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ABSTRACT

This report is the text of a graduate course on nonlinear differential equations

given by the author at the University of Wisconsin—Madison during the summer of
1987. The topics covered are

direction fields of first-order differential equations,

the Lie (group) theory of ordinary differential equations,
similarity solutions of second-order partial differential equations,
maximum principles and differential inequalities,

monotone operators and iteration,

complementary variational principles, and

stability of numerical methods.

The report should be of interest to graduate students, faculty, and practicing scien-
tists and engineers. No prior knowledge is required beyond a good working knowl-
edge of the calculus. The emphasis is on practical results. Most of the illustrative
examples are taken from the fields of nonlinear diffusion, heat and mass transfer,
applied superconductivity, and helium cryogenics.



PREFACE

In his beok How to Solve It, George Polya gives a short caricature of the tra-
ditional mathematirs professor. According to Polya, when faced with a differential
equation, the traditional professor says, “In order to solve this differential equation
you look at it till a solution occurs to you.” This advice is comical, as Polya intends
it to be, because it is really no advice at all: it gives no clue as to how to proceed;
it applies to everything anu solves nothing. In fact, it fits nicely a second dictum of
the traditional professor: “This principle is so perfectly general that no particular
application of it is possible.”

Unfortunately, authors with serious intentions sometimes speak with words close
to those of Polya’s traditional professor. Consider, for example, the following pas-
sage: “It is thus apparent that the first objective in the study of a nonlinear equation
is to ascertain whether or not a solution can be obtained cither explicitly or implic-
itly in terms of classical functions. The procedure in such a study is to discover a
transformation which will reduce the equation to some type that is known to have a
solution of the desired kind. Failing this, one seeks a transformation which will re-
duce the equation to one that is asymptotic to a form solvable by known functions.”
The author of this says nothing about how to find such transformations, so that
this advice is as insubstantial as that of the traditional professor. His illustrative
~xample only deepens the mystery:

“[An] example [of the second procedure] is furnished by the following nonlinear
equation:

dy

oY _ 2
1z +z (8)

upon which we make the following transformation of both the dependent and the
independent variables:

z = (gt)zls,y=\/5w (9)

Equation (8) is then reduced to the following:

dw 1w 2
E"'g?—w +1 (10)

which, as ¢ increases, is asymptotic to the equation:

— =w?+1 (11)

“The solution of Eq. (11) is the function w = tan(f — ¢y) and we can infer,
therefore, that w, the solution of Eq. (10), is asymptotic to this function.” Polya
says something in the preface of his book that I am sure expresses the reader’s
reaction at this juncture: “Yes, the solution seems to work, it appears to be correct;
but how is it possible to invent such a solution?” On this point, our author is silent.
He makes his magic passes and leaves us convinced but mystified.

Polya again: “A derivation correctly presented in the book or on the blackboard
may be inaccessible and un:nstructive, if the purpose of the successive steps is

vil




incomprehensible, if the reader or listener cannot underatand how it was humanly
possible to find such an argument, if he is not able to derive any suggestion from the
presentation as to how he could find such an argument by himself.” Accordingly,
the first aim of this book is so to present the material that the reader will always
feel that the subject is unfolding naturally along a path he himself might casily have
Jollowed.

Another way the traditional mathematics professor hampers understanding is
by leaving vital aspects of the problem to be finished by the reader. Qur author does
this when he says he regards “a linear differential equation as solved, if its solution
can be reduced to the quadrature of a known function, even though the quadrature
cannot be expressed siraply in terms of the classical algebraic or transcendental
functions, [and] regard;s] a nonlinear equation as solved, if it can be reduced to the
solution of a linear equation, even though the solution is not explicitly reducible to
the classical functions.” In this book, on the contrary, a problem is not considered
solved until the nature of the solution can be seen, in Polya’s often-repeated words,
“at a glance.” Presenting the material in such a way as to keep it always clear at a
glance is by no means easy, but it is a burden I cheerfully accept.

This brings us to the matter of rigor. Here, too, I take guidance from Polya,
who recommends what he calls incomplete proofs “as a sort of mnemotechnic de-
vice ... when the aim is tolerable coherence of presentation and not strictly logical
consistency.” After all, he says, “the facts must be presented in some connection
and in some sort of system, since isolated items are laboriously acquired and eas-
ity forgotten. Any sort of connection that unites the facts simply, naturally, and
durably is welcome here ... proofs may be useful, especially simple proofs.” So I
place clarity before rigor and strive for simplicity and directness of proof.

What about the choice of subject matter? Here the guiding principle has been
breadth of application. Accordingly, in the first chapter on first-order ordinary
differential equations, I have stressed analysts of the direction field because it can be
done for any first-order equation. Strangely, one rarely sees this subject dealt with
in courses on differential equations, yet in the truest sense it deals directly with the
soul of the differential equation (if one may be permitted to speak thus). Perhaps
the incapacity of the present generation of technologists to deal with differential
equations stems from neglect during their training of such fundamental matters
as the direction field in favor of more advanced but less uscful knowledge. There
is a tendency in teaching these days, which I shall strive to avoid, to despise the
elementary.

In the middle chapters of this book, I concentrate on the Lie theory of differen-
tial equations. As I have said in another book, I believe that because of its broad
applicability, this theory should become a practical workhorse for handling non-
linear differential equations. Strangely, too, one rarely sees this subject in courses
on differential equations, although it was invented specifically for solving them a
century ago by the Norwegian genius Sophus Lie. I never heard any mention of
it during my own education and only learned of it later when, by pure chance, I
came across Cohen’s 1911 book while browsing in Oak Ridge National Laboratory’s
library. The ideas I found in that old book electrified me and convinced me that
Lie’s theorems could be applied widely and with tremendous effect (as I hope this
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hook will show) by reducing second-order differential equations to first order. The
latter can then be treated by the graphical means of Chap. 1.

It was fortunate that in applying Lie's theory I ignored Jacobi’s usually correct
advice always to generalize and instead started off by concentrating on the affine
(stretching) groups, which in my experience were the ones that showed up most
often in applications. This led me to discover some useful properties of partial dif-
ferential equations invariant to families of affine groups. The upshot of all this work
is to allow calculation of similarity solutions of a broad class of second-order partial
differential equations by successive reduction, first to second-order ordinary differ-
ential equations and then to ordinary differential equations of the first order. This
method *.as been described in detail in an earlier monograph—here it is described
fully but with fewer illustrative examples.

The wide applicability of the ideas mentioned above (analysis of the direction
field and Lie theory) arises from their being rooted in very general strategies, namely
graphical analysis and exploitation of symmetry. Another broad general strategy is
to look for information in the form of inequalities when equalities are too difficult to
obtain. Certain methods are available for this purposc¢, and they form the third main
division of this book. They deal with monotone operators, differential inequalities,
mazimum and minimum principles, and complementary variational principles.

An early version of this book was used as the text of a graduate course that I
gave in the summer of 1987 at the University of Wisconsin in Madison. Great efforts
were expended in getting it ready on time by the staff of the Fusion Energy Division
of Oak Ridge National Laboratory. I wish to note for special thanks Sandra Vaughan
and Kathy Zell, who initially transcribed my handwritten notes; Darcus Johnson
and Brenda Smith, who typed the entire text, including the many complicated
equations; Jane Parrott and her graphics staff, who drew the figures; and Bonnie
Nestor, who edited the text.

Lawrence Dresner
Oak Ridge, Tennessee
November 1987
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Chapter 1

ANALYSIS OF THE DIRECTION FIELD OF FIRST-ORDER
ORDINARY DIFFERENTIAL EQUATIONS

“It adds a precious seeing to the eye.”
—W. Shakespeare
Love’s Labour’s Lost

1.1 After having criticized another author’s treatment of the first-order differential
equation

. _dy o,
y—dz_y+z, (l)

1 feel compelled to start by making good my boast that 1 can present a heuristic
treatment that will at every stage be clear “at a glance.”

The entire content of a first-order differential equation can be epitomized by its
direction field, a drawing in which is plotted at every point (z,y) a short line segment
having as its slope the value dy/dz calculated from the differential equation. The
integral curves that satisfy the differential equation must be everywhere tangent to
these line segments. Figure 1 shows the direction field of Eq. (1). By letting the eye
sweep along the line segments in the direction they indicate, it is possible to form
an immediate impression of what the integral curves are like.

In these days of powerful computers and computer graphics, it is no trouble to
produce a direction field like that of Fig. 1 (which was obtained on a time-share
VAX 8600 in a couple of seconds). Since the direction field is a logical equivalent
of the differential equation, one might say that the problem of the first-order dif-
ferential equation is entirely solved and that analytic techniques for the treatment
of the direction field are obsolete. There is good deal of truth in this, but, in my
opinion, the time has not quite arrived when the analytic techniques are as obsolete
as flint knapping. So I shall turn back the clock to 1917 and consider the method
described by S. Brodetsky (quoted in Introduction to Nonlinear Differential and
Integral Equations, Harold T. Davis, Dover, New York, 1962, pp. 26-27) for dealing
with the equation § = f(z,¥):

“Draw the locus of all points at which the required family of curves are

parallel to the axis of z: it is of course f(z,y) = 0. Draw the locus of points

where they are parallel to the axis of y, i.e. 1/f(z,y) = 0.

“One or the other or both of these loci may nnt exist in the finite part of
the plane; but in any case we get the plane divided up into a number of
compartments: in some the required curves have positive dy/dz, in others
negative dy/dz. Now calculate d’y/dz? from the given differential equa-
tion. This can always be done. Draw the locus of points of inflection, i.e.,
d?y/dz? = 0. We now have a number of compartments, in some of which
the curves are concave upward, viz. d’y/dz? positive, in others [concave]
downward, viz. d’y/dz* negative. We have thus divided up the plane into
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Fig. 1. The direction field of Eq. (1) in the portion of the plane -3 < r < 2, -2 <y < 2.



spaces, in each of which the curves satisfying the differential equation have
one of the gencral forms

Now draw a number of short tangents at a convenient number of points,
and the geometrical solution of the differential equation is obtained.”

Shown in Fig. 2 are the results of carrying out this procedure. The solid curve
is the locus C; of zero slope (§ = 0: =z = —y?), and the dashed curve is the locus
C; of zero curvature (§ = 0: z = —y? — 1/2y). For Eq. (1) it is easy to see that
both slope and curvature [j = 2y{y% +z)+ 1] are positive in the first quadrant. The
slope changes sign as we cross locus C, the curvature as we cross locus C,;. This
enables us at once to put the marks (1-4) above in the regions into which the plane
is divided by these loci.

If we superimpose the curves C) and C, on the direction field, we see from this
combined drawing (Fig. 3) that there are integral curves like 1 that appear to rise
from —oo0, cross C,, and approach y = +00. We might suspect that this is so from

ORNL-DWG 87-2379 FED

Fig. 2. The locus C, of zero slope (y = 0, solid curve) and the locus Cz, Cj of zero
curvature (y = 0, dashed curve).
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the curves of Fig. 2 alone, and here is how we can verify our suspicion. First, we
answer the question, how do the integral curves cross C2? The slope of the integral
curves is given by Eq. (1). If we evaluate the right-hand side of Eq. (1) un C3, where
¢ = —y? — 1/2y, we find

9:e(Ca) = ~§‘; , (2)

where the notation on the left-hand side of Eq. (2) means the slope § of the integral
curves at points (z,y) of C,. If we differentiate the equation defining C> we get

1 y

= —2yy + 5};5 (33.)
so that 1

where the left-hand side of Eq. (3b) means the slope y of the curve C;. Then
%ic(C2) > yc, > 0. (4)

This means that the integral curves cross C3 from lower left to upper right.

Now we turn to the question of how integral curves like 1 behave when [yf is
large. From inspection of Fig. 1 we might suspect that on each integral curve like
1, y approaches co for a certain value of z and —oo for a certain smaller value of
z. How can we show this without creating the entire direction field? When |y| is
large, one of the following three mutually exclusive alternatives must hold:

vl < izl s vl ~ Vizl, lul > Vel .

If the first of these holds, then the right-hand side of Eq. (1) can be replaced by
z and Eq. (1) can be integrated at once: y = 22/2 + ¢, where c is a constant
of integration. For large enough y, the constant becomes negligible, so the first
alternative gives y = z2/2. But this contradicts the assumption that |y| < \/I?,
i.e., that y? < |z|. So the first alternative leads to a contradiction and thus cannot
hold.

The third alternative means that iy = y? to leading order, so that ~1/y = z + ¢,
where c is a constant of integration. As y — +o00, —1/y — 0 from below, i.e., —1/y
ascends through negative values to zero, so that ¢ must be negative and y — oo as
z — |c|. In other words, if we replace ¢ by —b, where now b > 0, y ~ 1/(b — z).
Thus each integral curve has a simple pole at which y — oo as z approaches the
pole from below.

When y — —o0, —1/y — 0 from above, i.e.,, —1/y descends through positive
values to zero so that ¢ must be positive and y — —oco0 as 2 — —c. Thus y ~
—1/(c + z), and each integral curve has a second simple pole at which y — —oco as
z approaches the pole from above.



The second alternative means that y = Ay/z,z > 0,and y = A -z, ¢ < 0,
where A stands for some generic constant of proportionality. When substituted
into Eq. (1), this gives, for ¢ > 0, A/2y/x = (A% + 1)z, which is self-contradictory
no matter what the value of A. However, when ¢ < 0, this gives 4/2/—z¢ =
(1 — A%?)(~z), which can be satisfied, to leading order (remember, if |y| is large,
so will |z| be), by A = 1. So it is possible for y to approach +o0o as 2 — —oc
according to the asymptotic laws y ~ /=2 or y ~ —y/—z.

These last possibilities do not affect curves like 1, however; these curves therefore
stretch from pole to pole in the manner of the tangent curve. They fill part of the
plane densely, and the locations of the upper and lower poles vary continuously
from curve to curve. These locations could be expressed, for example, as functions
of the intersection of each integral curve with the z-axis.

Integral curves like 2 (which cannot cross C; because they would cross from
upper left to lower right) also cross the z-axis. If we advance along the positive z-
axis from the origin we eventually pass from the family of curves like 2 to the family
of curves like 1. The locus of the intcrsections of the curves of the family 2 with
the z-axis, being dense on the z-axis and bounded from above, has an upper limit
point on the z-axis. This limit point is also the lower limit point of the intersections
of the curves of 1 with the z-axis, these intersections being dense on the z-axis and
bounded from below. This limit point thus separates the intersections of the two
families with the z-axis. There is such a limit point on any line parallel to the
z-axis; their locus is a curve § that separates the two families of integral curves.
Because S lies infinitely close to integral curves of both families, it must have the
slope prescribed by Eq. (1), i.e., it must be a solution of the differential equation.
Such a limiting solution that separates two qualitatively different families of integral
curves is called a separatrix. Separatrices are important because, as we shall see
later, they often turn out to be the thing we must calculate in order to obtain a
similarity solution of a partial differential equation.

The curve S lies above the integral curves of family 1; therefore it must lie
above curve C;. Futhermore, it lies below the curves of the family 2; therefore it
lies below curve C,. Consequently, as z — —oo, y, ~ —+/—z, since this is the
common asymptote of curves C; and C,. This asymptote can be used to obtain
starting values for the numerical computation of §.* Since the value of y, is known
for z large and negative, we integrate numerically in the positive z-direction. This
is fortunate because that is the stable direction of integration. By stable we mean

;It is possible to obtain an asymptotic series for S at the cost of some computational labor. If we

set z' = —z and y' = —y, for convenience, then Eq. (1) becomes 3’ = y'? — =’ and §' is asymptotic
to vz’ for y' > 1. Using the method of undetermined coefficients, we can obtain the asymptotic
series
] ; 1 5 15 1105
y = Ve + — -— + —

4z'  322'5/2  64z'*  2048z'11/2
If we again change the sign of z and y we get points on the separatrix § of Fig. 3.

This differential equation, like most others in this book, is not contrived but arose in the
author’s study of the expulsion of cold helium from a long, slender, heated tube.



that small errors (¢.g., the truncation error of a finite-difference scheme or the error
incurred by the finite-decimal reprrsentation of numbers in the computer) do not
increase without bound in the course of integration. This is because neighboring
integral curves converge on S as we advance in the positive z-direction. Small errors
such as roundoff and truncation errors neal themselves as we integrate forwards. On
the other hand, if we integrate backwards (i.e., in the negative z-direction) we are
eventually thrown off either to one side or to the other.

What about the behavior of integral curves like 2? The same reasoning applied
to integral curve 1 shows that on curves like 2, y can approach +o0o either by
approaching a pole from below or by approaching asymptotically /—z as z — —oo.
On the right they must clearly have a pole. Since they cannot cross C; again on the
far left, they must always lie below it and so must approach /—z for large enough
—z. Furthermore, since integral curves cross the upper branch of C; from lower left
to upper right, curves like 2 approach the common asymptote v/—z of C, and C}
from below Cj.

The diagram in Fig. 3 summarizes what there is to be known about Eq. (1), and
it is fair to say that its content can be taken in at a glance. It is my contention that
the qualitative nature of the curves of families 1 and 2 could have been deduced from
Fig. 2 alone by 2ugmenting Brodetsky’s method with the two additional methods
used here, namely: (i) the study of how the integral curves cross C; and (ii) the
study of asymptotic behavior by enumeration of cases.

1.2 The example we have just studied is of a very simple kind in which the slope y is
uniquely determined at every point {z,y) of the plane. More complicated cases arise

when points (z,y) exist at which f(z,y) is multivalued. The differential equationt

. _y(2-—=)
v= 3z —y (5)

provides an ~xample of this. At the point 0:(0,0) and P:(2,6) the right-hand side of
Eq. (5) becomes indeterminate in the manner 0/0. Such points are called singular
points of the differential equation. To see what happens at these singular points
(as well as everywhere else) we study the direction field of Eq. (5). We shall not
actually construct it as we did in Fig. 1 but rather infer its general appearance by
following Brodetsky’s advice.

The slope y vanishes when the numerator of the right-hand side vanishes, i.e.,
when y = 0 or z = 2; it is infinite when the denominator vanishes, i.e., when y = 3z.
These lines are shown in Fig. 4 along with hatch marks to indicate the slope of the
integral curves on them. The points O and P, which are the intersections of lines
on which = 0 with lines on which y = *oo, are shown as black dots. These lines
divide the plane into seven regions, in each of which the slope has a constant sign.
The slope changes sign as we cross each line.

If we find the sign of the slope at any convenient point, we can then assign the
sign everywhere by simply crossing the lines from region to region. Since the slope
on the y-axis (z = 0) is —2 (except possibly at 0), the sign of the slope in each
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Fig. 4. A partial sketch of the direction field and integral curves of Eq. (5).

region must be as shown. With these assignments fixed, we can begin to sketch in
parts of the integral curves. In Fig. 4 are six short arcs showing how the integral
curves must cross the lines L, and L3. No integral curve can cross L; (except
possibly at 0) because the slope § of the integral curves is equal to the slope of L,
itself. [This means, of course, that L; : y = 0 is an integral curve of Eq. (5).] With
the assignments of slope given in Fig. 4, this shows that y — 0 as £ — oc on any
integral curve, as indicated by the two short arcs near line L;.

What happened to the two integral curves shown intersecting the segments of
OP and PQ as ¢ — 0?7 They cannot escape from the triangle OPQ by crossing
either line L, or line L3, so they must pass through the origin O. To study how
they might do this, we first note that close to the origin O, the differential equation
of Eq. (5) can be replaced by

(near O) (6)



since close to the origin |2] < 2. This differential equation can be solved; the
solution is ¢ = y t Cy%?, where C is a constant of integration. You can verify
this by calculating dz/dy and comparing it with 1/3 calculated from Eq. (6). Later
you will learn a straightforward way of finding such a solution. But right now you
may not know “how it is possible to invent such a solution.” From this solution
we see that all integral curves (save the exceptional one y = 0) approach the origin
along the line y = z (remember, when y < 1, ¥/ < y). Now I will show you how
to obtain that information from Eq. (6) without solving it by studying its limiting
behavior by enumeration of cases.

Any curve entering the origin can do so in one of three mutually exclusive ways:
ly] < |z|, ly| ~ |z|, and |y| > |z|. Since the curves we are interested in lie between
Ly : y=3z and L, : y =0, the third alternative is excluded. The first alternative
simplifies Eq. (6) to § = 2y/3z, which can be solved at once to give y = const z2/3.
No matter what the value of the constant, when [z[ is small enough, this contradicts
the hypothesis |y| < |z|. Hence the first alternative is likewise excluded. The second
alternative means y = Az when z is small enough. Inserting this form into Eq. (6),
we obtain the algebraic equation A = 24/(3 — A) for A, which has the solution
A =0 and A = 1. The first of these contradicts the hypothesis |y| ~ |z|, so we are
left with the second. Thus, integral curves entering the origin do so along the line
y = z.

The integral curves in the triangle OPQ are of two types, those that eventually
cross the segment of OP of L; and those that eventually cross the segment of PQ
of Ly. These two families must be separated by a separatrix S that, because it
belongs to neither family, must exit through the point P. The point P, lying as it
does at the center of four different families of integral curves, must be traversed by
two separatrices (see Fig. 5). One of them is S; the other intersects S at an angle.
The slopes of these two separatrices at P can be determined by an application of
|’Hospital’s rule:

. 2yp — yp -- zpYp -6
= - = - ) (7
vP 3-9p 3-9p (72)
ip = (3 +33)/2 . (7b)

A singular point like P traversed by two separatrices separating four families of
integral curves is called a saddle point.
When |z| is large, Eq. (5) becomes

.
y—3:z:—-y '

(8)

The integral curves in the first and fourth quadrants must approach L, as z — oo.
Therefore, for them y <« =z, and Eq. (8) becomes y = —y/3, which can easily be
solved to give y = constexp(—z/3). So these integral curves approach L, exponen-
tially.

To analyze the asymptotic behavior of the integral curves in the second and third
quadrants, i.e., as £ — —oo, we again resort to the enumeration of alternatives. As
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Fig. 5. Second stage in the construction of the integral curves of Eq. (5).

z — —oo, either [y| > |z|, ly| ~ |z|, or |[y| < |z|. The first alternative leads to gy = =
or y = z2/2 + const. When |z| is large enough the constant of integration will be
negligible so that y ~ /2. This is consistent with the hypothesis |y| > |z|, but only
for integral curves in the second quadrant, where y > 0. The third alternative, Jy| <
|z|, leads to y = constexp(—z/3) as before. But now as z — —o0, it contradicts
the hypothesis [y| < |z|. Finally, |y| ~ |z| also leads to a contradiction because
the numerator of Eq. (8) is of order 2 while the denominator is of order 1. Thus
the integral curves in the second quadrant stretch toward infinity asymptotically to
y = £2/2. None of the alternatives is free of contradiction for integral curves in the
third quadrant, so they cannot stretch to infinity. Instead, they must intersect the
line L3 and loop around into the fourth quadrant as shown. Finally, the integral
curves between the lines L, and L can only fulfill the alternative |y| 3> |z| and so
are asymptotic to y = z2/2.

Figure 5 summarizes all the information we have gained and displays the content
of the differential equation (5) so it can be comprehended at a glance. It is surprising
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how such a simple differential equation can give rise to so cumplex an array of
integral curves. In the practical problem that gave rise to Eq. (5), it was the
section of the separatrix S between O and P that was needed. It was calculated
numerically by integrating from P to O [the stable direction using the positive slope
equation (7b) to obtain starting values close to P).

1.3 The study of asymptotic behavior by enumeration of alternatives, if handled
unthinkingly, can lead to unexpected paradoxes. The differential equation § =
(z + y)/x provides an example. Figure 6 shows the direction field. Only the first
and fourth quadrants are shown; the second and third are images of the first and
fourth under the transformation ' = —~z,y' = —y, to which the differential equation
is invariant. There must certainly be some integral curves like those shown. How
do these integral curves enter the origin? They can do so in one of three mutually
exclusive ways, namely, |y| < |z|, |y| ~ |z|, and |y| > |z|. The first alternative
leads to y = ¢ + const, which contradicts the hypothesis |y| <« |z|. The second
alternative, which means y = Az for small enough z and y, leads to A = A+1, which
has no solution. The third alternative leads to § = y/z so that y = const z. This,
too, contradicts the hypothesis |y| > |#|. So none of the three mutually exclusive
alternatives appears free of contradiction. The resolution of this paradox is this:
the constants of integration denoted above by “const” are not necessarily constants,
but inay be slowly varying functions of z. Consider again the first alternative
ly| < |z|. If it applies, the differential equation becomes § = 1 to leading order.
This differential equation is satisfied, again to leading order, by expressions of the
sort y = ¢+ C(z), where C(z) is a sufficiently slowly varying function of z. For then,
y =1+C(z),soif C(z) < 1,y = 1 to leading order. Even with this enlargement of
the meaning of “const,” the first alternative leads to a contradiction. So, too, does
the second alternative. But the third alternative does not!

When [y} > |z|, the differential equation becomes § = y/z to leading order.
Were this exact, it would give y = const z. Try instead y = C(z)z, where C(z) is
a slowly varying function of z. Differentiating, we find y = C + zC = y/z + =C.
If |zC| < |y/z| = |C], the solution of y = C(z)z satisfies the differential equation
y = y/z to leading order. Hf lim._|C(z)| = o0, it is then possible for |y| < |z|
for small z. [An example of a function C(z) that satisfies these requirements is
C(z) = In z.] From the relation § = C + =C we see at once that |#(0)| = oo.
By differentiating the differential equation we find that i = z~!, which is positive
in the first and fourth quadrants. So the integral curves are all concave upwards.
This precludes the possibility of any integral curves rising vertically from 0 in the
positive y-direction, so the integral curves must all look like those shown in Fig. 6.

The general solution of the differential equation § = (z + y)/y is y = zIn(Az),
as the reader may verify by differentiation. Later we shall learn a direct method of
solving this differential equation.

1.4 The singular points O and P in Fig. 5 are the intersections of one line on
which y = 0 and another on which § = +oo. Such intersections are surrounded
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Fig. 6. Part of the direction field of the differential equation § = (z + y)/=.

by characteristic patterns of integral curves of oniy a few different types, and we
display them below.

Figure 7a shows one possible configuration. Because the sign of § changes as we
move across either of the two lines, the sign alternates from quadrant to quadra:t as
we circulate around the singularity P. The array of four families of integral curves
separated by two separatrices characterizes the saddle point.

If we keep the same configuration of lines but change the sign of y by multiplying
the right-hand side of the differential equation by —1, we get the configuration shown
in Fig. 7b. The integral curves can either spiral into P (in which case P is called a
focus) or surround P as closed curves (in which case P is called a center or a vortex
point).

A new behavior occurs in the degenerate case in which the locus of zero (infinite)
slope is itself a line of zero (infinite) slope. Again, two assignments of sign are
possible. One (Fig. 7c) leads again to a saddle point, the other (Fig. 7d) to integral
curves radiating from P like the spokes of a wheel—it is called a node.
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Fig. 7. (a) A saddle point, (b) a focus or a center (vortex point), (c) a saddle point,
(d) a node, (e) a saddle point, and (f) a node.
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If the locus of zero slope is a line of zero slope and the locus of infinite slope is
simultaneously a line of infinite slope (a kind of double degenerate case) we get the
configurations in Figs. 7e and 7{, giving, respectively, a saddle point and a node.

The integral curves entering the node of Fig. 7d might be considered as degen-
erate spirals that are prevented from niaking more than a half-turn around P by
the line of zero slope, which they cannot cross. Some justification for this viewpoint
can be found in a topological characterization of the direction field, the Poincaré
ind~~. The Poincaré index is a topological invariant of a continuous vector field.
A _.or field is a diagram in which a small vector is plotted at every point (z,y)
according to some given prescription. It differs from a direction field only in that
the little hatch marks of the direction field have been supplied with arrow heads
showing in which direction they point. A continuous vector field is one in which the
directions of the two vectors at two neighboring points are close to one another.

Suppose we draw a closed curve in such a vector field. As we advance along
this curve in the positive (counterclockwise) direction, the local vector of the vector
field will continuously change its direction. When we return to our starting point it
will have returned to its original direction. In doing so, it may have executed sev-
eral complete revolutions—the number of such revolutions (counted positive when
executed counterclockwise and negative when executed clockwise) is the Poincaré
index.

To convert a direction field to a vector field, we start by putting an arrowhead
on any arbitrary hatch mark. The arrow direction everywhere else is determined
by the requirement that the vector field be continuous. Figure 8 shows the results
of such a construction at (a) an ordinary point of the vector field, (b) a node, (c) a
center, (d) a saddle, and (e) a focus, together with the Poincaré index I of the curve

If the curves C of Figs. 8b—8e are imagined to shrink down continuously around
the points S inside them, their index I will remain unchanged. For the index can
only change by an integer, something that cannot happen continuously. The index
can only change when the curve C crosses a singularity. So the index of any curve
surrounding a singularity is the same, and we can therefore call its value the index
of the point. Saddles have index --1; n>des, centcrs, and focuses have index +1;
and ordinary points have index 0.

Among the most useful facts about the index are these. The index of a closed
integral curve is 1. Consequently, such an integral curve must surround some sin-
gular point. Furthermore, the index of any closed curve C is the sum of the indexes
of the singular points it contains. [To see this, surround each singularity with an
infinitesimal circle and join these circles to the curve C by cuts that will be tra-
versed twice in opposite directions (Fig. 9). The index of the entire cut curve is zero
since it contains no singularity (case 8a). Since the cuts contribute nothing to the
overall vector rotation because they are traversed alternately in opposite directions,
Ic - Icy — Icz =0, as was to be proved.] As an example of how this last theorem
can be applied, imagine a large contour in Fig. 5 surrounding both the singularities
O and P. It is easy to see that the index of the large contour is zero, so Ip+Ip = 0.
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Fig. 8. A vector field at (a) an ordinary point, (b) a node, (c) a center, (d) a saddle,
and (e) a focus. I is the Poincaré index of the curve C.
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Fig. 9. Sketch to aid in the calculation of the index of a curve surrounding two
singularities.
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Clearly, then, one of the singularities must be a saddle, while the other must be a
center, a node, or a focus (it is in fact a node).

The singularities dealt with so far are particularly simple. More complex singu-
larities can arise from the confluence of several simple singularities. For example,

the differential equation
2

T
. 9
V= (9)
has a single singularity at the origin (see Fig. 10). This singularity has a Poincaré
index of zero. The reason for this peculiar behavior is that z = 0 is a double

root of 22 = 0, the equation we obtain when we set the numerator equal to zero.
Alternatively, we may note that the sign of y does not change as we cross the locus
ofy = 0.

Equation (9) may be considered as the limit of the differential equation

. z(x —¢)
A (10)

as € — 0. Equation (10) has two singularities, a focus at the origin and a saddle at
the point (¢, —¢). These two merge as € — 0, giving a compound singularity whose
Poincaré index is zero. Two separatrices emerge from the singularity.

ORNL-DWG 87-2365 FED
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Fig. 10. The direction field of Eq. (9).
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The differential equation

23

_—, 11
T+y ( )

which is similar to Eq. (9), is a reduced form of the second-order Emden-Fowler
equation. (The Emden-Fowler equation arises in the study of the equilibrium mass
distribution of a cloud of gas held together by gravity. We shall study the method of
reducing it to a first-order equation in later chapters.) Its one singularity, located
at the origin, has a Poincaré index of 1. Figure 11 shows its direction field. At
large enough radii, the integral curves spiral around the origin, but once within a
critical radius they approach the origin, drawing ever closer to the line y = —=z
as they do so. Curves intersecting the line y = —z at abscissas whose absolute
values are greater than some value £, make another half-circuit counterclockwise,
whereas curves intersecting y = —z at abscissas whose absolute values are less than
zo approach the origin along the line y = —=z.

i=-

What about the exceptional integral curve that intersects the line y = —z at
¢ = *xzo? It approaches the origin along the z-axis, i.e., with zero slope, which
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Fig. 11. The direction field of Eq. (10).
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means |y| < |z|. It {ollows, then, from Eq. (11), that to leading order S is given by
y = —23/3. In fact, if we set

3

y:—%+Az5+Bm7+Cz°+... (12)
we find
y=—z?+ 542" + TBa® +9Cz® + ...
z+y:z—f;+Az5+Bm7+Cm°+...
and
~z® = (2 +y)y
=—z° + (31;—+5A):c5+(73-%)3:7-%(90-—1—%&-{—5‘42)3:9—{-...
so that ) g 101
A=——1—5~,B=—§~1—5,C=-—§a)g , etc.

Thus the integral curve S is given by the series

Y= = — s e - ——— — L,

which represents it close to the origin. It is this integral curve that interests us in
astrophysical applications.

No integral curve can enter the origin in such a manner that |y| is always > |z|.
For then, Eq. (11) would become § = ~z3/y so that y2/2 + z*/4 = const. If such
a curve passes through the origin, the constant must vanish, and then so must «
and y, a contradiction. But integral curves can enter the origin in such a manner
that |y| ~ |z|. If we set y = az, we find a(a + 1)z = —z®, which can be satisfied
to leading order if a = —1. In fact, if we set y equal to a power series in the odd
powers of z, and proceed as we did above, we find the series

y=—z+z°+3z° + 242" 4 2892° + . .. (13)

The series of Eq. (13) is a formal solution of Eq. (11). If it converged, then
within its radius of convergence all integral curves that approach the origin along

y = —z would have to be identical with it. This is not the case, as one can see
from Fig. 11, where infinitely many different integral curves approach 0 and along
y = —z. So Eq. (13) never converges, no matter how small z is. We might have

suspected this from the rapidity with which the coefficients grow. Equation (12), on
the other hand, representing a particular special integral curve, probably converges,
as we might suspect from the decreasing of its coefficients. Neither assertion about
convergence has been proved here.
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1.5 Besides having isolated singular points at which many slopes are possible,
diferential equations may have more than one slope at every point! To see how this
can happen, let us begin by considering the one-parameter family of parabolas

y=(c—a)l+a, a = a parameter . (14)

These parabolas have minima y = a at £ = a, and so a sketch of the family looks
like Fig. 12. Two parabolas pass through each point (z,y) of the plar:e, one with a
positive slope and one with a negative slope.
We can find these two slopes by ~~nverting Eq. (14) into a differential equation.
We do this by first differentiating to get ¥ = 2(z — a) and then eliminating a in
favor of y:
(f-1)Y =4dy~4dz+1. (15)

The two slopes arise from the two signs of the square root that are possible. This
differential equation has the family Eq. (14) as the family of its integral curves.

The family Eq. (14) has an envelope E given f(z,y,a) = 0 and f,(¢,y,a) =0
where f(z,y,a) =y — (z — a)? — a. The envelope is the straight line y = z — 1/4.
This straight line, because it is everywhere tangent to a curve of the family Eq. (14),
must also be a solution of the differential equation (15). Substitution shows this to
be so. Surh a solution is called a singular solution.

The usual situation is to be given the differential equation, not the family of
integral curves, It turns oat that we can find the singular solution (if one exists,
of course) from the differential equation even if we cannot integrate the differential
equation to find the family of integral curves. Herc is how we proceed Suppose the
differential equation can be written as f(z,y,y) = 0. From the sketch in Fig. 12 we
can see that on the singular solution the two roots for § collapse to one double root.
When the function f has a double root, then f; = 0 at the double root, too. So
we find the singular solution by eliminating ¥ from the equations f(z,y,¥) = 0 and
fy(z,y,9) = 0. Applying this to Eq. (15), we obtain at once y =1,y = =z — 1/4.

The procedure outlined above can produce loci that are not solutions of the
differential equation at all. Figure 13a shows one way in which this can happen.
The integral curves again have two branches, which this time meet at a cusp. At
the cusp, the slopes of the two branches become equal. Solution of the equations of
f =0and f; =0 will yield the locus L of the cusps. But L is clearly not a singular
solution of the differential equation because it nowhere has the slope of the integral
curves.

It is possible, however, for a cusp locus to be a singular solution, and Fig. 13b
shows how this can happen. An analytic criterion that distinguishes case (a) from
case (b) can be found as follows: at neighboring points (z,y) and (z+dz, y+dy) on
the locus L, we have f(z,y,y) = 0 and f(z + dz, y+ dy, § + dy) = 0. Subtracting
these two equations, we obtain f.dz + fy,dy + f;dy = 0. Now on L we must also
have f; = 0. Thus, f dz + f,dy = 0. Now dy/dz is the slope of L, and if L is to be
a singular solution this slope must equai a value of y obtained from the differential
equation. So if f; + f,# = 0, L is a singular solution.



20

ORNL-DWG 87-2366 FED

Y
E

xy

Fig. 12. Sketch of the family of parabolas y = (z — a)? + a.
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Fig. 13. Sketches showing cusp loci L which (a) are not and (b) are singular solutions.
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The reader should realize that another way to test whether a locus like L is
a singular solution is to substitute it into the differential equation. Such a test is
unimpeachable.

1.6 Singular solutions have the attractive property that we can obtain them without
integrating the differential equation to display explicitly the entire family of integral
curves. Separatrices have the same attractive property, although to find them we
need more information than just the function f but still less than the full, explicit
form of the integral curves. We need a quantity called the integrating factor, which
is defined below.

In discussing the integrating factor it is convenient to write the differential
equation § = f(z,y) in the form

M(zry)dz + N(”,y)dy =0, (16)

where f(z,y) = —M(z,y)/N(z,y). The general solution of a first-order differential
equation like Eq. (16) is a one-parameter family of curves, the parameter being
essentially a constant of integration. We represent the family of integral curves as
#(z,y) = C, where C is the parameter that labels the curves. If we differentiate
along an integral curve, C may be treated as a constant, and we have

$odz + pydy =0 . (17)

Since the incremental vector (dz, dy) lies along an integral curve, it satisfies Eq. (16)
as well; the two equations, (16) and (17), have a nontrivial solution if and only if

¢ _ Py
M N~

The two sides of Eq. (18) represent a function of z and y; denote it by u(z,y). It
is called an integrating factor because if we multiply the differential equation (16)
by it, the differential equation takes the form [Eq. (17)] of a perfect differential.

Since ¢ = pM and ¢, = N, equality of the cross derivatives ¢zy = ¢y gives
the condition (M), = (uN)z, which p must satisfy. This condition is equivalent
to the partial differential equation

(18)

Nps — Mpy = p(My — Nz) . (19)

Any particular solution of Eq. (19) is a suitable integrating factor. It is not necessary
to find the general solution of Eq. (19).

Suppose we know two different integrating factors, u(z,y) and v(z,y). Mul-
tiplying Eq. (16) by them converts Eq. (16) into two different perfect differentials
which upon integration give ¢(z,y) = e and ¥(z,y) = b (because uM = ¢,,
pN = ¢y, vM = 3z, and vN = 1,). Here a and b are constants. Both of these
equations represent the same integral curves, each curve labeled with a particular
value of a [if we are representing them by ¢(z,y) = a] or with a value of b [if
we are representing them by ¥(z,y) = b]. A value of a determines a particular
curve and thus a particular value of b, which means b is a function of a: b = F(a).
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Consequently, ¥(z,y) == b = F(a) = F|¢(z,y)] and the functions ¢ and ¢ are
functionally dependent. Dlﬂ'crentlatmg this last equation partially with respect
to, say, = gives ¥, = F(d)p, or, since ¥, = vM and ¢, = pM, v = F(¢)p.
Smce ¢ is a constant on any mtqgral curve, the integral curves are given by the
condition v = Cpu, where C = [F'(a) is . constant labeling the different integral
curves. Conversely, any function of the form F(¢)p, where F(¢) is any function
of ¢, is an integrating factor, converting Eq. (16) into the perfect differential form

F($)pde + F(¢)pydy = (d;)dqb = dF(¢) = 0. So the most general form of the
integrating factor is uG(¢), where G is any function of ¢.

The differential equation

(y? - 2zy)dz + 2’dy =0 (20)

furnishes an illustrative example of these ideas. Here M = y? — 2zy, N = z?,
M, = 2(y — z), and N = 2z. Since My, # N, Eq. (20) is not yet in the form of a
perfect differential and needs to be multiplied by an integrating factor. If Eq. (20)
were already a perfect differential, 4 = 1 would be an integrating factor, and when
p =1, Eq. (19) becomes M, — N, = 0. Equation (19) is now

2’ pz — y(y — 2z)py = 2(y — 2z)p . (21)

The first term will vanish if a particular solution for g is sought that is only a

function of y. The factor y — 2z cancels from the remaining two terms, so that we

have —y(du/dy) = 2u, which gives u = const y~2. The value of the constant is

irrelevant (as long as it is not zero) so we take for our integrating factor p = y~2.
If we multiply M and N by u we find

¢2:#M=1_2m/ya
by = uN =2 /) . (22)

We can integrate the first of these equations if we treat y as a constant, which we
must do since the derivative ¢, is a partial derivative. We get ¢ = z —z2/y + H(y),
where H(y) is the “constant” of integration. We determine H(y) by differentiating
partially with respect to y and comparing with the second part of Eq. (22). We find
¢, = =2/y* + H, so that H =0 and H is at most a constant. Since ¢ = const labels
the integral curves, we can incorporate H in ¢ and obtain for the integral curves

z2

= : 2
Y= z+cC (23)
where C = H — ¢ is a constant labeling the various curves. The most general
integrating factor then has the form
Gy 1 {z(z - y)]
v = = —G | ——=] , 24
y: 9 y (24)

where G(z) is any function. For example, if G(2) = 272, v = 7 2(z — y)~2 is also
an integrating factor.
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The equation ' = 0 may specify one or more separatrices. To see this,

consider the one-parameter family of integral curves ¢(z,y) = C sketched in Fig. 14.
The family consists of two qualitatively different paris separated by a separatrix S
corresponding to the value Cy of the parameter C.

ORNL-DWG 87-2368 FED

by
S
=
]
/\

Fig. 14. A one-parameter family of curves ¢(z,y) = C having a separatrix S corre-
sponding to C = Cj.

If (z,y) and (= + dz,y + dy) are two neighboring points on the same integral
curve, then ¢(z,y) = C and ¢(z + dy,y + dy) = C. Thus ¢.dz + ¢,dy = 0,
which means the vector (¢.,¢,) is perpendicular to the tangent vector (dz,dy).
Accordingly, the unit normal to the curves ¢(z,y) = C is the vector (¢z, ¢,)/(d2 +
¢§)1/2. By similar reasoning, we find that if (z,y) and (z + dz,y + dy) are points
on two neighboring curves having parameters C and C + dC, respectively, then
¢-dz + ¢ydy = dC. Now if (dz,dy) is perpendicular to ¢(z,y) = C, then dz =
dsd. /(P2 + ¢§)1/2 and dy = ds¢, /(2 + qS;j)l/z, where ds is the normal distance
between curves C and C + dC at (z,y). Substituting these values for dz and dy
into the expression for dC, we finally obtain ds(¢2 + 4,3)1/2 =dC.

At a separatrix, ds/dC = 0. This is because curves corresponding to a finite
interval of dC are packed into an infinitesimally small normal distance from the
separatrix. Said another way, at a separatrix, the density dC/ds of integral curves
is infinite. Now ds/dC = (@2 + ¢2)™'/? = p~'(M? + N2)~'/2, I, as in Eq. (20),
neither M nor N is ever infinite, ds/dC can only vanish if p=! = 0. So p~!' =0
may specify separatrices.

We can check this with the example begun with Eq. (20). Figure 15 shows a
plot of the family of curves given by Eq. (23). From the diagram, we can see that
there are three separatrices that divide the plane into six parts. The separatrices
are the lines y = 0, z = 0, and y = =. The integrating factor p = y~?2 gives the
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Fig. 15. The family of curves y = z2/(z + C), —00 < C < oo.

separatrix y = 0. The integrating factor v = z~2(z — y)~2 gives the separatrices
z = 0 and y = z. From this example, we see that knowing one integrating factor
may not be enough to find all the separatrices without integration, though we may
find some. If we know two integrating factors, of course, we can find all the integral
curves without integration.
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Chapter 2
THE LIE THEORY OF DIFFERENTIAL EQUATIONS

“Plus ¢a change, plus c’est la méme chose.”
—Alphonse Karr
Les Guépes

2.1 Lie has given a method of finding an integrating factor if the differential
equation is invariant to a one-parameter group of transformations. What this last
phrase means is best made clear by means of an example. If we change the variables
in the differential equation (1.20)* to z' and y', where

2’ =Xz

A 1
Yy =y 0<A<oo (1)

and ) is some positive constant, then the resulting differential equation in the primed
variables is identical to the original differential equation (1.20) in the unprimed
variables. This is true no matter what the value of A is, as long as it is not zero.
The differential equation (1.20) is said then to be invariant to the transformations
of Eq. (1).

The transformations of Eq. (1) are said to be a group because they obey the
three group postulates, namely: (i) Two transformations carried out in succession
are equivalent to some other single transformation of the group. Thus, if £' = \;z,
y' = Ay, and " = doz', y'' = Asy’, then =" = Ajdaz, ¥ = A\ Aay. (ii) There is an
identity transformation, i.e., one that leaves the variables =,y unchanged. For the
transformations of Eq. (1), the identity transformation is the one for which A = 1.
(iii) For every transformation, there is an inverse, i.e., a second transformation
that undoes the effect of the first. For the transformations of Eq. (1), the inverse
transformation has A, = 1/A;. (Thus 2" =z and y" =y.)

A first-order differential equation is logically equivalent to a one-parameter fam-
ily of integral curves, and so the family, too, must be transformed into itself by a
group under which the differential equation is invariant. In general, each curve of
the family has as its image under transformation some other curve of the family,
and only certain exceptional curves transform into themselves. For example, the
integral curve y = z?/(z + C) transforms under the transformations of Eq. (1) into
the integral curve y' = 2'2/(z' + AC). So the integral curve belonging to label C
has as its image the integral curve with label AC. Only the curves for C = 0 and
C = oo transform into themselves.

Lie’s method of constructing an integrating factor is based on the observation
that the image of an integral curve is another integral curve. Represent the family
of integral curves as ¢(z,y) = C and focus attention on the curve @ for which
C = Co. Transform each point (z,y) of Q into its image (z’,y'); denote the locus
of these images as curve Q'. The curve Q' is also an integral curve belonging to a

*That is, Eq. (20) in Chap. 1.
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label C that depends on A and Cy. So we can write ¢(z',y') = C(A,Cy) or, using
Eq. (1) to replace primed variables by unprimed variables,

¢(Aw”\y) = C(’\$CO) = C[A7¢(zay)] . (2)
Now we differentiate with respect to A and then set A = 1:

8C(A, ¢)

zhs + yhy = T N F(¢) . (3)

Since ¢, = uM and ¢, = pN, Eq. (3) can be written

__F() W
T M +yN

As we saw in Chap. 1, if we multiply an integrating factor by any function of ¢ we get

another integrating factor. Therefore, p = (zM + yN)~! must be an integrating

factor. Since M = 3? — 2zy and N = z? for the differential equatior (1.20),

p~! =zM +yN = zy(y — z), which satisfies Eq. (1.21), as it should. Interestingly,

this integrating factor yields all three separatrices ¢ = 0, y = 0, and y = z when

pu~! is set to zero.

2.2 Lie considered groups more general than the simple stretching group of Eq. (1).
We can write the most general one-parameter family of transformations of z and y
in the form

z' = X(z,y,)) , (5a)
y =Y(z,y,A) . (5b)

The functions of X and Y cannot be chosen arbitrarily because of the requirement
that they conform to the group property that two such transformations executed
in succession are equivalent to a certain other transformation. The restrictions on
X and Y may be found, as Lie has proposed, by composing finite transformations
out of a succession of infinitesimal transformations. This means the following.

Suppose A = ), corresponds to the identity transformation. When A — Ay is
very small, i.e., when A is close to Ay, Egs. (5a,b) can be replaced by the linear
terms in their Taylor series around A = A¢:

:v'=:z:+§(:z:,y)(z\—/\o)+... ) (ﬁa)
y'=y+n(zay)(’\_’\0)+"- ) (6b)
where
aX(z, A Y (z,y, A
o) = ELD)| and e,y = TR (g

The meaning of Eqs. (6a,b) is that nearby images of the point (z,y) lie on a small
line segment through (z,y) having the slope (y' —y)/(z' —z) = n(z,y)/é(=,y). The
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transformations of Eqs. (6a,b) are infinitesimal transformations. The geometric in-
terpretation of composing a finite transformation out of a succession of infinitesimal
transformations is that we reach a remote image of (z,y) by stepping successively
along a series of neighboring points, each of which is a nearby image of its pre-
decessor. That all these points are images of one another follows from the group
property. The locus traced out by this series of steps has the slope 1/€ everywhere
and hence is an integral curve of the differential equation

dy _ (z,y) (7)

dz  &(z,y)
These integral curves are called the orbits of the group. If we parameterize the
points of an orbit by setting d\ = dz/¢ = dy/n, we obtain the functions X and
Y by integrating these differential equations. Replacing dA by F(A)dA, where F is
any function of A, just corresponds to a different parameterization of the points of
the orbit. The group is thus entirely characterized by the two functions é(z,y) and
n(z,y).

For the simple stretching group of Eq. (1), ¢ = (82'/0A)a=1 = z and n =
(8y'/8A)a=; = y. The orbits are then straight lines through the origin. If we
parameterize the orbits according to dX = dz /¢ = dy/n, we obtain by integration
¢ = zge* " and y = ype* v, which has the same form as Eq. (1) if we identify
e* 20 here with ) there. If we parameterize the orbits according to dA/)\ = dz/¢ =
dy/n, we obtain by integration z = z¢(A/Xo), ¥ = yo(A/Ao), Which is the same as
Eq. (1) if we choose A, the parameter corresponding to the identity transformation,
to be 1.

The orbits, being composed of points which transform into one another, are
invariant curves, i.e., they transform into themselves. They are moreover the only
invariant curves. Separatrices are invariant curves because they separate two in-
variant families of curves. They are also integral curves of the differential equation.
So they must simultaneously satisfy the differential equations dy/dz = n/¢ and
dy/dz = —M/N. Equating these slopes we get the algebraic equation éM +nN =0
for invariant integral curves. This equation must include all the separatrices.

Now we can find Lie’s general expression {or an integrating factor in terms of
the components ¢ and 7 of the infinitesimal transformation. We start again with
the relation

é(z',y") = C(,Co) = C[A, ¢(z,y)] (8)
and again differentiate with respect to A and then set A = Ay. We get

645:: + T](}Sy = F(¢) ' (9)

since (0z'/0A)a=x, = € and (8y'/0A)r=x, = 0. Proceeding now exactly as before,
we find that

p=(EM+qN)! (10)

is an integrating factor. The algebraic equation éM + n/N = 0 derived in the
last paragraph for the separatrices is thus the same as the earlier result p=! = 0.
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Furthermore, we know now that when p is Lie's integrating factor, p=' = 0 gives
all the separatrices.

2.3 If explicit expressions for X and Y are available, it is relatively easy to decide
whether a given differential equation is invariant to a given group. But if no explicit
expressions are available, i.e., if Eq. (7) cannot be integrated explicitly, how can we
answer this question? To do so, we need the transformation law for the derivative
y, which, as we shall now see, is entirely determined by the transformation laws
for z and y. Suppose we consider two neighboring points P, : (z,y) and P; :
(z + dz,y + dy) joi' ed by a short line segment whose slope is § = dy/dz. Under
the infinitesimal transformation with parameter d\ = A — A, P, goes into the point
P{ :(z',y') and P, into the point P, : (z' + dz',y’ + dy'), where

g =z +€&(z,y)dr ,

y' =y +n(z,y)dr
' +dz' =z +dz + &(z + de,y + dy)dX
v +dy =y+dy+n(z+dz,y+ dy)d) .

The slope §' = dy'/dz' of the segment P{ P, is thus completely determined by the
transformation laws for  and y:

(11)

(12)

o _ 4y _ dy+ [n(z + de,y + dy) — n(=z,y)]dA
de' dz + [é(z +dz,y + dy) — &(z,y)]dA

(13)

If we expand the square brackets to first order in dy and dz and divide the numerator
and denominator of the right-hand side by dz, Eq. {13) becomes

o U+ (e + nyy)dA

= ° 14a
T+ 6+ & DD (4e)
=g+ (e + 9 — &9 — fyf/z)d’\ (14b)
L (dn . d
=y+ (d:c d:c) dx , (14c)
where d/dz applied to a function of (¢,y) means 8/0z + §0/0y. The quantity
dn . d¢
na= o U (15)

is Lie’s expression for the component of the extended infinitesimal transformation
belonging to y.
A first-order differential equation is a functional relation connecting z, y, and
y:
9(z,9,9)=0 . (16)
If it is invariant to the extended infinitesimal transformation with components
&(z,y), n(z,y), and n4(z,y,y), it will be invariant to the entire group equation (5)
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(since the transformation of the group can be composed of a succession of infinites-
imal transformations). Invariance means that g(z',y',3%') = 0, where z', ¥, and '
are the images of z, y, and ¥. Thus

g(z + &dA,y +1d\,§ + ned)) = 0 . (17)

From Eqs. (16) and (17) follows the condition

£9: +ngy + M4agy = 0 (18)

that the differential equation (16) is invariant to the group equation (5).

The condition equation (17) can be looked upon as a first-order linear partial
differential equation for g if we imagine that £ and n are known. Its general so-
lution therefore supplies the answer to the question, “What is the most general
first-order ordinary differential equation invariant to the group whose infinitesimal
transformation has the components £ and n?” The general solution for a first-order
linear partial differential equation like Eq. (18) can be obtained by integrating the
characteristic equations

dz _dy _dy

€ ) nd (19)

If we can find two independent integrals* u(z,y,y) and v(z,y,y) of Eq. (19), the
general solution can be obtained by setting v = F'(u), where F is any arbitrary
function. The equation v = F(u) then gives the most general functional relation
between z, y, and y that is invariant to the group with infinitesimal components £, 7.
If we seek explicit representation of the most general differential equation, we shall
have to have explicit representations of both u© and v. Eliminating y between these
two integrals of Eq. (19) gives an integral of the first part of Eq. (19), dz/§ = dy/7.
Such an integral is an explicit representation of the orbits of the group £,7. So we
shall be able to attain an explicit representation for the most general differential
equation at best for all groups for which an explicit representation of the orbits is
also possible.

Any one-parameter family of curves can serve as the orbits of a group; for
example, the family

32

y = (u = parameter) . (20)

T+ u

This family has as its differential equation Eq. (1.20), which, when written in the

form 4 4
gz _ _ 4y , (21)

allows us to identify the infinitesimal - -1ponents of the group:

E=2?, n=2zy—y* . (22)

*An integral is a function of 2, y, and y whose value remains constant as we move along a curve
in z, y, ¥ space whose direction is given by Eq. (19).
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Then, Eq. (15) gives
na=2y(1-9) . (23)

The characteristic equations, Eq. (19), are then
dz dy dy

22 2ey-y*  2y(l—3)

(24)

From Eq. (20) it follows that u = ?/y — = is one integral of Eq. (24). We can find
a second integral by substituting for y from Eq. (20) in the last term of Eq. (24).

Then 4 4
az = y - (25&)
22 2[z2/(z +u)|(1 - 9)
or i .
y z4u
3~ 2 dr . (25b)
Integrating Eq. (25b), we get
2
~In(1-§)= T+ S+ F(u) (26)

where v, the constant of integration on the right-hand side, has been set equal to
F(u), an arbitrary function of u. Since u = ?/y —z, Eq. (26) can be written finally

as 2 3 2
T T T

j=1-exp( -V a (2 - 27

Y exP(‘i 2y>G<y m> ’ 27)

where G = e™" is also an arbitrary function of its argument. Equation (27) is the
most general first-order differential equation invariant to the group whose infinites-
imal components are given in Eq. (22).

The infinitesimal components in Eq. (22) are not the only ones that reduce the
equation of the orbits, Eq. (7), to Eq. (21). Components obtained by multiplying
Eq. (22) by a common factor will work just as well. Thus, the orbits do not uniquely
determine the group, and different groups may have the same orbits. This is made
clear by an example simpler than the foregoing one. Suppose the orbits are the lines
that radiate from the origin, y = ux. Then their differential equation is dy/y =
dz/z. If we choose £ = ¢ and n = y, we are led to the mosi general differential
equation y = F(y/z), where F can be any function. If, on the other hand, we
choose ¢ = z°*! 5 = yz®, we are led to the most general differential equation
y=y/z+z"*F(y/z). If we choose ¢ = 2%y, n = zy?, which also leads to the orbits
y = uz, we find the most general differential equation is § = (y/z)[z* F(y/=z) —
1/[=*F(y/z) + 1].

In the manner just outlined, we can construct tables of first-order differential
equations for which groups and therefore integrating factors are known. Cohen
gives such a table (A. Cohen, An Introduction to the Lie Theory of One-Parameter
Groups, G. E. Stechert and Co., New York, 1931).

F
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2.4 An alternative to using an integraling factor to solve a first-order differential
equation is to separate variables. Lie has shown how to find, by means of the group,
new variables in which the differential equation is separable. According to Cohen,
this method antedates Lie’s discovery of the integrating factor by five years, having
been discovered in 1869.

Suppose we change variables from z,y to new coordinates z,, y,, where z; and
y, are prescribed functions of ¢ and y. To each point P in the plane belong a
pair of values (z,y) and another pair (x;,y;) calculable from (z,y). Under the
transformation with parameter A the point P : (x,y) is transformed into its image
point P' : (z',y'), where z' and y' are calculable from Eqs. (5a) and (5b). From
(z',y") we can calculate =} and yj, the new coordinates of P'. This procedure
implicitly defines a pair of functions X, and Y1 such that z{ = X(21,31,A) and

y; = 1,1(:!:1,y],A).
Now
g < (22) % (f=\ (0= Qa)
F o A:Ao— Oz \0A) \-» Oy 02 ) =1

3:’31 + 6a:1

bz " "oy By ’ (282)
and similarly
_ (% _ o (%) L (Qy_)
T=A0N ), o,, 02 \8r/,_,, " 8y \8\/,o,
- ?11_ Oy
o (28b)

Lie has chosen as canonical variables z;,y, those for which ¢; =0 and n; = 1. The
functional dependence of these canonical variables on the original variables z,y may
then be found by solving the pair of first-order partial differential equations

59’51 n2 o, (292)
8y

58y‘ p (29h)
"By

Any particular pair of solutions z;,y1 of Egs. (29a) and (29b) will provide satisfac-
tory canonical coordinates for which £; = 0 and n; = 1.

The characteristic equations for the linear partial differential equations (29a)
and (29b) are

dz _dy (30a)
€ 7
and d d
z _dy
— =2 = ) 30b
e W (305)
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Since Eq. (30a) is the same as Eq. (7), its integral gives the equations of the orbits.
1f we have an explicit representation of the orbits, we already have an integral of
the first equation of Eq. (30b), so finding the second integral involves only two
quadratures.

When ¢ = 0 and 77 = 1, m14 = 0 according to Eq. (15). Equation (19) then
hecomes dz,/0 = dy,/1 = dj; /0, for which two integrals are u = z; and v = ¥;.
So the most general differential equation invariant to the group ¢, =0, 7, =1 is
y1 = F(z,), which is separable.

As an illustration, let us pursue the last example in Para. 2.3 in which ¢ = z?y
and n = zy®. An integral of Eq. (30a) is y/z, so we can take z, to be any function of
y/z. The simplest choice is £; = y/z. This function is also an integral of Eq. (30b).
If we substitute it in the expression for 7, the last equality of Eq. (30b) becomes
dy; = dz/z,z®, which is satisfied by y; = —1/2z%z, = —1/2zy. Thusy; = —1/2zy,
) = y/z are a suitable pair of canonical coordinates. If we use them in the most
general differential equation § = (y/z)(z?F(y/z) — 1]/[z?F(y/z) + 1], it becomes
the separable equation y; = — F(z,)/2z2.

In the important special case that the group is an affine (stretching) group,
replacement of the dependent variable y by a group invariant causes the differential
equation to separate. [A group invariant is a function u(z,y), which transforms
into itself under the action of the group.] The most general stretching group in two
variables is

y' = ABy ) (31)

g =z ,

where 3 is a constant. We lose no generality by making the exponent of the multi-
plier of z equal to 1. The transformation law for y is then

y' Ey.'__yﬂ_)‘ﬁ—l-

V=4 " Xdz (32)

We write the differential equation in the form y = f(z,y). If this differential
equation is to be invariant to Egs. (31) and (32), it must have the same form in the
primed variables, namely, §' = f(z',y') or

M1y = f(Az, APy) (33a)
or
M f(2,y) = f(Az,APy) . (33b)
Differentiating with respect to A and setting A = 1, we obtain
B-1)f=zf+Byfy, , (34)
a linear partial differential equation for f. The characteristic equations are
d d d
_z_ — _g - ___L__ ) (35)
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Two integrals of these characteristic equations are y/2? and f/z?~!, so the general
solution of Eq. (35) is

f y
s =F(5) (36)
where F' is an arbitrary function. This equation expresses the restriction of the
form of f imposed by the condition of invariance of the differential equation to the
stretching group equation (31).
An invariant of the group is the function u = y/«®. If we replace y by u we
shall get a separable differential equation. For

de 'y By _1( f Y
de 2P 2Pt g \ap1 Pp
1 1
=~ [F(5) -83%] = JIFw) -8yl (37a)
so that
dx du
= = T (37b)

2.5 Lie also considered second-order differential equations. Such equations have
the general form g(z,y,¥,%) = 0. To test whether such an equation is invariant to
the group with infinitesimal components £,n we must calculate the transformation
law for the second derivative. A computation following the line from Eq. (12) to
Eq. (15) gives

d . d
7)44=ﬂ— ¢

1.~ U = M)z +9(na)y +§(na)y — €= — Py (38)

for the component of the extended infinitesimal transformation belonging to 3.

(Remember 74 is a function of z,y, and y!) The invariance of g(z,y,9,%) = 0
means that

€9: +ngy + Magy + Maagy; =0 (39)

which is derived exactly as Eq. (18) was.

Suppose now we imagine the second-order differential equation solved for §:j =
f(z,y,y). Introduce the new variable z = . Then the second-order differential
equation becomes a pair of coupled first-order differential equations,

z= f(z,y,2) , (40)
y=z ,
which can be written in the form
dz dy
flz,y,2) 2 d (41)

which is slightly more transparent than Eq. (40) for the purposes of this discussion.
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Equation (44) determines a line element at every point (z,y,z) in three-
dimensional space. The totality of these line elements comprises the direction field
of the second-order differential equation. In these days of powerful computer graph-
ics it is not overly ambitious to aspire to plot this direction field, but even if we
could, comprehending its content at a glance probably would tax our skills beyond
their limits. But the concept of a three-dimensional direction field is not without
its use. The direction field determines a two-parameter family of integral curves
that fill all of space. (That two parameters are involved can be seen by noting that
the intersection of a curve with some fiducial plane is specified by two coordinates
that can serve to identify the curve.) If the differential equation is invariant to the
group (&,7), this family of integral curves must be transformed into itself by the
group since it is logically equivalent to the differential equation. (In transforming
the curves, of course, 74 is used as the component of the infinitesimal transformation
belonging to z.)

The image of an integral curve of the family is another integral curve of the
family. Since the group is a one-parameter group of transformations, a curve and
all its images form a one-parameter family of curves in space, i.e., a surface. This
surface, by the manner of its construction, is furthermore invariant to the group,
i.e., it transforms into itself.

An invariant surface h(z,y,z) = 0 in three-dimensional space must satisfy the
relation

Ehe +nhy +ngh. =0 (42)

[since h(z + £dA, y + ndA, 2z + ngd)) also equals 0]. The characteristic equations of
(42) are
de dy dz

13 n N

If we know two integrals of Eq. (43), u(z,y) and v(z,y, z), the most general solution
of Eq. (42) is h(z,y,2) = F(u,v) = 0, where F' is an arbitrary function. This is the
most general form of surface invariant to the group (¢,7,74)-

The one-parameter family of invariant surfaces into which the integral curves can
be grouped thus takes the form F(u,v,C) = 0, where C is the parameter labeling
the individual surfaces. But such a form corresponds to a one-parameter family
of curves in the (u,v) plane. Such a one-parameter family of curves is logically
identical to a first-order differential equation in © and v. So introduction of the new
variables u(z,y) and v(z,y,¥) into the second-order differential equation reduces it
to a first-order differential equation.

Because u and v are integrals of Eq. (43), they are invariant to transformations
of the group, i.e., they are group invariants. The invariant v, because it involves ¥
as well as ¢ and y, is called a first differential invariant. So we may state Lie’s very
important theorem about second-order ordinary differential equations as follows:
if we introduce as new variables an invariant and a first differential invariant of
a group leaving a second-order ordinary differential equation invariant, the differ-
ential equation reduces to first order. The importance of this theorem is that we
can comprehend the contents of the first-order ordinary differential equation “at a
glance.”

(43)
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As an illustration, let us choose the Emden-Fowler equation, which, as
tioned in Chap. 1, arises in the study of the equilibrium mass distribu
cloud of gas held together by gravity. We specialize first to a gas with a .
specific heats (adiabatic exponent) of 4/3. The Emden-Fowler equation *

the form )
2y

;i)+;+y3=0. {44)
This differential equation is invariant to the affine (stretching) group
! . ,\—ly ,
' = Az . (45)

To see that this is true we calculate the transformation laws for y and #:
3 =2"% and ¥ =273% . (46)

So if we imagine the differential equation (44) written in the primed form and
use Eqgs. (45) and (46) to transform to the unprimed form, each term in Eq. (44)
individually is multiplied by the factor A~2. This common factor can be cancelled,
so that in the unprimed form Eq. (44) has precisely the same form as in the primed
form.

Because a multiplicative group like Eq. (45) will cause each term in Eq. (44)
to be multiplied by a power of A, the computations outlined above can be done in
one’s head. When we see an equation like Eq. (44) whose terms are products of
powers of z,y,¥, and §, we should at once test to see if it is invariant to a stretching
group. Since the most general stretching group in two variables has the form

y' =¥y,

' = Az (47)
the transformation laws for y and ¥ are

y =21,

§' =M% . (48)

If we imagine Eq. (44) to be written in the primed form and transform to the
unprimed form, the terms in Eq. (44) are multiplied by the factors M=%, M*~2_and
A8 respectively. In order for these terms to be equal (so we can cancel them as a
common factor), # — 2 must equal 34, i.e., 8 must be —1.

We can now write down an invariant u and a first differential invariant v for the
group equation (45) at once:

u=1zy, v==z7y . (49)

The choices of Eq. (49) are not the only possible ones [u = zy, v = §/y* or u = z%y?,
v = (§/y®) exp(zy) are also possible]. However, Eq. (49) is a suitable choice. Then

d ) 24
2% = 2z + z°j = 2z§ + o (——3 - y"') = -2y’ = —u®/z (50a)



36

du .
E—y+my~(u+v)/:t: . (50b)

Here we have eliminated § using the differential equation (44) and then eliminated y
and ¢ in favor of u and v. Upon dividing, we get the first-order differential equation

dv uld

du —u+v

(50¢)

This differential equation was studied in Chap. 1, where it was given as Eq. (1.20).
The Emden-Fowler equation for a gas of adiabatic exponent 6/5 is

. 2,
j+-y+y° =0, (51)
and this can easily be shown to be invariant to the group
y' = A'—l/zy )
g =Az . (52)

An invariant and a first differential invariant are v = y,/z and v = §2%/2. Differen-
tiating them with respect to z, we find

5
which can be integrated explicitly! Writing Eq. (53) as
2v dv +u dv +v du + 2u’du =0 (54a)
we see that it is already in the form of a perfect differential. Thus
3v? + 3uv + u® = const . (54b)

If we now replace v and v by their equivalents in terms of z,y, and y, we find
that Eq. (54b) is equivalent to

32392 + 3yyx? + z°y® = const . (54c)

So we are faced with the task of integrating another first-order differential equation.
But because Eq. (54c) is equivalent to Eq. (54b), and because Eq. (54b) is invariant
to Eq. (52) (it is composed of invariants!), Eq. (54c) must be invariant to Eq. (52).
This means that, for example, we can separate variables by introducing an invariant
in place of y [remember, Eq. (52) is a stretching group]. A convenient choice is
w = u? = zy?, which causes Eq. (54c) to separate:

de _ V3 dw (55)
¢ 2 (3w?/4 —w* + const-w)l/2

Because the interpretation of y is a gravitational potential, the physically interesting
solution of Eq. (51) is the one for which y is finite at the origin and has zero derivative
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there. For that solution, the constant in Eqs. (54c) and (55) must be zero. Then
Eq. (55) can be integrated by setting w = (v/3/2)sin(6/2). We find after some

tedious computation

1/2
w = ;2—:—;_{-%?, y= (%ﬁ) , a = constant of integration . (56)

2.6 The Emden-Fowler equation (51) could be solved analytically after its reduction
to the first-order differential equation (53). This must be counted as good fortune
and is generally not the case. How then do we proceed? The answer to this question
is best given by means of an example, the solution of the Thomas-Fermi equation.
This nonlinear second-order equation arises in the determination of the screening
of the Coulomb potential of a nucleus by the electron cloud surrounding it. It has
the form

zl/?y — y3/2 , (57)

where z is the radial coordinate (in suitable atomic units) and y is a multiplicative
correction factor to the unshielded nuclear Coulomb potential. The integral curve
of Eq. (57) we seek is one for which

y(0) =1 and y(oo) =0 . (58)

Since Eq. (57) is composed of products of powers of z, y, and j, we try the
stretching group equation (47). Substituting Eqgs. (47) and (48) into the primed
form of Eq. (57), we find 8 — 3/2 = (3/2)8 as the condition for invariance. Thus
B = -3, and Eq. (57) is invariant to the stretching group

z' = Az
y =A%y (59)

If we use u = 23y and v = £y as an invariant and a first differential invariant, we

find

:z:gl—, = 4z'y + 2%y = 42y + zs(m—l/zys/z) =4v+ud? | (60a)
z
a:?ﬁ =32y +z'y=3u+v , (60b)
T
so that P a2
v 4dv+u
du ~ 3utv (60c)

Equation (60c) is not explicitly integrable in terms of elementary functions, so
we shall turn to an analysis of its direction field io help us to solve Eqs. (5§7) and
(58). Now since z is positive (being a radius) and y varies between 0 and 1, we
may guess y is positive and § negative. Therefore u = z3y > 0 and v = z*y < 0,
so we shall only be interested in the fourth quadrant of the (u,v) plane. Figure 1
shows the direction field of Eq. (60c) in this quadrant. The curve of zero slope is
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Fig. 1. The fourth quadrant of the direction field of Eq. (60c).

v = —u3/2/4; the curve of infinite slope is v = —3u. These curves intersect at two
singularities, the origin O and the point P: (144, —432).

The signs of the slope dv/du being as shown in the figure, the origin must be
a node and the point P a saddle. One of the integral curves in Fig. 1 corresponds
to the solution of Eqgs. (57) and (58) that we seek. How shall we find out which
one? In the first place, when z = 0, y = 1, so u = 23y = 0. If (0) is finite, then
v = z*y = 0 as well. So the integral curve we seek passes through the origin O,
which corresponds to z = 0. All the curves that emanate from the origin except
the separatrix S eventually leave the fourth quadrant. So our attention is naturally
focused on S.

The point P corresponds to the limit z = 0o. This we can see as follows. The
slopes of the two separatrices through P can be calculated from Eq. (60c) using
’Hospital’s rule; they are (1 + v/73)/2. So if near P we write u = 144 + Au and
v = —432+4 Av, then Av/Au = (1-+/73)/2 on S. Then, near P, Eq. (60b) becomes

d_a:__ du 2du _ 2du (61)
g 3ut+v (T-+/T)Auv (T—VT3)(u - 144)




39

Thus, as u — 144 from below, ¢ -+ +o00. It follows, furthermore, from the definition
of u that, when z is large,

gtz (62)

So without yet having solved any differential equations we already have the asymp-
totic form of the solution we seek.

We can find additional useful information by studying the behavior of the sep-
aratrix S near the origin. Since the separatrix lies between the curves v = —u%/2/4
and v = —u, it can approach the origin in one of three mutually exclusive ways,
namely, (i) —v ~ u, (ii) v >» —v > 432, and (iii) —v ~ u®/2, The first alternative
means v = au near O. Then Eq. (60c) reduces in leading order to a = 4a/(a+3), so
a = 1. This curve does not liein the fourth quadrant and so cannot represent S. The
third alternative means v = au?/?, which converts Eq. (60c) into 3/2a = (4a+1)/3
in leading order, so a = 2. Again, the curve does not lie in the fourth quadrant.
The second alternative converts Eq. (60c) into dv/du = 4v/3u in leading order,
which implies v = —au*/?, where a is some positive constant. So S and indeed all
integral curves entering the origin through the fourth quadrant do so along curves
of the form v = —au*/3, different curves being labeled by different values of a.

The value of a for the separatrix has an interesting and useful interpretation.
Since v = —au'/? near O, we have z*y = —a(2%y)*/® near z = 0. The powers of
z cancel, and since y(0) = 1, we thus have y(0) = —a. We can find the value of
a by numerically integrating along § from P to O, using the slope (1 — v/73)/2 to
obtain starting values close to P. Once we have done so, we have starting values
for the integration of Eq. (57) at z = 0. Thus, at the cost of a single numerical
integration of a first-order differential equation, we have converted the two-point
boundary value problem expressed by the conditions of Eq. (58) into an initial-value
problem.

This program of calculation is not so easily carried out. To see why, note that
if a is of the order of unity, v = au*/® will not be greater than u®/2 until u=/8 > 1.
If we want the ratio v/u3/2 to be, say, 1000, u will have to be smaller than 10~!®!
So we will not be able to obtain a simply as ll‘i_r.r})(v/u."/:’). We can circumvent this
difficulty by constructing a power series for v that starts with the leading term
au®/?, A tedious calculation gives

4 34

v=az®+27% - 30.2210 - -aa.zll + (2a3 - 3)212
1102 950a — 260a*
T e e

A numerical integration (fourth-order Runge-Kutta) from P toward O gives
v(107%) = —0.141663 x 10~7. The value of a calculated from Eq. (63) is then
a = —1.58806, within 3 parts in 10* of Baker’s value of —1.588588.

Once we have the value of a, we can find starting values of y and § near the
origin using the following power series given by Baker:
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y=1—az+2*/3 - 2az"/5+ ...

+ z/? i 2az /5 + 3a2x?/70 + 1 (2 + ff) z -+ ] (64)
3 ‘ 63 \3 16 T

Shown in Fig. 2 are two sets of points calculated by forward integration of Eq. (57)
(fourth-order Runge-Kutta) for ¢ = ~1.588 and a = —1.588588. The two sets of
points coincide well for z < 3, but beyond z = 3, they diverge from one another.
This is because a forward integration is equivalent to an integration in Fig. | along
the separatrix in the direction O — P. This is the unstable direction, and sooner
or later a numerical calculation will be thrown off the separatrix to one side or the
other. We could graphically join the points at small z to the asymptote 144/z3
with a curve like the solid one in Fig. 1. Such an interpolation gives a reasonable
depiction of the solution, but not a highly accurate one because of the uncertainty
of the graphical interpolation.

There is another way to calculate the curve of y(z) without resorting to graphical
interpolation. The procedure is this. First we find by numerical integration of
Eq. (60c) some convenient point (u,v) on the separatrix S near P. From u and v
we calculate values of y and 7 according to y = u/a?, § = v/z*; the value of z we
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Fig. 2. The solution y(z) of the Thomas-Fermi equation for which y(0) = 1.
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choose arbitrarily. Then using z,y,y as initial data we integrate backward toward
z = 0 (i.e., in the stable direction). In general, this integration will produce a
y(0) # 1. Choose A = [y(0)]'/® and calculate new starting values z',y',j' from the
old starting values z,y,y according to z' = Az, y' = A3y, ' = A~*y. The primed
starting values, when integrated backward, will lead to the value of '(0) = 1 as
required and hence define the solution curve we are seeking. Furthermore, since
the backward direction of integration of Eq. (57) corresponds to motion along the
separatrix in the direction P — O, it is the stable direction of integration. The
solid curve in Fig. 2 was produced in this way.

The reason that this works can be understood as follows. Suppose we denote
the solution of Eq. (57) that obeys the boundary conditions of Eq. (58) by y.(z).
If y'(z') is any image of y.(z) under the transformation equation (59), then

y'(0) = A7y (0) = A2 (65a)
since ¢ = (0 transforms into ' = 0, and

y'(z') ~ /\_31:—34 = 144 —0 as z' — o0 . (65b)
From this we can see at once that y, and its one-parameter family of images look
like Fig. 3 when ploited in the z,y plane.

As we have seen, when u and v are calculated from =z,y., and %., their locus
in the u,v plane is the separatrix S. Any image point of z,y., and y. will lead to
the same values of u and v because u and v are invariants of the transformations.
Hence y, and its one-parameter family of images all map into the separatrix S.
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Fig. 3. The solution y,(z) for which y.(0) = 1 and its one-parameter family of
images.
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The image of z,y.,7, is Az, A7 3y.,A7*%.. So to any values u and v, any value
of z can correspond, depending on the value of A, If we know a point u,v on §
and choose a value of z, we have implicitly chosen a value of ), i.e., a particular
curve of the family. Using the values of y and y corresponding to the chosen value
of z, we can integrate backward to find y(0). Then we determine A using Eq. (65a).
Having determined A, we can scale the curve y(z) that we just calculated to y.(z.)
according to z = A7z, y. = Ady.

The reasons for the elaborate procedures just outlined are twofold, namely,
that the boundary conditions (58) are two-point boundary conditions and that
numerical integration of Eq. (57) in the forward z-direction is unstable. Because
of these reasons, straightforward trial-and-error solution of Eqs. (57) and (58) is
unrewarding, tedious, and inaccurate. The methods given here circumvent trial-
and-error and are, moreover, capable of high accuracy.

2.7 Another second-order equation whose associated first-order equation cannot
be solved in simple terms is van der Pol’s equation,

j—-e(l-y)y+y=0, ¢>0 . (66)

This equation can be considered as the equation of harmonic motion (¥ -+ y = 0)
with a term added which dampens the motion for large amplitudes and supports it
for small motions. Because z, the independent variable, does not appear explicitly,
Eq. (66) is invariant to the translation group

y=v,
' =z 4+ A . (67)

The dependent variable y is an invariant u of the group equation (67) and the
derivative ¥ is a first differential invariant v. (These simple choices are not the only
ones possible: any function of y is an invariant, and any function of y and y is a
first differential invariant!) Substituting u = y and v = y in Eq. (66), we find the
associated first-order equation

dv el —u?)v—u . (68)

du v

Figure 4, the direction field of Eq. {68), shows the loci of zero and infinite slope.
If we focus our attention on the region of the u-axis far to the right of the origin,
we can see that there are two families of curves there, those that cross the u-axis
and those that cross the locus of zero slope. These two families must be separated
by a separatrix in the fourth quadrant, shown as curve §. A second separatrix S',
the image of S under reflection in the origin, emerges in the portion of the second
quadrant near the u-axis far to the left of the origin. Because these curves cannot
cross, they both must wind inward as we traverse them in the clockwise direction.
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Fig. 4. Sketch of the direction field of Eq. (68), which is associated with van
der Pol’s equation (66).

The separatrices occur as a symmetrical pair because Eq. (68) is invariant to
the single transformation u' = —u, v’ = —v that represents inversion in the origin.
By extension, all integral curves occur in symmetrical pairs.

Shown in Fig. 4 is a typical integral curve I lying above S’ in the second quad-
rant. As we proceed along it in the clockwise direction it, too, winds inward. Does
it wind inward to the origin, or does it finally approach some limiting orbit that en-
circles the origin and closes upon itself? Such a closed trajectory, if it exists, would
correspond to a periodic solution of Eq. (66). To see whether a closed trajectory
exists, let us examine how the integral curves behave in the neighborhood of the
origin. If they spiral out as we advance clockwise, there will have to be at least one
closed orbit.

Near the origin u? < 1, so Eq. (68) becomes

dv v —1u
-_— = . 69
du v (69)

Equation (69) is invariant to the group »' = Mv, v’ = Au, so we can integrate
it explicitly; however, instead of plunging directly ahead, we employ an idea of
Liénard’s that will help us determine with only a little computational labor whether
the spiral integral curves wind in or out. Write Eq. (69) as

v u?
d(—2-+-é->=vdv+udu=evdu. (70)
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Let us now integrate Eq. (70) clockwise over the upper half of the trajectory shown
in Fig. 5:
1 2
é(ug—-uf):e/l vdu>0 , (71a)
2

since v > 0 on the upper half of the orbit. Thus uZ > u? or u; > |uq|. If we
integrate Eq. (70) clockwise over the bottom half of the trajectory, we get

3
%(ug—ug)ze/ vdu>0, (71b)
2

since v < 0, but we are integrating in the negative u-direction. Thus, uZ > u2 or
|lug] > uy. Since |ug| > us > |uy|, the integral curves near the origin must spiral
outward in the clockwise direction.

By an elaboration of the above argument, Liénard proved not only that the
van der Pol equation had closed trajectories, but also that there was exactly one such
closed trajectory. Now since u = y and v = y, as z increases we traverse integral
curves in the first and second quadrants (v > 0) in the direction of increasing
v (du = dy = y dz = v dz > 0). Similarly, we traverse integral curves in the
third and fourth quadrants in the direction of decreasing u. Clearly, then, as =
increases, we spiral clockwise around the origin in the (u,v) plane. This means
that as z increases, we spiral toward the fixed trajectory in the (u,v) plane. This
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Fig. 5. Part of a spiral trajectory near the origin O.
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closed trajectory represents a stable, periodic limit in the (z,y) plane to which every
solution therefore tends as = increasess. It is called a limit cycle. Shown in Fig. 6 is
the solution of van der Pol’s equation for € = 5, for which y(0) = 0 and 3(0) = 0.01.
These initial conditions are quite distant from those that describe the limit cycle,
for which 4 = 4.3752 when y = 0. Nevertheless, the solution becomes virtually
indistinguishable from the stable limit cycle after only one oscillation.

2.8 The use of Liénard’s simple argument is not a conceit but in fact is probably the
simplest and most straightforward way of determining whether the integral curves
near the origin spiral inward or outward as we circulate clockwise. If we had plunged
straight ahead instead of using Liénard’s argument and solved Eq. (69) directly, we
should have found, after some tedious calculation,

1 € 2v — eu
€ <2:=In(v? — euv + u?) + ——=tan"! (——-) = const , 72a,
2™ et vaise (122)

1 € 2v — eu
> 2: = ln(v? — euv + u?) - ———=tanh™’ (————) = const . 72b
‘ 2n( e ) V4 — ¢ uver -4 (72b)

These expressions are far from illuminating, and it is by no means clear at a glance
that the integral curves they describe spiral outward in the clockwise direction.

A better alternative to solving Eq. (69) directly is based on the linearity of both
the numerator and denominator of the right-hand side. Let us introduce a new
parameter ¢ by writing Eq. (69) as the coupled pair of linear equations

d
-‘-i%zev-u , (73a)

du

5 =
We can write the general solution of these as a sum of exponentials in ¢. If we set
v = Ae* and u = Be’t, Eqgs. (73a) and (73b) become

(73b)

AN=e¢A—B, Br=4A (74a)

or
M -ex+1=0 . (74b)

Thus,

A= %(e +Ve—a) . (T4c)

When € > 2, the two roots given by Eq. (74c) are positive; when € < 2, the two roots
are complex conjugates whose real part is positive. So in either case, as t grows
larger (corresponding to clockwise circulation about the origin), © and v move away
from the origin. This method of analysis can be used for any singular point at which
the leading term in both numerator and denominator is linear.
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Fig. 6. Solution of van der Pol’s equation for ¢ = 5, for which y(0) = 0 and
y(0) = 0.01.



47

Chapter 3

SIMILARITY SOLUTIONS OF SECOND-ORDER PARTIAL
DIFFERENTIAL EQUATIONS

“l have multiplied visions, and used similitudes.”
—Hosea 12:10

3.1 The heart and soul of this chapter is based on an idea first proposed and
exploited by Birkhoff, who considered partial differential equations with one depen-
dent and two independent variables (for the sake of concreteness, call them ¢, z, and
t, respectively). Many partial differential equations of physics and engineering are
of this type: a good example for the reader to keep in mind for the moment is the
ordinary diffusion equation ¢; = ¢,,. Quite often such partial differential equations
are invariant to one or more one-parameter groups of transformations. For example,
the diffusion equation is invariant to the affine group ¢’ = A%, 2' = Az, t' = )\,
where, owing to the linearity of the ordinary diffusion equation, a can be any fixed
number.

When the partial differential equation is invariant to a group, every transfor-
mation of the group carries a solution into another solution. Among the very wide
manifold of solutions usual for a partial differential equation there may be some that
transform into themselves, i.e., are invariant to the group. The condition of group
invariance restricts the form of such solutions. In the example we have been pursu-
ing of the diffusion equation, solutions invariant to the affine group must have the
form ¢ = t®/2y(z/t}/?), where y is an arbitrary function of the argument z = z/t*/2.
(We shall see presently why this is so.) Solutions invariant to affine groups are called
similarity solutions.

Birkhoff realized that, because the unknown function y is a function of one
variable only, when the invariant form is substituted into the diffusion equation,
the result is an --dinary differential equation for y in terms of 2. The calculation
of this ordinary differential equation is instructive. If

¢ = t:/2y(z/111?) (1a)

_qe/2-1 [ OY zy _jaf2-1 (Y ﬂl_
Cy t ( 2 2t1/2) t 2 2 3 (].b)
¢, = t(a—l)/Zy , (1c)
2 = t*/2 7 (1d)

Equating the right-hand side of Eq. (1b) and the right-hand side of Eq. (1d) we find,
after cancelling the common factor */2~!, the second-order ordinary differential
equation
o 1
L 9
i=3y-35%y (2)

Any solution of Eq. (2) will furnish a solution ¢(z, t) of the diffusion equation through
the connection equation (1a).
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In obtaining the rightmost form in Eq. (1b), we have combined powers of 2z
and ¢ to obtain powers of z. Some power of ¢ was left over, namely, t*/2~!, The
same power appears on the right-hand side of Eq. (1d), so that it can be cancelled in
obtaining Eq. (2). If we had chosen for the argument of the function y a combination
of z and ¢ other than 2/1'/2, e.g., 2/t, this would not have been true. When we had
eliminated all explicit appearance of z from the ordinary differential equation, there
would not have remained a cancellable common power of ¢. (Try it!) So the group
invariance helps us to find the right combination of z and ¢ to use as the argument
of y.

3.2 Different values of the constant a distinguish different solutions of the partial
differential equation. Now, different solutions of a partial differential equation sat-
isfy different boundary and initial conditions, so we may expect that a is somehow
determined by the boundary and initial conditions. To simplify discussion of the
boundary and initial conditions let us use the language of heat diffusion, so that
the dependent variable ¢ can be called temperature and its negative derivative —c,
can be called heat flux (or just flux).

Consider now what I call the problem of clamped temperature in a half-space.
Imagine the half-space z > 0 initially held at zero temperature to have its front face
(z = 0) suddenly raised to unit temperature, e.g., by being brought into contact
with a heat bath. How does the temperature rise in the half-space as a function of
time? The mathematical representation of the boundary and initial conditions of
this problem is

c(2,0) =0 (z>0), (3a)
c(0,t)=1 (t>0), (3b)
c(oo,t) =0 (t>0), (3c)

where Eq. (3c) expresses the implied condition far from the heated boundary. Let
us rewrite these conditions using the invariant form of Eq. (1a). It is convenient to
start with Eq. (3b); the reader will see why in a moment. According to Eq. (3b),

1= t"/zy(O) , (4a)
which can only be satisfied if
a=0 and y(0)=1. (4b)

If o had any other value than zero, the right-hand side of Eq. (4a) could not be held
constant as the time ¢ changed. When a = 0, Eq. (1a) takes the form ¢ = y(z/t*/?);
then Eq. (3a) and Eq. (3c) both become

y(oo) =0 . (4c)

Thus the three boundary and initial conditions, Egs. (3a)-(3c), for the partial dif-
ferential equation collapse to two boundary conditions, Egs. (4b) and (4c), for the
ordinary differential equation (2). This collapse of the boundary conditions from
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three to two is essential to the success of the method of similarity solutions because
in general three conditions overdetermine the solution of a second-order ordinary
differential equation.

Since a = 0 for the clamped-temperature problem, Eq. (2) takes the form
¥ = —(1/2)zy, which can be integrated at once to give § = —Cexp(—z?/4),
where C is a (positive) constant of integration. A second integration gives y =
o f:° exp(—u?/4) du, which already obeys the boundary conditions of Eq. (4c). To
satisfy Eq. (4¢), C must equal 1/y/7. Then y = erfc(z/2), where erfc is the comple-
mentary error function. Rewritten in terms of ¢, this solution takes the well-known

form
¢ = erfc (2—2\%) : (5)

3.3 Since Eq. (5) is invariant to the affine group ¢’ = ¢, z' = Az, t' = A%t (remember
a = 0 for the clamped-temperature problem!), so must be the boundary and initial
conditions, Eqs. (3a)-(3c), that determine it. If they were not, then the boundary
and initial conditions in the primed variables would be different from those in the
unprimed variables. These different sets of boundary and initial conditions would
therefore determine diffcrent solutions of the partial differential equation, which,
being images of one another, could not be their own images, i.e., could not be
invariant.

When Egs. (3a)—(3c) are written in terms of the primed variables they become

o(200) =o. =
¢ (o, ;—;> =1, (6b)

!
c (oo, %) =0, (6c)

since when z = 0, 2/ = 0, when z = o0, z' = 0o and when t = 0, t' = 0. Because
z=2'/X and t = t'/)? can have any value, Eqs. (6a) and (6b) can only be satisfied
if

c'(2',0)=0, (7a)
d(0,t')y=1, (7b)
(o0, t') =0, (7c)

for all z' and t'. Equations (7a)-(7c) are the same as Eqgs. (3a)-(3c) except that
they refer to the primed variables.

If the clamped-temperature problem referred not to the half-space z > 0 but to
the finite slab 0 < z < L, the boundary condition (3c) would have to be replaced
by the condition ¢(L,t) = 0, which, upon transformation to the primed variables,
becomes c'(L/A, t'/A?) = 0. Since t = t'/)? can have any value, this boundary
condition is equivalent to ¢/(L/A, t') = 0 for all ¢'. Now this is not the same as
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c'(L, t') = 0 because in general A # 1. This means that the clamper-temperature
problem in a finite slab cannot be solved in terms of a similarity solution of the
partial differential equation but instead requires a solution of a more complicated
kind.

At an early epoch, however, when t < L?/4, the diffusing heat is not yet affected
by the presence of the cold boundary at z = L. The temperature distribution does
not yet “know” about the cold boundary and “thinks” the heat is diffusing in a
semi-infinite half-space. So for short times, at least, the similarity solution gives
a good approximation to the temperature distribution. For long times, ¢ > L?/4,
the steady-state solution ¢ = 1 — z/L is a good approximation to the temperature
distribution. Knowing these two limiting temperature distributions often enables
us to estimate quantities of interest. Suppose, for example, we wanted to know the
heat flux —c,(0,t) through the slab as a function of time. Then

—c,(0,t) =1//nt, t< L*/4, similarity solution, (8a)
1
=7 t> L*/4, steady-state solution. (8b)

A simple graphical interpolation between these limits may well provide a sufficient
estimate for practical purposes.

3.4 Next we consider what I call the pulsed-source problem in an infinite medium.
At t = 0, an amount of heat @@ per unit area is instantaneously introduced in
the plane z = 0 and subsequently spreads out toward z = oo by diffusion. The
boundary and initial conditions for this problem are

c(2,0) =0, (9a)

+oo
/ o(z,8) dz = Q, (9b)

— c(+o0,t) =0 . (9¢)

Equation (9b) expresses conservation of the heat injected by the initial pulse. If we
substitute Eq. (1a) into Eq. (9b), the latter becomes

400 + oo
Q= [ eyl de= et [ y(a) d, (10)
where, as before, z = z/t!/2. The integral on the right-hand side of Eq. (10) is a
pure number, so for Eq. (10) to be satisfied for all {, @ must equal —1. Then
oz, t) =t7V2(z), =z =2z/t"7. (11a)

Since y(z) must be symmetric, i.e., since y(z) = y(—=z), the boundary and initial
conditions, Egs. (9a)-(9c), collapse to

[ @ ds= a2 (11b)
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and
y(o0) =0 . (11c)

[The boundary condition (11c) is sufficient as it stands to satisfy Eq. (9c). To satisfy
Eq. (92), y must approach zero sufficiently rapidly as z approaches infinity so that
}in& t=1/2y(z/t'/?) = 0. Whether this requirement is fulfilled can only be tested a

posteriori once we have solved for y(z). If the requirement is met, the similarity
solution is the soiotion to the stated problem. If not, the solution to the stated
problem is not a similarity solution but a solution of some other kind.]

When a = —1, the ordinary differential equation (2) is again easily solvable, for
its right-hand side is just the perfect differential —d/dz{(1/2)zy]. So, integrating

once, we get
1

Yy = ~3%Y - (12)

The constant of integration vanishes since, by symmetry, (0) = 0. Integrating
again, we find
y = C exp(—z?/4) , (13a)

which obeys Eq. (11c). From Eq. (11b) it follows that C = Q/+/4w, so that

exp(—22/4t)

¢=Q (4mt)r/2 7

(14)

another well-known solution. [Now we can verify that the initial condition, Eq. (9a),
is satisfied, i.e., that !in(x) ¢(z,t) = 0, because the exponential term overpowers the

factor ¢t~1/2))

It is perhaps worthwhile to note that Eqs. (5) and (14) are solutions of dif-
ferent ordinary differential equations because they satisfy different versions of the
generalized ordinary differential equation (2) corresponding to different values of a.

3.5 What we have done so far has been based on the form of Eq. (1a) for an
invariant solution. We can certainly see at once that Eq. (1a) is invariant to the
affine group ¢’ = A%c, t' = A%*t, and z' = Az, and everything we have done so far
could have been based on looking for special solutions of the form of Eq. (1a). As
it happens, Eq. (1a) is the most general form for a relation among ¢, z, and ¢ that
is invariant to the affine group. We can prove this easily by methods introduced in
Chap. 2, and we can generalize at no extra cost of labor to the affine group

¢ = A%, (15a)
t' = NPt , (15b)
z' = Az, (15¢)

where the exponents a and § are particular prescribed constants. [Note that no
generality is lost by taking the exponents of A in Eq. (15¢) equal to 1.]
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A relation ¢ = f(z,t) amongc, z, and ¢ can be visualized as a surface §in three-
dimensional space. If this surface is to be invariant to the group equation (15), the
image (c', z', t') of any point (c, z,1) on § must also lie on §. This means ¢’ = f(2',1')
or, what is the same thing, A®c = f(Az,A?t). If we differentiate this last equation
with respect to A and set A = 1 (the value of A for the identity transformation), we
get the first-order linear partial differential equation

af =z2f; +0tf, (16)
whose characteristic equations are

d, d di

g e _d (17)

af z Gt

Two integrals of Eq. (17) are z/t'/? and f/t*/P. The most general solution of
Eq. (16) is obtained by equating one of these integrals to an arbitrary function y of
the other:

c f z
(olB = ga/B = Y (t_l/—ﬁ_> ) (18)
When = 2, this form reduces to Eq. (1a).

3.6 So far we have applied Birkhoft’s idea of seeking invariant solutions to the
linear diffusion equation, for which there are excellent alternative methods of solu-
tion based on the principle of superposition, e.g., Fourier series and Laplace trans-
formation. Now let us turn our attention to a nonlinear diffusion equation for which
Birkhoff’s method seems to me to be the only one available.

At low temperatures, the thermal conductivities of metals (e.g., copper or alu-
minum) are directly proportional to temperature, and their specific heats are pro-
portional to the cube of the temperature. So the ordinary one-dimensional heat
diffusion equation for such a material becomes

T 9 aT
37~ _ il
ST 5 = 52 (kT6z> : (19)

where S is a constant having the dimensions of J-m~2.K~* and k is a constant

having the dimensions of W-m~!}.K~2. (ST? is the heat capacity per unit volume
and kT is the thermal conductivity.) If we set ¢ = T?, then Eq. (19) becomes

o _ ke
ot 50822

Suppose now we consider what I call the clamped-fiux problem in a semi-infinite
half-space. At ¢t = 0, a heater covering the front face z = 0 of the cold half-space

z > 0 is suddenly energized and begins producing a steady heat flux ¢ (dimensions:
W-m~?%) into the half-space. How does the temperature in the half-space rise as

C

(20)



53

a function of time? The boundary and initial conditions corresponding to this
problem are

T(2,0) =0 c(z,0) =0 (21a)
—(kT)T;|:=0 = q or —kc,(0,t) = 2q (21b)
T(o0,t) =0 c(00,t) =0 (21c)

if we assume that the half-space is initially at zero temperature. We can eliminate
dimensional quantities k, S, and ¢ by choosing to work in a special system of units
in which the constants k, S, and 2q all have the numerical value 1. Then Eqs. (20)
and (21) become

CCy = Cy; (22a)
and
c(2,0) =0, (22b)
c.(0,t) = -1, (22¢)
c(oo,t}) =0. (22d)

Now we test Eq. (22a) for invariance to the affine group (15): a short compu-
tation shows that it will be invariant only if the constants « and S obey the linear
constraint

a—f=-2. (23)

[The easiest way to see this is to imagine Eq. (22a) written in the primed form and
then replace the primed variables by their equivalents expressed in terms of the
unprimed variables according to Eq. (15). Then we get Eq. (22a) in the unprimed
variables with the left-hand side multiplied by the factor A2~ and the right-hand
side multiplied by the factor A*~2. If these two factors are equal, they may be
cancelled. Then Eq. (22a) in the primed form implies Eq. (22a) in the unprimed
form, and Eq. (22a) is invariant to Eq. (15). Thus, the exponents of A in the two
factors must be equal, from which Eq. (23) follows at once.]

The boundary condition, Eq. (22c), will be invariant if and only if a — 1 = 0,
i.e., @ = 1. Then from Eq. (23), it follows that § = 3. So according to Eq. (18) we
should take the form

¢ = t3y(z/t*?) (24)

for the invariant solution of Eqgs. (22a)-(22d) that we seek. Differentiating Eq. (24),
we obtain

¢, =172/3 (% - %zy) R (25a)

c:=1, (25b)

e =173, (25¢)

so that Eq. (22a) becomes, after some slight rearrangement,

3j+zyy—y* =0. (26)
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The boundary and initial conditions, Eqs. (22b) and (22c), collapse to the two
conditions

y(0) = -1, (27a)
y(oo) =0 . (27b)

Equations (26), (27a), and (27b) together make up a two-point boundary value
problem. Since Eq. (26) is not solvable in terms of tabulated functions, we shall
have to solve it numerically. In order to start the numerical solution of a second-
order ordinary differential equation we need two initial conditions, a value and a
slope. We, therefore, have to guess the value at the origin, integrate forward, and
test whether y(oc) = 0. As it turns out, if we guess y(0) too high, the curve y(z)
we get has a positive minimum and thereafter approaches co asymptotically with
a constant slope. As we lower y(0) the minimum moves down and to the right. If
we guess Y(0) too low, the y(z) we obtain plunges toward —oo at some finite value
of z. As we raise y(0), this singularity moves to the right. (The reader is urged
to try out some numerical integrations if he can.) It is possible, then, to improve
our guesses of y(0). But the trial-and-error process outlined here is very laborious
and converges rather slowly. Moreover, it is inelegant, although that may not really
matter.

There is a less laborious and much more elegant way of dealing with this two-
point boundary value problem based on the invariance of the ordinary differential
equation (26) to the affine group

Yy = #_Zy !

oo pp,  OSH<O0. (28)

[For the moment, the existence of this group seems to be a piece of luck. Later we
shall see that the invariance of Eq. (26) to Eq. (28) could have been foretold from
the invariance of the partial differential equation (22a) to the one-parameter family
of groups given by Egs. (152)-(15¢) and (23).] H we introduce the invariant v =
z?y and the first differential invariant v = 233 as new variables, the secmnd-order
ordinary differential equation (26) reduces to the first-order ordinary differential
equation

dv _ 9v — uv +u?

du  3(2u + v)

Now we examine the direction field of Eq. (29). Since we expect § to be negative
and y to be positive, we expect u > 0 and v < 0. Thus, we want only the fourth
quadrant of the direction field. Figure 1 shows a sketch of this quadrant. The
curve of zero slope is v = u?/(u — 9); the curve of infinite slope is v = —2u. These
two curves intersect in two singularities, the origin O and the point P : (6,—12).
The signs of the slope dv/du being as shown, the origin must be a node and the
point P a saddle. The direction field is quantitatively the same as that shown in

Fig. 2.1,* and the procedure we follow is similar to that which we followed for the
Thomas-Fermi equation.

(29)

*That is, Fig. 1 of Cha-p. 2.
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Fig. 1. A sketch of the fourth quadrant of the direction field of Eq. (29).

When z = 0, both u and v are zero, so the origin O in the (u,v) plane corre-
sponds to the initial value £ = 0. As in the case of the Thomas-Fermi equation, the
point P corresponds to z = co. Also as before, two separatrices pass through P, one
having the positive slope (1/33 — 1)/2, the other the negative slope —(/33 4 1)/2.
The one with the negative slope, S, passes through the origin and is the integral
curve of Eq. (29) that we want. In a manner similar to that which we used to
obtain Eq. (2.61) we now find that, near P, dz/z = 2 du/(+/33 — 3)(up — u), so
that # — oo as u — up along S. When z is large and u is very near up = 6,
y =u/z? ~ up/x® = 6/2?, which fulfills boundary condition (27b).

How does the separatrix S behave near the origin O? Since it lies between the
locus of zero slope and the locus of infinite slope, 2u > |v| > u2/9 near the origin.
Now, close to the origin, |u| and !v| are <1, so Eq. (29) becomes

2
éz _ v+ u (30)
du  3(2u +v)
because 9}v| > |uv|. (Note that we cannot say that the first-order term 9v greatly
exceeds the quadratic term u? because we do not know the relative magnitudes of
u and v.) Three possibilities exist: |v| ~ u, v > |v| > u?, and |v| ~ u%. The
first leads to v = u, which does not lie in the fourth quadrant. The second leads
to v = Cu®/2, where C is a constant of integration. The third leads to v = u2/3,
which also does not lie in the fourth quadrant. Only the second alternative yields
an allowable result; we expect C < 0.
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If we substitute for v and v their definitions in terms of ¢ and y, the relation
v = Cu®/? becomes

C = (0)/y*/%(0) (31)

if we remember that the point £ = 0 corresponds to the origin u = 0, v = 0
in the (u,v) plane. To find C we can integrate Eq. (29) numerically from P to
O. To start, we step away from P using the slope —(v/33 + 1)/2 obtained from
Eq. (29) with I’'Hospital’s rule. Then we integrate toward O, decreasing the interval
of integration as we approach O, until the ratio v/u3/? becomes constant to the
desired number of figures. This procedure, which requires one integration only, gives
C = —0.5383 to four significant figures. Armed with this value of C, we can find
the hitherto unknown value of y(0) corresponding to the slope y(0) = —1, namely,
y(0) = 1.511.

Figure 2 shows a curve obtained by forward integration of Eq. (26) with the
initial conditions y(0) = 1.511, §(0) = —1 [curve (a)]. As we might have expected
from the divergence of the integral curves in Fig. 1 near the saddle point P, forward
integration (0 — P in Fig. 1) is unstable. That is the reason that beyond about
z = 5, curve (a) progressively diverges more and more from the asymptotic limit
6/z2 that it should approach. For practical purposes it may be satisfactory to join
the points of the numerically calculated curve for ¢ < 5 graphically to the asymptote
6/x2. If higher accuracy is desired, we can calculate y(z) nuizerically by backward
integration as described in the last paragraphs of Sect. 2.6 [curve (b)).

According to Eq. (24), ¢(0,t) = y(0)t!/?® so that T(0,t) = [y(0))}/2¢!/® =
1.229 t'/8, This formula is written in the system of special units. To convert it
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Fig. 2. Solution of the ordinary differential equation (26) and the boundary
condition (27). Curve (a) was obtained by a forward integration that eventually
becomes unstable. Curve (b) was obtained by a backward integration that is always
stable.
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into a form that is correct in any set of units, we make it dimensionally homo-
geneous by multiplying with suitable powers of k, S, and 2¢q. Because the latter
quantities are all numerically equal to 1 in special units, multiplying the terms of an
equation by powers of them changes nothing. Once the equation is dimensionally
homogeneous, it is then correct in any set of units. Thus T'(0,t) = 1.548(q%t/kS)"/8,
which gives the temperature at the front face of the half-space.

3.7 The turning point in Sect. 3.6 was the recognition of the invariance of the
ordinary differential equation (26) to the affine group (28). The existence of such
an associated affine group for the ordinary differential equation is a consequence
of the partial differential equation’s invariance to a one-parameter family of affine
groups of the type

¢ =A%, (32a)
' = Mt (32b)
z' = Az, (32¢)

where a and 8 fulfill the linear constraint
Ma+ NG =1L (32d)

and M, N, and L are fixed coefficients determined by the structure of the partial
differential equation [cf. Eq. (23)]. The parameter A labels the individual trans-
formations of a group; the parameter a labels the groups of the family. If the
partial differential equation is invariant to such a one-parameter (a) family of one-
parameter (A) groups, the ordinary differential equation that gives its similarity
solutions is invariant to the associated affine group,

y' =ptMy, (33a)

¢ = px (33b)

(here p is the group parameter of the associated group).

To see why this is so, we begin by noting that functions ¢(z,t) invariant to a
group of the family of Eq. (32a), say the group corresponding to the parameters ay,
Bo, must have the form of Eq. (18), namely,

z
t1/Bo °

¢ = toolboy () = tlPoy(z) o= (34)

t1/8o
The parameters ag, 9, which obey the constraint (32d), are determined by the
boundary and initial conditions that specify the particular problem we are dealing
with.

If we transform Eq. (34) (imagined written in the primed form) by Eqs. (32a)-
(32c) with @ = a9 and 8 = f¢, we recover Eq. (34) itself in the unprimed form.
What happens if we transform Eq. (34), written in the primed form, by a group of
the family for which a # ag, 8 # Bo?7 We shall certainly get another solution of the
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partial differential equation, for the image of any solution is another solution. This
new solution is given by

c = A(anﬁ—aﬁu)/ﬂutan/ﬁny (/\l—ﬁ/ﬂutlfﬁu) (356.)

= #(Olop“aﬁ())/(ﬂo“ﬁ)tﬁ()/p(ly(“m) , (35b)

where o = A1 ~A/Po, Because the pairs a, 8 and ay, By separately obey the linear
constraint (32d), it follows that

- L
aoff — afio == (36)
B = Bo M
so that the new solution of the partial differential equation is given by
c = too/Boy~LIMy(z) . (37)

Equation (37) has the same form as Eq. (34), i.e., t*°/#v times a function of
z = z/t*/Pv which means that y(z) and p~L/My(uz) must satisfy the same ordinary
differential equation. Now the one-parameter family of functions u~L/My(uz), 0 <
p < oo, is the same as the one-parameter family of images of y(z) under the group
of transformations

y' ="My, (38a)
, 0<n<oo.
' =nz, (38b)

In fact, the function p~L/My(uz) is the image of y(z) for the transformation of the
group (38) for which n = p~!. Seeing this last assertion has troubled some of my
students, so I give below two proofs of it, a short one and a long one; the long one
has the virtue (I hope) of complete transparency.

The short proof is embodied in the line of equalities

1
(&) = 7y e) = 17y (2 ) =ty st (39)
The first equality comes from Eq. (38a), which says that the value of y' at the
image point z' is n2/M times the value of y at the source point 2. The second
equality follows from Eq. (38b). The third equality follows from taking 7 = p~1.
The interpretation of Eq. (39) is this: the image function y'(...) is the same as
the function g~E/My(u...), where the three dots signify the place at which the
argument (the same for both functions) must be inserted.

The longer proof makes use of the three diagrams shown in Figs. 3(a)-3(c).
Figure 3(a) shows curve y = f(z), which will be transformed in Fig. 3(b) to a
new curve ¥y = pu~ *f(puz) and in Fig. 3(c) into the image under Eqgs. (38a) and
(38b) for which 7 = p~! (a = L/M). Shown again for reference in Fig. 3(b) is the
curve y = f(x). Let us choose an abscissa z and calculate graphically the value of
y = p~%f(pz). Suppose the abscissa z lies at point A. Then uz would be at point B.
The height of point C gives the magnitude of f(uz) and the height of point D the
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Fig. 3. Auxiliary sketches for use in the proof that u~L/My(uz) is an image of
y(z) under a transformation of the group (38a) and (38b).

magnitude of ™ %f(uz). When this last height is plotted over the abscissa A, we
have a point E belonging to the curve y = u~° f(uz).

This point also lies on the image curve of y = f(z) under Eqgs. (38a) and (38b)
with n = p~!. This time we start with the abscissa z lying at point B. Then point C
gives f(z) and point D gives y' = n°f(z) = p7%f(z). The abscissaz' = nz = pu~ 1z
must then be at point A. The point (z', y') thus lies at point E. By this construction
we see that any point on one curve lies on the other, and conversely. So the two
curves are the same, which is what we wanted to prove.

What we have proved so far is that every image under the associated group,
Egs. (38a) and (38b), of a solution of the ordinary differential equation for y(z)
is also a solution. So the total manifold of solutions of this ordinary differential
equation must be carried into itself by the transformations of this group, that is,
must be invariant to this group. Now since a differential equation and its manifold
of solutions are logically identical, the differential equation itself must be invariant
to the associated group (38a) and (38b).

My earlier book, Similarity Solutions of Nonlinear Partial Differential Equations
(Research Notes in Mathematics 88, Pitman Advanced Publishing Program, Pitman
Publishing Inc., 1020 Plain Street, Marshfield, Massachusetts 02050), is devoted to
the exploitation of the invariance of the ordinary differential equation for y(z) to the
associated group (38a) and (38b). Among the partial differential equations treated
there are (1) C: = (C™C.),, which occurs in soil mechanics and boundary-layer
flow; (2) C, = (Czl/s)z, which occurs in the theory of counterflow heat transport
in superfluid helium; and (3) Cyy = C., fol C¥dz, which occurs in the theory of

motion of a shock-loaded membrane. Since that book is an ample reference for the
interested reader, I close this chapter here.
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Chapter 4
MAXIMUM PRINCIPLES AND DIFFERENTIAL INEQUALITIES

“To compare great things with small.”
—John Milton
Paradise Lost

4.1 In the preface to their book on maximum principles, Protter and Weinberger
introduce the subject with the following words: “|A maximum)] principle is a gen-
eralization of the elementary fact of calculus that any function f(z) which satisfies
the inequality f” > 0 on an interval [¢,b] achieves its maximum value at one of the
endpoints of the interval. We say that solutions of the inequality f" > 0 satisfy a
mazimum principle. More generally, functions which satisfy a differential inequality
in a domain D and, because of it, achieve their maxima on the boundary of D are
said to possess a maximum principle.”

The chief use of maximum principles is to provide bounds for solutions of dif-
ferential equations. We begin our discussion with the linear homogeneous, second-
order ordinary differential equation

g+g(z)y +h(z)y=0; h(z)<0. (1)

Can the function y(z) have a positive maximum on any interval [a,b]? At a positive
maximum, y > 0,y = 0, and § < 0. These conditions are inconsistent with Eq. (1),
for then the first and third terms will be negative while the second will vanish; the
three terms on the left-hand side cannot then sum to zero. So if y(a) and y(b) are
both positive, the larger of the two must be the maximum value of y on the interval
[a,b]. By a similar argument, we find that y cannot have a negative minimum. Now
if y(a) and y(b) are both positive, y cannot become negative anywhere on the interval
[a,b]. For if it did, it would have to possess a negative minimum, which it cannot.
So with the meagerest of hypotheses we have proved that 0 < y < max(y(a),y(b)]
if y(a) and y(b) are positive.

The same style of reasoning we have just used can be employed to find bounds
to solutions of Eq. (1). Suppose we know a function u(z) that, while not satisfying
the ordinary differential equation (1), does satisfy the differential inequality

i+ g+ hu >0 (2)
with the boundary inequalities
u(a) < y(a), (3a)
u(b) < y(b) . (3b)

If we subtract Eq. (2) from Eq. (1) and write w =y — u we get

W+ g + hw < 0. (4)
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Furthermore, from Eq. (3) we get
w(a) , w(b) >0. (5)

The function w(z) cannot have a negative minimum, for at a negative minimum
w < 0,w = 0,w > 0, which cannot satisfy Eq. (4). But then w can never dip below
zero in the interval [a,b]. So w > 0 or, what is the same thing,

y-ou. (6)

The assertions made above hold if the direction of all inequalities is reversed.
The assertions are true as well if on the right-hand side of Eqgs. (1) and (2) zero is
replaced by a function f(z).

4.2 The restriction h < 0 plays an essential role in the foregoing arguments, which
collapse completely without it. But even if h is not everywhere negative in [a,b], if
it is possible to find a function {(z) positive in [a,b] and such that

t+gt+ht<0, (1)

then the above theorems can be rescued. To see how this works, let us start again
with Eqgs. (1), (2), and (3) and proceed exactly as before to Eqs. (4) and (5). If
a positive function ¢t obeying Eq. (7) can be found, then we set w = st. A short
computation shows that

t i+ gl +ht
3+(g+22).§+(——t%—+———)s<0 (8)

s(a) , s(b) » 0. (9)

In view of Eq. (7), Eq. (8) is covered by the h < 0 case. Therefore, as in Sect. 4.1,
s > 0. Since t > 0, this means w > 0 and y > u.

As an example of the use of these techniques, we take the following problem of
Collatz: given

while

g+(1+2¥)y+1=0 (10a)
with
y(+1) =0, (10b)

estimate y(0). To get a lower limit we need a function u(z) that will make the left-
hand side of Eq. (10a) greater than zero in the interval (—1, +1). fi+u+ 1 =0
and if u > 0in (—1, +1) then i + (1 + 2%)u + 1 > 0 since z%u > 0. If we take
u(+1) = 0, too, we then find u =secl:cosz — 1. If, as before, w = y — u, we find
W+ (1+ z?)w < 0, w(£1l) = 0. Here g = 0 and h = (1 + z2) > 0, so we must look
for a function t satisfying Eq. (7) on the interval (—1, +1). The function ¢ = | — z?
suffices, for £ + (1 + z2)t = =2 4 (1 - z') = —1 — 2* < 0. Then, as above at the
beginning of this section, w > 0 or y > u. Thus, y(0) > u(0) =sec1 — 1 = 0.8508.
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To get an upper limit we need a function v(z) that will make the left-hand side
of Eq. (10a) less than zero in the interval (=1, +1). We try v = a(1 — z?), where
a is a constant yet to be determined. Then 4 + (1 + 2®)v +1 =1 — a(1 + z*). For
the right-hand side to be <0, we must have a > (1 + z*)~!. The largest value of
the right-hand side of this last equation occurs where z = 0. Thus we must have
a>1 lfw=gy-wv, then & + (1 + 2*)w > 0, w(xl) = 0. Then, using the same
kind of reasoning as at the beginning of this section, we find w < 0 or y < v. Then
y(0) < v(0) = a, which we can take to be as low as but not lower than 1. So finally
0.8505 < y(0) < 1. The geometric mean of these values, 0.9224, has the smallest
maximum error, namely 8.4%.

Because Eq. (10a) is linear it can easily be solved by the sum of the solution
of the inhomogeneous equation and a multiple of the solution of the homogeneous
equation for both of which y(0) = 0 and y(0) = 1, say. Both of these solutions
are easily calculated numerically. The multiple of the solution of the homogeneous
equation must be chosen to make y(1) = 0 for the sum. In this way, we find
y(0) = 0.932054. The closen=ss of the geometric mean to the exact value is pure
coincidence!

The same kind of logic as applied above to the two-point boundary value prob-
lem can be applied to the initial value problem, i.e., to the differential equation (1)
with the values of y(a) and (e) specified. Suppose we have a function obeying the
differential inequality of Eq. (2). As before, we find that the difference w =y — u
cannot have a negative minimum. If w(0) < 0 and w(0) < 0, then w must be <0
everywhere. So if u(a) > y(a) and i(e) > §(a), then u > y everywhere. If A is not
<0, we can again rescue the various theorems if we can find a t satisfying Eq. (7).

4.3 The subject of this book is nonlinear differential equations, and the foregoing
discussion of linear differential equations has been used only to illustrate the central
idea of this chapter, namely, that the differential equation or differential inequality
restricts the kind of extrema the solutions may have. Let us now turn our attention
to a nonlinear two-point boundary value problem of the type we encountered in
Sect. 3.6:

i+9° -y =0, (11a)
y(0) =1, y(o0) = 0. (11b)

Equation (11a) has been chosen specifically because it is not invariant to an affine
group.*

In order to solve the problem just posed, we need to learn how the integral
curves through the point (0,1) behave. Maximum principles alone will not tell us
everything we want to know, and their proper use, as we shall see in the examples
below, is as an adjunct to other, more direct methods of analysis. A first cursory
glance tells us that the integral curves of Eq. (11a) can never have maxima because
at an extremum (if one exists at all!) § =y > 0. A corollary is that integral curves
emanating from the point (0,1) with non-negative slopes are monotone increasing.
A slightly less obvious conclusion is this: two integral curves that emanate from the

*It is, however, invariant to the translation group y' = y, =’ = =z + A.
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point (0,1) with different slopes and always remain positive never intersect a second
time. To see this, call the two solutions y; and y, and suppose that 3;(0) > 72(0)
while ¥1(0) = y2(0) = 1. If we subtract Eq. (11a) written for y, from Eq. (11a)
written for y;, we find that w = y; — y, obeys the ordinary differential equation
W+ (1 + ¥2)w — (y1 + y2)w = 0 and the boundary and initial conditions w(0) = 0,
w(0) > 0. Since by hypothesis y, and y, are positive, w can never have a positive
maximum (at which i < 0, & = 0, w > 0). Therefore w > 0 everywhere, which
means ¥, > Y.

In order to find out more about the integral curves through (0,1), we study
their asymptotic behavior for large x. This is easier than studying their behavior
in general because we need keep only the dominant terms. In the extreme of large
x, we expect one of the three terms in Eq. (11a) to become negligible with respect
to the other two [which remain comparable, since they must cancel according to
Eq. (11a)]. (1) Suppose the first two terms are comparable and the last negligible.
Then §# = —§?, which can be integrated at once to give y = In(Az + B). But then
¥y = AjAz + B « y when z is large, contrary to hypothesis. So this supposition
is wrong. (2) Suppose the middle term is negligible compared with the other two.
Then § = y?, which can be integrated once to give 37% = 2y® + 4. Now if y gets
large as z — oo, eventually A becomes negligible. If y gets small as ¢ — 00, so must
¥, in which case A must equal zero. So in either case, we continue by integrating a
second time the differential equation 3j? = 2y® to obtain y = 6/(z + B)? ~ 6/z2.
The neglected middle term y2 ~ 144/z% is truly small compared with the first or
third terms, 36/z*, when z is large enough. So 6/z? is a consistent asymptotic
behavior. (3) Suppose the first term can be neglected compared with the other two.
Then % = y? so that y ~ de*®. If y = Ae®, §j = Ae® K y? = A%?*, s0 Ae® is a
consistent asymptotic behavior. If y = Ae™%, || = Ae™% > y? = A%e™ %%, 50 de™*
is not a consistent asymptotic behavior. All three terms cannot be asymptotically
comparable because no two pairs lead to the same asymptotic behavior. The upshot
of this line of argument is that the only possible asymptotic behaviors for the curves
through (0,1) are Ae® and 6/z?.

In view of these findings, the integral curves through the point (0,1) behave as
sketched in Fig. 1. The upper curves behave asymptotically as Ae® with positive
A, the lower curves as Ae® with negative 4, and the separatrix between them as
6/z2. 1t is the separatrix that we want. From the sketch we see that numerical
integration in the forward direction will be unstable. So to calculate the separatrix
we shall have to integrat> backward.

To get a pair of consistent boundary values y(z) and §(z) with which to start
the backward integration, we calculate an asymptotic series for the separatrix:

_ 6 A B C D
y—;2-+;-5+;z+;5'+;:-6+"', (12a)
where

B = (A® - 144)/8 , (12b)
C = A(A? - 432)/72 , (12¢)
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Fig. 1. A sketch of the integral curves of Eq. (11a) emanating from the point
(0,1).

and

D =5A4%/3456 — 54%/4 + 342/5 . (12d)

Equations (12b)-(12d) have been obtained by inserting Eq. (12a) into the differential
equation (lla), collecting terms, and equating the coefficient of each power of z
individually to zero. Each value of A corresponds to a particular value of y(0). By
trial and error, aided in the last stages by interpolation to get the next guess, we
find that for A = —22.12, y(0) = 0.999957 and §(0) = —0.657483. The curve of y(z)
obtained by backward integration is drawn in Fig. 2. Drawn also is another curve
obtained by forward integration using the above values of y(0) and y(0); it shows
clearly the instability caused by the divergence at large = of the integral curves in
Fig. 1.

We can get quite satisfactory upper and lower bounds for y(z) by using the
maximum principle and taking as our family of comparison functions the family

u= 5 (13)

z? +az+ b’

for which u(0) = 6/b = y(0), 2(0) = —6a/b?, and u ~- 6/z? for large z. A tedious

but straightforward calculation shows that

1 .
fL-‘—‘l'Lz—‘uz:36(1:2+a1!-rb)_4{[4 . ;‘(a2 4b)] z? *az+b]+a2—4b} . (14)
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Fig. 2. The solution of Eqs. (11a) and (11b). The upper curve was obtained by
a forward, unstable integration; the lower curve by a backward, stable integration.

To get a lower limit we want the right-hand side of Eq. (14) to be >0.* Now
since b > 0 and a > 0, 2* + az +b is positive and monotone increasing for z > 0. (Its
minimum occurs at ¢ = —a/2 < 0; at ¢ = 0 it equals b > 0.) If the right-hand side
of Eq. (14) is to be positive, then 4 + (1/3)(a? — 4b) must be positive, for if it were
negative, then for large enough z the right-hand side of Eq. (14) would be negative.
The smallest positive contribution the product of the square brackets makes occurs
when z = 0. For the right-hand side of Eq. (14) still to be >0 when z = 0, we must
have

[4 + %(az - 4b)] b+a®—~4b>0 (15a)
or a2
2 . 15
7 h+3 (15b)

The best lower limit of the family of Eq. (13) will have the smallest allowable value
of a, namely,
2b

b+

a= (15¢)

wW

When b =6 [y(0) = 1], a = 4.

*This is proved below.
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To get an upper limit we want the right-hand side of Eq. (14) to be <0.* Then
4 4 (1/3)(a® — 4b) must be negative. Then

a® <4b-12. (16a)

[This incidentally requires b > 3 since a? > 0. Thus, the family (13) will give an
upper limit only if y(0) = u(0) < 2.] The best upper limit of the family (13) will
have the largest allowable value of a, namely,

a=2Vb-3. (16b)
When b = 6, a = 2+/3. Thus

6 6
—_— LY < . 17
22 +4+4z 4+ 6 Y 22 + 23z + 6 (17)

To prove the first inequality rigorously, we start with the case of Eq. (15¢)
for which i + %% — u? > 0, u(0) = y(0) = 1, and u(z) ~ y(z) ~ 6/z2. Then
W+ (§+u)w — (y+ uv)w < 0, where w = y — u. Furthermore, w(0) =0and w — 0
faster than 6/z* as £ — o0o. Since y + u > 0, w can have no negative minimum.
Then w must be >0 everywhere, so that y > u. The second inequality is proved
in an entirely analogous manner: when i + %2 — u? < 0, w can have no positive
maximum and so must be <0. Therefore, y < u.

Shown in Table 1 are values of y(z) calculated by backward numerical integra-
tion with A = —22.12 and values given by the upper and lower limits in Eq. (17).
The geometric mean of the two bounds differs fractionally from either bound by
less than 3% so that, for practical purposes, it may be a satisfactory estimate.

In our brief study of linear equations in Sects. 4.1 and 4.2, we achieved some
generality, but any such generality in the study of nonlinear equations hardly seems
possible because of their wide variety of form.

4.4 Not only do ordinary differential equations have maximum principles, but so
do partial differential equations. The best and simplest examples are Laplace’s and
Poisson’s equations and the ordinary diffusion equation. We begin with them, and
after making the principles clear, we move on to some nonlinear partial differential
equations.

*This, too, is proved below.
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Table 1. Exact values of y(z), the solution of Egs. (11a) and
(11b), and the upper and lower bounds of Eq. (17)

T Lower bound Exact value - Upper bound
0.0 1.0000 1.0000 1.0000
0.5 0.7273 0.7318 0.7517
1.0 0.5455 0.5523 0.5734
2.0 0.3333 0.3402 0.3544
3.0 0.2222 (0.2276 0.2363
4.0 0.1579 0.1618 0.1673
5.0 0.1176 0.1205 0.1242
6.0 0.09091 0.09305 0.09556
7.0 0.07229 0.07391 0.07571
8.0 0.05882 0.06008 0.06140
9.0 0.04878 0.04977 0.05077
10.0 0.04110 0.04189 0.04266
12.0 0.03030 0.03083 0.03132
14.0 0.02326 0.02362 0.02395
16.0 0.01840 0.01867 0.01890
18.0 0.01493 0.01512 0.01529
20.0 0.01235 0.01250 0.01262

Solutions of Laplace’s equation, VZ¢ = 0, always have their largest and smallest
values on the boundary B on any closed region R and not in the interior. For, at
a relative maximum ¢,, < 0 and ¢,, < 0, whereas at a relative minimum ¢,, > 0
and ¢,, > 0. Both of these necessary conditions are incompatible with Laplace’s
equation V2¢ = ¢, + ¢yy = 0. So ¢ cannot have a relative maximum or a relative
minimum in R. Iis largest and smallest values therefore lie on B, the boundary of
R. For such functions ¢ it is possible at every point to find at least one direction
in which ¢ increases and at least one direction in which ¢ decreases.

This property of Laplace’s equation enables us to get bounds on the solutions
to problems involving Laplace’s and Poisson’s equations. Consider, for example,
the following problem: V2¢ = —1; ¢ = 0 on the perimeter P of a square S of side
2; find ¢ at the center of the square. One way to get an estimate of ¢(0,0) is to
construct a function ¢ such that V2?3 = —1; in general this function will not vanish
on P. The difference i — ¢ satisfies Laplace’s equation V(¢ — ¢) = 0 in §, so its

maximum and minimum values must lie on P, where ¢ = 0. Therefore, everywhere
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in S, Yuin(P) < ¥ —¢ < Yuax(P). The art in this method is to try to make ¥, (F)
and Ynax(F) close together.

The linearity of Laplace’s and Poisson’s equations enables us to form solutions
by superposition. The function ¥ = —(1/4)(z? + y?) satisfies V¥ = —1. Its
maximum and minimum on the perimeter of the square (sides ¢ = £1, y = £1) are
~1/4 and —1/2, respectively. If we add a constant 4 to the ¥ we have a 9 that
still obeys V24 = —1, but whose maximum and minimum values on the perimeter
are now A — 1/4 and A — 1/2. To minimize the absolute deviation of ¢ from ¢ we
choose A to make A — 1/4 and A — 1/2 equal but opposite in sign, i.e., we choose
A = 3/8. Since ¥(0,0) = A = 3/8, we have at last —1/8 < 3/8 — ¢(0,0) < 1/8 or
1/4 < ¢(0,0) < 1/2. The estimate ¢(0,0) = 3/8 is thus correct within a maximum
possible error of 33%.

To improve our estimate we must add to our trial function additional solutions
of Laplace’s equation. Since we are working in two dimensions, we can find such
functions by taking the real and imaginary parts of any analytic function of the
complex variable z + iy. The necessary symmetry of ¢ [¢(—2z,y) = ¢(z,y) =
#(z, —y)] requires us to take the real part. Let us try adding a multiple of Re(z +
i)t =zt — 62?2y + ¢4, i.e., let us take

1
¢:A—Z(mz+y2)+a(m4——6:c2yz+y4) . (18)

Because of the symmetry of ¢y we need consider only the line segment z = 1,
0 < y < 1 in determining the largest and smallest values of 3 on P:

B(Ly) = A— 3(1+97) +all — 657 + 7). (19)

Our task is now to choose A and a to make the difference between ¥max and ¥min
calculated from Eq. (19) as small as possible. A moment’s thought should make it

clear that this task can be accomplished by choosing a to make the difference of the
largest and smallest values of

fy) = —%(1 + %) + a(1 — 63° + y*) (20)

on the interval 0 < y < 1 as close together as possible.

This task is more challenging than it might appear at first glance. The first
thing we do is to find out whether f(y) has an extremum on the interval (0,1) and
what kind it is. The extremum (f = 0) lies at values of y satislying y*> = 3 + 1/8a.
So there will be an extremum in the y interval (0,1) only if —1/16 < a < —1/24.
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Outside this range of a, the largest and smallest values of f(y) occur at y = 0 and
y = 1; their absolute difference equals |5a + (1/4)|. The smallest value this absolute
difference has outside the interval —1/16 < a < —1/24 occurs for a = —1/24 and
equals 1/24.

When —1/16 < a < —1/24, f(y) has an extremum for y* = 3 + 1/8a. At this
extremum, f: 24a + 1 < 0, so the extremum is a maximum. A short computation
shows frax = —(1 + Ba + 1/64a). The minimum value of f occurs at either y = 0
or y = 1; it is the smaller of @ — (1/4) and —4a — (1/2). For a < —1/20, fmin =
a — (1/4); for @ > —1/20, fuin = —4a — (1/2). Thus, for —1/16 < a < —1/20,
Af = fmax — fmin = —3/4 — 9a — 1/64a, which is monotonic decreasing in that
interval. For ~1/20 < a < —1/24, Af = —1/2 — 4a — 1/64a, which is monotonic
increasing in that interval. Clearly, then, the best value of a = 1/20, for which
Af = 1/80; then frax = —23/80, fmin = —24/80. If we choose A = 47/160, we
find —~1/160 < A — ¢(0,0) < 1/160 or 23/80 < ¢(0,0) < 24/80. Thus, the estimate
#(0,0) = 47/160 has a maximum possible error of +1/160 (£2.1%).

Our estimates so far have been based on a solution of the partial differential
equation that does not satisfy the boundary conditions. We can also get estimates
from functions that do satisfy the boundary conditions but do not satisfy the partial
differential equation. Suppose, for example, we have a function % that vanishes on
the perimeter P of the square S but satisfies only the differential inequality V2¢ >
—1. The difference ¥ — ¢ vanishes on P and satisfies the differential inequality
V%(¢ — ¢) > 0. Therefore » — ¢ cannot have a relative maximum anywhere
(although now a relative minimum is possible). Its largest value occurs on the
perimeter P—this value, of course, is zero. So inside S, ¥ — ¢ < 0 or ¥ < ¢.
In particular, ¥(0,0) < ¢(0,0). A similar result holds when the sense of all the
inequalities is reversed.

Let us choose for ¥ the function

P =(1-2?)(1 - y*)a+ bz +y?)], (21)

where a and b are constants yet to be determined. (This function has been chosen
in the following way. The first two factors have been chosen to ensure that ¥ = 0
when ¢ = £1 or y = +1. The squares are used to give ) even symmetry under
the transformation '’ = —z and y' = —y, to which the partial differential equation
and boundary conditions are invariant. Similarly, 1 has been made symmetric
_ under interchange of z and y just as the partial differential equation and boundary
conditions are.) A short computation shows that

V29 = 4(b — a) — (16b — 2a)(z? + y*) + 24bzy? + 2b(z* + y*) . (22)

In the corners of the square (z = +1, y = £1), V2% =0 no matter what the values
of a and b. So the trial function of Eq. (21) can at most saiisfy the inequality
V21 > —1 and therefore can only provide us with a lower limit to ¢. Our task is
to find the largest possible value of a = ¥(0,0) consistent with the inequality

G(z,y,a,b) = 4(b— a) — (16a — 2a)(2? + y°) + 24bz?y? + 2b(z* + y*) > —1 . (23)
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We begin by determining if G has any extrema in the square S. Differentiating, we
find

G, = —4(8b — a)z + 48bzy® + 8bz® , (24a)
Gos = —4(8b — a) + 48by® + 24bz? (24b)

and corresponding expressions for G, and G, in which z and y are interchanged.
Furthermore,

Gzy = 96bzy . (24c)

Relative maxima and minima can occur only where G, = Gy = 0. These points are
O: z=0, y=0, (25a)

Q: =0, y*=(8 —a)/2b and y=0, z*=(8b —a)/2b, (25Db)

R: z*=y*=(8b—a)/14b. (25c¢)

The origin O is a relative minimum when 8b < a and a relative maximum when
8b > a. The points @ are relative minima when 86 > a and relative maxima when
8b < a. The points R are saddle points (G,.Gy, < GZ,).

When 8b < a, the minimum of G is at the origin and equals Gnjp = 4(b — a) >
—1. To find the largest value of a consistent with these inequalities, we plot the
lines 86 = a and 4(b — a) = —1 (see Fig. 3). The only admissible values of a and
b correspond to points below the first line and above the second (hatched area).
The largest possible value of a is that corresponding to the intersection a = 2/7,
b=1/28.

When 8b > a, the minimum value of G occurs at the points @, where

(86 — a)?
T

To find the largest value of a consistent with the inequality (26) and the inequality
8b > a, we again plot them as equalities (see Fig. 4). The admissible values of a
are in the hatched area. The largest value of a corresponds to the intersection R :
a =2/7,b=1/28. [The maximum M of the curve lies at b = (7 +/14)/280 > 1/28
and so cannot fulfill the requirement that 86 > a.]

The lower limit a = 2/7, which we obtain in both cases, is close to the lower
limit 23/80 that we obtained earlier and is slightly inferior to it.

The restriction that 1) obey the boundary condition 4 = 0 on P is more stringent
than we need, and ¥(P) < 0 is enough to prove that ¥ < ¢ everywhere in S. For
then V() — ¢) > 0 and (¢ — ¢)p > 0. Since the maximum value of ¥ — ¢ occurs
on the boundary P, ¥ — ¢ < (¥ — @)max < 0, so that 3 < ¢ everywhere.

Many different combinations of differential and boundary inequalities are possi-
ble and have been discussed exhaustively by Protter and Weinberger. Always at the
root of the discussion lie restrictions placed by the differential equation or inequality
on the kind of extrema the solution may have.

Grin = 4(b—a) — 1. (26)

4.5 A nonlinear analogue of Laplace’s equation arises when we attempt to calculate
steady temperature distributions in superfluid helium (He-II). Superfluid helium
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Fig. 3. Graphical determination of the maximum possible value of a when

8b < a.
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Fig. 4. Graphical determination of the maximum possible value of a when

8b > a.
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(He-I1) is a very-low-temperature phase of helium (T < 2.2 K) that has some
unusual physical properties. One of these, which interests us here, is that for heat
fluxes in the practical range (20.1 W/cm?), the heat flux Q is proportional not to
the temperature gradient T, but to its cube root:

Q =-K(VT)'/?, (27)

where K is a constant of proportionality taken to be independent of temperature.
In steady heat flow, V- @ = 0, so that

v. [K(VT)‘“] —0. (28)

Equation (28) has a maximum principle, i.e., the largest and smallest temper-
atures lie on the boundary B of any region R. To see this, suppose that T has a
relative maximum at some point P in the interior of R. In the neighborhood of P,
the level surfaces of T are closed surfaces enclosing P. The vector —VT is the out-
ward normal to these surfaces. Now VT = —Q2?Q/K?,s0 Q-(-VT) = Q*/K3 > 0,
which means that the vector ) makes an acute angle with — VT, the outward nor-
mal to the level surfaces of T. Hence [ [ Q-ds > 0 when taken over a level surface
of T. But since V - Q = 0 everywhere, this integral must vanish. This is a contra-
diction, so our original supposition that T had a relative maximum must be false.
A similar argument applies to relative minima.

In the case of a linear equation, the difference of two solutions, being a solution
itself, has a maximum and a minimum principle. However, this simple argument
does not suffice for Eq. (28) because it is nonlinear. Nevertheless, even though
the difference of two solutions is not necessarily a solution, the difference obeys
a maximum and a minimum principle. Suppose the two solutions are T} and T5.

Then

~K*Y(T) - T5) - (Q: — @2) = (Q1Q; — Q3Q2) - (@1 — Q2)
=Q - (@ + Q@1 - Q2 + Q3
> Q- (Q% + Q1)1 Q: + Qf
= (Q} - @3)(Q1 — Q2)
=(Q?+Q1Q: + Q2)Q1 - @) >0.  (29)

Thus @, — Q, makes an acute angle with the normal —V(T; — T3) to the level
surfaces of T} — T5. Since V - (C_j1 - C_jz) = 0, these level surfaces cannot be closed,
1.e.. Ty — T, cannot have either a relative maximum or a relative minimum in the
interior of any region R.

This argument can be extended to functions T obeying differential and
boundary inequalities. Suppose, for example, we have a function T} for which
V - [K(VT:)**] > 0 and for which T\(B) < T3(B), where T is a solution of
Eq. (28). Then V .Q, <0andso V-(Q, - Qz) < 0. Thus T} — T, cannot have a
relative maximum in B. For then, f I(Ql - Qz) . dS must be >0 when taken over
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a closed level surface around the maximum. This contradicts V - (Q; ~ Q2) < 0.
Therefore, the largest value of T} — T lies on B. Then T} — T3 < (T} — T2)max < 0
since Ty(B) < T3(B), and thus T} < T, everywhere in R. The same argument
applies when the inequalities are reversed and the words “largest” and “maximum”
are replaced by the words “smallest” and “minimum,” respectively.

As a numerical example let us choose the analogous problem to that considered
in Sect. 4.4, namely V - (VT)!/? = —~1; T = 0 on the perimeter P of a square §
of side 2; find T at the center of the square, (For convenience we work in spe-
cial units in which K = 1.) The function T} = (R* — *)/32 is a solution of the
partial differential equation V .- (VT)!/? = —1 written in cylindrical coordinates,
(1/7)(d/dr)[r(dT/dr)'/®] = —1. Here R* is a constant of integration yet to be cho-
sen. The difference of the solution T we seek and the solution T} has its maximum
on the perimeter P of the square S. Since T(P) = 0, we have in the interior of §

min[T)(P)] < T} ~ T < max{T}(P)] . (30)

Owing to the geometric symmetry of the problem, we need only consider the values
of Ty(P) on the interval ¢ = 1, 0 < y < 1, where Ty(P) = [R* - (1 + y*?)?]/32.
Then we see at once that min(T;(P)] = (R* ~4)/32 and max[T(P)| = (R* - 1)/32.
Since T1(0,0) = R*/32, it follows from Eg. (30) that 1/32 < T(0,0) < 1/8. The

geometric mean of these extremes, 1/16, is then correct to within a factor of 2.

4.6 The ordinary diffusion equation C; = C,, has maximum and minimum princi-
ples. Consider the following typical boundary-~initial value problem: C(a,t), C(b,t),
and C(z,0) are specified; what is the value of C at any point z, a < z < b, at any
time t > 07 (See Fig. 5.) The solution C' cannot have either a minimum or a
maximum in the interior R of any finite region ¢ < 2 < b, 0 < ¢ < co. For, at a
maximum, C, = C; = 0 and C;, < 0, which contradicts the equality C; = C,.,
and similarly at a minimum. Hence the largest and smallest values of C lie on the
boundary. Furthermore, they cannot lie on the segment AB, for if the maximum of
C lay on the interior of segment 4B, then there C; = C,, would be <0. But then
larger values of C would lie at smaller ¢ and the same z, i.e., inside the region R. A
similar argument holds for the minimum of C'. So the largest and smallest values
of C are determined by the boundary and initial conditions.

Since the ordinary diffusion equation is linear, the difference w of the two so-
lutions C, and C; is also a solution. If Ci(a,t) > Cs(a,t), Ci(b,t) > Ca(b,t),
and C;(z,0) > C2(z,0), then Cy > C; everywhere in R, for the smallest value of
w = (; — Cy must be on the boundary. But there w > 0. Sow > 0in R, i.e.,
C,—Cz2>0in R.

Solutions of the ordinary diffusion equation with a linear source term, C; =
C,. +h(z,t)C, can similarly be compared when A < 0. If ¢} > C, on z = a, z = b,
and t = 0, then w = C; — C, obeys w; = w,, +hwand w > 0on z = @, 2z = b, and
t = 0. Can w have a minimum in R? If it does, then at the minimum w, = 0 and
w,, > 0. Therefore w > 0, too. So if w has a minimum in R it must be positive,
and therefore w > 0 everywhere in R. If w does not have a minimum in R, its
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I > Z

C(z,0)

Z= a z=5b

Fig. 5. A sketch of the boundary and initial conditions for the diffusion equation.

smallest value lies on the boundary where w > 0. Thus the smallest value of w is
always positive, so Cy — C3 = w > 0 everywhere in R.

If h is not always negative, but is bounded in the interval @ < 2 < b, we can
rescue the result of the preceding paragraph by considering the function g(z,t)
defined by C = ge*t. Substitution into the partial differential equation for C shows
that g obeys the partial differential equation g; = g,, + (h — A)g. If we choose

A> rgaé(b(h), then we can apply the reasoning of the foregoing paragraph to g and,
a<z<

because e** > 0, ultimately to C.

An application of these ideas arises in a problem drawn from the domain of
applied superconductivity. Shorn of its physical derivation, the mathematical prob-
lem comes down to this: the temperature C in a certain kind of superconducting
magnet obeys to a good approximation the diffusion equation with source

Ce=0C.. +G(C), (31a)

where
G(C)=0, C<a, (31b)
G(C)=bC-a), C>a. (31c)

At time t = 0, a sudden heat pulse of strength g is introduced at the origin; that is
to say, for t = 0+, the initial temperature distribution is taken to be

C - exp(—z%/4t)

(47t)}/2 (32)
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The reader may recognize the second factor on the right-hand side of Eq. (2) as
the pulsed-source solution of Eq. (3.14) of Sect. 3.4. If g is small enough, the
temperature C everywhere eventually approaches zero (called recovery). If g is
large enough, the temperature C everywhere eventually grows without bound (called
quenching). We seek the value of g that divides these two kinds of behavior.

The key to solving this rather formidable nonlinear eigenvalue problem is to
consider functions (trial solutions) of the form*

C, = h(t)exp(—zz/llt)

G = MO8 (33)

where S is an abbreviation for the pulsed-source solution (3.14). If we substitute
Eq. (33) into Eq. (31a), we get

(C1)zz + G(C1) = (C1)e = hS,, + G(hS) - hS — hS, (34a)

= G(hS) - hS . (34b)

We choose h to make the right-hand side of Eq. (34b) vanish when z = 0, i.e., to
satisfy

. h
— 1/2
With this value of h, the right-hand side of Eq. (34b) becomes
. h 2 2 h
- = T ametjatf -~z /4t
G(hS) hS—G[(47rt)1/2e ] e G [(4”)1/2} . (36)

Because G(C) is concave upward, it has the property that
Gi8C, + (1 — 0)Cr) < 8G(C1) + (1 - 8)G(C,), 0<L6XK1 (37a)

(see Fig. 6). This means G(hS)—hS < 0 with the equality occurring only for z = 0.
Therefore (C1).: + G(C1) — (C1): < 0 with the equality occurring only at z = 0.

Now let us consider the difference w between C and Ci: w = C — C;. It must
satisfy

w:: + G(C) - G(C1) —~w, > 0 (37b)
or )

w,, +GC +(1 - 0)Cijw — we > 0 (37¢)
if we use the law of the mean. Again, there is equality only if z = 0. If we choose
the same initial values of Eq. (32) for C, as for C, then w(z,0) = 0. Furthermore,
since C(+o0, t) = Ci(+o0, t) = 0, w(+oo, t) = 0. By symmetry, w.(0,t) = 0.
These boundary and initial conditions are summarized in Fig. 7.

*While this trial solution may look like a Deus ex machina of the type I promised not to
introduce, a little experimentation will show the reader that there is hardly any place else to begin—
at least, | have not found any.
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Fig. 6. Sketch illustrating property (37a) of functions that are concave upward.
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Fig. 7. Sketch showing the boundary and initial conditions w obeys. The line
BC lies at very large z.
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The function w cannot be positive in the interior of the rectangle OABC. To
prove this we need to consider not w but the related function v, defined by w = ve*!;

this is because G > 0. The function v obeys the diflerential inequality
Ve 4 (G = ANy —v, >0 (38)

with equality only if z = 0. As a consequence of Eq. (38), v < 0 in the rectangle
OABC. We prove this most easily by reductio ad absurdum.

Assume v > 0 somewhere in OABC. Then v can have no maximum in the
interior of OABC. For if it did, then at the maximum, v,, < 0, v¢ = 0, which,
together with v > 0, contradict Eq. (38) [if A > max(G)]. The largest value of v
must then lie on the boundary of OABC. It cannot be on OC or CB, for then the
largest value of v would be zero. If the maximum of v lay on OA, then there v > 0
and v, = 0, so that, from Eq. (38), v,, > 0. But since v, = 0 on 04, v,, > 0 means
there are larger values of v just inside OABC than on OA, so the largest value of v
cannot bhe on OA. It cannot be on AB either, because if it were, v,, would be <0
and v would be >0, so that from Eq. (38), v; would be <0. Then ther¢ would be
larger values of v just inside OABC, again a contradiction. Thus we are always led
to a contradiction. So we must reject the hypothesis v > 0 somewhere and theref::re
must have v < f1in OABC. But since e* > 0, w < 0, or C < C;.

This ineq:ality means that if we choose h(0) so that C; recovers, so must C.
The solution C will surely recover for any smaller value of g, so h(0) will be a lower
limit to the limiting value of q. It remains only to calculate the largest value of A(0)
for which C; recovers.

We are interested only in temperature distributions for which C;(0,t) > a. But
then, since h/(47t)!/2 = C1(0,t), G on the right-hand side of Eq. (35) is given by
Eq. (31¢):

h = (4mt)}/%b [ (39a)

h
(4mt)1/2 N
= bh — ab(4xt)!/? . (39b)
The solution of Eq. (39b) is

h = [h(O) - ab/t(47rt)l/ze'“dt] et (40)

0
When t — oo, the second term in the square hrackets approaches the value ma/v/b.
If h(0) > ma/v/b, h — oo exponentially (quench). If h(0) < wa/vb, h — 0 ex-

ponentially. [In fact, it does not, for once h/(47rt)!/2 drops below a, G must be
replaced by zero, i.e., Eq. (39) no longer applies.] This corresponds to recovery. If

k(0) = ma/+/b,

h ae’t > )
= == u /2
Ci0.0) = T = )i /m e u'/2du (41a)

—aast— 00. (41b)
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Clearly, then, h(0) — ma/Vb is the limiting value of h(0) we have been seeking.
So finally, then, if ¢ < ma/vb, C must recover; therefore the limiting value of g is

Zwa/\/g.

4.7 The problem of the previous paragraph has an interesting group-theoretic
property: it is invariant to the one-parameter family of groups of transformations

2= A0 b =277
=Xt  d =A% 0<A<oo, (42)
2 = Az ¢ = A*tlg

where « is arbitrary. Now the limiting value of ¢ can only be a function of a and
b: ¢ = F(a,b). Moreover, this function relationship must hold unchanged for the
primed values since, they, too, satisfy the stated problem. Thus

qg = F(d',V), (43)
Aot F = yotlg = F(A%a,A72) . (44)
If we differentiate with respect to X and set A =1, we find
(¢ + 1)F = aaF, — 2bF, . (45)
The characteristic equations are

da db dF
aa  -2b (a+1)F (46)

so that, most generally,
F(a,b) = al*tD/e g (a?5%) | (47)

where H is an arbitrary function.

Suppose we consider Eq. (47) written in terms of the primed variables for a
particular value of a, namely, ap:

F o= a;(an+1)/cqu(a12blﬂn) ) (48)

Let us now replace the primed variables by the unprimed variables according to
Eq. (42):

At p = pelaotD/ang(aotl)/an g y2a-ao)g2pan) (49)
If we introduce the abbreviations p = A?(@~20) and ¢ = a?b®° and substitute for F
from Eq. (47) on the left-hand side .1 Eq. (49) we get, after some rearrangement,

H(pz) =p~'/?*H(z) . (50)
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We can determine the form of H(z) by differentiating Eq. (50) with respect to
it and then setting p = I:

. 1
cH = ——H . (51)
2(10
Equation (51) has the solution
H(z) = const ¢ ~(1/2%0) (52)
Then
g = F(a,b) = al®t1)/a0  conet - (a?h20)71/2a0 — capst . ab™!/2 | (53)

This is precisely the form derived at the end of Sect. 4.8, where the lower limit =
was obtained for the constant.

Having discovered the form in Eq. (53), we now need only to find ¢ numerically
for a single choice of a and b in order to know it for all @ and 6. We can do this
by repeatedly solving Eq. (31a) for various g, thereby bracketing the sought-for
limiting value. The constant in Eq. (53) turns out to be 3.88 to three figures, about
24% larger than the lower bound .
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Chapter 5
MONOTONE OPERATORS AND ITERATION

“‘Does the road wind up-hill all the way?’
‘Yes, to the very end.'”
—Christina Rossetti

“Up-Hill”

5.1 Iteration is a very old technique for getting solutions of all kinds of equations—
algebraic, transcendental, ordinary and partial differential, etc. Two problems heset
its use. The first is the increasing complexity of computation required to evaluate
higher iterates. The second, an issue of principle, is whether or not the sequence
of iterates converges. Collatz has identified a broad class - " iteration problems for
which the question of convergence can be answered, naiuciy, those based on the
iteration of monotone operators.

An operator T is monotone if w > v implies Tw > Tv. An operator T is
antitone if w > v implies Tw < Tv. Monotone and antitone operators and operators
that can be written as the sum of a monotone and an antitone operator can all be
made the basis of convergent iteration schemes. How to do this is the subject of
this chapter.

Suppose we begin with the simple case of a pure monotone operator T', and
suppose we can find an upper solution uo and a lower solution v, i.e., functions ug
and vp that obey the following conditions:

ug > Tug = uy

: (1a)
vo < Tve =1y (1b)
vg < up . (1c)

If we then create two iterative sequences, un4) = Tuy, starting with ug and vp4y =
Tv, starting with vy, we can show by induction that the sequence of u-iterates
decreases, the sequence of v-iterates increases, and the nth u-iterate is greater than
the nth v-iterate. The induction proceeds straightforwardly as follows. If u, <
Up_g,then upyy = Tu, < Tu,_., = u,; furthermore the inductive hypothesis holds
for n = 0. Similarly, if v, 2 vn_y, Vn+1 = Tvy, 2> Tv,-; = vn; the inductive
hypothesis again holds for n = 1. Finally, if vo, S un, vayy = Tvn < Tun = upyg,
and the inductive hypothesis holds for n = 0.

The sequence of u-iterates decreases and is bounded from below; the sequence
of v-iterates increases and is bounded from above. The sequences therefore have
limit points u and v which obey u = Tu and v = Tv. Frequently these limit points
will be the same. So the iterates give upper and lower bounds to the solutions of
u = Tu.

To see how we can apply this scheme to the approximation of solutions of
differential equations, let us begin with an example of Collatz’s, namely the first-
order ordinary differential equation and boundary conditions

Z.J = (1 - 3)y2 ) (23.)



82

y(0) =1 . (2b)
Equations (2a) and (2b) can be written as

y=1 +/0=(1 () de 3)

where ¢ is a dummy variable of integration. We take the right-hand side of Lkq. (3)
to be the operator T

Ty =1+ /:(1 — )y3(t) dt . (4)

Is T monotone? From Eq. (4) we see that

Tu—-Tv = /:(1 — t)(u? —v?)dt = /oz(l —t)(u+v)(u—v)dt . (5)

So long as z < 1 and u and v are positive, T' is monotone.

Since y is monotone increasing for z < 1 [see Eq. (2a)], a possible value for
vp = 1. Then,

v=1+z—2?/2 , (6a)
vo=14+z4+22/2-223/3 —z*/4+2°/4 - =2%/24 . (6b)

For z < 1, v; > vy as desired. For uy we try the form
ug =1+ +az? | (7a)
with @ as yet undetermined. Then
uy =1+z+22/2+ (20 - 1)2%/3 — 2* /4 + (a® — 2a)2° /5 ~ a®2%/6 .  (7b)
By comparing Eqs. (7a) and (7b) we can see that u; will be <ug if @ = 1/2. Then
uy =14z +22/2—z*/4 - 32°/20 — 2%/24 . (7¢)

Further iteration is extremely laborious so we stop here, nating that v; <y < uz <
uy, so that u; is an upper limit to y and v, is a lower limit. Equation (2a) was picked
deliberately because it is solvable in terms of simple functions: y = (1—z+z?/2)"!.
Shown in Table s a comparison of v,, y, and u,.

Table 1. A comparison of vy, y, and u; for z = 1
T Vg ) Y Uy o

0.0 1.0000 1.0000 1.0000
0.2 1.2143 1.2195 1.2195
0.4 1.4333 1.4706 1.4719
0.6 1.6211 1.7241  1.7340
0.8 1.7473 1.9231 1.9575
1.0 1.7917 2.0000 2.0583
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5.2 Our next example is the Poisson-Boltzmann equation V2y = e¥ that comes up
in certain problems of ionic distribution in strong ion exchangers. Suppose we look
for the regular solution inside a region R that vanishes on the boundary B of R.
The operator T' we identify with (V?)j1verscel !, that is to say, we define T'y as the
solution of

V(Ty) = e (8a)
Ty(B)=10 . (8b)

ntitone, as we prove next.
. nayw two functions 4y and vg such that wg > vg. If we define
Wy L'ug and v; = Tvg, we have

V2‘U1 = ¥ , 'U.](B) =0, (ga,)
Vi =e™, un(B)=0 . (9b)

If we subtract Eq. (9b) from Eq. (9a), we get
Vu; —v1)=€e* —¢e" >0 . (10)

Thus, u; — v; cannot have a maximum in the interior of R [for at a maximum
(u1 —v1)zz <0, (w1 —v1)yy <0, and (u; —v,);, < 0]. The largest value of u; — v,
must thus occur on the boundary. But the boundary value is zero. Hence in R,
u; —v; < 0oru; <wvy. SoT is antitone.

We start again with upper and lower solutions u¢ and vg, now defined such that

vo < uo (11a)
vy = Tuq > vg (11b)
uy = Tvg < ug , (11c)

and create the iterative sequence vp4; = T'u, and u,+1 = Tv,. As before, we prove
by induction the assertions v, < vp41, Uy > upyy, and v, < u,. Thus, as before,
the two sequences provide upper and lower bounds to stationary solutions y = T'y
confined between them.

Let us take for the region R a cylinder of radius 1. The reason for this choice
is that this problem has an analytic solution that we can use to compare with the
limits we calculate by iteration. For vy we choose ug = 0. The rationale behind
this choice is the following. Since VZy = e¥ > 0, y cannot have a maximum iuside
the region R. Since y(B) = 0, and the largest value of y occurs on B, y < 0 in R.
So ug = 0 is a simple convenient upper limit. For vy we take vg = —b, where b is
an as yet undetermined positive constant, thus satisfying Eq. (11a). Then

]. d dvl up __ _

rardr e =L ml)=0, (122)
]. d d‘u.l _ vo _ _—b _
ST < =e, u(r)=0, (12b)
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so that
vy = (r? = 1)/4 (13a)
uy = e ?(r? —1)/4 . (13b)
Since r < 1, (r? = 1)/4 < 0 and u; and ug satisfy Eq. (11c). In order to satj -

Eq. (11b), we must have v; = (r2 —=1)/4 > ~b=wvyor b > (1L —72)/4. Thus b > ,
and

e - 1)/a>y > (PP -1)/4 . (14)
The Poisson-Boltzmann equation V2y = €Y is solvable in cylindrical coordinates.
The most direct approach is to make use of the invariance to the group y' = y —

2 In A, »' = Ar and apply the method of Sect. 2.5. The computations are tedious
and will not be repeated here—they are summarized in my paper in J. Math. Phys.
12 (7), 1339 (1971). The result, which can be verified by substitution, is

2 2

y:—-ln[%(l——r—)] , a=5+1+24=09.8990 . (15)
a

A comparison of the limits, Eq. (14), and the exact solution, Eq. (15), is shown

in Table 2. The geometric mean of the limits has the smallest maximum possible

error, namely 13%. Because of the exponential on the right-hand side of the Poisson-

Boltzmann equation, further iteration is extremely difficult.

Table 2. A comparison of the limits, Eq. (14),
and the exact solution, Eq. (15)

T Yiower Yexact Yupper
0.0 —0.2500 —-0.2130 —0.1947
0.1 -0.2475 -0.2110 —0.1928
0.2 —0.2400 -0.2049 —0.1869
0.3 —0.2275 —0.1947 —-0.1772
0.4 -0.2100 —-0.1804 —0.1635
0.5 —-0.1875 —0.1618 —0.1460
0.6 -0.1600 -0.1389 —-0.1246
0.7 -0.1275 -0.1115 —0.0993
0.8 —0.0900 —0.0793 —0.0701
0.9 —0.0475 —0.0423 —0.0370
1.0 0 0 0

This iterative technique can be extended to a region R of any shape. If we take
ug = 0 and vy = b, we find that ¢ < y < @exp(dmin), where ¢ is the solution of
the linear problem V2¢ = 1, ¢(B) = 0, and ¢min is its minimum value in R. So for
a sphere of unit radius, for example, (r? — 1)/6 < y < e /8(r? — 1)/6. No exact
solution is available for this case.

5.3 Another equation to which Collatz’s method of monotone operators might be
applied by way of example is the equation of D. Anderson and M. Lisak, which they
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obtained {rom a similarity treatment of a problem in plasma physics [I[EEE Trans.
Plasma Sci. PS-9 (2), 73-75 (1981)]:

y+zye V=0, (16a)
y(0)=a , (16b)
y(oo) =0 . (16¢c)

By dividing Eq. (16a) by y and integrating twice with respect to =, we obtain

=a- b/ exp (—/ z“e-v<=">dz"> dz' | (17)
0 0

where a and b are positive numbers equal to y(0) and —3(0), respectively. The
right-hand side of Eq. (17) is defined as the operator T acting on y. If y increases,
the inner exponential decreases, the outer exponential increases, and the right-hand
side decreases. Thus if u > v, Tu < Tv, and T is antitone. So we look for upper
and lower solutions ug and vy such that (i) ug > v, (ii) Tve = u; < ug, and (iii)
Tuo = vy > vy to start our iterative sequence u,4+; = Tv, and v,y = Tu,. We
choose ug = a and vg = 0. Then

Uy, =a— b\/gerf (—%) ) (18a)
v, =a-— b\/ge“/zerf (\—;_-2‘8—‘1/2) . (18b)

Conditions (i) and (ii) are satisfied by these functions no matter what the (positive)
values of a and b. What about condition (iii)? Since the error function is <1 (and
approaches 1 as ¢ — o0), v; > 0 requires

azb\/’gea/z . (19)

When Eq. (19) is satisfied, then u; > y > v, i.e.,

K z ™ z
—_ - —_— >y >a- —e?/? = _e—a/2 X
a b\/’;erf (\/5) y2a b\/;e erf(\/ie ) (20)

According to Eq. (20), when z — oo,

a- b\/g > y(00) > a - b\/ge"“ , (21)

the last inequality following from Eq. (19).

When a and b obey the strict equality (19), i.e., when the left-hand side is
greater than the right-hand side, then it follows from Eq. (21) that y(co0) > 0. Thus
the solution that the limits of Eq. (20) enclose cannot be the one we seek [remember



8G

Eq. (16¢)!]. Only if both sides of Eq. (19) are equal is there even a chance for y(oo)
to be zero. But numerical calculations show that even then y(oco) > 0. So Collatz’s
iteration method tells us nothing about Anderson and Lisak’s problem propounded
in Eq. (16), although a certain amount of analysis is required to determine this.
In spite of this disappointment, the monotonicity of operator on the right-hand
side of Eq. (17) can be of use of us. For if y is the exact solution of Eq. (16), then

Eq. (17) gives
e :/ exp (—/ :c'e"y(")da:') de . (22)
b 0 o

The right-hand of Eq. (22) is a monotone operator acting on y. Now y itself is
monotonic decreasing, as we can see from Eq. (16). For if it were not, it would have
to possess an extremum at which y = 0 and ¥ = 0. But the only solution for which
y and j vanish simultaneously is a constant, which cannot fulfill Egs. (16b) and
(16¢) at the same time. Thus a = y(0) > y > 0 = y(o0). Usingy =a and y =0 in

Eq. (22), we obt:
Teal2 > 2> T
\/;e 5 5 (23a)

\/ga >b> \/gae_“/z . (23b)
™

Shown in Fig. 1 is a curve of b vs a calculated numerically, as described below, and
the limits shown in Eq. (23b).

Another procedure exactly like the one just carried out begins by integrating
the differential equation (16a) from zero to z:

so that

y+b= —-/ zye Yde = ze™V —/ e ¥de . (24)
0 0

Since y is monotonic decreasing and positive, § = —ye~¥ > 0. Thus y is also
concave upward. But then y > a — bz, 0 < ¢ < a/b. If we choose ¢ > a/b and
replace y in the integral by the comparison function

a—bzx, a<lz<a/b 25)
U =
0, a/b< ’ (
we find
y+b>z(e¥ —1)+(a—-14+e"%)/b . (26)

In passing from Eq. (24) to Eq. (26) we have used the fact that the operator Ty =
foz e~ ¥dz is antitone. If we now let £ — oo, then § — 0 and so does z(e™¥ — 1).
Thus Eq. (26) becomes

b>(a-14+e®)/2 | (27)
Figure 1 shows the limits (23b) and (27) as well as a curve calculated numeri-

cally. The numerical calculations were carried out with the aid of the invariance of
the differential equation (16a) to the mixed translation-stretching group z' = Az,
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Fig. 1. The limits (23b) and (27) and a curve calculated numerically.

y' =y +2In A. We proceed by picking y(0) and y(0) arbitrarily and finding y(oo)
by numerical integration (the integral curves all approach constants for large z).
Then we transform the integral curve to get an image with y'(co) = 0. In this way,
we find one point on the curve b vs a with each numerical integration.

It is clear from Eq. (23b) that b — ,/2/7a as a — 0. It also happens that
b approaches the limit (27) for large a, and this should not surprise us because
the comparison function (25) becomes a closer and closer lower limit to the true
solution, the larger a is.

5.4 Occasionally, one meets with operators that are neither monotone nor antitone,
but which can be written as the sum of a monotone operator T} and an antitone
operator T;. To solve the problem u = Tu + r, Collatz sets up the iterative scheme

Vng1 = T1vn + Toupn +7 (28a)

Upt] = Tup + Thv, + 7 , (28b)
with starting values that obey the inequalities

vo S vy Sur Sug . (28c)
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The success of the whole method depends on finding a up and a »y that fulfill
Fg. (28c). If we can do so, then

—

S Up-y . (29)

Un—-1 7 Un < Un
We prove Eq. (29) straightforwardly by induction:
Vg1 = N+ Toup+7 2 Thop oy + Tattyy + 7 = v, , (30a)

un+1 = Tlu,,_ -+ Tzv,,_ + 7 _/: T‘Jun»l + 712'0"_1 +7r = Up (30b)
Unt1 = Tvn + Toup + 7 Z Thun + Tovg +7 = upy, - (30c)
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Chapter 6
COMPLEMENTARY VARIATIONAL PRINCIPLES

“Searcher for the fecund minimum.”
—Wallace Stevens
“The Comedian as the Letter C”

6.1 The variational technique for solving diffcrential equations is based on the con-
nection between the extrema (maxima or minima) of a functional and the solution
of a related differential equation. (A functional is a function of a function: you
put in a function as the independent variable and get back a number. For example,
fol y(z) dz is a functional of y.) The connection between functionals and differential
equations is explored thoroughly in the calculus of variations, where the functionals
are chosen because of their intrinsic interest. For example, in the classical brachis-
tochrone problem the functional is the time it takes for a bead to slide down a wire
connecting two points. Desired is the shape of the wire to make the time of transit
a minimum. The wire shape is calculated by solving a related differential equation
calculable from the particular functional. How to obtain this differential equation
from the functional is part of the lore of the calculus of variations.

The process can be inverted. Given a particular differential equation, we may
sometimes be able to find a functional that is minimized or maximized by solutions
of the differential equation. Then we can choose a family of trial functions containing
one or more undetermined parameters, evaluate the functional, and choose the
parameters to make the functional an extremum. Used in this way, the functional
provides a criterion of best fit. But it is not the only criterion of best fit. Indeed, it
is not always even the most convenient. Its real power shines when the functional
represents a quantity in which we may have some interest. Then, because the
functional is an extremum for the solutions of the differential equation, when the
error ¢ in the trial function is small, the error in the value of the functional is of
order 2. Roughly speaking, then, a 10% trial function will provide a 1% estimate
of the functional. If the latter is something we should like to know, we shall have
gotten something for nothing.

The variational method has been used for a long time in the manner just de-
scribed, and variational estimates have been obtained for myriad quantities of in-
terest in science and technology. But all of these estimates suffered the peculiar
defect that, while they were felt to be accurate, no rigorous measure of their error
was available.

About 20 years ago, B. Noble remedied this defect for a wide class of differential
equations. He showed that it was possible to find two variational principles, called
complementary, one of which attained a maximum and the other an equal minimum
for exact solutions of the differential equation. In such a case, trial functions provide
two estimates of the desired quantity of second-order accuracy, and furthermore one
necessarily is a lower limit and the other an upper limit. So Noble’s method provides
us with close upper and lower bounds to the desired quantity. Noble’s method has
been elaborated in a very fine monograph by A. M. Arthurs.
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6.2 The key to Noble’s method is the formulation of the problem in the Hamil-
tonian form. To understand the Hamiltonian form, we must first understand the
Euler-Lagrange form. Suppose we start with an ordinary second-order differential
equation, which is the so-called Euler-Lagrange equation of a Lagrangean L(q, ¢):

L oL
o (ory oL, o

dt \ 0q dq
For example, the differential equation § — ¢ = 0 (whose solutions are e*!) is the
Euler-Lagrange equation of the Lagrangean L = ¢?/2+4¢%/2. The importance of the
Lagrangean is this. Among all the functions g(t) for which g(a) = ¢; and q(b) = g¢.,

the solution g¢.(t) of the Euler-Lagrange differential equation (1) that fulfills the
boundary conditions q.(a) = q; and q.(b) = g» makes the functional

b
A—_—/ L(g,4) dt (2)

an extremum (in the example being discussed, a minimum).

To see the meaning of this last statement in some detail and to set the stage for
further developments, let us consider the problem of finding the solution of g—q =0
and its associated value of A when ¢(0) = 0 and ¢(1) = 1. The exact solution is
g = sinh t/sinh 1 = ¢.(t). The value of A corresponding to it is sinh 2/4 sinh?1 =
0.656518. Another function of ¢, not a solution of the differential equation §—¢q =0,
but obeying the boundary conditions g(0) = 0 and ¢(1) = 1, is ¢ = . For it, the
value of 4 is 2/3, a slight overestimate of the correct value by about 1.5%.

It is easy to see from the differential equation that g, # 0 in general. In fact,
g. must be concave upward. The trial function ¢ = {, on the other hand, has no
curvature. We can try to improve our trial function by including some curvature.
So, for example, we can take as our trial function ¢ = at + (1 — a)t?, where a is
some number not yet specified. For this trial function, A = (5a% — 8a + 19)/24. In
order to make A an extremum (in this case, a minimum, as we shall see below) we
set dA/da = 0. Then we find at once that « = 4/5. The corresponding value of A
is 79/120, which overestimates the correct value by a scant 0.28%. Shown below in
Table 1 are the values of q. and the two trial functions t and ¢(4 4 t)/5. The trial
function t is larger than q. by as much as 17% in places, but the corresponding
value of A is only 1.5% larger than A.. The trial function #(4 + t)/5 sometimes
exceeds q. and sometimes is exceeded by it, but the percentage difference between
them is at most about 4% and is usually less. The corresponding value of A exceeds
A, by only 0.28%. This example shows clearly how much better an estimate A is
of A, than qis of g,.
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Table 1. The exact solution g, and two trial functions

t I t t(4 +t)/5
0.00 0 0 0
0.10 0.085234 0.10 0.082000
0.20 0.171320 0.20 0.168000
0.30 0.259122 0.30 0.258000
0.40 0.349517 0.40 0.352000
0.50 0.443409 0.50 0.450000
0.60 0.541740 0.60 0.552000
0.70 0.645493 0.70 0.658000
0.80 0.755705 0.80 0.768000
0.90 0.873482 0.90 0.882000
1.00 1.000000 1.00 1.000000

I have said above that in the example being discussed the functional A is a
minimum when ¢ = q,, and now is the time to show it. Suppose we choose as trial
functions the family of functions ¢ = ¢. + 1, where 7 is an arbitrary function of ¢
except that n(a) = 7(b) = 0. Thus g(a) = g.(a) = q1 and q(b) = ¢g.(b) = ¢z, i.e., g
obeys the same boundary conditions as ¢g.. Then

1 [, b 1.
A= [@rdyas [Ga+nyarg [Fema . @
Ja a a

The first term on the right-hand side of Eq. (3) is A.. The second term we treat
by integration by parts:

b b b
[ G+ nae) de =]+ [nta. - ) at=0 . )
a a
The integrated term vanishes because n(a) = n(b) = 0. The integral on the right-
hand side vanishes because g. obeys the differential equation g, — g« = 0. Thus,

1 [t
A=A_+§/(q2+n2)dt. (5)

Since the integral on the right-hand side is always positive, A > A,, with equality
being achieved if and only if = 0, i.e., ¢ = g.. Thus A has as its minimum value A,,
which is attained only for the solution of the differential equation. Furthermore, the
integral on the right-hand side is of second order in 7, so if 7 is small, the estimate
that Eq. (5) provides of A. is much better than the estimate that ¢ provides of q..

6.3 The reasoning just applied to the functional A given in Eq. (3) can be extended
to the general functional A given in Eq. (2). Thereby we shall show that the soiution
of the Euler-Lagrange equation, Eq. (1), makes A an extremum, and we shall find
conditions that will tell us whether the extremum is a minimum, a maximum, or
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neither. Suppose ¢ = q. + 1, ¢ = ¢q. + 7, where ¢, is the solution of the Euler-
Lagrange equation obeying the boundary conditions g.(a) = ¢, and q.(b) = g2 and
where ¢ is a trial function obeying the same boundary conditions. Then, to second
order in  we have

b , 8L 8L, 18°L , OL . 18°L,,
A= [ o [L("""') tou." a1 aag" Tag.0e Taag | (69

b
8L 8L .
—A.+/u (6q,n+8(;.q) dt
1 [t (0L, L L
= — 2 ; 02 ) dt . 6b
+2/,. (aqz” * Bq.aiz-""+6t'13") (66)

In order for A to differ from A. in second order, the first-order term, which is
the first integral on the right-hand side of Eq. (6b), must vanish for any arbitrary
n for which n(a) = n(b) = 0 [remember, n(a) = g(a) — g.(a) = 0]. A possible and
convenient choice for 7 is a sharply peaked function centered on some point ¢t = ¢,
in the interval a < { < b (see Fig. 1a). The first term in the first integral on the
right-hand side of Eq. (6b) is then (8L/8q. )i=t, f:n dt. We lose no generality by
taking the area under the sharp peak to be unity, so that f:n dt = 1. Then the
first term in the first integral is just (0L/0q.)=t,.

We can use the -<me trick on the second term with one slight addition of
complexity. Because the derivative 77 does not have a single sharp peak (see Fig. 1b),
it does not simply pick out the value of its coefficient at ¢ = ;. But an integration
by parts is all we need to complete our calculation:

b b
aL\ . oL b d /3L
/ (afz.)”‘“' (aa.)”a‘/., "t (5?) d (7a)

d /6L
-4 (Bé»>:=t., . (Tb)

The integrated term vanishes because n(a) = 7(b) = 0. Adding the two terms, we
find for the first integral on the right-hand side of Eq. (6b)

oL d /0L
[a,,,, T & (5@‘:)],=,0 =0 (7c)

If this first integral is to vanish, the quantity in brackets in Eq. (7c) must vanish.
Since the choice of ¢y on which to center the sharply peaked function was arbitrary,
Eq. (7c) must vanish for all ¢, in the interval (e,b). But this means that then g,
satisfies the Euler-Lagrange equation, Eq. (1).

Next we determine whether the extreme value A, of the functional A is a min-
imum, a maximum, or neither. We can write the second integral as

1 b . . 2
5/ n? [Lq-q- + 2L, (%) + Lg.q. (%) ] dt . (8a)
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Fig. 1. The sharply peaked function n(t) and its derivative 7(t).
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(For convenience, I abbreviate Lq, . = 0?L/8¢?, etc.) The quantity in the paren-
theses is a quadratic expression in the variable 9/7. If it has a positive discriminant,

(thé- )2 - thq. Lc'].i]. ) (Sb)

it has real roots, i.e., there are values of 1/n for which it vanishes, and it is positive
for some values of /1 and negative for others. Hence A can be either greater than
or smaller than A,, although it always differs from A. in second order. On the other
hand, if the discriminant is negative, there are no roots, and the expression in the
parentheses must always have the same sign. It will always be positive if Lg, 4, and
Ly, 4. are both positive [if the discriminant (8b) is negative, L, 4, and L;,;, must
have the same sign]. Then A is always greater than 4,, and 4, is 2 minimum. If
Lq.q. and Ly ;. are negative, A will always be less than A,, and A, is a maximum,

6.4 As a simple example illustrating the application of the foregoing ideas, let
us consider a problem suggested by Collatz (L. Collatz, Differentialgleichungen,
B. G. Teubner, Stuttgart, 1967, pp. 172-5), namely, the linear eigenvalue problem

y+Arey =0, (9a)

y(0) =0, y1)=0, (9b)

which arises in the calculation of the mechanical stability of a vertical rod supporting
its own weight. (The lowest eigenvalue A gives the critical value of pgl®/B at which
the rod buckles under its own weight. Here p is the mass of the rod per unit length,
g the acceleration of gravity, ! the length of the rod, and B its flexural rigidity.)
The Lagrangean for the differential equation (9a) is

1
L= %'2 - §Azy2 , (10a)

and the functional 4 (in mechanics called the action) corresponding to it is

1
_ %/ (3% ~ Azy?) dz . (10b)
0

What is the value of the action when y = y., the solution of the eigenvalue
problem (9a,b)? If we integrate the first term on the right in Eq. (10b) by parts,
we get

2At = y.il.

1 1

o= [ e+ Ay2) do = 0 (10¢)
0

because yj = 0 when z = 0 [§(0) = 0] or 1 [y(1) = 0] and, according to Eq. (9a),

Ya¥s» = —Azy?. What this means is that, when y is a trial function that obeys the
boundary conditions of Eq. (9b) and differs from y, by an error of order ¢,

Al =3 [ G = ay?) do = A+ O(&) = 0() (10d)
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Thus Eq. (10d) provides the estimate for the eigenvalue,

\ o [ 32 de

) lla
fol zy? dz (112)

the error in which is of order €.

A simple trial function that obeys the boundary conditions of Eq. (9b) is y =
1 —z™, where n is a parameter yet to be determined. A short calculation then shows
that, according to Eq. (11a),

_2An+1)(n+2)

A 2n -1

(11b)

The best value of n is that which makes the right-hand side of Eq. (11b) an ex-
tremum. (To see this, note that two trial functions, with neighboring values of n
near the best value, must each lead to trial values of A that differ from the correct
value in second order. Hence the trial values of A must differ from one another in
second order.) The extremum of the right-hand side occurs when n = (v/15 + 1)/2
and is equal to \/13 + 4 = 7.872983.

Collatz’s problem is soluble in terms of Bessel functions of order 1/3, and using
the properties of these functions, Collatz has obtained the value A = 7.83735, from
which our variational estimate differs by only 0.45%.

6.5 The Euler-Lagrange equation is a second-order equation. Hamilton’s equations
are an equivalent set of two coupled first-order equations. To derive them, Hamilton
employed the so-called Legendre transformation that is used in thermodynamics to
change independent variables. [A simple example of the Legendre transformation is
the passage from the internal energy U to the Helmholtz free energy F. According
to the two laws of thermodynamics, dU = T dS — P dV; thuc U may conveniently be
considered a function of the entropy S and the volume V. If we subtract d(T'S) from
both sides, we obtain d(U~TS) =T dS—PdV—~SdT-TdS = -SdT—-PdV. The
new function F' = U — TS, called the Helmholtz free energy, is most conveniently
considered a function of T and V.

To reduce the Lagrange equation to a pair of first-order equations, Hamilton
introduced the new variable p = 8L/8q. In terms of it, the Euler-Lagrange equation,
Eq. (1), becomes p = dp/dt = 8L/0q. Hamilton then introduced, in place of the
Lagrangean, a related function H that could be considered a function of p and g;
this he did by means of the Legendre transformation

H=pj-L . (12a)
Then
dH =g dp+pdq— L, dg— L; dg
=qdp+pdg—pdg—pdg
=gdp—pdg (12b)
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because Ly = p and Ly = d/dt(L;) = p. Thus

H,,E-a—lizq , (13a)
p
H
H,=—=-p . 13b

Equations (13a) and (13b) are the coupled first-order equations of Hamilton. The
function H is called, appropriately enough, the Hamiltonian.

8.8 In terms of the Hamiltonian, the functional A has the form

b
A=/(pfl—H) dt . (14)

Noble’s idea is to study the behavior of A when p and q are trial functions that
(i) are close to the exact solutions p. and g, of Eqgs. (13a) and (13b) and (ii) obey
either Eq. (13a) or Eq. (13b). If the Hamiltonian is of a certain type, then one of
these families of trial functions will give an upper limit to 4 and the other will give
a lower limit. Thus we shall be able to bracket the true value.

Suppose

r=p.+¢( , (15a)
g=g«t+n . (15b)

Then to terms of second order in { and 7,

b
A=/ (pe + W@ + ) — H(pu + ¢ 1qu +7)] dt

b

=/(P*i]*+(q.+ﬁp.+Cﬁ—H.—CH_—‘an_
CZ 7’2
=% Hyp. = ¢ Hp.q, = & Ho.q. )dt
b
= Aot [ (€t i — CHy, i) dt
4 . Cz 1,2
+/ (TIC - E‘Hp.p. —nCHp,q. — "2—Hq.q.> dt . (16)
a

If we integrate the term 7p. in the first integral by parts we get

b b

a

b
/ 7P« dt = np..
a

The integrated term vanishes if n(a) = n(b) = 0, i.e., if ¢ obeys the same boundary
conditions as g.. Using the Hamilton equations, (13a) and (13b), we see then that
the first-order term (first integral on the right) vanishes.
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Suppose now we consider trial functions p and ¢ that obey Eq. (13a). Then

g=q¢.+n= Hp(Pt +¢ 9.+ "7) = Hp. + Hp.p.c + Hp.q.’T (183)

or
7= Hp.p.c+Hp.q.77 , (18b)

Substituting Eq. (18b) into the second-order term (second integral on the right),
we find

1 :
A A+ 5/ (¢*Hp.p. —n*H,.4.)dt  [p,q obey (13a)] . (19)
a

If p and q instead obey Eq. (13b), then

P=p.+ C = _Hq(pt +¢,9. + 77) = "Hq. - Hq.p.c - Hq.q.77 (203)

or

é = "Hq.p.c - Hq.q.n . (20b)

Since f: n¢ dt = n¢|b - f: nl dt = - f:né' dt (because 7(a) = n(b) = 0—remember,
g and g, obey the same boundary conditions),

1 b
A=A+ 5/ (n%Hq.q. — C*H,.,.) dt  [p,q obey (13b)] . (21)

[N.B.: The symbols n and { appearing in Eq. (21) are not numerically the same as
those appearing in Eq. (19)!]

If Hy,, and H, , have opposile signs, or if one of them is zero, then the
second-order terms in Eqgs. (19) and (21) will have opposite signs. Thus, one of
these equations will give an upper limit to A, and the other a lower limit.

As an illustrative example, let us take the problem dealt with in Sect. 6.2,
namely, § — ¢ = 0, ¢(0) = 0, ¢(1) = 1. Then H = (p* — ¢*)/2 so that Hamilton’s
equations are p = q and ¢ = p, which are clearly the equivalent of the second-order
equation. The functional A is then given by

1
A= / (pq - 1p’ + 1q’) dt . (22)
0 2 2

If p= p. and ¢ = q., then p, = . and

1

=g [@raa=1a
“—Zoq‘ qx _2 9+ qx

0

- /01 e (s — g+) dt] = %fl-(l) : (23)

So the limits we shall get will provide upper and lower bounds of second-order
accuracy on the slope ¢, at t = 1.

When p and q obey Eq. (13a): ¢ = p, we get an upper limit to 4, (since H,p, =1
and Hg, = —1). Then A given by Eq. (22) becomes

1
A= [@rara, q=0, an)=1. (24)
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This is what we had earlier in Sect. 6.2. There the choice ¢ = ¢ gave A = 2/3.
When p and g obey Eq. (13b): p = q, we get a lower limit to A,. If we take ¢ =1
to satisfy the requirement that ¢ and gq. obey the same boundary conditions, then
we find p = a + t2/2, where a is an as yet undetermined constant of integration.
Then, substituting into Eq. (22), we find

! 12\ 1 t2\* 1,| 3 5 1,
= - - - + - - = —— - - - R y
A /,, [(‘”2) 2(“ 2) T2 T 10t e 3 (25)

Since Eq. (25) provides a lower limit, its maximum value of 59/90, which occurs
when a = 5/6, is the best such lower limit. So we find then that 59/90 < 4, < 2/3.
The geometric mean of these limits, 0.661088, cannot be in error by more than
0.84% (its error is in fact 0.70%).

In Collatz’s example (Sect. 6.4), the differential equation § + Azy = 0 has
the Hamiltonian H = p?/2 + Azy?/2. Then H,, = 1 and Hy, = Az, and both
are positive. Thus, the conditions for applying Noble’s idea are not fulfilled, and
although both Eqs. (19) and (21) provide second-order estimates of A, we have no
guarantee that one is always an upper and the other always a lower bound.

6.7 The work up to now has dwelt on solutions g(¢) of ordinary differential equa-
tions. Now we turn to solutions g¢(z,y, z) of partial differential equations. If such
solutions make a Lagrangean of the form L(q,q,,qy,9.) an extremum, what is the
form of the Euler-Lagrange differential equation? To answer this question, we pro-
ceed just as we did in Sect. 6.3 and set ¢ = q. + n:

A= // Ldzdydz= A, + // (Lqm + Ly, + Lq,my + Lg, 1. )dz dy dz
R R

Foeee (26)

where the derivatives are to be evaluated for g = q,. This can be written con-
veniently in vector notation if we define the vector Lyq to be the vector with
components Lg_, L,,, and L,,. Then Eq. (26) becomes

.4=A*+///(Lq17+qu-V‘r))d:v dy dz + - -+ (27a)
R

=A,.+//nf/vq-d§+///([/q—V-qu)qdzdydz+--- . (27b)
C R

Here C is the bounding surface of the region R and dS is its outward normal. The
passage from Eq. (27a) to Eq. (27b) is by means of the vector identity V - (s%) =
v +-Vs+ sV .4 and the divergence theorem.

If 5(C) = 0 but 7 is otherwise arbitrary, we find the Euler-Lagrange equation

V.Lyg—L;=0 (28)
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for the exact solution q.. So if we confine our trial functions q to those that obey

the same boundary conditions as ¢., namely, ¢(C) = q.(C), then A differs from 4,
in second order.

The partial differential equation V2¢q = —1 furnishes an example of these con-
siderations. This partial differential equation occurs in many applications with
the boundary conditions g(C) = 0. Among those known to me are eddy current
generation in noncircular plates by ramped fields, torsion of noncircular bars, and
laminar flow of viscous fluids through noncircular pipes. According to Eq. (28), the
Lagrangian L is

L=3(Va)—q . (29)

The functional A, when evaluated for ¢ = q., the exact solution of the partial
differential equation and boundary conditions, is

1
A,=_§/‘/ (Vq.)dz dy dz=—%///q- dz dy dz . (30)
R R

In the three problems mentioned above, the value of A, is directly related to the
total eddy power dissipation in the plate, the torsional rigidity of the bar, and the
total flow in the pipe, quantities of incontestable physical interest.

6.8 By recasting these equations in the Hamiltonian form, we can obtain upper
and lower limits to the extreme value A.. If we set

-
-

p=1Lv, (31a)
and
H:ﬁ-Vq—L y (31b)
we find
dH =dj-Vg+5-d(Vq) — Ly, -d(Vq) - L, dg
=dp-Vq-V-pdq . (31c)
Thus the Hamilton equations become
Vq=Hj; , (31d)

-V-5=H, , (31e)

where Hj is the vector with components 0H/8p., 0H/0py, and H/8p,. In terms
of H, A becomes

AE/}[/[ﬁ-Vq—H(ﬁ,q)] dz dy dz . (32)

Suppose now we substitute into Eq. (32) trial functions p and g that differ
slightly from the true solutions p, and gq,:

P=p.+C , (33a)
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Then, to terms of second order in 5 and ¢,

AE/Z/[(if—+E)'(Vq+Vﬂ)*Hﬁ'5—Hqﬂ—%E'Hﬁ'f

- 1
- nHgg - ( - EHWT’Z] dz dy dz (34)

where all derivatives are to be evaluated for ¢ = q. and p = p.. Here Hyy is the
symmetric tensor whose components are Hp_p., Hp p,, etc. The first-order term
vanishes if p and q obey appropriate boundary conditions on C, as we now see:

// [5.-V7]+E-Vq,.—-Hg-E——an]d:cdydz
R

C R

+E-Vq.,—Hi;-E—an]d:: dy dz .

This transformation has been achieved using the vector identity V - (g.n) = nV .
P+ + Ps + V7 and the divergence theorem. Because p. and g. obey the Hamilton
equations [(31d) and (31e)] the terms in the last integral cancel in pairs (first and
fourth, second and third). So if either (i) 7(C) = 0 or (ii) p. - d§ = 0, i.e., f.
is tangential to C, the surface integral vanishes and so does the first-order term.
The first of these conditions means that the trial function ¢ must obey the same
boundary condition on C as does the exact solution. The second boundary condition

depends on the problem we are solving and may or may not be fulfilled. Thus, to
terms of second order,

1 - - -
A= v [[[08-90-C o ¢~ Hogr? —20Hs- Qe dy dz . (35)
R

If § and g obey the first Hamilton equation, Eq. (31d), then

V¢ +Vn=Hz(B. +C 1qu +1) = Hs + Hpp - C + Hzem . (36)
Since ¢. and p,. obey the Hamilton equations, the first terms on the left-hand side

and right-hand side of Eq. (36) cancel. Substituting from Eq. (36) for V7 into
Eq. (35), we find

1 - -
A=A,,+-2-‘// [ Hgp - — Hygn?ldz dy dz . (37)
R

If, on the other hand, p and q obey the second Hamilton equation, Eq. (31e), then

~V p =V (= Hy(p+C o +n)=Hy+ Hg - {+ Hyn . (38)
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Again, the first terms on the left-hand side and the right-hand side cancel because
p. and q. obey the Hamilton equations. We shall use Eq. (38) to obtain the term
2¢ - Vnin Eq. (35) by means of an integration by parts:

/’i/. E-Vnda:dydz=£/n5‘d-3—/lfﬂv'zdmdydz
:///(an,-;-E-}-qunz)dz dy dz . (39)
R

The surface integral vanishes if either (i) 7(C) = 0 or (i) { - dS = 0. Substituting
from Eq. (39) into Eq. (35), we find

A:A,+%///(qunz—g-H55-E)dzdydz . (40)
R

If the tensor Hjz is positive or negative definite and if Hyq has the opposite
sign to it, then Eqgs. (37) and (40) give an upper and a lower limit to A,. Another
condition under which this would be true would be if, say, Hy, were zero and Hzp
were either positive or negative definite. Acceptable boundary conditions for g and p
are these: (1) either ¢(C) = q,(C) or $,:dS = 0 on C for the trial functions obeying
the first Hamilton equation, Eq. (31d), Vg = Hj, and (2) either ¢(C) = ¢.(C) or
P, -dS = 7-dS = 0 on C for the trial functions obeying the second Hamilton
equation, Eq. (31e), -V -p = H,.

Let us now return to the example we pursued in Sect. 6.7, namely, V2¢ = —1,
g(C) = 0. The Lagrangean is given in Eq. (29). According to Egs. (31a) and (31b),
P =Vqgand H = p?/2+q. Thus the tensor Hpz has 1 for its diagonal elements and
zero for all others; it is therefore positive definite. Furthermore, H,y = 0. So we
expect the two estimates of A obtained from Eq. (32) by choosing trial values of
and g that satisfy one or the other of Hamilton’s equations to be upper and lower
bounds. Hamilton’s equations are

Vg=Hz = , (41a)

—V-ﬁ:H =1 . (41b)
If p and q obey Eq. (41a), then

A= /}[/ B(vq)2 - q] de dydz, q(C)=0 . (42)

Except for the boundary conditions ¢(C) = 0, ¢ is completely arbitrary. If 5 obeys
Eq. (41b), no restriction is placed on gq. If we choose ¢ = 0 so as to satisfy the
requirement that g(C) = ¢.(C), then Eq. (32) becomes

=—%///p2dzdydz, V-g=~1. (43)

1!

-
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The same result can be obtained by choosing ¢ = q.; since q. does not appear in
Eq. (43) we do not actually have to know it to imagine ¢ = g.. Combining Eqgs. (43),
(42), and (30), we get

/R//Pzda: dy dz>/h//(Vq,,)2dm dy dz>/R/ (2g - (Vg)llde dy dz , (44)

where V-5 = —1 and ¢(C) = 0 but p and g are otherwise arbitrary.

Suppose now that R is a thin square disk with corners (+1,+1). A convenient
trial function for g is a(1 —2z2)(1 —y?), where a is a constant yet to be determined. A
short computation shows that the right-hand side of Eq. (44) is (160a — 256a%)/45.
The maximum value of this expression occurs when a = 5/16 and equals 5/9, which
is the best lower limit attainable with the family of trial functions chosen for q. A
suitable trial function for p is the vector (—z/2,—y/2), whose divergence is —1. A
short computation then shows that the left-hand side of Eq. (44) is 2/3, which is an
upper limit. The geometric mean of these limits, 10/27 = 0.6086, has a percentage
difference from the exact value of no more than 9.5%. The exact value, 0.5623, can
be calculated from a series given by Sikora.

The inequalities of Eq. (44) can be made the basis of a number of formulas for
estimating [[f(Vq.)? dz dy dz for a variety of irregularly shaped two-dimensional

R

disks. [See, for example, my paper “Eddy Current Heating of Irregularly Shaped
Plates by Slow Ramped Fields,” p. 89 in Proceedings of the Eighth Symposium on
Engineering Problems of Fusion Research, San Francisco, California, November 13-
16, 1979, IEEE, New York, 1979, and the references contained therein. This paper
deals largely with means of choosing suitable trial functions and evaluating the
muliiple integrals on the left-hand and right-hand sitles of Eq. (44).]

6.9 The foregoing section was devoted to an important but linear problem. This
section is devoted to the nonlinear problem of Sect. 4.5, namely, steady heat flow
in superfluid helium [see Eqs. (4.27) and (4.28)]. A Lagrangean for Eq. (4.28) is

L= %w:rr‘/3 : (45)

(We assume here, as before, that K is independent of temperature. The factor 3/4
has been inserted for convenience.) According to Eq. (31),

7= (VT)'/® =VT/|VT*/? (46)

and
H=-p* . (47)

The Hamiltonian equations are then

VT =7 (= %) (48a)
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Vp=0 . (48b)
The functional A is given by

A:/R//(ﬁ.v:r—’;)dzdydz . (49)

In order to see if the method of complementary variational principles is of any
use in this problem, we must identify the meaning of A., the exact value of A. Now

A, = ///(i)’.-VT.-—pe/4) de dy dz
R

_3

=3 /// Ps - VT. de dy dz [remember 7. and T, obey both Eqs. (48a) and (48b)]
R

=%/!/v-(ﬁ.r_)dz¢ydz (V-5 =0)

=%f/T.j:’.-d§ : (50)
C

Suppose we now take R to be a duct with two plane paralle! isothermal surfaces
and two irregular adiabatic surfaces (see Fig. 2). From Eq. (46) or Eq. (48a) we see
that 5, is parallel to the heat flux vector and is therefore parallel to the adiabatic
surfaces. Therefore, on the adiabatic surfaces p, - dS = 0. Since T, = 0 on the
isothermal surface BD (T is the temperature rise),

3 . 3AT
A= Z(AT)//(VT..)‘“ ds5=2220 (51)
AC

where Q is the total heat flow into the face AC of the duct [N.B.: (VT,)'/? and d§

are oppositely directed on AC.] So our variational principles will give us accurate

bounds on the total heat flow through the duct, a quite useful quantity to have.
First, let us choose trial functions " and p obeying Eq. (48a). Then Eq. (49)

becomes 3
= Z///]VT[“/’ dr dy dz , (52)
R

where the trial function T' must obey the boundary conditions T = AT at z = 0 and
T =0at ¢ = L. It is easy to see that Eq. (52) will give the upper limit to A.: since
T is arbitrary except on the isothermal surfaces, we can add to it a high-frequency
flutter that can make VT as large as we please.
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Fig. 2. The He-1l-filled duct with isothermal surfaces z = 0 and z = L and
adiabatic surfaces y = Yj(¢) and y = Ya(=).

Second, let us choose trial functions 7 and T obeying Eq. {48b). Since V.5 =0,
the first term in Eq. (49) can be converted to a surface integral, and A becomes

A=//T.5-d.§—7i///p4dzdydz (53)
c R

if we choose T' = T,. So finally we have

///lVT|4/3da:dydz>QAT //T." dS——///p de dy dz . (54)

8.10 In this section and the next, we shall undertake the evaluation of the left-
and right-hand sides of Eq. (54). Let us begin with the left-hand side, which is the
easier of the two. Suppose we consider a unit width of duct in the z-direction and

take the isothermal surfaces to be planes parallel to the end planes. This means we
take T' = T'(z). Then

/ / VT3 da dy dz = /0 ’ (j—f)m (Y; - Y3) dz . (55)
R
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We choose the function T(z) so as to minimize the right-hand side of Eq. (55). A
straightforward variational calculation will give us the minimizing function; call it
To(z). If we set T(z) = Ty(z) + n(z), then the first-order term in the expansion of
Eq. (55) in powers of 7 is

4 (* dTo \'/® dn

If Ty is to minimize the right-hand side of Eq. (55), Eq. (56) must vanish for all 7.

If we integrate by parts, £q. (56) becomes
4 dT,\'* (L 4 [t d dTo \'/°
s-m () o -5 [ mlw-m () e on

Now T, and perforce Ty, must obey the boundary conditions T'(0) = AT, T(L) = 0,
so 7(0) = n(L) = 0. Therefore, the integrated term vanishes. From the second term
we see that Ty must obey the Euler-Lagrange differential equation

(Y, - Yp) (‘%ﬁ)l/s} =0 . (58)

i \'* B
(d—m> “ Y -1, (592)

where B is a constant of integration determined by

4
dz

Thus

L
dz
AT = B:’/ —_—— . 59b
0 (Yl - Y2)3 ( )
Substituting Eqs. (59a) and (59b) into Eq. (55), we find for Eq. (55) the result
L -1/3
dz
AT)*/? / s , 60
( ) [ 0 (Y1 _ Y2)3 ( a)
so that from Eq. (54) we have
K(AT)'/3

Q=< (60b)

[ dz /(Y - Ya)3)1/3

There is a “simple” derivation of Eq. (60b) that proceeds from the assumption
that at every abscissa the temperature gradient is given by

(9/3 - KR =T (61)
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But this simple derivation does not show that the value of Q in Eq. (61) is an upper
limit of variational accuracy, two things that are worth knowing.

6.11 Now we turn to the evaluation of the right-hand side of Eq. (54). Since p
must be a divergenceless vector, let us set

oy oy

Pz = 6y y Py = —6_1! ’ (62)

In order to evaluate the first integral (the surface integral) we must know T, on C.
We only know it on the bounding isotherms, not on the lateral adiabats, i.e., not
ony =Y, and y = Y,. But if we take y = Y; and y = Y; to be level surfaces of 1,
then on them 7 - dS will be zero. Then

%l/T*ﬁ-dS= -%(AT)/Y‘ (%) dy = —%(AT)(% —~¥2) . (63)

Y,

The minus sign occurs in the last two terms because the outward normal to R on
the end surface AC points in the negative z-direction; thus dS. = —dy. So

AT 4 1
e 2 =387 — )~ 3 [[[(Vw) de ay iz (64)
K 3 3
R
Now in order that our trial functions may include the exact solution, we take
Y . . Q
¢1—¢z=—/ ﬁ.-dS.:—/ (VL) .d8, =2 . (65)
(;’g_) AC K

Combining Eqs. (64) and (65), we get

%é(z < // (Vy)* dx dy dz . (66)
R

In spite of the direction of the inequality in Eq. (66), we shall ultimately get a lower
limit to @. This is because ¥ also involves @.
We choose as level surfaces™ for the trial function 1 the surfaces

y=AY(z)+(1-A)Ya(z), 0<ALT . (67)

*This procedure is called by Pélya and Szego the method of assigned level surfaces.
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The most convenient way to evaluate the integral in Eq. (66) is to introduce the new
coordinates A, z. Since the new coordinates are not Cartesian, we employ tensor
formalism for the calculations:

(dz)? + (dy)? = (dz)? + {(¥1 - Ya)dA + \Y; + (1 = N)Y;)dz}?
gzz =1+ [AYI + (1 - ’\)}',2]2 y
gex = gae = [V + (1-NY:](Y: - Ya) ,
o= (Y1 -Y,)?
9= det(g.-j) = (Yl - Yz)2 ’

g =z 1 [AY; + (1 = \)Yy)?
g (Y - Y7)?

If % is a function only of A,

wor= [ (%)

4 [(vuytds dy = 4 (V9)*VG dr de

Since

we finally have

//(V¢)4dz dy = /; < ) / g 1LF [/\Yl + (lY:) )Y2]*}? . (68)
R
Equation (68) has the form

/0 da (‘;‘i) G\ | (69)

where G()) is .];)L ++-dz. We shall choose 3 so as the maximize Eq. (69). A short
variational calculation shows that ¢ must obey the Euler-Lagrange differential equa-

- d‘f\ [G()) (j‘ﬁ) ] ~0 . (70)

The solution that obeys the boundary conditions ¥, = —Q/K, 92 = 0 [see Eq. (65)]

is

Q[ G
Y=- K——_j ey (71)
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Substituting Eq. (71) into Eq. (69), we find that Eq. (66) takes the form
-3

QAT ( ) (/ G- l/“d,\) (72a)

or

Q> K(AT)““‘/I GY3dA (72b)

where
_ [PADY (- 0BPP .
G(A)_/o o . (72¢)

The function G is simple to evaluate when the adiabatic surfaces are straight
lines, i.e., when R is a trapezoid. By way of example, consider the trapezoid shown
in Fig. 3, for which Y = —a and Y, = 0. In this case, Eq. (72b) becomes

K(AT)Y/3 . 1 s a2
i de /(1) - Ya)?]1/3 /0 (1+4%7)"" dA (73)

Q2

ORNL-DWG 87C-2348 FED
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Fig. 3. A trapezoidal duct. The hatched surfaces are adiabatic.

Comparing Eq. (73) with Eq. (60b), we see that the A-integral in Eq. (73) gives the
ratio of the upper and lower variational estimates of (). The A-integral is easy to
evaluate either by series or with Simpson’s rule. A few values are given in Table 2.
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Table 2. Values of the integral fol(l + A2q%)~2/3 d)

a fol(l + A2a?)72/3 dx
0.0 1.000000
0.1 0.997789
0.3 0.980852
0.5 0.950452
0.7 0.911607
1.0 0.847138
1.5 0.743754
2.0 0.656516

These numerical values show that, even for substantial slopes, the two bracketing
estimates are quite close together.

6.12 The variational method is not without use even when the desired quantity is
not the one represented by the functional A. Consider, for example, the problem
dealt with at the end of Sect. 4.5, namely: V.(VT)'/? = —1; T = 0 on the perimeter
P of a square § of side 2; find T at the center of the square. The Lagrangean for
this problem is

L= g|VT|“/“’ -T , (74)

and the extreme value of the functional A is

A, = // (%vm‘*/’ - T,) dz dy (75a)
S5

- Js// {Zv (T(VT)H3) - iT} dz dy (75b)
= Z/PT*(VT*)‘/” -d“s-%/f T, de dy (75¢)
S

= —%// T, dz dy (75d)
s

since T, = 0 on the perimeter P. {It also follows that A, = ——% [[\VT.|**dz dy

S
[equate Eqs. (75a) and (75d)].} So if we wanted the average value of T in S, the
variational method could give us a second-order estimate of it. But we are interested
in T at the center of the square, for which no such second-order estimate is possible.
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The variational method can help us to find the “best” trial function of a chosen
family. The word “best” is in quotes because the trial function is best only in the
scnse of making A as close to its extreme value A, as possible, but in actual fact
this is achieved by making the trial function resemble the exact solution as much
as possible. In the problem being considered we can again make use of Pdlya and
Szego’s method of assigned level surfaces. Let us choose the center of the square as
the origin of polar coordinates (r,8) in terms of which the perimeter of the square is
given by » = R(6). Let us choose as the level surfaces of T' the surfaces r = AR(#),
0 < A < 1, that are geometrically similar to P. Since we are taking T' = T'(A) only,
it is convenient to introduce the nonorthogonal coordinates (A, 8) in place of the
coordinates (r,8). Proceeding as before, we evaluate A:

dr® + r2d§? = (R d) + AR d6)* + A2 R? d6?
g = R? g = det(g;;) = AR
- R? + R?
= aps = A A _Fee Tt T
gx6 = gox RR . R
, dT\> RZ+ R? [dT\’
— Az 2 2 VT 2 — DO N Mt N al
00 (R* + R*) (VT)Y =g (dA) i (d,\>
Thus
3 [ R? + R? dT\*/?
Z( ;4 ) (ﬁ) ~T| AR? 4 df
2/3
3 R2+R"’ dr\*/?
=1 2 dA 2 el - R?
I [4 ) () - e
T
:/ [g d— —2A,T] : (76)
where ,
. 2/3
27 R2 R?
a=/ ( ; ) d (77a)
0
and
1 2
A, = 5/ R? df (77b)
0

is the area of the square S.

We choose T'()) to minimize Eq. (76). A short variational calculation shows

that T must satisfy the Euler-Lagrange equation,
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1/3
add)‘ [A (‘ﬁ) ] + 24,2 =0 . (78)

The solution (78) that is regular at A = 0 and obeys the boundary condition T(1) =
Oat A=1is

4,07
(-——' (1-2%) . (79)

From Eq. (79) it follows that

T(0) = ; (i)a (80a)

a

(T):-;—’//wady=é<fla—')3 : (80b)
S

Equation (80b) is accurate to second order; Eq. (80a) is not. The results [Eqs. (80a)
and (80b)] apply to any geometric figure. For the square of side 2 an easy calculation
shows that a = 8 and 4, = 4. Thus, we estimate that T(0) = 1/32 and (T) = 1/48.

and

6.13 When the quantity we are interested in is represented by the functional A
and the Hamiltonian has certain properties, we can get rigorous upper and lower
bounds for A,. We are dealing with exact mathematics and we know by how much
at most our estimates can be wrong. But when the quantity we are interested in
is not the one represented by the functional A, as in the previous section, we can
rigorously say little that is useful about our estimate of it. So although we may
feel that the estimate T'(0) = 1/32 is reasonably accurate, there is nothing in the
analysis that led to it that can help us quantify this feeling.

Nevertheless, the approach used in Sect. 6.12 and extensions of it mentioned
below can be used to get estimates of various quantities that, though they might
not satisfy a mathematician, might well satisfy an engineer. I call these methods
curve-fitting methods and their common features are these: a family of curves of
some generality is chosen to represent the sclution of the differential equation, and
then the best curve is picked out according to some criterion of hest fit. In Sect. 6.12
the criterion of best fit was the variational criterion—the best curve is the one that
makes the functional A an extremum. But other criteria are possible. Some deal
with the residual, the amount by which the sum of all the terms in the differential
equation misses being zero. In the method of collocation, the parameters of the best
member of a multiparameter family of trial functions are determined by requiring
the residual to vanish at several discrete points. In the method of least squared
residual, the parameters are chosen to minimize the integrated squared residual,
possibly multiplied by some weighting function. In the Galerkin method, used
mainly for linear problems, the trial solution is written as a finite sum of orthogonal
functions and the expansion coefficients are chosen to make the residual orthogonal
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to all those functions used in the sum (thus we solve the differential equation in the
subspace spanned by the trial functions). A method that I personally like is the
integral method, in which integral relations constraining the solution are obtained
by multiplying the differential equation by various functions and integrating it over
the interval of interest. The success of these methods depends more on the choice of
trial family than on the criterion of best fit, and generally the latter can be chosen
to minimize the labor of calculation.

As an example of these ideas, let us consider the differential equation (3.26) and
the boundary conditions (3.27a) and (3.27b):

3j+ayy -y’ =0 , (3.26)
y(O) = -1 y y(w) =0 . (327)

This example is especially interesting because it cannot be written in the Lagrangean
form. Now, we know from the analysis of Sect. 3.6 that for large z, y ~ 6/z%. A
simple, one-parameter trial family that has this behavior and for which §(0) = -1
is

y =(a+ad’z +2?/6)7 . (81)
If we insert Eq. (81) into Eq. (3.26), we find the residual

6a! + a’z — 2a
(a + a?z + 22/6)3

(82)

If we require the residual to vanish at £ = 0, we find a = 371/3 = 0.6934. On the
other hand, if we require it to vanish when z = 1, we find a = 0.6136. If we require
a to minimize the integrated squared residual (this integral was done numerically),
we find a = 0.6738.

The integral method can be applied to Eq. (3.26) by integrating it over the

entire interval from zero to infinity. After integrating the middle term by parts we
find

/:o y? dz +2§(0) =0 . (83)

Substituting Eq. (81) into Eq. (82) and carrying out the indicated integration, we
find the following equation for a:

2 arccosy/3a%/2 a
3(2a/3 —a%)’/?2  (2¢/3 — a%)

2=0 . (84)

Equation (84) can be solved without too much effort by the Newton-Raphson
method and yields a = 0.6468.

The result obtained in Sect. 3.6 by numerical integration of the differential
equation was a = (1.511)"! = 0.6618. The results obtained above are all within 8%
of the correct value. Had we not done the numerical integration of the differential
equation, these results would suggest to us that the correct value is likely to lie
between 0.6 and 0.7. But it should constantly be borne in mind that these results
have no rigorous significance. Regarding nonvariational curve-fitting methods, all 1
can say is let the user beware.
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Chapter 7
STABILITY OF NUMERICAL METHODS

“There is nothing stable in the world; uproar’s your only music.”
—John Keats
Letters

7.1 We have already seen in earlier chapters of this book how a brute-force nu-
merical approach to certain problems involving ordinary differential equations runs
into difficulties because of numerical instability (see e.g., Sects. 2.6, 3.6, and 4.3).
By instability, I mean runaway departure of the numerically calculated values from
the correct solution. The cause of instability in all of these cases was the divergence
of neighboring integral curves from one another and from the one we were trying to
calculate (see Fig. 4.1). When we tried to advance in the direction of the divergence,
the unavoidable small errors of truncation in the numerical procedure threw us off
the curve we were trying to calculate onto a near neighbor. Because the integral
curves diverge, the numerical solution departed by ever greater amounts from the
solution we were trying to calculate, and the numerical solution eventually became
worthless. Figures 2.2 and 3.2 show this clearly. A similar thing occurs in the
development of “chaos,” about which much has been written lately; there, as here,
the problem is caused by a very sensitive dependence of the asymptotic behavior
on the initial conditions.

When the cause of instability is seen clearly, one realizes that there is no way of
finessing a solution marching in the direction of divergence. But, as we have already
seen in the examples cited above, numerical integration in the opposite direction is
quite successful. All of those examples were two-point boundary-value problemson a
semi-infinite interval. In all of them, an asymptotic limit was used to find consistent
values of y and y for some large value of = that then served as starting values for a
stable integration in the backward z-direction. In the examples of Sects. 2.6 and 3.6,
we made explicit use of the affine group invariance of the differential equation, but
in the example of Sect. 4.3, we deliberately considered a differential equation (4.11a)
not invariant to an affine group. There, we postulated the asymptotic series (4.12a)
and determined the coefficients A4, B, C, etc., by substituting into the differential
equation and equating the coefficients of individual powers of = to zero.

In general, the last approach will prove satisfactory, but it must be handled with
some delicacy, as the following illustration based on Eq. (3.26) shows. Suppose we
want to handle the two-point boundary-value problem of Eqgs. (3.26), (3.27a), and
(3.27b) without invoking invariance to an affine group. A little numerical trial and
error convinces us that forward integration is unstable (try it!). So we look for an
asymptotic series with which to start a backward integration. Substitution of the
trial form y ~ A/z™ into Eq. (3.26) gives

2 2
3m(m+1)4A m4®> A ~0, (1)

zm+2 p2m zZm
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which can be satisfied if 2m = m + 2 and A = 3m, i.e.,if m = 2 and 4 = 6. Thus
we find the special solution 6/z2. It is tempting at this point to again postulate the
asymptotic form, Eq. (4.12a), but a quick calculation shows that all the coefficients
of the higher powers, A, B, C, etc., must vanish. This leaves us in a quandary.

The reason for our difficulty is that the form in Eq. (4.12a) assumes too much
about the solution to Eq. (3.26). If we assume less at the outset, we fare better.
Suppose we assume

6 A B
S AL B (2)
where 2 < m < n. Substitution of Eq. (2) into Eq. (3.26) gives

(3m? — 3m — 24)Az "2 4 (3n? — 3n — 24)Bz~("*D) _ (m 4+ 1)A2z 2™
—(n+m+ Z)ABm_("‘+") —m+1)Bz™" +...=0 .
(3)

Since we do not want A to vanish, we must choose m to be the positive root of
3m? —3m —24 = 0, namely, m = (v/33+1)/2 = 3.372. Sincen > m, 3n* —3n—24 #
0; thus B must vanish, unless n 4+ 2 = 2m, in which case

(3n? —3n - 24)B = (m + 1)4? . (4)

If we add additional terms to Eq. (2) at the start, we can continue in this way, but
the calculations are tedious. What we have is sufficient, namely,

4+, (5a)

m= (Va3 +1)/2 , (5b)
_ V3+3

e L
6(27 — 3v/33) (52)
We expect that different values of A will correspond to different slopes at the
origin. Equation (3.27) directs our attention to the curve for which %(0) = —1. To
find the corresponding value of A we use trial and error, improving our guesses with
the Newton-Raphson method. If we define 1 4 3(0) = f(A), then

hf(4)
A+ h) - F(A) ()

is the Newton-Raphson iterative procedure for finding the root of f(A) = 0. Table 1
shows the actual work. The first four trials were guesswork to locate the root
approximately. Thereafter, the Newton-Raphson method was used to accelerate
convergence. Two initial values of z were used to demonstrate that the final result
did not depend on its particular value (as long as it was large enough). Each line
represents a numerical integration, carried out by the fourth-order Runge-Kutta
method on a time-share VAX 8600 in a couple of seconds. The final result, y(0) =

A=A -
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1.511, is the same as that obtained in Sect. 3.6 at the cost of a single numerical
integration.

Table 1. Trial and error solution for A using the Newton-Raphson method

. A £(4) h f(A+h) (o)
10.0 -1.0 -1490

-0.10 —-228952

-10.0 —-8.850

-30.0 -0.021214 -0.01 —0.020585

-30.3373 —~0.03383800 -0.0001 —0.03377737

—30.343630 -0.0%149 1.511171
20.0 -30.0 0.103469 -1.0 0.164363

—-28.30 —-0.016270 -0.01 —0.015498

—28.5108 —0.0%176209 —0.0001 —0.0%168664

—-28.513135 —0.07626 1.511176

7.2 Instability of another kind sometimes occurs when we try to solve partial
differential equations. Consider, for a moment, the pulsed-source problem in an
infinite medium for the ordinary diffusion equation: C; = C,;; C(+o0,t) = 0;
C(z,0) = 0; f_‘:o Cdz =1, t > 0. This problem is useful for discussion because it
has the known solution C(z,t) = exp(—22/4t)/(4mt)*/2. To solve it numerically we
might use the finite-difference representation

C(z,t +k)—C(z,t) C(z—h,t)—2C(z,t) +C(2 + h,t)
k N h2

(7a)
or
Cn.,m.+1 - Cn,m _ Cn—l,m - 2Cn,m + Cn+1,m
k - h? ’
where C,, , is an abbreviation for C(z = nh,t = mk). Equation (7b) can easily be
solved for Cn m41:

(7b)

k
C"n,m+1 = ULlam + ‘_2(Cn—1,m. - ZCn.m + Cn+1,m) . (7c)

h

It is easy to see that Eq. (7c) allows computation of the C values at the next
time step, Cn,m+1, from the C values at the present time step Cn m. Shown in
Figs. la—1d are the results of such a computation. Figure la shows the initial
condition calculated from the known analytic solution for ¢ = 0.25. The space step
h has been taken to be 0.01, the time step k& to be 10~*. Figures 1b, 1c, and 1d
show the calculated profiles of C after 33, 35, and 37 time steps, respectively. As
the reader can see, an oscillatory disturbance appears and grows rapidly, eventually
destroying any information we hope to gain from the numerical integration.

Armed with the results of this numerical experiment, we might now guess that
the difference equation (7c) has a solution of the form

Caom=(—)"€m . (8)
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(1¢) l |¢ II l
Fig. 1. Numerical integration of the ordinary diffuson equation C; = C,,.

(a) Initial condition at t = 0.25; (b) after 33 steps with A = 0.01 and k = 107%;
(c) after 35 steps; (d) after 37 steps. The z-axis contains 1000 space points.

911
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Here the factor (—)" provides the rapid fluctuation from point to point that is
evident in the numerical calculations. Substituting Eq. (8) into Eq. (7c), we find at

once that Ak
emii=em(1-52) - ©)

From Eq. (9) we see that if |1 — (4k/h?)| > 1, the e, will diverge exponentially,
whereas if |1 — (4k/h?)| < 1, they will tend toward zero. Thus, if

4k
1>1"ﬁ>_1' (10a)
the e, tend to zero, whereas otherwise they diverge exponentially. Now Eq. (10a)

is equivalent to
2

h
?>k>0. (10b)

The integration that led to Figs. 1a-1d had k > h?/2, so it is now understandable
that it became unstable. Reducing the time step by a factor of 1/4/2 or more cures
the instability, i.e., prevents the appearance of unbounded fluctuations. Bounded
fluctuations still occur. They originate from the inadequacy of the finite-difference
scheme accurately to represent the solution of the partial differential equation (trun-
cation error) and from the finite-decimal representation of numbers in the computer.
If the time step is chosen to satisfy Eq. (10b), and if the errors just mentioned are
initially small, they will remain small and not trouble us.

The restriction of the time step expressed by Eq. (10b) is inconvenient because
it demands small time steps, and small time steps mean long computing times. This
restriction was quite serious in the distant past, when the calculations were done by
hand, or even in the recent past, when computers were slow. But with today’s fast
mainframe computers, the restriction of the time step is not so important. There
are finite-difference methods, the so-called implicit methods, that are stable for all
values of k/h?. However, they involve the solution of large (but sparse) matrices,
which complicates their programming and slows down their running. They are
nonetheless worth a moment’s consideration.

Suppose on the right-hand side of Eq. (7) we estimate the second space derivative
C.: using the values of C at time ¢ + k. Then Eq. (7c) would become

k
C-n.,rn+l = Cn.,m + ":E(Cn—l.m+1 - 2C'ﬂ,m+1 + C'n.+1.m+1) . (11)

If we now substitute the trial solution, Eq. (8), into Eq. (11), we find

emi1 = e,,,/ (1 +%§) . (12)

Thus, no matter what the value of k/h?, the e,, never become unbounded. The
equations (11) are a coupled set of linear equations for the Cp, m+1 which require
some small labor to solve. They are linear because the underlying partial differential
equation is linear, When the underlying partial differential equation is nonlinear,
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the labor of solving these equations can be immense and the implicit method may
lose its utility,

7.3 The stability condition, Eq. (10b), between k and h applies for the ordinary
diffusion equation, and other conditions may apply for other partial differential
equations. Consider, for example, the wave equation C,, = Cy. A simple finite-
difference approximation to it is

Cn,m.+l - 2Cn,m + C’n,m—l Cn+l,m - an,m + Cn—l,m

2 = 2 (13a)
or
k2

Cn,m+1 = 2Cn,m - Cn,m—l + ﬁ(cn+l,m - 2Cn.m + Cn—l.fﬂ) . (l3b)

If we substitute Eq. (8) into Eq. (13b), we get

4k?
Emy1 = (2 - F) Em — €m -1 (14a)
2

= Aem —em—; , where A= (2 - %) . (14b)

Equation (14) is a linear difference equation of the second order and has therefore
two linearly independent solutions of the form e,, = Be*™, where k is a root of the
equation

ek=A-e* or (F)?-Aef+1=0 . (15)

Now A cannot exceed 2. If 2 > A > -2, then e*¥ = (A £ iv4 — A2)/2, the
modulus of which is unity. Thus k is pure imaginary and equals i6, where 8 =
cos~!(A/2). Then

em = Re(B,e'™? 4 B_e™'™f) (16)

is the general solution of Eq. (14). The modulus of e,, never becomes different in
order of magnitude from that of ey. The e,, do not become unbounded and we have
stability.

If A< -2, e¥ = (A++vA? —4)/2. The root with the minus sign has a modulus
larger than 1; the root with the plus sign has a modulus smaller than 1. For large
m, the larger root dominates, so that eventually

€m+1 ~A—VA2—4

€m 2

A< =2 . (17

The right-hand side of Eq. (17) is negative and has a modulus > 1, so the e,, fluc-
tuate in sign and grow in magnitude without bound. This means there is instability
for A < -2.

When 2 > A > -2,0 < k%/h? < 1, so the condition for stability for the wave
equation is k < h, which allows much more generous time steps than the ordinary
diffusion equation.
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The stability criteria derived in this section and the last are necessary criteria.
They are also sufficient, but this is more difficult to prove. They refer, of course,
to particular finite-difference representations of the underlying partial differential
equation.

7.4 The partial differential equation
Ce = (C:/J)z (18)

arises in the study of transient heat transfer in superfluid helium (He-II); see
Sect. 4.5. A simple finite-difference representation of Eq. (18) is

Cn m - Cn..m 1
’ +lk - h4/3 [(Cn+l.m - Cﬂ.m)l/a - (Cﬂ,m - Cﬂ—-hﬂt)l/a] (19a)

or

k
Cﬂ.rn+l = Cn,m + h_U?[(Cn+1,m - Cn,m)l/a - (Cn,m - Cn.—l,m)l/s] . (19b)
If we substitute Eq. (8) into Eq. (19b) we get

AL
Em4+1 = €y — h4/3 e:r{a . (20)

A little numerical experimentation with Eq. (19) shows that it has as a solution a
two-cycle, which turns out to be given by

m \/Eksﬂ
h2

em = x(~) (21)

for all values of k/h*/3. The reader can verify Eq. (21) by substitution into Eq. (20).
From this we might expect that solutions of Eq. (18) will be perturbed by high-
frequency fluctuations of the constant amplitude given by Eq. (21).

To test this I performed calculations of the infinite-medium, pulsed-source prob-
lem for the partial differential equation (18). I chose this problem because it has
the known exact solution

C =t"3(z) , (22a)
z =2/t | (22b)
_ 4/3V3
= 1 )7
)
33w

(This similarity solution was obtained using the techniques of Chap. 3. The details
can be found in the author’s book mentioned in Sect. 3.8.) Shown in Fig. 2 is the

(22¢)

= 2.854535... . (22d)



120

ORNL-DWG 87-2357 FED

(2a)

(2b)

Fig. 2. Numerical integration of Eq. (18). (a) Initial condition at { = 0.25;
(b) after 1000 steps with £ = 2.5 x 107%. Here k = 0.01 and the space axis has 1000
points stretching from z = —5 to z = +5.
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initial condition (22) for ¢ = 0.25 and a numerically calculated value for ¢ = 0.50
(determined by 1000 time steps with k = 2.5 x 107%; here h = 0.01 and the space
axis contains 1000 points stretching from z = —5 to z = +5). The amplitude of
the oscillations agrees perfectly with the value £0.05590 given in Eq. (21). But the
curve itself does not agree at all with what we expect from Eq. (22). For example,
C(0,t) at t = 0.5 should be 0.267210, which is less than half the value given by
curve (b).

It appears, then, vhat the oscillations destroy the utility of the numerical inte-
gration. It is not hard to see why. If we add a fluctuating quantity to the C’s in
the differences on the right-hand side of Eq. (19), we can seriously distort the value
of the differences, especially when the fluctuating quantity is large compared with
the true value of the difference. This reasoning implies, on the other hand, that if
we make en, small enough, by making the time step small enough, the numerical
scheme should give the right answer.

To test this last supposition, I performed a second set of calculations going from
t = 0.25 to t = 0.50 but this time with A = 0.025, £ = 2.5 x 10~%, and 10* time
steps (now z stretches from —12.5 to +12.5). Now the amplitude of fluctuations is
only £2.828 x 107, 200 times smaller than in the first case. The results are shown
in Fig. 3. Included in Fig. 3 is the exact result for ¢ = 0.50 calculated from Eq. (22).
The agreement between the numerically calculated result (b) and the exact result
(c) is very good, but some small discrepancies persist, e.g., the flattening in the
wings of the numerically calculated curve.

In practical computations, in which no exact solution is available for comparison,
one should calculate over and over again with smaller and smaller time steps until
good convergence is achieved.

Finally, a stable, implicit finite difference scheme for integrating Eq. (18) can

be based on its representation in the form C,, = 3¢*C,, ¢ = C,lla, namely

Cniimer — 207;;?“ +Cntimin _ 3¢2 .. C“'m+1k_ Cnym , (23a)

Cn+l m Cn—lm 173
= ! ! . 23b
i = (02 G (235)
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{3a)

(3b)

(3c) ‘

Fig. 3. Numerical integration of Eq. (18). (a) Initial condition at { = 0.25.
(b) After 10* time steps with k = 2.5 x 10~°. Here h = 0.025 and the space axis has
1000 points stretching from z = —12.5 to z = +12.5. (c) Exact result for ¢ = 0.5
calculated from Eq. (22).
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