surface and 
deep seawater of t h e  t r o p i c a l  oceans a r e  such t h a t  t h e  discharge 
of mixed seawater i s  l i k e l y  t o  remain a t  the  depth of discharge, 
between 150 and 200 m. This i s  shown by sigma-t values e s t i -  
mated from the  v e r t i c a l  d i s t r i b u t i o n  of temperature and s a l i n i t y  
(Defant, 1961) f o r  a reas  of t h e  Gulf of Mexico and t h e  Caribbean 
Sea. The combined surface-deep water output would remain around 
t h e  depth of dens i ty  equal izat ion,  below 150 lii Eur tile Gulf of 
Mexico and below 200 m f o r  t h e  Caribbean Sea. Allender e t  a l .  
(1968) estimated t h i s  depth t o  be 216 m f o r  t h e  area south of 
Puerto Rico. 

Since t h e  depth of the  mixed layer  f o r  a  typ ica l  t r o p i c a l  
ocean i s  l e s s  than 100 m ,  OTEC n u t r i e n t  enrichment t o  most of 
t h e  euphotic zone would then be  l imited by v e r t i c a l  diffusivrl  
(about m 2 / s ) ,  i .e.  c e r t a i n l y  much l e s s  than what i s  e s t i -  
mated above. This implies  t h a t  OTEC p lan t s ,  r a t h e r  than being 
a  source of upwelling, might a c t  a s  a  source ok downwelling by 
s inking below t h e  euphotic zone s i g n i f i c a n t  f r ac t ions  of the  
sur face  zooplankton community, thereby decreasing the  ambient 
grazing s t r e s s  of the  offshore ol igotrophic  ecosystems. I f  a l l  
of t h e  OTEC n u t r i e n t  supply i s  not being used (because of quasi- 
continuous grazing p ressu re ) ,  in t roduct ion of a  time l a g  ( i . e .  
removal of t h e  grazers )  might r e s u l t  i n  increased n u t r i e n t  u t i -  
l i z a t i o n ,  higher  primary product ivi ty ,  and perhaps higher t e r -  
minal y ie ld  of anibient f i s h  populations. There has been much 
d iscuss ion  of t h e  f r a g i l i t y  of t r o p i c a l  t e r r e s t r i a l  ecosystems 
i n  response t o  human per turbat ions  ( F e r r i ,  1974), however. It 
i s  poss ib le  t h a t  t r o p i c a l  oceanic ecosystems, with t h e i r  rel- 
a t i v e l y  low n u t r i e n t  input  and low frequency of v a r i a b i l i t y ,  
may not  have t h e  r e s i l i e n c e  (Holling, 1973) t o  respond t o  such 
per turba t ions  of t h e  plankton cuiiui~ullilies, fcrr tkesc orgsfii~ms 
a r e  not  usual ly  sub jec t  t o  t h e  same high frequency f luc tua t ions  
a s  those of t h e  eas te rn  boundary cur rents .  

A comparative ana lys is  of marine ecosystems i n  coas ta l  and 
of fshore  divergences, suggests t h a t  na tura l  experiments have 
a l ready been performed, on an evolutionary sca le ,  along gra- 
d i e n t s  of t h e  f a c t o r s  con t ro l l ing  n u t r i e n t  u t i l i z a t i o n  i n  the  
sea.  The importance of any one f a c t o r  such a s  n u t r i e n t  l i m i -  
t a t i o n  o r  herbivory depends on the  s p a t i a l  and temporal sca les  
of h a b i t a t  v a r i a b i l i t y  charac ter iz ing  the  ecosystez. Further 
evaluat ion of OTEC environmental consequences w i l l  thus  have t o  
await  information on the  r a t e  processes of t h e  plankton com- 
munit ies a t  prospective s i t e s .  Appropriate t i m e  s e r i e s  now need 
t o  be taken with respec t  t o  t h e  l i f e  cycle  of the  important or- 
ganisms of t h e  o l igot rophic  ecosystem. 
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