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A B S T R A C T 

This report is the text of a graduate course on nonlinear differential equations 
given by the author at the University of Wisconsin-Madison during the summer of 
1987. The topics covered are 

• direction fields of first-order differential equations, 
• the Lie (group) theory of ordinary differential equations, 
• similarity solutions of second-order partial differentia] equations, 
• maximum principles and differential inequalities, 
• monotone operators and iteration, 
• complementary variational principles, and 
• stability of numerical methods. 

The report should be of interest to graduate students, faculty, and practicing scien-
tists and engineers. No prior knowledge is required beyond a good working knowl-
edge of the calculus. The emphasis is on practical results. Most of the illustrative 
examples are taken from the fields of nonlinear diffusion, heat and mass transfer, 
applied superconductivity, and helium cryogenics. 
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P R E F A C E 

In his book How to Solvr It, George Polya gives a short caricature of the tra-
ditional mathematics professor. According to Polya, when faced with a differential 
equation, the traditional professor says, "In order to solve this differential equation 
yon look at it till a solution occurs to you." This advice is comical, as Polya intends 
it to be, because it is really no advice at all: it gives no clue as to how to proceed; 
it applies to everything ana solves nothing. In fact, it fits nicely a second dictum of 
the traditional professor: "This principle is so perfectly general that no particular 
application of it is possible." 

Unfortunately, authors with serious intentions sometimes speak with words close 
to those of Polya's traditional professor. Consider, for example, the following pas-
sage: "It is thus apparent that the first objective in the study of a nonlinear equation 
is to ascertain whether or not a solution can be obtained either explicitly or implic-
itly in terms of classical functions. The procedure in such a study is to discover a 
transformation which will reduce the equation to some type that is known to have a 
solution of the desired kind. Failing this, one seeks a transformation which will re-
duce the equation to one that is asymptotic to a form solvable by known functions." 
The author of this says nothing about how to find such transformations, so that 
this advice is as insubstantial as that of the traditional professor. His illustrative 
example only deepens the mystery: 

"[An] example [of the second procedure] is furnished by the following nonlinear 
equation: 

upon which we make the following transformation of both the dependent and the 
independent variables: 

2 / 3 

, y = y/x w (9) • GO" 
Equation (8) is then reduced to the following: 

dw 1 w 
^ + - = . • » + ! ( 1 0 ) 

which, as t increases, is asymptotic to the equation: 

dw , 
^ W + l ( 1 1 ) 

"The solution of Eq. (11) is the function w = tan(< — <0) a n d we can infer, 
therefore, that w, the solution of Eq. (10), is asymptotic to this function." Polya 
says something in the preface of his book that I am sure expresses the reader's 
reaction at this juncture: "Yes, the solution seems to work, it appears to be correct; 
but how is it possible to invent such a solution?" On this point, our author is silent. 
He makes his magic passes and leaves us convinced but mystified. 

Polya again: "A derivation correctly presented in the book or on the blackboard 
may be inaccessible and uninstructive, if the purpose of the successive steps is 
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incomprehensible, if the reader or listener cannot understand how it was humanly 
possible to find such an argument, if he is not able to derive any suggestion from the 
presentation as to how he could find such an argument by himself." Accordingly, 
the first aim of this book is so to present the material that the reader will always 
frel that the subject is unfolding naturally along a path he himself might easily have 
followed. 

Another way the traditional mathematics professor hampers understanding is 
by leaving vital aspects of the problem to be finished by the reader. Our author does 
this when he says he regards "a linear differential equation as solved, if its solution 
can be reduced to the quadrature of a known function, even though the quadrature 
cannot be expressed simply in terms of the classical algebraic or transcendental 
functions, [and] regard^?] a nonlinear equation as solved, if it can be reduced to the 
solution of a linear equation, even though the solution is not explicitly reducible to 
the classical functions." In this book, on the contrary, a problem is not considered 
solved until the nature of the solution can be seen, in Polya's often-repeated words, 
"at a glance." Presenting the material in such a way as to keep it always clear at a 
glance is by no means easy, but it is a burden I cheerfully accept. 

This brings us to the matter of rigor. Here, too, I take guidance from Polya, 
who recommends what he calls incomplete proofs "as a sort of mnemotechnic de-
vice . . . when the aim is tolerable coherence of presentation and not strictly logical 
consistency." After all, he says, "the facts must be presented in some connection 
and in some sort of system, since isolated items are laboriously acquired and eas-
ily forgotten. Any sort of connection that unites the facts simply, naturally, and 
durably is welcome here . . . proofs may be useful, especially simple proofs." So I 
place clarity before rigor and strive for simplicity and directness of proof. 

What about the choice of subject matter? Here the guiding principle has been 
breadth of application. Accordingly, in the first chapter on first-order ordinary 
differential equations, I have stressed analysis of the direction field because it can be 
done for any first-order equation. Strangely, one rarely sees this subject dealt with 
in courses on differential equations, yet in the truest sense it deals directly with the 
soul of the differential equation (if one may be permitted to speak thus). Perhaps 
the incapacity of the present generation of technologists to deal with differential 
equations stems from neglect during their training of such fundamental matters 
as the direction field in favor of more advanced but less usrful knowledge. There 
is a tendency in teaching these days, which I shall strive to avoid, to despise the 
elementary. 

In the middle chapters of this book, I concentrate on the Lie theory of differen-
tial equations. As I have said in another book, I believe that because of its broad 
applicability, this theory should become a practical workhorse for handling non-
linear differential equations. Strangely, too, one rarely sees this subject in courses 
on differential equations, although it was invented specifically for solving them a 
century ago by the Norwegian genius Sophus Lie. I never heard any mention of 
it during my own education and only learned of it later when, by pure chance, I 
came across Cohen's 1911 book while browsing in Oak Ridge National Laboratory's 
library. The ideas I found in that old book electrified me and convinced me that 
Lie's theorems could be applied widely and with tremendous effect (as I hope this 
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book will show) by reducing second-order differential equations to first order. The 
latter can then be treated by the graphical means of Chap. 1. 

It was fortunate that in applying Lie's theory I ignored Jacobi's usually correct 
advice always to generalize and instead started off by concentrating on the affine 
(stretching) groups, which in my experience were the ones that showed up most 
often in applications. This led me to discover some useful properties of partial dif-
ferential equations invariant to families of affine groups. The upshot of all this work 
is to allow calculation of similarity solutions of a broad class of second-order partial 
differential equations by successive reduction, first to second-order ordinary differ-
ential equations and then to ordinary differential equations of the first order. This 
method l.as been described in detail in an earlier monograph—here it is described 
fully but with fewer illustrative examples. 

The wide applicability of the ideas mentioned above (analysis of the direction 
field and Lie theory) arises from their being rooted in very general strategies, namely 
graphical analysis and exploitation of symmetry. Another broad general strategy is 
to look for information in the form of inequalities when equalities are too difficult to 
obtain. Certain methods are available for this purpose, and they form the third main 
division of this book. They deal with monotone operators, differential inequalities, 
maximum and minimum principles, and complementary variational principles. 

An early version of this book was used as the text of a graduate course that I 
gave in the summer of 1987 at the University of Wisconsin in Madison. Great efforts 
were expended in getting it ready on time by the staff of the Fusion Energy Division 
of Oak Ridge National Laboratory. I wish to note for special thanks Sandra Vaughan 
and Kathy Zell, who initially transcribed my handwritten notes; Darcus Johnson 
and Brenda Smith, who typed the entire text, including the many complicated 
equations; Jane Parrott and her graphics staff, who drew the figures; and Bonnie 
Nestor, who edited the text. 

Lawrence Dresner 
Oak Ridge, Tennessee 

November 1987 



Chapter 1 
A N A L Y S I S O F T H E D I R E C T I O N F I E L D O F F I R S T - O R D E R 

O R D I N A R Y D I F F E R E N T I A L E Q U A T I O N S 

"It adds a precious seeing to the eye." 
—W. Shakespeare 

Love's Labour's Lost 

1.1 After having criticized another author's treatment of the first-order differential 
equation 

y=<t = y 2 + x > ( 1 ) 

I feel compelled to start by making good my boast that I can present a heuristic 
treatment that will at every stage be clear "at a glance." 

The entire content of a first-order differential equation can be epitomized by its 
direction field, a drawing in which is plotted at every point (x, y) a short line segment 
having as its slope the value dy/dx calculated from the differential equation. The 
integral curves that satisfy the differential equation must be everywhere tangent to 
these line segments. Figure 1 shows the direction field of Eq. (1). By letting the eye 
sweep along the line segments in the direction they indicate, it is possible to form 
an immediate impression of what the integral curves are like. 

In these days of powerful computers and computer graphics, it is no trouble to 
produce a direction field like that of Fig. 1 (which was obtained on a time-share 
VAX 8600 in a couple of seconds). Since the direction field is a logical equivalent 
of the differential equation, one might say that the problem of the first-order dif-
ferential equation is entirely solved and that analytic techniques for the treatment 
of the direction field are obsolete. There is good deal of truth in this, but, in my 
opinion, the time has not quite arrived when the analytic techniques are as obsolete 
as flint knapping. So I shall turn back the clock to 1917 and consider the method 
described by S. Brodetsky (quoted in Introduction to Nonlinear Differential and 
Integral Equations, Harold T. Davis, Dover, New York, 1962, pp. 26-27) for dealing 
with the equation y = f[x,y): 

"Draw the locus of all points at which the required family of curves are 
parallel to the axis of x: it is of course f(x,y) = 0. Draw the locus of points 
where they are parallel to the axis of y, i.e. 1/f(x, y) = 0. 

"One or the other or both of these loci may nr>t exist in the finite part of 
the plane; but in any case we get the plane divided up into a number of 
compartments: in some the required curves have positive dy/dx, in others 
negative dy/dx. Now calculate d?y/dx2 from the given differential equa-
tion. This can always be done. Draw the locus of points of inflection, i.e., 
d2y/dx2 = 0. We now have a number of compartments, in some of which 
the curves are concave upward, viz. d2y/dx2 positive, in others [concave] 
downward, viz. d2y/dx2 negative. We have thus divided up the plane into 

1 
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Fig. 1. The direction field of Eq. (1) in the portion of the plane - 3 < x < 2, — 2 < y < 2. 
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spaces, in each of which the curves satisfying the differential equation have 
one of the general forms 

( l O , ( 2 , (3)^. , {A) J , ... 

Now draw a number of short tangents at a convenient number of points, 
and the geometrical solution of the differential equation is obtained." 
Shown in Fig. 2 are the results of carrying out this procedure. The solid curve 

is the locus C\ of zero slope (y = 0 : x — —y2), and the dashed curve is the locus 
C2 of zero curvature (y = 0 : x = —y2 — l/2y). For Eq. (1) it is easy to see that 
both slope and curvature [y = 2y(y2 +®)-f lj are positive in the first quadrant. The 
slope changes sign as we cross locus C\, the curvature as we cross locus C2. This 
enables us at once to put the marks (1-4) above in the regions into which the plane 
is divided by these loci. 

If we superimpose the curves C\ and C2 on the direction field, we see from this 
combined drawing (Fig. 3) that there are integral curves like 1 that appear to rise 
from —00, cross C2, and approach y = +00. We might suspect that this is so from 

ORNL-DWG 8 7 - 2 3 7 9 FED 
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the curves of Fig. 2 alone, and here is how we can verify our suspicion. First, we 
answer the question, how do the integral curves cross C2? The slope of the integral 
curves is given by Eq. (1). If we evaluate the right-hand side of Eq. (1) on C2, where 
x = - y 2 - l / 2 y , we find 

y i c (C 2 ) = - ± , (2) 

where the notation on the left-hand side of Eq. (2) means the slope y of the integral 
curves at points (x,y) of C2. If we differentiate the equation defining C2 we get 

so that 
= ' ( 3 b ) 

where the left-hand side of Eq. (3b) means the slope y of the curve C2. Then 

y»c(C2) > y C l > 0 . (4 ) 

This means that the integral curves cross C2 from lower left to upper right. 
Now we turn to the question of how integral curves like 1 behave when |y| is 

large. From inspection of Fig. 1 we might suspect that on each integral curve like 
1, y approaches 00 for a certain value of x and —00 for a certain smaller value of 
x. How can we show this without creating the entire direction field? When \y\ is 
large, one of the following three mutually exclusive alternatives must hold: 

|y| < , lyl ~ \/R > \y\ » v1*i • 
If 11,he first of these holds, then the right-hand side of Eq. (1) can be replaced by 
x and Eq. (1) can be integrated at once: y = x2/2 + c, where c is a constant 
of integration. For large enough y, the constant becomes negligible, so the first 
alternative gives y = ®2/2. But this contradicts the assumption that |y| \/j®l> 
i.e., that y2 -C |®|. So the first alternative leads to a contradiction and thus cannot 
hold. 

The third alternative means that y = y2 to leading order, so that — 1/y = ® + c, 
where c is a constant of integration. As y —• +00, —1/y —» 0 from below, i.e., —1/y 
ascends through negative values to zero, so that c must be negative and y —* 00 as 
x —* |c|. In other words, if we replace c by —b, where now 6 > 0 , y ~ l / ( 6 — ®). 
Thus each integral curve has a simple pole at which y —* 00 as x approaches the 
pole from below. 

When y —» —00, — 1/y —• 0 from above, i.e., —1/y descends through positive 
values to zero so that c must be positive and y —» —00 as x —* —c. Thus y ~ 
— l / ( c + ®), and each integral curve has a second simple pole at which y —• — 00 as 
x approaches the pole from above. 
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The second alternative means that y — As/i, x > 0, and y — A \ f - x , x < 0, 
where A stands for some generic constant of proportionality. When substituted 
into Eq. (1), this gives, for x > 0, A/2yfx = (A2 + 1)®, which is self-contradictory 
no matter what the value of A. However, when x < 0, this gives A/2\/—x = 
(1 - j42)(—x), which can be satisfied, to leading order (remember, if |y| is large, 
so will |x| be), by A = ±1 . So it is possible for y to approach ±oo as x —> —oo 
according to the asymptotic laws y ~ ® or y ~ — y/—x. 

These last possibilities do not affect curves like 1, however; these curves therefore 
stretch from pole to pole in the manner of the tangent curve. They fill part of the 
plane densely, and the locations of the upper and lower poles vary continuously 
from curve to curve. These locations could be expressed, for example, as functions 
of the intersection of each integral curve with the x-axis. 

Integral curves like 2 (which cannot cross Ci because they would cross from 
upper left to lower right) also cross the x-axis. If we advance along the positive x-
axis from the origin we eventually pass from the family of curves like 2 to the family 
of curves like 1. The locus of the intersections of the curves of the family 2 with 
the x-axis, being dense on the x-axis and bounded from above, has an upper limit 
point on the x-axis. This limit point is also the lower limit point of the intersections 
of the curves of 1 with the x-axis, these intersections being dense on the x-axis and 
bounded from below. This limit point thus separates the intersections of the two 
families with the x-axis. There is such a limit point on any line parallel to the 
x-axis; their locus is a curve S that separates the two families of integral curves. 
Because S lies infinitely close to integral curves of both families, it must have the 
slope prescribed by Eq. (1), i.e., it must be a solution of the differential equation. 
Such a limiting solution that separates two qualitatively different families of integral 
curves is called a separatrix. Separatrices are important because, as we shall see 
later, they often turn out to be the thing we must calculate in order to obtain a 
similarity solution of a partial differential equation. 

The curve 5 lies above the integral curves of family 1; therefore it must lie 
above curve C2. Futhermore, it lies below the curves of the family 2; therefore it 
lies below curve C\. Consequently, as x —• —oo, y, ~ — x, since this is the 
common asymptote of curves C\ and C2. This asymptote can be used to obtain 
starting values for the numerical computation of S * Since the value of y, is known 
for x large and negative, we integrate numerically in the positive x-direction. This 
is fortunate because that is the stable direction of integration. By stable we mean 

*It is possible to obtain an asymptotic series for S at the cost of some computational labor. If we 
set x' = —x and y' = —y, for convenience, then Eq. (1) becomes y' = y'1 — x' and S' is asymptotic 
to 1/x7 for y' l . Using the method of undetermined coefficients, we can obtain the asymptotic 
series 

, __ r~t _1 5 15 1105 
y ~ V® +

 4a.» 32x'5 /2 + 64x'4 ~ 2048®'11/2 + 

If we again change the sign of x and y we get points on the separatrix 5 of Fig. 3. 
f This differential equation, like most others in this book, is not contrived but arose in the 

author's study of the expulsion of cold helium from a long, slender, heated tube. 
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that small errors (e.g., the truncation error of a finite-difference scheme or the error 
incurred by the finite-decimal representation of numbers in the computer) do not 
increase without bound in the course of integration. This is because neighboring 
integral curves converge on 5 as we advance in the positive E-direction. Small errors 
such as roundoff and truncation errors heal themselves as we integrate forwards. On 
the other hand, if we integrate backwards (i.e., in the negative s-direction) we are 
eventually thrown off either to one side or to the other. 

What about the behavior of integral curves like 2? The same reasoning applied 
to integral curve 1 shows that on curves like 2, y can approach -foo either by 
approaching a pole from below or by approaching asymptotically yf—x as x —> —oo. 
On the right they must clearly have a pole. Since they cannot cross C\ again on the 
far left, they must always lie below it and so must approach y/—x for large enough 
—x. Furthermore, since integral curves cross the upper branch of C2 from lower left 
to upper right, curves like 2 approach the common asymptote y/—x of C\ and C2 
from below C'2. 

The diagram in Fig. 3 summarizes what there is to be known about Eq. (1), and 
it is fair to say that its content can be taken in at a glance. It is my contention that 
the qualitative nature of the curves of families 1 and 2 could have been deduced from 
Fig. 2 alone by augmenting Brodetsky's method with the two additional methods 
used here, namely: (i) the study of how the integral curves cross C2 and (ii) the 
study of asymptotic behavior by enumeration of cases. 

1.2 The example we have just studied is of a very simple kind in which the slope y is 
uniquely determined at every point (x ,y) of the plane. More complicated cases arise 
when points (x,y) exist at which f(x,y) is multivalued. The differential equation t 

i - f ^ 1 (») 3 x - y 

provides an example of this. At the point 0:(0,0) and P:(2,6) the right-hand side of 
Eq. (5) becomes indeterminate in the manner 0/0. Such points are called singular 
points of the differential equation. To see what happens at these singular points 
(as well as everywhere else) we study the direction field of Eq. (5). We shall not 
actually construct it as we did in Fig. 1 but rather infer its general appearance by 
following Brodetsky's advice. 

The slope y vanishes when the numerator of the right-hand side vanishes, i.e., 
when y = 0 or x = 2; it is infinite when the denominator vanishes, i.e., when y = 3x. 
These lines are shown in Fig. 4 along with hatch marks to indicate the slope of the 
integral curves on them. The points O and P, which are the intersections of lines 
on which y = 0 with lines on which y = ±oc, are shown as black dots. These lines 
divide the plane into seven regions, in each of which the slope has a constant sign. 
The slope changes sign as we cross each line. 

If we find the sign of the slope at any convenient point, we can then assign the 
sign everywhere by simply crossing the lines from region to region. Since the slope 
on the y-axis (® = 0) is —2 (except possibly at 0), the sign of the slope in each 
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region must be as shown. With these assignments fixed, we can begin to sketch in 
parts of the integral curves. In Fig. 4 are six short arcs showing how the integral 
curves must cross the lines L2 and L3. No integral curve can cross L\ (except 
possibly at 0) because the slope y of the integral curves is equal to the slope of Lj 
itself. [This means, of course, that L\ : y = 0 is an integral curve of Eq. (5).] With 
the assignments of slope given in Fig. 4, this shows that y —> 0 as x —> oo on any 
integral curve, as indicated by the two short arcs near line L\. 

What happened to the two integral curves shown intersecting the segments of 
OP and PQ as x —> 0? They cannot escape from the triangle OPQ by crossing 
either line or line L3, so they must pass through the origin O. To study how 
they might do this, we first note that close to the origin O, the differential equation 
of Eq. (5) can be replaced by 

y = » 2 y (near O) (6) 
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since close to the origin |x*| C 2. This differential equation can be solved; the 
solution is x — y f Cy3^2, where C is a constant of integration. You can verify 
this by calculating dx/dy and comparing it with l / y calculated from Eq. (6). Later 
you will learn a straightforward way of finding such a solution. But right now you 
may not know "how it is possible to invent such a solution." From this solution 
we see that all integral curves (save the exceptional one y — 0) approach the origin 
along the line y ••= x (remember, when y <C 1, y3^2 <C y). Now I will show you how 
to obtain that information from Eq, (6) without solving it by studying its limiting 
behavior by enumeration of cases. 

Any curve entering the origin can do so in one of three mutually exclusive ways: 
|y| |x|, |y| ~ |x|, and |y| >> |x|. Since the curves we are interested in lie between 
L3 : y = 3x and L\ : y = 0, the third alternative is excluded. The first alternative 
simplifies Eq. (6) to y = 2y/3x, which can be solved at once to give y = const x 2 / 3 . 
No matter what the value of the constant when |x| is small enough, this contradicts 
the hypothesis |y| |x|. Hence the first alternative is likewise excluded. The second 
alternative means y = Ax when x is small enough. Inserting this form into Eq. (6), 
we obtain the algebraic equation A = 2J4/(3 — .A) for A, which has the solution 
A = 0 and A = 1. The first of these contradicts the hypothesis |y| ~ |x|, so we are 
left with the second. Thus, integral curves entering the origin do so along the line 
y = X. 

The integral curves in the triangle OPQ are of two types, those that eventually 
cross the segment of OP of L3 and those that eventually cross the segment of PQ 
of Lz- These two families must be separated by a separatrix S that, because it 
belongs to neither family, must exit through the point P. The point P, lying as it 
does at the center of four different families of integral curves, must be traversed by 
two separatrices (see Fig. 5). One of them is S; the other intersects S at an angle. 
The slopes of these two separatrices at P can be determined by an application of 
['Hospital's rule: 

2 y p - yp - x p y p - 6 
VP = ^ : = 5 — , (7a) 3 - yp 3 - y P 

y P = {3 ± >/33)/2 . (7b) 

A singular point like P traversed by two separatrices separating four families of 
integral curves is called a saddle point. 

When |x| is large, Eq. (5) becomes 

i - f 3 - - (8) 3 x - y 

The integral curves in the first and fourth quadrants must approach L\ as x —> 00. 
Therefore, for them y <C x, and Eq. (8) becomes y = — y /3 , which can easily be 
solved to give y = const exp(—x/3). So these integral curves approach L\ exponen-
tially. 

To analyze the asymptotic behavior of the integral curves in the second and third 
quadrants, i.e., as x —• —00, we again resort to the enumeration of alternatives. As 
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x — oo, cither |y| |®|, jy| ~ |®|, or |y| <C |®|. The first alternative leads toy — x 
or y — x2/2 + const. When |®| is large enough the constant of integration will be 
negligible so that y ~ ®z/2. This is consistent with the hypothesis |y| ^1®!, but only 
for integral curves in the second quadrant, where y > 0. The third alternative, |y| <C 
|®|, leads to y = const exp(—®/3) as before. But now as ® —» — oo, it contradicts 
the hypothesis |y| -C |®|. Finally, |y| ~ |®| also leads to a contradiction because 
the numerator of Eq. (8) is of order 2 while the denominator is of order 1. Thus 
the integral curves in the second quadrant stretch toward infinity asymptotically to 
y = x2/2. None of the alternatives is free of contradiction for integral curves in the 
third quadrant, so they cannot stretch to infinity. Instead, they must intersect the 
line Lz and loop around into the fourth quadrant as shown. Finally, the integral 
curves between the lines L2 and Lz can only fulfill the alternative |y| |®| and so 
are asymptotic to y = ®2/2. 

Figure 5 summarizes all the information we have gained and displays the content 
of the differential equation (5) so it can be comprehended at a glance. It is surprising 
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how such a simple differential equation can give rise to so complex an array of 
integral curves. In the practical problem that gave rise to Eq. (5), it was the 
section of the separatrix S between O and P that was needed. It was calculated 
numerically by integrating from P to O [the stable direction using the positive slope 
equation (7b) to obtain starting values close to P]. 

1.3 The study of asymptotic behavior by enumeration of alternatives, if handled 
unthinkingly, can lead to unexpected paradoxes. The differential equation y — 
(® -(- y)jx provides an example. Figure 6 shows the direction field. Only the first 
and fourth quadrants are shown; the second and third are images of the first and 
fourth under the transformation x' = — x, y' = — y, to which the differential equation 
is invariant. There must certainly be some integral curves like those shown. How 
do these integral curves enter the origin? They can do so in one of three mutually 
exclusive ways, namely, \y\ |®|, |y| ~ |»|, and |y| |s|. The first alternative 
leads to y = x + const, which contradicts the hypothesis |y| |®|. The second 
alternative, which means y = Ax for small enough x and y, leads to A — A+\, which 
has no solution. The third alternative leads to y = yjx so that y = const ®. This, 
too, contradicts the hypothesis |y| » |®|. So none of the three mutually exclusive 
alternatives appears free of contradiction. The resolution of this paradox is this: 
the constants of integration denoted above by "const" are not necessarily constants, 
but may be slowly varying functions of x. Consider again the first alternative 
|y| <C |®|. If it applies, the differential equation becomes y = 1 to leading order. 
This differential equation is satisfied, again to leading order, by expressions of the 
sort y = x + C(x), where C(x) is a sufficiently slowly varying function of®. For then, 
y = 1 4- C(x), so if C(x) "C 1, y = 1 to leading order. Even with this enlargement of 
the meaning of "const," the first alternative leads to a contradiction. So, too, does 
the second alternative. But the third alternative does not! 

When |y| |®|, the differential equation becomes y = y/x to leading order. 
Were this exact, it would give y = const x. Try instead y = C(®)®, where C(x) is 
a slowly varying function of x. Differentiating, we find y = C + xC — y/x 4- xC. 
If \xC\ |y/®| = |C|, the solution of y — C(x)x satisfies the differential equation 
y = y/x to leading order. If l im r _ 0 |C(®)| = oo, it is then possible for |y| C |®| 
for small x. [An example of a function C(x) that satisfies these requirements is 
C(x) = In ®.] From the relation y = C + xC we see at once that |y(0)| = oo. 
By differentiating the differential equation we find that y = ® - 1 , which is positive 
in the first and fourth quadrants. So the integral curves are all concave upwards. 
This precludes the possibility of any integral curves rising vertically from 0 in the 
positive y-direction, so the integral curves must all look like those shown in Fig. 6. 

The general solution of the differential equation y = (® + y) /y is y = ® ln(A®), 
as the reader may verify by differentiation. Later we shall learn a direct method of 
solving this differential equation. 

1.4 The singular points O and P in Fig. 5 are the intersections of one line on 
which y = 0 and another on which y = ±oo. Such intersections are surrounded 
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by characteristic patterns of integral curves of only a few different types, and we 
display them below. 

Figure 7a shows one possible configuration. Because the sign of y changes as we 
move across either of the two lines, the sign alternates from quadrant to quadra.it as 
we circulate around the singularity P. The array of four families of integral curves 
separated by two separatrices characterizes the saddle point. 

If we keep the same configuration of lines but change the sign of y by multiplying 
the right-hand side of the differential equation by —1, we get the configuration shown 
in Fig. 7b. The integral curves can either spiral into P (in which case P is called a 
focus) or surround P as closed curves (in which case P is called a center or a vortex 
point). 

A new behavior occurs in the degenerate case in which the locus of zero (infinite) 
slope is itself a line of zero (infinite) slope. Again, two assignments of sign are 
possible. One (Fig. 7c) leads again to a saddle point, the other (Fig. 7d) to integral 
curves radiating from P like the spokes of a wheel—it is called a node. 
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Fig. 7. (a) A saddle point, (b) a focus or a center (vortex point), (c) a saddle point, 
(d) a node, (e) a saddle point, and (f) a node. 
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If the locus of zero slope is a line of zero slope and the locus of infinite slope is 
simultaneously a line of infinite slope (a kind of double degenerate case) we get the 
configurations in Figs. 7e and 7f, giving, respectively, a saddle point and a node. 

The integral curves entering the node of Fig. 7d might be considered as degen-
erate spirals that are prevented from making more than a half-turn around P by 
the line of zero slope, which they cannot cross. Some justification for this viewpoint 
can be found in a topological characterization of the direction field, the Poincare 
ind'v The Poincare index is a topological invariant of a continuous vector field. 
A ..or field is a diagram in which a small vector is plotted at every point (x ,y) 
according to some given prescription. It differs from a direction field only in that 
the little hatch marks of the direction field have been supplied with arrow heads 
showing in which direction they point. A continuous vector field is one in which the 
directions of the two vectors at two neighboring points are close to one another. 

Suppose we draw a closed curve in such a vector field. As we advance along 
this curve in the positive (counterclockwise) direction, the local vector of the vector 
field will continuously change its direction. When we return to our starting point it 
will have returned to its original direction. In doing so, it may have executed sev-
eral complete revolutions—the number of such revolutions (counted positive when 
executed counterclockwise and negative when executed clockwise) is the Poincare 
index. 

To convert a direction field to a vector field, we start by putting an arrowhead 
on any arbitrary hatch mark. The arrow direction everywhere else is determined 
by the requirement that the vector field be continuous. Figure 8 shows the results 
of such a construction at (a) an ordinary point of the vector field, (b) a node, (c) a 
center, (d) a saddle, and (e) a focus, together with the Poincare index I of the curve 
C. 

If the curves C of Figs. 8b-8e are Imagined to shrink down continuously around 
the points S inside them, their index I will remain unchanged. For the index can 
only change by an integer, something that cannot happen continuously. The index 
can only change when the curve C crosses a singularity. So the index of any curve 
surrounding a singularity is the samt, and we can therefore call its value the index 
of the point. Saddles have index —1; njdes, centcrs, and focuses have index -f 1; 
and ordinary points have index 0. 

Among the most useful facts about the index are these. The index of a closed 
integral curve is 1. Consequently, such an integral curve must surround some sin-
gular point. Furthermore, the index of any closed curve C is the sum of the indexes 
of the singular points it contains. [To see this, surround each singularity with an 
infinitesimal circle and join these circles to the curve C by cuts that will be tra-
versed twice in opposite directions (Fig. 9). The index of the entire cut curve is zero 
since it contains no singularity (case 8a). Since the cuts contribute nothing to the 
overall vector rotation because they are traversed alternately in opposite directions, 
I c — Ici — Ic2 — 0, as was to be proved.] As an example of how this last theorem 
can be applied, imagine a large contour in Fig. 5 surrounding both the singularities 
O and P. It is easy to see that the index of the large contour is zero, so Io + Ip — 0. 
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Fig. 8. A vector field at (a) an ordinary point, (b) a node, (c) a center, (d) a saddle, 
and (e) a focus. I is the Poincare index of the curve C. 

ORNL-DWG 8 7 - 2 3 6 4 FED 

Fig. 9. Sketch to aid in the calculation of the index of a curve surrounding two 
singularities. 



16 

Clearly, then, one of the singularities must be a saddle, while the other must be a 
center, a node, or a focus (it is in fact a node). 

The singularities dealt with so far are particularly simple. More complex singu-
larities can arise from the confluence of several simple singularities. For example, 
the differential equation 

x2 

y = (9) 

has a single singularity at the origin (see Fig. 10). This singularity has a Poincare 
index of zero. The reason for this peculiar behavior is that x — 0 is a double 
root of x2 = 0, the equation we obtain when we set the numerator equal to zero. 
Alternatively, we may note that the sign of y does not change as we cross the locus 
of y = 0. 

Equation (9) may be considered as the limit of the differential equation 

y = ^ do) x + y 

as e —• 0. Equation (10) has two singularities, a focus at the origin and a saddle at 
the point (e, —e). These two merge as e —• 0, giving a compound singularity whose 
Poincare index is zero. Two separatrices emerge from the singularity. 

ORNL-DWG 8 7 - 2 3 6 5 FED 
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The differential equation 
x3 

v = — — - ( " ) x + y 

which is similar to Eq. (9), is a reduced form of the second-order Emden-Fowler 
equation. (The Emden-Fowler equation arises in the study of the equilibrium mass 
distribution of a cloud of gas held together by gravity. We shall study the method of 
reducing it to a first-order equation in later chapters.) Its one singularity, located 
at the origin, has a Poincare index of 1. Figure 11 shows its direction field. At 
large enough radii, the integral curves spiral around the origin, but once within a 
critical radius they approach the origin, drawing ever closer to the line y = —x 
as they do so. Curves intersecting the line y = —x at abscissas whose absolute 
values are greater than some value xq make another half-circuit counterclockwise, 
whereas curves intersecting y — —x at abscissas whose absolute values are less than 
xo approach the origin along the line y = —x. 

What about the exceptional integral curve that intersects the line y = — x at 
x = ±XQ? It approaches the origin along the x-axis, i.e., with zero slope, which 

ORNL-DWG 87-2381 FED 

Fig. 11. The direction field of Eq. (10). 
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means |y| < |®|. It follows, then, from Eq. (11), that to leading order S is given by 
y = —®3/3. In fact, if we set 

x3 

y= + Ax* + Bx1+ Cx9 + ... (12) 
O 

we find 
.8 i n/nr_8 y = -xz + 5AX* + IBx + 9Cx + .. 

C1 
3 
x3 

x +y - x + Ax5 + Bx7 4- Cx9 + ... 

and 

- x 3 = (a: + y)y 

= - X 3 + Q + SAj ®5 + ( j B - X 7 + (gc - ^ + 5 4 ' ) X 9 + . . . 

so that 
4 - - - L B - - J - G - - ^ - etc 

15 315 8 5 0 5 ' e t C ' 
Thus the integral curve 5 is given by the series 

®3 ®5 8x7 101®9 

y 3 15 315 8505 

which represents it close to the origin. It is this integral curve that interests us in 
astrophysical applications. 

No integral curve can enter the origin in such a manner that |y| is always |®|. 
For then, Eq. (11) would become y = —x3/y so that y2/2 + ®4/4 = const. If such 
a curve passes through the origin, the constant must vanish, and then so must ® 
and y, a contradiction. But integral curves can enter the origin in such a manner 
that |y| ~ |®|. If we set y = o®, we find a(a -f l )x = —x3, which can be satisfied 
to leading order if a = — 1. In fact, if we set y equal to a power series in the odd 
powers of ®, and proceed as we did above, we find the series 

y = - ® + ®3 + 3xs + 24x7 + 289x9 + . . . (13) 

The series of Eq. (13) is a formal solution of Eq. (11). If it converged, then 
within its radius of convergence all integral curves that approach the origin along 
y = — x would have to be identical with it. This is not the case, as one can see 
from Fig. 11, where infinitely many different integral curves approach 0 and along 
y = —®. So Eq. (13) never converges, no matter how small ® is. We might have 
suspected this from the rapidity with which the coefficients grow. Equation (12), on 
the other hand, representing a particular special integral curve, probably converges, 
as we might suspect from the decreasing of its coefficients. Neither assertion about 
convergence has been proved here. 
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1.5 Besides having isolated singular points at which many slopes are possible, 
diiTerential equations may have more than one slope at every point! To see how this 
can happen, let us begin by considering the one-parameter family of parabolas 

y = (x — a)2 + a , a = a parameter . (14) 

These parabolas have minima y = a at x = a, and so a sketch of the family looks 
like Fig. 12. Two parabolas pass through each point (®,y) of the plaue, one with a 
positive slope and one with a negative slope. 

We can find these two slopes by converting Eq. (14) into a differential equation. 
We do this by first differentiating to get y = 2[x - a) and then eliminating a in 
favor of y: 

( y - 1 ) 2 = 4y ~ 4 ® + 1 . (15) 

The two slopes arise from the two signs of the square root that are possible. This 
differential equation has the family Eq. (14) as the family of its integral curves. 

The family Eq. (14) has an envelope E given f(x,y,a) = 0 and fa{xiy,o-) = 0 
where / ( x , y , a) = y — (x — a)2 — a. The envelope is the straight line y = x — 1/4. 
This straight line, because it is everywhere tangent to a curve of the family Eq. (14), 
must also be a solution of the differential equation (15). Substitution shows this to 
be so. Surh a solution is called a singular solution. 

The usual situation is to be given the differential equation, not the family of 
integral curves. It turns oat that we can find the singular solution (if one exists, 
of course) from the differential equation even if we cannot integrate the differential 
equation to find the family of integral curves. Here is how we proceed Suppose the 
differential equation can be written as f(x,y,y) = 0. From the sketch in Pig. 12 we 
can see that on the singular solution the two roots for y collapse to one double root. 
When the function / has a double root, then / j = 0 at the double root, too. So 
we find the singular solution by eliminating y from the equations f(x,y,y) = 0 and 
/j,(®,y,y) = 0- Applying this to Eq. (15), we obtain at once y = 1, y = x - 1/4. 

The procedure outlined above can produce loci that are not solutions of the 
differential equation at all. Figure 13a shows one way in which this can happen. 
The integral curves again have two branches, which this time meet at a cusp. At 
the cusp, the slopes of the two branches become equal. Solution of the equations of 
/ = 0 and fy = 0 will yield the locus L of the cusps. But L is clearly not a singular 
solution of the differential equation because it nowhere has the slope of the integral 
curves. 

It is possible, however, for a cusp locus to be a singular solution, and Fig. 13b 
shows how this can happen. An analytic criterion that distinguishes case (a) from 
case (b) can be found as follows: at neighboring points ( s ,y ) and (x + dx, y + dy) on 
the locus L, we have / (®,y ,y) = 0 and f(x + dx, y + dy, y + dy) = 0. Subtracting 
these two equations, we obtain fxdx + fydy + fydy = 0. Now on L we must also 
have fy = 0. Thus, fxdx + fydy = 0. Now dy/dx is the slope of L, and if L is to be 
a singular solution this slope must equal a value of y obtained from the differential 
equation. So if fx + fyy = 0, L is a singular solution. 
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Fig. 12. Sketch of the family of parabolas y = (x — a)2 + a. 
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The reader should realize that another way to test whether a locus like L is 
a singular solution is to substitute it into the differential equation. Such a test is 
unimpeachable. 

1.6 Singular solutions have the attractive property that we can obtain them without 
integrating the differential equation to display explicitly the entire family of integral 
curves. Separatrices have the same attractive property, although to find them we 
need more information than just the function / but still less than the full, explicit 
form of the integral curves. We need a quantity called the integrating factor, which 
is defined below. 

In discussing the integrating factor it is convenient to write the differential 
equation y = f(x,y) in the form 

M{x,y)dx + N{x,y)dy = 0 , (16) 

where / ( x , y ) = —M(x,y)/N(x,y). The general solution of a first-order differential 
equation like Eq. (16) is a one-parameter family of curves, the parameter being 
essentially a constant of integration. We represent the family of integral curves as 
<j>{x,y) = C, where C is the parameter that labels the curves. If we differentiate 
along an integral curve, C may be treated as a constant, and we have 

<j>xdx + <f>ydy = 0 . (17) 

Since the incremental vector (dx , dy) lies along an integral curve, it satisfies Eq. (16) 
as well; the two equations, (16) and (17), have a nontrivial solution if and only if 

^ = & . (18) 
M N y ' 

The two sides of Eq. (18) represent a function of x and y; denote it by /i(®,y). It 
is called an integrating factor because if we multiply the differential equation (16) 
by it, the differential equation takes the form [Eq. (17)] of a perfect differential. 

Since <f>x = (jlM and <f>y — jmN, equality of the cross derivatives <f>xy = </>yx gives 
the condition ( f i M ) y = ( f i N ) x , which fi must satisfy. This condition is equivalent 
to the partial differential equation 

N f i a - M f i y = fi{My - N x ) . ( 1 9 ) 

Any particular solution of Eq. (19) is a suitable integrating factor. It is not necessary 
to find the general solution of Eq. (19). 

Suppose we know two different integrating factors, fi{x,y) and t/(x,y). Mul-
tiplying Eq. (16) by them converts Eq. (16) into two different perfect differentials 
which upon integration give <^(®,y) = a and ip(x,y) = b (because fiM = <f)z, 
fiN = <f>y, vM = il>x, and uN = ij>y). Here a and b are constants. Both of these 
equations represent the same integral curves, each curve labeled with a particular 
value of a [if we are representing them by (f>(x,y) — a] or with a value of b [if 
we are representing them by i){x,y) = b], A value of a determines a particular 
curve and thus a particular value of 6, which means fe is a function of a: b = F(a). 
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Consequently, y>(x,y) — b — F(a) - F\(f>{x,y)\ and the functions ij) and <t> are 
functionally dependent. Differentiating this last equation partially with respect 
to, say, x gives — F{<i>)4>ti o r ) since — uM and <f>x = fiM, v = F(<j>)}i. 
Since (j> is a constant on any integral curve, the integral curves are given by the 
condition v = C/z, where C = F(a) is ^ constant labeling the different integral 
curves. Conversely, any function of the form F((f>)fi, where F(<f>) is any function 
of cj>, is an integrating factor, converting Eq. (16) into the perfect differential form 
F(<j})<j>xdx + F[<f})<j)ydy — F(<f>)d<f> = dF(cj)) = 0. So the most general form of the 
integrating factor is fiG(<fi), where G is any function of <f). 

The differential equation 

(y2 - 2 x y ) d x + x2dy = 0 (20) 

furnishes an illustrative example of these ideas. Here M — y1 — 2xy, N — x 2 , 
My = 2(y — x), and Nx — 2x. Since My ^ Nx, Eq. (20) is not yet in the form of a 
perfect differential and needs to be multiplied by an integrating factor. If Eq. (20) 
were already a perfect differential, fi = 1 would be an integrating factor, and when 
(jl — 1, Eq. (19) becomes My — Nx = 0. Equation (19) is now 

x2fix - y(y - 2x)ny = 2(y - 2x) f i . (21) 

The first term will vanish if a particular solution for /x is sought that is only a 
function of y. The factor y — 2x cancels from the remaining two terms, so that we 
have —y(dfj./dy) — 2/x, which gives fi = const y - 2 . The value of the constant is 
irrelevant (as long as it is not zero) so we take for our integrating factor fi = y - 2 . 

If we multiply M and N by fi we find 

<f>x = / iM = 1 - 2x/y , 

<j>y = n N = x 2 / y 2 • ( 2 2 ) 

We can integrate the first of these equations if we treat y as a constant, which we 
must do since the derivative <j>x is a partial derivative. We get <f> — x — x 2 / y + H(y), 
where H(y) is the "constant" of integration. We determine H(y) by differentiating 
partially with respect to y and comparing with the second part of Eq. (22). We find 
(f>y = x 2 / y 2 + H, so that H = 0 and H is at most a constant. Since <f> = const labels 
the integral curves, we can incorporate H in $ and obtain for the integral curves 

" = <23> 

where G = H — <j> is a constant labeling the various curves. The most general 
integrating factor then has the form 

yl y2 

x(x - y) 
y 

(24) 

where G(z) is any function. For example, if G(z) — z 2, v = x 2(x — y) 2 is also 
an integrating factor. 
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The equation /z 1 — 0 may specify one or more separatrices. To see this, 
consider the one-parameter family of integral curves <p(x,y) = C sketched in Fig. 14. 
The family consists of two qualitatively different parts separated by a separatrix S 
corresponding to the value Co of the parameter C. 

Fig. 14. A one-parameter family of curves <j>(x,y) = C having a separatrix S corre-
sponding to C = Co-

if ( x , y ) and (x + dx,y + dy) are two neighboring points on the same integral 
curve, then <f>(x,y) = C and <j>(x + dy,y -f dy) = C. Thus <j>xdx + <f>ydy = 0, 
which means the vector (<j>x,<!>y) is perpendicular to the tangent vector ( d x , d y ) . 
Accordingly, the unit normal to the curves <f>(x,y) = C is the vector (4>xi<l>y)/(<f>x + 
(fry)1/2 • By similar reasoning, we find that if (x,y) and (x + dx,y + dy) are points 
on two neighboring curves having parameters C and C + dC, respectively, then 
<j>xdx + <j)ydy = dC. Now if (dx,dy) is perpendicular to <f>(x,y) = C, then dx = 
ds(j>x/(<t>2 + (frl)1/2 and dy — da(f>y/((f>2

x + (ft2)1/2, where ds is the normal distance 
between curves C and C + dC at (x ,y ) . Substituting these values for dx and dy 
into the expression for dC, we finally obtain ds(<f>2 + (j)2)1/2 = dC. 

At a separatrix, da/dC = 0. This is because curves corresponding to a finite 
interval of dC are packed into an infinitesimally small normal distance from the 
separatrix. Said another way, at a separatrix, the density dC/ds of integral curves 
is infinite. Now ds/dC = + = ^{M2 + N2)~1'2. If, as in Eq. (20), 
neither M nor N is ever infinite, ds/dC can only vanish if / i _ 1 = 0 . So /x-1 = 0 
may specify separatrices. 

We can check this with the example begun with Eq. (20). Figure 15 shows a 
plot of the family of curves given by Eq. (23). From the diagram, we can see that 
there are three separatrices that divide the plane into six parts. The separatrices 
are the lines y = 0, x = 0, and y = x. The integrating factor fj, = y~2 gives the 
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separatrix y — 0. The integrating factor u = x~2(x — y)~2 gives the separatrices 
x = 0 and y = x. From this example, we see that knowing one integrating factor 
may not be enough to find all the separatrices without integration, though we may 
find some. If we know two integrating factors, of course, we can find all the integral 
curves without integration. 
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Chap te r 2 

THE LIE THEORY OF DIFFERENTIAL EQUATIONS 

"Plus change, plus c'est la rneme chose." 
—Alphonse Kart 

Lea Guepea 

2.1 Lie has given a method of finding an integrating factor if the differential 
equation is invariant to a one-parameter group of transformations. What this last 
phrase means is best made clear by means of an example. If we change the variables 
in the differential equation (1.20)* to x' and y', where 

x — Ax . / . x 
, , , 0 < A < o o 1 

y' = Ay 

and A is some positive constant, then the resulting differential equation in the primed 
variables is identical to the original differential equation (1.20) in the unprimed 
variables. This is true no matter what the value of A is, as long as it is not zero. 
The differential equation (1.20) is said then to be invariant to the transformations 
of Eq. (1). 

The transformations of Eq. (1) are said to be a group because they obey the 
three group postulates, namely: (i) Two transformations carried out in succession 
are equivalent to some other single transformation of the group. Thus, if ac' = Aix, 
y' = Aiy, and x" = A2x', y" = A2y', then x" = AJA2X, y" = AiA2y. (ii) There is an 
identity transformation, i.e., one that leaves the variables x ,y unchanged. For the 
transformations of Eq. (1), the identity transformation is the one for which A = 1. 
(iii) For every transformation, there is an inverse, i.e., a second transformation 
that undoes the effect of the first. For the transformations of Eq. (1), the inverse 
transformation has A2 = 1/Aj. (Thus x" = x and y" = y.) 

A first-order differential equation is logically equivalent to a one-parameter fam-
ily of integral curves, and so the family, too, must be transformed into itself by a 
group under which the differential equation is invariant. In general, each curve of 
the family has as its image under transformation some other curve of the family, 
and only certain exceptional curves transform into themselves. For example, the 
integral curve y = x 2 / (x + C) transforms under the transformations of Eq. (1) into 
the integral curve y' = x'2/(x' AC). So the integral curve belonging to label G 
has as its image the integral curve with label AC. Only the curves for C = 0 and 
C — 00 transform into themselves. 

Lie's method of constructing an integrating factor is based on the observation 
that the image of an integral curve is another integral curve. Represent the family 
of integral curves as (j>(x,y) = C and focus attention on the curve Q for which 
C = C0. Transform each point (x,y) of Q into its image (x',y'); denote the locus 
of these images as curve Q'. The curve Q' is also an integral curve belonging to a 

*That is, Eq. (20) in Chap. 1. 
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label C that depends on A and C0. So we can write <j>(x',y') = C(A,Co) or, using 
Eq. (1) to replace primed variables by unprimed variables, 

^(A®,A I / )=C(A,Co) = C[A^(» > I / ) ] . (2) 

Now we differentiate with respect to A and then set A = 1: 

+ = , . (3) A = 1 

Since <j>x = fiM and 4>y = A'-W, Eq. (3) can be written 

n<t>) m 
^ xM +yN ' K ' 

As we saw in Chap. 1, if we multiply an integrating factor by any function of <f> we get 
another integrating factor. Therefore, fi = ( x M + y iV) - 1 must be an integrating 
factor. Since M = y2 — 2 x y and N — x2 for the differential equation (1.20), 
\ i = xM + yN = xy(y — i ) , which satisfies Eq. (1.21), as it should. Interestingly, 
this integrating factor yields all three separatrices x = 0, y = 0, and y = x when 
f i~ l is set to zero. 

2 .2 Lie considered groups more general than the simple stretching group of Eq. (1). 
We can write the most general one-parameter family of transformations of x and y 
in the form 

x' = X(x,y, A) , (5a) 

y'=Y(x,y,\) . (5b) 

The functions of X and Y cannot be chosen arbitrarily because of the requirement 
that they conform to the group property that two such transformations executed 
in succession are equivalent to a certain other transformation. The restrictions on 
X and Y may be found, as Lie has proposed, by composing finite transformations 
out of a succession of infinitesimal transformations. This means the following. 

Suppose A = Ao corresponds to the identity transformation. When A — Ao is 
very small, i.e., when A is close to A0, Eqs. (5a,b) can be replaced by the linear 
terms in their Taylor series around A = Ao: 

a' = a + £ ( ® , y ) ( A - A 0 ) + . . . , (6a) 

y'=y + r}(x,y){ A - A 0 ) + . . . , (6b) 

where 

a a n d a n ^ A ) ( 6 c ) 

\=\o OA dX A = An 

The meaning of Eqs. (6a,b) is that nearby images of the point (x ,y) lie on a small 
line segment through (sc,y) having the slope (y' — y)/{x' — ®) = rj(x,y)H{x,y). The 
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transformations of Eqs. (6a,b) are infinitesimal transformations. The geometric in-
terpretation of composing a finite transformation out of a succession of infinitesimal 
transformations is that we reach a remote image of (x,y) by stepping successively 
along a series of neighboring points, each of which is a nearby image of its pre-
decessor. That all these points are images of one another follows from the group 
property. The locus traced out by this series of steps has the slope 77/̂  everywhere 
and hence is an integral curve of the differential equation 

dy _ v(x,y) 
dx £(x,y) 

These integral curves are called the orbits of the group. If we parameterize the 
points of an orbit by setting dX = dx/£ = dy/rj, we obtain the functions X and 
Y by integrating these differential equations. Replacing dX by F(X)dX, where F is 
any function of X, just corresponds to a different parameterization of the points of 
the orbit. The group is thus entirely characterized by the two functions £{x,y) and 

For the simple stretching group of Eq. (1), £ = (dx'/dX)x=\ = x and 77 = 
[dy'!dX)\=i = y. The orbits are then straight lines through the origin. If we 
parameterize the orbits according to dX = dx/£ = dy/rj, we obtain by integration 
x = x 0 e A - A " and y = yoeA-A(J» which has the same form as Eq. (1) if we identify 
e>-A„ ^ e r e wji}! x there. If we parameterize the orbits according to dX/X = dx/£ = 
dy/v 1 w e obtain by integration x = x0(A/Ao), y = yo(-V^o)> which is the same as 
Eq. (1) if we choose A0, the parameter corresponding to the identity transformation, 
to be 1. 

The orbits, being composed of points which transform into one another, are 
invariant curves, i.e., they transform into themselves. They are moreover the only 
invariant curves. Separatrices are invariant curves because they separate two in-
variant families of curves. They are also integral curves of the differential equation. 
So they must simultaneously satisfy the differential equations dy/dx = 77/̂  and 
dy/dx = -M/N. Equating these slopes we get the algebraic equation + rjN = 0 
for invariant integral curves. This equation must include all the separatrices. 

Now we can find Lie's general expression for an integrating factor in terms of 
the components £ and 77 of the infinitesimal transformation. We start again with 
the relation 

4>(x',y') = C(X,C0)=C[X,4>(x,y)} (8) 

and again differentiate with respect to A and then set A = A0. We get 

W* + ri<f>y = F(4>) , ( 9 ) 

since (dx'/dX)\-x0 = £ and (dy'/dX)x=\„ = rj. Proceeding now exactly as before, 
we find that 

fi = ( ( M + r j N ) ~ l ( 1 0 ) 

is an integrating factor. The algebraic equation £M -f tjN = 0 derived in the 
last paragraph for the separatrices is thus the same as the earlier result /x- 1 = 0. 
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Furthermore, we know now that when fi is Lie's integrating factor, fi 1 — 0 gives 
all the separatrices. 

2 .3 If explicit expressions for X and Y are available, it is relatively easy to decide 
whether a given differential equation is invariant to a given group. But if no explicit 
expressions are available, i.e., if Eq. (7) cannot be integrated explicitly, how can we 
answer this question? To do so, we need the transformation law for the derivative 
y, which, as we shall now see, is entirely determined by the transformation laws 
for x and y. Suppose we consider two neighboring points Pj : (x,y) and P2 : 
(x + dx,y + dy) joi' ed by a short line segment whose slope is y = dy/dx. Under 
the infinitesimal transformation with parameter dX — A — Ao, Pi goes into the point 
P[ : {x' ,y') and P2 into the point P'2 : (x' -f dx',y' + dy'), where 

x' — x + ((x.y)dX , V ' ' (11) 
y - y + , 

x' + dx' = x 4- dx 4- £(x 4- dx, y 4- dy)dX , 
(12) 

y' 4- dy' - y 4- dy 4- rj(x + dx,y + dy)dX . 

The slope y' = dy'/dx' of the segment P\ P^ is thus completely determined by the 
transformation laws for x and y: 

., _ dy' ^ dy 4- [yjx + dx,y + dy) - r](x,y)}dX 
V dx' dx + [((x + dx,y + dy) - ((x,y)]dX ' ^ ' 

If we expand the square brackets to first order in dy and dx and divide the numerator 
and denominator of the right-hand side by dx, Eq. (13) becomes 

, _ y 4- 4- Vyy)dX 
y ~ i + + ( } 

= y + in* + riyij - - Zvy2)dX (14b) 

\ V&W/ \X Us J 

where d/dx applied to a function of (®,y) means d/dx + yd/dy. The quantity 

dr> n^ Vd. — y-j- (15) ax dx 

is Lie's expression for the component of the extended infinitesimal transformation 
belonging to y. 

A first-order differential equation is a functional relation connecting x, y, and 
y-

g{x,y,y) = 0 . (16) 

If it is invariant to the extended infinitesimal transformation with components 
(̂ar, j/), r](x,y), and rjd{x,y,y), it will be invariant to the entire group equation (5) 
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(since the transformation of the group can be composed of a succession of infinites-
imal transformations). Invariance means that y(x',y',y') = 0, where x', y', and y' 
are the images of x, y, and y. Thus 

g(x + £d\,y + r1d\,y + TjddX) = 0 . (17) 

From Eqs. (16) and (17) follows the condition 

t.9* + V9y + Vd9y = 0 (18) 

that the differential equation (16) is invariant to the group equation (5). 
The condition equation (17) can be looked upon as a first-order linear partial 

differential equation for g if we imagine that £ and rj are known. Its general so-
lution therefore supplies the answer to the question, "What is the most general 
first-order ordinary differential equation invariant to the group whose infinitesimal 
transformation has the components f and r/?" The general solution for a first-order 
linear partial differential equation like Eq. (18) can be obtained by integrating the 
characteristic equations 

dx dy dy 
— = = . (19) 
£ T Id 

If we can find two independent integrals* u(x,y,y) and v(x,y,y) of Eq. (19), the 
general solution can be obtained by setting v = -F(u), where F is any arbitrary 
function. The equation v = F(u) then gives the most general functional relation 
between x, y, and y that is invariant to the group with infinitesimal components £,17. 
If we seek explicit representation of the most general differential equation, we shall 
have to have explicit representations of both u and v. Eliminating y between these 
two integrals of Eq. (19) gives an integral of the first part of Eq. (19), dx/£ = dy/rj. 
Such an integral is an explicit representation of the orbits of the group £,77. So we 
shall be able to attain an explicit representation for the most general differential 
equation at best for all groups for which an explicit representation of the orbits is 
also possible. 

Any one-parameter family of curves can serve as the orbits of a group; for 
example, the family 

x2 

y — (u = parameter) . (20) 
x + u 

This family has as its differential equation Eq. (1.20), which, when written in the 
form 

x* 2xy — y* 
allows us to identify the infinitesimal < iponents of the group: 

£ = x2 , T) = 2xy — y2 . (22) 

*An integral is a function of 2, y. and y whose value remains constant as we move along a curve 
in x, y, y space whose direction is given by Eq. (19). 
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Then, Eq. (15) gives 
Vd — 2y(l — y) . (23) 

The characteristic equations, Eq. (19), are then 

dx dy dy 
x2 2xy - y2 2y(l - y) 

(24) 

From Eq. (20) it follows that u = x2/y - x is one integral of Eq. (24). We can find 
a second integral by substituting for y from Eq. (20) in the last term of Eq. (24). 
Then 

^ = ^ (25a} 

or 
dij x + u y - Z ^ d x . (25b) 

1 - y 
Integrating Eq. (25b), we get 

x2 xu 
— ln(l — y) = — -\ — + F(u) , (26) 

where v, the constant of integration on the right-hand side, has been set equal to 
F(u), an arbitrary function of u. Since u = x2/y — x, Eq. (26) can be written finally 
as 

^ ' - " " ( t - I J M T - " ) • <27> 
where G = e~F is also an arbitrary function of its argument. Equation (27) is the 
most general first- order differential equation invariant to the group whose infinites-
imal components are given in Eq. (22). 

The infinitesimal components in Eq. (22) are not the only ones that reduce the 
equation of the orbits, Eq. (7), to Eq. (21). Components obtained by multiplying 
Eq. (22) by a common factor will work just as well. Thus, the orbits do not uniquely 
determine the group, and different groups may have the same orbits. This is made 
clear by an example simpler than the foregoing one. Suppose the orbits are the lines 
that radiate from the origin, y = ux. Then their differential equation is dy/y = 
dx/x. If we choose £ = x and 77 = y, we are led to the most general differential 
equation y — F(y/x), where F can be any function. If, on the other hand, we 
choose £ = xa+1, 77 = yxa, we are led to the most general differential equation 
y = y/x + x~aF(y/x). If we choose £ = x2y, 77 = xy2, which also leads to the orbits 
y = ux, we find the most general differential equation is y = (y/x)[x2F(y/x) — 
l ] / [ » a F ( y / B ) + l]. ^ 

In the manner just outlined, we can construct tables of first-order differential 
equations for which groups and therefore integrating factors are known. Cohen 
gives such a table (A. Cohen, An Introduction to the Lie Theory of One-Parameter 
Groups, G. E. Stechert and Co., New York, 1931). 
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2.4 An alternative to using an integrating factor to solve a first-order differential 
equation is to separate variables. Lie has shown how to find, by means of the group, 
new variables in which the differential equation is separable. According to Cohen, 
this method antedates Lie's discovery of the integrating factor by five years, having 
been discovered in 1869. 

Suppose we change variables from x,y to new coordinates 2/i, where x\ and 
yi are prescribed functions of x and y. To each point P in the plane belong a 
pair of values (x,y) and another pair (®i,yi) calculable from (®,y). Under the 
transformation with parameter A the point P : (x,y) is transformed into its image 
point P' : (x',y'), where x' and y' are calculable from Bqs. (5a) and (5b). From 
(x',y') we can calculate x\ and y[, the new coordinates of P'. This procedure 
implicitly defines a pair of functions Xi and Y\ such that x[ — -X"i(®i,yi, A) and 
y[ = Yi(xuyuX). 

Now 

f ~ ( 9 x 1 \ f d x i \ ( 9 y \ 
\ d* Jx=xn 9x \dx)X:=Xn \ dy J \dx)x= Ao 

and similarly 

9y\ 
771 = 1 5A 

= 9yi(dx\ dyi ( d y \ 
v = A o " d m \ d x J x ^ J dy \ d X j x = X o 

Lie has chosen as canonical variables x ^ y j those for which = 0 and rji = 1. The 
functional dependence of these canonical variables on the original variables x ,y may 
then be found by solving the pair of first-order partial differential equations 

Any particular pair of solutions x i ,y i of Eqs. (29a) and (29b) will provide satisfac-
tory canonical coordinates for which = 0 and rji = 1. 

The characteristic equations for the linear partial differential equations (29a) 
and (29b) are 

dx dy . . 
T = — 30a) 
Z v 

and 

£ = ^ = • (30b) £ v 
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Since Eq. (30a) is the same as Eq. (7), its integral gives the equations of the orbits. 
If we have an explicit representation of the orbits, we already have an integral of 
the first equation of Eq. (30b), so finding the second integral involves only two 
quadratures. 

When = 0 and rji = 1, t/^ = 0 according to Eq. (15). Equation (19) then 
becomes dx\/0 = dy\/l — dyi/0, for which two integrals are u = x\ and v = y\. 
So the most general differential equation invariant to the group ^ = 0, rji — 1 is 
y\ = F(xi), which ia aeparable. 

As an illustration, let us pursue the last example in Para. 2.3 in which £ = x2y 
and T] = xy2. An integral of Eq. (30a) is y/x, so we can take xj to be any function of 
y / x . The simplest choice is xj = y /x . This function is also an integral of Eq. (30b). 
If we substitute it in the expression for TJ, the last equality of Eq. (30b) becomes 
dyi = dx /x jx 3 , which is satisfied by y\ = —l/2x2xj = — l /2xy . Thus yi = —l/2xy, 
®i — y/x are a suitable pair of canonical coordinates. If we use them in the most 
general differential equation y = (y/x)[x2 F(y/x) — 1 ]/[x2F(y/x) -f- 1], it becomes 
the separable equation yj = —F(x\)/2x\. 

In the important special case that the group is an affine (stretching) group, 
replacement of the dependent variable y by a group invariant causes the differential 
equation to separate. [A group invariant is a function u(x,y), which transforms 
into itself under the action of the group.] The most general stretching group in two 
variables is 

y' = ^y , (31) 

37 —— A SD 9 

where 0 is a constant. We lose no generality by making the exponent of the multi-
plier of x equal to 1. The transformation law for y is then 

We write the differential equation in the form y = / ( x , y ) . If this differential 

equation is to be invariant to Eqs. (31) and (32), it must have the same form in the 

primed variables, namely, y' = f(x',y') or 

A/3"1y = /(Ax,A%) (33a) 

or 

^-1f(x,y)=f(Xx,X^y) . (33b) 

Differentiating with respect to A and setting A = 1, we obtain 

(0-1 )f = x f x + 0 y f y , (34) 

a linear partial differential equation for / . The characteristic equations are 

dx _ dy^ __ df 
x ~ (3y~ (0-l)f • 
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Two integrals of these characteristic equations are y/x13 and f , so the general 
solution of Eq. (35) is 

^ = f(J>) • <36> 
where F is an arbitrary function. This equation expresses the restriction of the 
form of / imposed by the condition of invariance of the differential equation to the 
stretching group equation (31). 

An invariant of the group is the function u = y/x@. If we replace y by u we 
shall get a separable differential equation. For 

du y fiy f 

y 
xt*. 

du 

dx x0 1 

so that 

T = F(u)~ /3u • (37b) 

2 .5 Lie also considered second-order differential equations. Such equations have 
the general form g(x,y,y,y) = 0. To test whether such an equation is invariant to 
the group with infinitesimal components £,77 we must calculate the transformation 
law for the second derivative. A computation following the line from Eq. (12) to 
Eq. (15) gives 

V d d = i [ t ~ ^dis + ^ ^ + y ^ * ~ ~ 

for the component of the extended infinitesimal transformation belonging to y. 
(Remember 77d is a function of x,y, and y!) The invariance of g(x,y,y,y) = 0 
means that 

+ V9y + Wy + Vdd.g% = 0 , (39) 

which is derived exactly as Eq. (18) was. 
Suppose now we imagine the second-order differential equation solved for y:y = 

f(x,y,y). Introduce the new variable z = y. Then the second-order differential 
equation becomes a pair of coupled first-order differential equations, 

* = f{*,V,*) , (40) 

y = ^ , 

which can be written in the form 

dz dy . 
= — = dx , (41) f(x,y,z) z 

which is slightly more transparent than Eq. (40) for the purposes of this discussion. 
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Equation (44) determines a line element at every point (x,y,z) in three-
dimensional space. The totality of these line elements comprises the direction field 
of the second-order differential equation. In these days of powerful computer graph-
ics it is not overly ambitious to aspire to plot this direction field, but even if we 
could, comprehending its content at a glance probably would tax our skills beyond 
their limits. But the concept of a three-dimensional direction field is not without 
its use. The direction field determines a two-parameter family of integral curves 
that fill all of space. (That two parameters are involved can be seen by noting that 
the intersection of a curve with some fiducial plane is specified by two coordinates 
that can serve to identify the curve.) If the differential equation is invariant to the 
group (£,77), this family of integral curves must be transformed into itself by the 
group since it is logically equivalent to the differential equation. (In transforming 
the curves, of course, is used as the component of the infinitesimal transformation 
belonging to z.) 

The image of an integral curve of the family is another integral curve of the 
family. Since the group is a one-parameter group of transformations, a curve and 
all its images form a one-parameter family of curves in space, i.e., a surface. This 
surface, by the manner of its construction, is furthermore invariant to the group, 
i.e., it transforms into itself. 

An invariant surface h(x,y,z) = 0 in three-dimensional space must satisfy the 
relation 

f / i r f T]hy + Tjdht = 0 (42) 

[since h(x + £<iA, y + z + rf^dX) also equals 0]. The characteristic equations of 
(42) are 

dx = dy = 

C V Vd ' 
If we know two integrals of Eq. (43), u(x,y) and v(x,y, z), the most general solution 
of Eq. (42) is h(x,y, 2) = F(u,v) = 0, where F is an arbitrary function. This is the 
most general form of surface invariant to the group (£,77,Tjd). 

The one-parameter family of invariant surfaces into which the integral curves can 
be grouped thus takes the form F(v.,v,C) = 0, where C is the parameter labeling 
the individual surfaces. But such a form corresponds to a one-parameter family 
of curves in the (u,v) plane. Such a one-parameter family of curves is logically 
identical to a first-order differential equation in u and v. So introduction of the new 
variables u(x,y) and v(x,y,y) into the second-order differential equation reduces it 
to a first-order differential equation. 

Because u and v are integrals of Eq. (43), they are invariant to transformations 
of the group, i.e., they are group invariants. The invariant v, because it involves y 
as well as x and y, is called a first differential invariant. So we may state Lie's very 
important theorem about second-order ordinary differential equations as follc-vs: 
if we introduce as new variables an invariant and a first differential invariant of 
a group leaving a second-order ordinary differential equation invariant, the differ-
ential equation reduces to first order. The importance of this theorem is that we 
can comprehend the contents of the first-order ordinary differential equation "at a 
glance." 
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As an illustration, let us choose the Emden-Fowler equation, which, as 
tioned in Chap. 1, arises in the study of the equilibrium mass distribu 
cloud of gas held together by gravity. We specialize first to a gas with a > 
specific heats (adiabatic exponent) of 4/3. The Emden-Fowler equation ' 
the form 

y + — + I/3 = 0 . f44) 
x 

This differential equation is invariant to the affine (stretching) group 

x' = Xx . (45) 

To see that this is true we calculate the transformation laws for y and y: 

y' = X~2y and y' = A~3y . (46) 

So if we imagine the differential equation (44) written in the primed form and 
use Eqs. (45) and (46) to transform to the unprimed form, each term in Eq. (44) 
individually is multiplied by the factor A - 3 . This common factor can be cancelled, 
so that in the unprimed form Eq. (44) has precisely the same form as in the primed 
form. 

Because a multiplicative group like Eq. (45) will cause each term in Eq. (44) 
to be multiplied by a power of A, the computations outlined above can be done in 
one's head. When we see an equation like Eq. (44) whose terms are products of 
powers of x ,y ,y , and y, we should at once test to see if it is invariant to a stretching 
group. Since the most general stretching group in two variables has the form 

y' = ^y , 

x' = Xx , (47) 

the transformation laws for y and y are 

y' = A ' - 1 * , 

y' = A"-2y . (48) 

If we imagine Eq. (44) to be written in the primed form and transform to the 
unprimed form, the terms in Eq. (44) are multiplied by the factors X&~2, X&~2, and 
A3**, respectively. In order for these terms to be equal (so we can cancel them as a 
common factor), ft — 2 must equal 3ft, i.e., ft must be —1. 

We can now write down an invariant u and a first differential invariant v for the 
group equation (45) at once: 

u = xy, v = x2y . (49) 

The choices of Eq. (49) are not the only possible ones [u. = xy, v = y/y2 or u = x2y2, 
v = (y/y2)exp(xy) are also possible]. However, Eq. (49) is a suitable choice. Then 

^ = 2xy + x2y = 2xy + x2 (-— - y3 ) = - i 2 y 3 = -•u3/® , (50a) 
dx \ x J 
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(Lit 
— = y + xy = (u + v)/x . (50b) 

Here we have eliminated y using the differential equation (44) and then eliminated y 
and y in favor of u and v. Upon dividing, we get the first-order differential equation 

d v /e:n \ — = . (50c) 
du u 4- v 

This differentia] equation was studied in Chap. 1, where it was given as Eq. (1.20). 
The Emden-Fowler equation for a gas of adiabatic exponent 6 /5 is 

y+-y + y' = 0 , (51) 
x 

and this can easily be shown to be invariant to the group 

y' — \ ~ 1 / z y , 

x' = Ax . (52) 

An invariant and a first differential invariant are u = yy/x and v = yx 3 / 2 . Differen-
tiating them with respect to x, we find 

* - ! L ! J h ! , (53) 

du 2v + u v ' 

which can be integrated explicitly! Writing Eq. (53) as 

2v dv + u dv + v du + 2u5du = 0 , (54a) 

we see that it is already in the form of a perfect differential. Thus 

3v2 + 3uv + u6 = const . (54b) 
If we now replace u and v by their equivalents in terms of x,y, and y, we find 

that Eq. (54b) is equivalent to 

3a)3y2 + 3 y y x 2 + x3y6 = const . (54c) 

So we are faced with the task of integrating another first-order differential equation. 
But because Eq. (54c) is equivalent to Eq. (54b), and because Eq. (54b) is invariant 
to Eq. (52) (it is composed of invariants!), Eq. (54c) must be invariant to Eq. (52). 
This means that, for example, we can separate variables by introducing an invariant 
in place of y [remember, Eq. (52) is a stretching group]. A convenient choice is 
w = u2 = xy2, which causes Eq. (54c) to separate: 

± = V 5 dw 
x 2 (3to2/4 — wA + const • u?)1/2 ' V ; 

Because the interpretation of y is a gravitational potential, the physically interesting 
solution of Eq. (51) is the one for which y is finite at the origin and has zero derivative 
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there. For that solution, the constant in Eqs. (54c) and (55) must be zero. Then 
Eq. (55) can be integrated by setting w = (v3/2) sin(0/2). We find after some 
tedious computation 

3 ax ( 3a \1//2 ,. .. 
W = x2 + 3a2 ' V ~ V x2 + 3a2 J ' a = constant of i n t e 8 r a t l o n • (56) 

2.6 The Emden-Fowler equation (51) could be solved analytically after its reduction 
to the first-order differential equation (53). This must be counted as good fortune 
and is generally not the case. How then do we proceed? The answer to this question 
is best given by means of an example, the solution of the Thomas-Fermi equation. 
This nonlinear second-order equation arises in the determination of the screening 
of the Coulomb potential of a nucleus by the electron cloud surrounding it. It has 
the form 

* 1 / 2 i / = y 3 / 2 , (57) 
where x is the radial coordinate (in suitable atomic units) and y is a multiplicative 
correction factor to the unshielded nuclear Coulomb potential. The integral curve 
of Eq. (57) we seek is one for which 

y(0) = 1 and y(oo) = 0 . (58) 

Since Eq. (57) is composed of products of powers of x, y, and y, we try the 
stretching group equation (47). Substituting Eqs. (47) and (48) into the primed 
form of Eq. (57), we find 0 — 3 /2 = (3/2)/? as the condition for invariance. Thus 
0 = —3, and Eq. (57) is invariant to the stretching group 

x' — Ax , 

y' = A"3y • (59) 

If we use u = x3y and v = x4y as an invariant and a first differential invariant, we 
find 

x ^ = 4 x 4 y + x5y = 4x4y + x 5 ( x - 1 / 2 y 3 / 2 ) = 4 u + u 3 / 2 , (60a) 
ax 

x^- = 3x3y + x4y = 3u + v , (60b) 
dx 

dv 4v + u3/2 . 
— = — . (60c) 
du 3u + v v ' 

Equation (60c) is not explicitly integrable in terms of elementary functions, so 
we shall turn to an analysis of its direction field to help us to solve Eqs. (57) and 
(58). Now since x is positive (being a radius) and y varies between 0 and 1, we 
may guess y is positive and y negative. Therefore u — x3y > 0 and v = x 4 y < 0, 
so we shall only be interested in the fourth quadrant of the (u,v) plane. Figure 1 
shows the direction field of Eq. (60c) in this quadrant. The curve of zero slope is 

so that 
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v = —u the curve of infinite slope is v = — 3u. These curves intersect at two 
singularities, the origin 0 and the point P: (144, —432). 

The signs of the slope dv/du being as shown in the figure, the origin must be 
a node and the point P a saddle. One of the integral curves in Fig. 1 corresponds 
to the solution of Eqs. (57) and (58) that we seek. How shall we find out which 
one? In the first place, when x = 0, y = 1, so u = x3y = 0. If y(0) is finite, then 
v = x*y = 0 as well. So the integral curve we seek passes through the origin O, 
which corresponds to x = 0. All the curves that emanate from the origin except 
the separatrix S eventually leave the fourth quadrant. So our attention is naturally 
focused on S. 

The point P corresponds to the limit x = oo. This we can see as follows. The 
slopes of the two separatrices through P can be calculated from Eq. (60c) using 
l'Hospital's rule; they are (1 ± \ /73)/2. So if near P we write u = 144 + Au and 
v = - 4 3 2 + Av, then Au /Au = ( l - \ / 7 3 ) / 2 on S. Then, near P, Eq. (60b) becomes 

dx _ du 2 du 2 du 
x 3u + v ~ (7 - v^3)Au ( 7 - V 7 3 ) ( u — 144) 
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Thus, as u —> 144 from below, x -f oo. It follows, furthermore, from the definition 
of u that, when x is large, 

So without yet having solved any differential equations we already have the asymp-
totic form of the solution we seek. 

We can find additional useful information by studying the behavior of the sep-
aratrix S near the origin. Since the separatrix lies between the curves v = — u Hj4 
and v = —u, it can approach the origin in one of three mutually exclusive ways, 
namely, (i) — v ~ u, (ii) u — v u3/2, and (iii) — v ~ u3/2. The first alternative 
means v = au near O. Then Eq. (60c) reduces in leading order to a = 4a / (a + 3), so 
a = 1. This curve does not lie in the fourth quadrant and so cannot represent S. The 
third alternative means v — au3/2, which converts Eq. (60c) into 3/2a = (4a + l ) / 3 
in leading order, so a = 2. Again, the curve does not lie in the fourth quadrant. 
The second alternative converts Eq. (60c) into dv/du = 4u/3u in leading order, 
which implies v = —au4/3, where a is some positive constant. So S and indeed all 
integral curves entering the origin through the fourth quadrant do so along curves 
of the form v — —au4/3, different curves being labeled by different values of a. 

The value of a for the separatrix has an interesting and useful interpretation. 
Since v = —au4/3 near O, we have x*y = — a(x3y)4^3 near x = 0. The powers of 
x cancel, and since y(0) = 1, we thus have y(0) = -a. We can find the value of 
a by numerically integrating along S from P to O, using the slope (1 — 

\ /73 ) /2 to 
obtain starting values close to P. Once we have done so, we have starting values 
for the integration of Eq. (57) at x = 0. Thus, at the cost of a single numerical 
integration of a first-order differential equation, we have converted the two-point 
boundary value problem expressed by the conditions of Eq. (58) into an initial-value 
problem. 

This program of calculation is not so easily carried out. To see why, note that 
if a is of the order of unity, v = au4/3 will not be greater than u3i2 until u - 1 / 8 1. 
If we want the ratio vju3!2 to be, say, 1000, u will have to be smaller than 10— 18! 
So we will not be able to obtain a simply as lim (v/u4^3). We can circumvent this •u—>0 
difficulty by constructing a power series for v that starts with the leading term 
au4/3. A tedious calculation gives 

„. _ _ _8 , 0-9 4 2 .10 34 u . . „ , 1 2 v = az + Zz — —a z 7Taz ' ~ )z 
6 y 

1102 2 13 f 950a — 260a4 \ 14 + .„_ a z + 
135 V 81 

+ ; z = ul!« . (63) 

A numerical integration (fourth-order Runge-Kutta) from P toward O gives 
v(10~ 6 ) = -0 .141663 x 10~7. The value of a calculated from Eq. (63) is then 
a = -1 .58806, within 3 parts in 104 of Baker's value of -1 .588588. 

Once we have the value of a, we can find starting values of y and y near the 
origin using the following power series given by Baker: 
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y — 1 — ax + x3/3 - 2ttx'1/5 f ... 

+ x3/2 
4 ~ - - 2 a ,™ , 4 / 2 , a 3 . , - - 2ax/5 + 3a i /70 + ^ I - + - ) 5 4- . . . (64) 

Shown in Fig. 2 are two sets of points calculated by forward integration of Eq. (57) 
(fourth-order Runge-Kutta) for a = -1 .588 and a = -1.588588. The two sets of 
points coincide well for x < 3, but beyond x = 3, they diverge from one another. 
This is because a forward integration is equivalent to an integration in Fig. 1 along 
the separatrix in the direction O —> P. This is the unstable direction, and sooner 
or later a numerical calculation will be thrown off the separatrix to one side or the 
other. We could graphically join the points at small x to the asymptote 144/cc3 

with a curve like the solid one in Fig. 1. Such an interpolation gives a reasonable 
depiction of the solution, but not a highly accurate one because of the uncertainty 
of the graphical interpolation. 

There is another way to calculate the curve of y(®) without resorting to graphical 
interpolation. The procedure is this. First we find by numerical integration of 
Eq. (60c) some convenient point (u,v) on the separatrix S near P. From u and v 
we calculate values of y and y according to y = u/x3, y = v/xA\ the value of x we 
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x 

Fig. 2. The solution y(x) of the Thomas-Fermi equation for which y(0) = 1. 
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choose arbitrarily. Then using x,y,y as initial data we integrate backward toward 
i = 0 (i.e., in the stable direction). In general, this integration will produce a 
y(0) ± 1. Choose A = [y(O)]1/3 and calculate new starting values x',y',y' from the 
old starting values x,y, y according to x' = Ax, y' = A_ 3y, y' — A T h e primed 
starting values, when integrated backward, will lead to the value of y'(0) ~ 1 as 
required and hence define the solution curve we are seeking. Furthermore, since 
the backward direction of integration of Eq. (57) corresponds to motion along the 
separatrix in the direction P —> O, it is the stable direction of integration. The 
solid curve in Fig. 2 was produced in this way. 

The reason that this works can be understood as follows. Suppose we denote 
the solution of Eq. (57) that obeys the boundary conditions of Eq. (58) by y.(x). 
If y'(x') is any image of y*(x) under the transformation equation (59), then 

y'(0) = A - 3 y , (0) = A"3 , (65a) 

since x = 0 transforms into x' — 0, and 

y'(x') ~ A - 3 ^ = ~ -» 0 as x' oo . (65b) 
X *c 

From this we can see at once that yt and its one-parameter family of images look 
like Fig. 3 when plotted in the x ,y plane. 

As we have seen, when u and v are calculated from x,y„, and y„, their locus 
in the u ,v plane is the separatrix S. Any image point of x , y , , and y„ will lead to 
the same values of u and v because u and v are invariants of the transformations. 
Hence y, and its one-parameter family of images all map into the separatrix S. 
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The image of ®,y*,y» is A®, A_3y*, A~4y*. So to any values u and v, any value 
of x can correspond, depending on the value of A. If we know a point u,v on S 
and choose a value of x, we have implicitly chosen a value of A, i.e., a particular 
curve of the family. Using the values of y and y corresponding to the chosen value 
of x, we can integrate backward to find y(0). Then we determine A using Eq. (65a). 
Having determined A, we can scale the curve y(x) that we just calculated to y*(®*) 
according to x = A-1®, y» = A3y. 

The reasons for the elaborate procedures just outlined are twofold, namely, 
that the boundary conditions (58) are two-point boundary conditions and that 
numerical integration of Eq. (57) in the forward ^-direction is unstable. Because 
of these reasons, straightforward trial-and-error solution of Eqs. (57) and (58) is 
unrewarding, tedious, and inaccurate. The methods given here circumvent trial-
and-error and are, moreover, capable of high accuracy. 

2.7 Another second-order equation whose associated first-order equation cannot 
be solved in simple terms is van der Pol's equation, 

y - e ( l - y 2 ) y + y = 0 , e > 0 . (66) 

This equation can be considered as the equation of harmonic motion (y -(- y = 0) 
with a term added which dampens the motion for large amplitudes and supports it 
for small motions. Because x, the independent variable, does not appear explicitly, 
Eq. (66) is invariant to the translation group 

y' = V , 
xf = x + A . (67) 

The dependent variable y is an invariant u of the group equation (67) and the 
derivative y is a first differential invariant v. (These simple choices are not the only 
ones possible: any function of y is an invariant, and any function of y and y is a 
first differential invariant!) Substituting u = y and v = y in Eq. (66), we find the 
associated first-order equation 

^ = e(l - u2)v - u 
du v 

Figure 4, the direction field of Eq. (68), shows the loci of zero and infinite slope. 
If we focus our attention on the region of the u-axis far to the right of the origin, 
we can see that there are two families of curves there, those that cross the u-axis 
and those that cross the locus of zero slope. These two families must be separated 
by a separatrix in the fourth quadrant, shown as curve S. A second separatrix 5', 
the image of S under reflection in the origin, emerges in the portion of the second 
quadrant near the u-axis far to the left of the origin. Because these curves cannot 
cross, they both must wind inward as we traverse them in the clockwise direction. 
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Fig. 4. Sketch of the direction field of Eq. (68), which is associated with van 
der Pol's equation (66). 

The separatrices occur as a symmetrical pair because Eq. (68) is invariant to 
the single transformation u' = — u, v' — —v that represents inversion in the origin. 
By extension, all integral curves occur in symmetrical pairs. 

Shown in Fig. 4 is a typical integral curve I lying above 5' in the second quad-
rant. As we proceed along it in the clockwise direction it, too, winds inward. Does 
it wind inward to the origin, or does it finally approach some limiting orbit that en-
circles the origin and closes upon itself? Such a closed trajectory, if it exists, would 
correspond to a periodic solution of Eq. (66). To see whether a closed trajectory 
exists, let us examine how the integral curves behave in the neighborhood of the 
origin. If they spiral out as we advance clockwise, there will have to be at least one 
closed orbit. 

Near the origin u2 C 1, so Eq. (68) becomes 

Equation (69) is invariant to the group v' = Xv, u' = Xu, so we can integrate 
it explicitly; however, instead of plunging directly ahead, we employ an idea of 
Lienard's that will help us determine with only a little computational labor whether 
the spiral integral curves wind in or out. Write Eq. (69) as 

(70) 
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Let us now integrate Eq. (70) clockwise over the upper half of the trajectory shown 
in Fig. 5: 

1 f2 

~(u2 - Uj) = e I vdu> 0 , (71a) 
2 J i 

since v > 0 on the upper half of the orbit. Thus u\ > u\ or u2 > |ui|. If we 
integrate Eq. (70) clockwise over the bottom half of the trajectory, we get 

^(u2-u2) = t j \ d u > 0 , (71b) 

since v < 0, but we are integrating in the negative u-direction. Thus, u\ > u\ or 
|u3| > . Since |ua| > u2 > |ui|, the integral curves near the origin must spiral 
outward in the clockwise direction. 

By an elaboration of the above argument, Lienard proved not only that the 
van der Pol equation had closed trajectories, but also that there was exactly one such 
closed trajectory. Now since u = y and v = y, as x increases we traverse integral 
curves in the first and second quadrants (v > 0) in the direction of increasing 
u (du — dy = y dx = v dx > 0). Similarly, we traverse integral curves in the 
third and fourth quadrants in the direction of decreasing u. Clearly, then, as x 
increases, we spiral clockwise around the origin in the (u,v) plane. This means 
that as x increases, we spiral toward the fixed trajectory in the (u,v) plane. This 
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closed trajectory represents a stable, periodic limit in the ( x , y ) plane to which every 
solution therefore tends as x increases. It is called a limit cycle. Shown in Fig. 6 is 
the solution of van der Pol's equation for e = 5, for which y(0) = 0 and y(0) = 0.01. 
These initial conditions are quite distant from those that describe the limit cycle, 
for which y = 4.3752 when y = 0. Nevertheless, the solution becomes virtually 
indistinguishable from the stable limit cycle after only one oscillation. 

2.8 The use of Lienard's simple argument is not a conceit but in fact is probably the 
simplest and most straightforward way of determining whether the integral curves 
near the origin spiral inward or outward as we circulate clockwise. If we had plunged 
straight ahead instead of using Lienard's argument and solved Eq. (69) directly, we 
should have found, after some tedious calculation, 

l 1 / 2 2\ e / 2u - tit \ 
e < 2 : - ln(v — euv + u ) + , tan I — . — I = const , (72aJ 

2 V4 —e2 \ u v 4 — e 2 / 

e > 2 : i ln(uz - euv + u2) -
2 ' V 4 -

tanh"1 ( 2V. SU ) = const . (72b) 
\ u V e 2 - 4 / 

These expressions are far from illuminating, and it is by no means clear at a glance 
that the integral curves they describe spiral outward in the clockwise direction. 

A better alternative to solving Eq. (69) directly is based on the linearity of both 
the numerator and denominator of the right-hand side. Let us introduce a new 
parameter t by writing Eq. (69) as the coupled pair of linear equations 

— = ev -u , (73a) 

(T3B) 

We can write the general solution of these as a sum of exponentials in t. If we set 
v = AeM and u = BeXt, Eqs. (73a) and (73b) become 

AA = eA - B, BX = A (74a) 

or 
A2 - eA + 1 = 0 . (74b) 

Thus, 

* = + Ve2 - 4) . (74c) 

When e > 2, the two roots given by Eq. (74c) are positive; when e < 2, the two roots 
are complex conjugates whose real part is positive. So in either case, as t grows 
larger (corresponding to clockwise circulation about the origin), u and v move away 
from the origin. This method of analysis can be used for any singular point at which 
the leading term in both numerator and denominator is linear. 
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Fig. 6. Solution of van der Pol's equation for e = 5, for which y(0) = 0 and 
y(0) = 0.01. 
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Chap te r 3 

SIMILARITY SOLUTIONS OF SECOND-ORDER PARTIAL 
DIFFERENTIAL EQUATIONS 

"I have multiplied visions, and used similitudes." 
—Hosea 12:10 

3 .1 The heart and soul of this chapter is based on an idea first proposed and 
exploited by Birkhoff, who considered partial differential equations with one depen-
dent and two independent variables (for the sake of concreteness, call them c, z, and 
t, respectively). Many partial differential equations of physics and engineering are 
of this type: a good example for the reader to keep in mind for the moment is the 
ordinary diffusion equation ct = c2Z. Quite often such partial differential equations 
are invariant to one or more one-parameter groups of transformations. For example, 
the diffusion equation is invariant to the affine group c' = A°c, z' = Az, t' = A2t, 
where, owing to the linearity of the ordinary diffusion equation, a can be any fixed 
number. 

When the partial differential equation is invariant to a group, every transfor-
mation of the group carries a solution into another solution. Among the very wide 
manifold of solutions usual for a partial differential equation there may be some that 
transform into themselves, i.e., are invariant to the group. The condition of group 
invariance restricts the form of such solutions. In the example we have been pursu-
ing of the diffusion equation, solutions invariant to the affine group must have the 
form c = ta/2y(z/t1^2), where y is an arbitrary function of the argument x = z/i1!2. 
(We shall see presently why this is so.) Solutions invariant to affine groups are called 
similarity solutions. 

Birkhoff realized that, because the unknown function y is a function of one 
variable only, when the invariant form is substituted into the diffusion equation, 
the result is an • ••dinary differential equation for y in terms of x. The calculation 
of this ordinary differential equation is instructive. If 

c=t°'2y(z/t'/2) , ( la) 

c2 = t ^ - W y , ( lc) 
c , , = t ^ - ' y . (Id) 

Equating the right-hand side of Eq. ( lb) and the right-hand side of Eq. (Id) we find, 
after cancelling the common factor ta/2~1, the second-order ordinary differential 
equation 

. . a 1 . . . . 
y = 2 V ~ 2 X y ' ' ' 

Any solution of Eq. (2) will furnish a solution c(z, t) of the diffusion equation through 
the connection equation (la). 
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In obtaining the rightmost form in Eq. ( lb), we have combined powers of z 
and t to obtain powers of x. Some power of t was left over, namely, <f t / a _ 1 . The 
same power appears on the right-hand side of Eq. (Id), so that it can be cancelled in 
obtaining Eq. (2). If we had chosen for the argument of the function y a combination 
of 2 and t other than z/t1/2, e.g., 2 / i , this would not have been true. When we had 
eliminated all explicit appearance of z from the ordinary differential equation, there 
would not have remained a cancellable common power of t. (Try it!) So the group 
invariance helps us to find the right combination of z and t to use as the argument 
of y. 

3.2 Different values of the constant a. distinguish different solutions of the partial 
differential equation. Now, different solutions of a partial differential equation sat-
isfy different boundary and initial conditions, so we may expect that a is somehow 
determined by the boundary and initial conditions. To simplify discussion of the 
boundary and initial conditions let us use the language of heat diffusion, so that 
the dependent variable c can be called temperature and its negative derivative — cz 

can be called heat flux (or just flux). 
Consider now what I call the problem of clamped temperature in a half-space. 

Imagine the half-space z > 0 initially held at zero temperature to have its front face 
(2 = 0 ) suddenly raised to unit temperature, e.g., by being brought into contact 
with a heat bath. How does the temperature rise in the half-space as a function of 
time? The mathematical representation of the boundary and initial conditions of 
this problem is 

c(2,0) = 0 (z > 0) , (3a) 

c(0,<) = l ( < > 0 ) , (3b) 
c(oo,i) = 0 ( * > 0 ) , (3c) 

where Eq. (3c) expresses the implied condition far from the heated boundary. Let 
us rewrite these conditions using the invariant form of Eq. ( la). It is convenient to 
start with Eq. (3b); the reader will see why in a moment. According to Eq. (3b), 

1 = t°>'2y(0) , (4a) 

which can only be satisfied if 

a = 0 and j/(0) = 1 . (4b) 

If a had any other value than zero, the right-hand side of Eq. (4a) could not be held 
constant as the time t changed. When a = 0, Eq. ( la) takes the form c = y(z/t 
then Eq. (3a) and Eq. (3c) both become 

y{oo) = 0 . (4c) 

Thus the three boundary and initial conditions, Eqs. (3a)-(3c), for the partial dif-
ferential equation collapse to two boundary conditions, Eqs. (4b) and (4c), for the 
ordinary differential equation (2). This collapse of the boundary conditions from 
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three to two is essential to the success of the method of similarity solutions because 
in general three conditions overdetermine the solution of a second-order ordinary 
differential equation. 

Since a — 0 for the clamped-temperature problem, Eq. (2) takes the form 
y = —(l/2)xy, which can be integrated at once to give y = - C e x p ( —x2/4), 
where C is a (positive) constant of integration. A second integration gives y = 
C Jb°° exp(—U2/4) du, which already obeys the boundary conditions of Eq. (4c). To 
satisfy Eq. (4c), C must equal Then y = erfc(a:/2), where erfc is the comple-
mentary error function. Rewritten in terms of c, this solution takes the well-known 
form 

C = ^ • ( 5 ) 

3.3 Since Eq. (5) is invariant to the affine group c' — c, z' = Xz, t' = X2t (remember 
Q = 0 for the clamped-temperature problem!), so must be the boundary and initial 
conditions, Eqs. (3a)-(3c), that determine it. If they were not, then the boundary 
and initial conditions in the primed variables would be different from those in the 
unprimed variables. These different sets of boundary and initial conditions would 
therefore determine different solutions of the partial differential equation, which, 
being images of one another, could not be their own images, i.e., could not be 
invariant. 

When Eqs. (3a)-(3c) are written in terms of the primed variables they become 

c' ( j , o ) = 0 , (6a) 

( o , = 1 , (6b) 

C' = ° ' ( 6 C ) 

since when z = 0, z' = 0, when z = oo, z' = oo and when t = 0, t' = 0. Because 
z = z'/X and t = t'/X2 can have any value, Eqs. (6a) and (6b) can only be satisfied 
if 

c'(z',0) = 0 , (7a) 

c'(0,<') = l , (7b) 

c'(oo, t') = 0 , (7c) 

for all z' and Equations (7a)-(7c) are the same as Eqs. (3a)-(3c) except that 
they refer to the primed variables. 

If the clamped-temperature problem referred not to the half-space z > 0 but to 
the finite slab 0 < z < L, the boundary condition (3c) would have to be replaced 
by the condition c(L, t) = 0, which, upon transformation to the primed variables, 
becomes c'(L/X, i'/X2) = 0. Since t = t'/X2 can have any value, this boundary 
condition is equivalent to c'(L/X, i') = 0 for all t'. Now this is not the same as 
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c'(L, t') — 0 because in general A ^ 1. This means that the clamped-temperature 
problem in a finite slab cannot be solved in terms of a similarity solution of the 
partial differential equation but instead requires a solution of a more complicated 
kind. 

At an early epoch, however, when t <C L2 /4, the diffusing heat is not yet affected 
by the presence of the cold boundary at z = L. The temperature distribution does 
not yet "know" about the cold boundary and "thinks" the heat is diffusing in a 
semi-infinite half-space. So for short times, at least, the similarity solution gives 
a good approximation to the temperature distribution. For long times, t 
the steady-state solution c = 1 — z / L i s a good approximation to the temperature 
distribution. Knowing these two limiting temperature distributions often enables 
us to estimate quantities of interest. Suppose, for example, we wanted to know the 
heat flux —c2(0,<) through the slab as a function of time. Then 

— c2(0, t) = l/yfnt , t -C L2 j4 , similarity solution, (8a) 

= y , t £ 2 / 4 , steady-state solution. (8b) 
Li 

A simple graphical interpolation between these limits may well provide a sufficient 
estimate for practical purposes. 

3 .4 Next we consider what I call the pulsed-source problem in an infinite medium. 
At t = 0, an amount of heat Q per unit area is instantaneously introduced in 
the plane z — 0 and subsequently spreads out toward z = ±oo by diffusion. The 
boundary and initial conditions for this problem are 

/ 
c (2,0) = 0 , (9a) 

+oo 
c(z, t) dz — Q , (9b) 

c(±oo,t) = 0 . (9c) 

Equation (9b) expresses conservation of the heat injected by the initial pulse. If we 
substitute Eq. ( la) into Eq. (9b), the latter becomes 

Q = j+C° t^yiz/t1'2) dz = t j + ° ° y(x) dx , (10) 
J — oo J — oo 

where, as before, x — zjt1!2. The integral on the right-hand side of Eq. (10) is a 
pure number, so for Eq. (10) to be satisfied for all t, a must equal —1. Then 

c{z,t) = t~1/2y{x) , x = z/t1'2 . (11a) 

Since y(x) must be symmetric, i.e., since y(x) = y( — x), the boundary and initial 
conditions, Eqs. (9a)-(9c), collapse to 

/•oo 

/ y{x) dx = Q/2 ( l i b ) 
Jo 
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and 
y(oo) - 0 . (11c) 

[The boundary condition (11c) is sufficient as it stands to satisfy Eq. (9c). To satisfy 
Eq. (9a), y must approach zero sufficiently rapidly as x approaches infinity so that 
lim t~ 1 / 2 y (z / t 1 / 2 ) = 0. Whether this requirement is fulfilled can only be tested a 

posteriori once we have solved for y(x). If the requirement is met, the similarity 
solution is the solution to the stated problem. If not, the solution to the stated 
problem is not a similarity solution but a solution of some other kind.] 

When a = — 1, the ordinary differential equation (2) is again easily solvable, for 
its right-hand side is just the perfect differential —d/dx[(l/2)xy]. So, integrating 
once, we get 

y = - \ * y - (12) 

The constant of integration vanishes since, by symmetry, y(0) = 0. Integrating 
again, we find 

y = (7 exp( —i2/4) , (13a) 

which obeys Eq. (11c). From Eq. ( l i b ) it follows that C = Q/\f4n, so that 

C ~ Q (4trty/2 ' ( H ) 

another well-known solution. [Now we can verify that the initial condition, Eq. (9a), 
is satisfied, i.e., that lim c(z,t) = 0, because the exponential term overpowers the 

factor t'1'2.) 
It is perhaps worthwhile to note that Eqs. (5) and (14) are solutions of dif-

ferent ordinary differential equations because they satisfy different versions of the 
generalized ordinary differential equation (2) corresponding to different values of a. 

3 .5 What we have done so far has been based on the form of Eq. ( la) for an 
invariant solution. We can certainly see at once that Eq. ( la) is invariant to the 
affine group c' = Aac, t' = A2f, and z' = Xz, and everything we have done so far 
could have been based on looking for special solutions of the form of Eq. (la). As 
it happens, Eq. ( la) is the most general form for a relation among c, z, and t that 
is invariant to the affine group. We can prove this easily by methods introduced in 
Chap. 2, and we can generalize at no extra cost of labor to the affine group 

c' = AQc , (15a) 

t' = A0t , (15b) 

z' = Xz , (15c) 

where the exponents a and 0 are particular prescribed constants. [Note that no 
generality is lost by taking the exponents of A in Eq. (15c) equal to 1.] 
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A relation c = f(z, t) among c, z, and I can be visualized as a surface S in three-
dimensional space. If this surface is to be invariant to the group equation (15), the 
image (c', z', £') of any point (c, z, t) on S must also lie on S. This means c' = / ( z ' , t1) 
or, what is the same thing, Xac = /(Az,A^<). If we differentiate this last equation 
with respect to A and set A = 1 (the value of A for the identity transformation), we 
get the first-order linear partial differential equation 

af = z f z + 0 t f t , (16) 

whose characteristic equations are 

d£ dz dt 
af ~z pf [ ' 

Two integrals of Eq. (17) are zjO^ and f / t a T h e most general solution of 
Eq. (16) is obtained by equating one of these integrals to an arbitrary function y of 
the other: 

When (3 — 2, this form reduces to Eq. (la). 

3 .6 So far we have applied Birkhoff's idea of seeking invariant solutions to the 
linear diffusion equation, for which there are excellent alternative methods of solu-
tion based on the principle of superposition, e.g., Fourier series and Laplace trans-
formation. Now let us turn our attention to a nonlinear diffusion equation for which 
Birkhoff's method seems to me to be the only one available. 

At low temperatures, the thermal conductivities of metals (e.g., copper or alu-
minum) are directly proportional to temperature, and their specific heats are pro-
portional to the cube of the temperature. So the ordinary one-dimensional heat 
diffusion equation for such a material becomes 

,dT d f,—dT\ 

where S is a constant having the dimensions of J-m~3-K~4 and k is a constant 
having the dimensions of W-m - 1 -K~ 2 . (ST3 is the heat capacity per unit volume 
and kT is the thermal conductivity.) If we set c = T2, then Eq. (19) becomes 

dc k a2c 
c 

dt s dz2 (20) 

Suppose now we consider what I call the clamped-ilux problem in a semi-infinite 
half-space. At t = 0, a heater covering the front face z = 0 of the cold half-space 
z > 0 is suddenly energized and begins producing a steady heat flux q (dimensions: 
W-m~2) into the half-space. How does the temperature in the half-space rise as 
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a function of time? The boundary and initial conditions corresponding to this 
problem are 

T(z,0) = 0 

~{kT)Tz\z=o = q 

T(oo,t) = 0 

or 

c{z, 0) = 0 

-kcz(0,t) = 2 q 

c(oo,0 = 0 

(21a) 

(21b) 

(21c) 

if we assume that the half-space is initially at zero temperature. We can eliminate 
dimensional quantities k, 5 , and q by choosing to work in a special system of units 
in which the constants k, S, and 2q all have the numerical value 1. Then Eqs. (20) 
and (21) become 

cct = czz (22a) 

and 
c(z,0) = 0 , (22b) 

c , ( 0 , 0 = - l , (22c) 
c(oo,t) = 0 . (22d) 

Now we test Eq. (22a) for invariance to the affine group (15): a short compu-
tation shows that it will be invariant only if the constants a and /3 obey the linear 
constraint 

a - 0 = - 2 . (23) 

[The easiest way to see this is to imagine Eq. (22a) written in the primed form and 
then replace the primed variables by their equivalents expressed in terms of the 
unprimed variables according to Eq. (15). Then we get Eq. (22a) in the unprimed 
variables with the left-hand side multiplied by the factor \ 2 a ~ P and the right-hand 
side multiplied by the factor Aa~2. If these two factors are equal, they may be 
cancelled. Then Eq. (22a) in the primed form implies Eq. (22a) in the unprimed 
form, and Eq. (22a) is invariant to Eq. (15). Thus, the exponents of A in the two 
factors must be equal, from which Eq. (23) follows at once.] 

The boundary condition, Eq. (22c), will be invariant if and only if a — 1 = 0, 
i.e., a = 1. Then from Eq. (23), it follows that (3 = 3. So according to Eq. (18) we 
should take the form 

c = t ^ 3 y ( z / t ^ 3 ) (24) 

for the invariant solution of Eqs. (22a)-(22d) that we seek. Differentiating Eq. (24), 
we obtain 

1 (25a) 

Cz = y , (25b) 

(25c) 

so that Eq. (22a) becomes, after some slight rearrangement, 

3y + xyy - y2 - 0 (26) 
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The boundary and initial conditions, Eqs. (22b) and (22c), collapse to the two 
conditions 

Sf(0) = - 1 , (27a) 

y(oo) = 0 . (27b) 
Equations (26), (27a), and (27b) together make up a two-point boundary value 

problem. Since Eq. (26) is not solvable in terms of tabulated functions, we shall 
have to solve it numerically!1 In order to start the numerical solution of a second-
order ordinary differential equation we need two initial conditions, a value and a 
slope. We, therefore, have to guess the value at the origin, integrate forward, and 
test whether y(oo) = 0. As it turns out, if we guess y(0) too high, the curve y(x) 
we get has a positive minimum and thereafter approaches oo asymptotically with 
a constant slope. As we lower y(0) the minimum moves down and to the right. If 
we guess y(0) too low, the y(x) we obtain plunges toward —oo at some finite value 
of x. As we raise y(0), this singularity moves to the right. (The reader is urged 
to try out some numerical integrations if he can.) It is possible, then, to improve 
our guesses of y(0). But the trial-and-error process outlined here is very laborious 
and converges rather slowly. Moreover, it is inelegant, although that may not really 
matter. 

There is a less laborious and much more elegant way of dealing with this two-
point boundary value problem based on the invariance of the ordinary differential 
equation (26) to the affine group 

y' = n~2y , ^ 0 < (i < oo . (28) 
x = fjLX , 

[For the moment, the existence of this group seems to be a piece of luck. Later we 
shall see that the invariance of Eq. (26) to Eq. (28) could have been foretold from 
the invariance of the partial differential equation (22a) to the one-parameter family 
of groups given by Eqs. (15a)-(15c) and (23).] If we introduce the invariant u = 
x2y and the first differential invariant v = x3y as new variables, the second-order 
ordinary differential equation (26) reduces to the first-order ordinary differential 
equation 

dv 9v — uv + u2 

da = 3(2u + v) ' ^ ' 

Now we examine the direction field of Eq. (29). Since we expect y to be negative 
and y to be positive, we expect u > 0 and v < 0. Thus, we want only the fourth 
quadrant of the direction field. Figure 1 shows a sketch of this quadrant. The 
curve of zero slope is v = u2 j(u — 9); the curve of infinite slope is v = —2u. These 
two curves intersect in two singularities, the origin O and the point P : (6 , -12) . 
The signs of the slope dv/du being as shown, the origin must be a node and the 
point P a saddle. The direction field is quantitatively the same as that shown in 
Fig. 2.1,* and the procedure we follow is similar to that which we followed for the 
Thomas-Fermi equation. 

*That is, Fig. 1 of Chap. 2. 
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When i = both u and v are zero, so the origin O in the (u,u) plane corre-
sponds to the initial value x = 0. As in the case of the Thomas-Fermi equation, the 
point P corresponds to x = oo. Also as before, two separatrices pass through P, one 
having the positive slope (\ /33 — 1 )/2, the other the negative slope — (\/33 + 1 )/2. 
The one with the negative slope, 5 , passes through the origin and is the integral 
curve of Eq. (29) that we want. In a manner similar to that which we used to 
obtain Eq. (2.61) we now find that, near P, dx/x = 2 du/(y/33 — 3 ) ( u p — u), so 
that x —•ooasu—* up along S. When x is large and u is very near up — 6, 
y = u/x2 ~ up/x2 = Q/x2, which fulfills boundary condition (27b). 

How does the separatrix 5 behave near the origin 01 Since it lies between the 
locus of zero slope and the locus of infinite slope, 2u > |t>| > it2/9 near the origin. 
Now, close to the origin, |«| and jw| are <Cl, so Eq. (29) becomes 

dv 9v + u2 

dk = 3(2u + u) 

because 9|v| |uu|. (Note that we cannot say that the first-order term 9v greatly 
exceeds the quadratic term u2 because we do not know the relative magnitudes of 
u and v.) Three possibilities exist: |u| ~ u, u > |u| » u2, and |v| ~ u2. The 
first leads to v = u, which does not lie in the fourth quadrant. The second leads 
to v = Cu3/2, where C is a constant of integration. The third leads to v = u 2 /3 , 
which also does not lie in the fourth quadrant. Only the second alternative yields 
an allowable result; we expect C < 0. 
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If we substitute for u and v their definitions in terms of x and y, the relation 
v — Cu3/2 becomes 

c = m/y3/2(o) (3i) 
if we remember that the point x = 0 corresponds to the origin u — 0, v = 0 
in the (u,v) plane. To find C we can integrate Eq. (29) numerically from P to 
O. To start, we step away from P using the slope —(%/33 + l ) / 2 obtained from 
Eq. (29) with l'Hospital's rule. Then we integrate toward O, decreasing the interval 
of integration as we approach 0, until the ratio v/u3/2 becomes constant to the 
desired number of figures. This procedure, which requires one integration only, gives 
C = —0.5383 to four significant figures. Armed with this value of C, we can find 
the hitherto unknown value of y(0) corresponding to the slope y(0) = — 1, namely, 
y(0) = 1.511. 

Figure 2 shows a curve obtained by forward integration of Eq. (26) with the 
initial conditions y(0) = 1.511, y(0) = —1 [curve (a)]. As we might have expected 
from the divergence of the integral curves in Fig. 1 near the saddle point P, forward 
integration (0 —> P in Fig. 1) is unstable. That is the reason that beyond about 
x = 5, curve (a) progressively diverges more and more from the asymptotic limit 
6 /x 2 that it should approach. For practical purposes it may be satisfactory to join 
the points of the numerically calculated curve for x < 5 graphically to the asymptote 
6 /x 2 . If higher accuracy is desired, we can calculate y(x) numerically by backward 
integration as described in the last paragraphs of Sect. 2.6 [curve (b)]. 

According to Eq. (24), c(0,f) = y(O)*1/3 so that r(0,<) = [y(0)]1/2*1/6 = 
1.229 t1 / 6 . This formula is written in the system of special units. To convert it 

O R N l - D W G 87C-2361 FED 

Fig. 2. Solution of the ordinary differential equation (26) and the boundary 
condition (27). Curve (a) was obtained by a forward integration that eventually 
becomes unstable. Curve (b) was obtained by a backward integration that is always 
stable. 
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into a form that is correct in any set of units, we make it dimensionally homo-
geneous by multiplying with suitable powers of k, S, and 2q. Because the latter 
quantities are all numerically equal to 1 in special units, multiplying the terms of an 
equation by powers of them changes nothing. Once the equation is dimensionally 
homogeneous, it is then correct in any set of units. Thus T(0,£) = l .54S(q2 t /kSy^ 6 , 
which gives the temperature at the front face of the half-space. 

3 .7 The turning point in Sect. 3.6 was the recognition of the invariance of the 
ordinary differential equation (26) to the affine group (28). The existence of such 
an associated affine group for the ordinary differential equation is a consequence 
of the partial differential equation's invariance to a one-parameter family of affine 
groups of the type 

c = Xac , (32a) 

i' = A0t , (32b) 

z' = \z , (32c) 

where a and /3 fulfill the linear constraint 

Ma + N0 = L (32d) 

and M, N, and L are fixed coefficients determined by the structure of the partial 
differential equation [cf. Eq. (23)]. The parameter A labels the individual trans-
formations of a group; the parameter a labels the groups of the family. If the 
partial differential equation is invariant to such a one-parameter (a) family of one-
parameter (A) groups, the ordinary differential equation that gives its similarity 
solutions is invariant to the associated affine group, 

(33a) 

x = \ix (33b) 

(here \i is the group parameter of the associated group). 
To see why this is so, we begin by noting that functions c(z,t) invariant to a 

group of the family of Eq. (32a), say the group corresponding to the parameters «o, 
/30, must have the form of Eq. (18), namely, 

« = ( j i z c ) - • « s i i k • ( 3 4> 

The parameters ao, /?o, which obey the constraint (32d), are determined by the 
boundary and initial conditions that specify the particular problem we are dealing 
with. 

If we transform Eq. (34) (imagined written in the primed form) by Eqs. (32a)-
(32c) with a = Q0 and 0 — /?o, we recover Eq. (34) itself in the unprimed form. 
What happens if we transform Eq. (34), written in the primed form, by a group of 
the family for which a / ao, /? ^ /?o? We shall certainly get another solution of the 

y' = t*L,My 
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partial differential equation, for the image of any solution is another solution. This 
new solution is given by 

where fjL = \l~0/P<\ Because the pairs a, (3 and a 0 , 0o separately obey the linear 
constraint (32d), it follows that 

Q0/3 - a0o L 
0-00 = M ' (36) 

so that the new solution of the partial differential equation is given by 

c = tC L"l^ti-L / My{l ix) . (37) 

Equation (37) has the same form as Eq. (34), i.e., t " 0 ^ 
times a function of 

x = z/tf1^", which means that y(x ) and fi-L^My(fix) must satisfy the same ordinary 
differential equation. Now the one-parameter family of functions fi~Ij^My(fix), 0 < 
/i < oo, is the same as the one-parameter family of images of y(x) under the group 
of transformations 

y = VL/My , n (38a) 
0 < 7] < OO . 

x' = rjx , (38b) 

In fact, the function fi~L^My(fj,x) is the image of y(x) for the transformation of the 
group (38) for which 77 = . Seeing this last assertion has troubled some of my 
students, so I give below two proofs of it, a short one and a long one; the long one 
has the virtue (I hope) of complete transparency. 

The short proof is embodied in the line of equalities 

y'(»') = rjL/My{x) = rf'™y = y^x') . (39) 

The first equality comes from Eq. (38a), which says that the value of y' at the 
image point x' is 7fLlM times the value of y at the source point x. The second 
equality follows from Eq. (38b). The third equality follows from taking 77 = /x - 1 . 
The interpretation of Eq. (39) is this: the image function y'( . . . ) is the same as 
the function (x~ L / M y(n. . . ) , where the three dots signify the place at which the 
argument (the same for both functions) must be inserted. 

The longer proof makes use of the three diagrams shown in Figs. 3(a)-3(c). 
Figure 3(a) shows curve y = f(x), which will be transformed in Fig. 3(b) to a 
new curve y = n~af(fix) and in Fig. 3(c) into the image under Eqs. (38a) and 
(38b) for which 77 = (a = L/M). Shown again for reference in Fig. 3(b) is the 
curve y = f(x). Let us choose an abscissa x and calculate graphically the value of 
y = fj.~a f(fj.x). Suppose the abscissa x lies at point A. Then fix would be at point B. 
The height of point C gives the magnitude of f(fix) and the height of point D the 
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Fig. 3. Auxiliary sketches for use in the proof that p L^1y(fix) is an image of 
y(x) under a transformation of the group (38a) and (38b). 

magnitude of fj,~af(fxx). When this last height is plotted over the abscissa A, we 
have a point E belonging to the curve y = n~a f(fix). 

This point also lies on the image curve of y = f(x) under Eqs. (38a) and (38b) 
with r] = fi"1. This time we start with the abscissa x lying at point B. Then point C 
gives f(x) and point D gives y' — riaf(x) = (j.~af(x). The abscissa x' = t j x = n~lx 
must then be at point A. The point (a:', y') thus lies at point E. By this construction 
we see that any point on one curve lies on the other, and conversely. So the two 
curves are the same, which is what we wanted to prove. 

What we have proved so far is that every image under the associated group, 
Eqs. (38a) and (38b), of a solution of the ordinary differential equation for y(x) 
is also a solution. So the total manifold of solutions of this ordinary differential 
equation must be carried into itself by the transformations of this group, that is, 
must be invariant to this group. Now since a differential equation and its manifold 
of solutions are logically identical, the differential equation itself must be invariant 
to the associated group (38a) and (38b). 

My earlier book, Similarity Solutions of Nonlinear Partial Differential Equations 
(Research Notes in Mathematics 88, Pitman Advanced Publishing Program, Pitman 
Publishing Inc., 1020 Plain Street, Marshfield, Massachusetts 02050), is devoted to 
the exploitation of the invariance of the ordinary differential equation for y(x) to the 
associated group (38a) and (38b). Among the partial differential equations treated 
there are (1) Ct — (CnCz)2 , which occurs in soil mechanics and boundary-layer 

113 
flow; (2) Ct = (C , / 0 ) z , which occurs in the theory of counterflow heat transport 
in superfluid helium; and (3) Ctt = Czz J1 C\dz, which occurs in the theory of 
motion of a shock-loaded membrane. Since that book is an ample reference for the 
interested reader, I close this chapter here. 
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Chapter 4 
MAXIMUM PRINCIPLES AND DIFFERENTIAL INEQUALITIES 

4.1 In the preface to their book on maximum principles, Protter and Weinberger 
introduce the subject with the following words: "[A maximum] principle is a gen-
eralization of the elementary fact of calculus that any function f(x) which satisfies 
the inequality / " > 0 on an interval [a,6] achieves its maximum value at one of the 
endpoints of the interval. We say that solutions of the inequality / " > 0 satisfy a 
maximum principle. More generally, functions which satisfy a differential inequality 
in a domain D and, because of it, achieve their maxima on the boundary of D are 
said to possess a maximum principle." 

The chief use of maximum principles is to provide bounds for solutions of dif-
ferential equations. We begin our discussion with the linear homogeneous, second-
order ordinary differential equation 

Can the function y(x) have a positive maximum on any interval [a, 6]? At a positive 
maximum, y > 0, y = 0, and y < 0. These conditions are inconsistent with Eq. (1), 
for then the first and third terms will be negative while the second will vanish; the 
three terms on the left-hand side cannot then sum to zero. So if y(a) and y(b) are 
both positive, the larger of the two must be the maximum value of y on the interval 
[a,6]. By a similar argument, we find that y cannot have a negative minimum. Now 
if y(a) and y(6) are both positive, y cannot become negative anywhere on the interval 
[a,6]. For if it did, it would have to possess a negative minimum, which it cannot. 
So with the meagerest of hypotheses we have proved that 0 < y < max[y(a),y(6)] 
if y(a) and y(b) are positive. 

The same style of reasoning we have just used can be employed to find bounds 
to solutions of Eq. (1). Suppose we know a function u(x) that, while not satisfying 
the ordinary differential equation (1), does satisfy the differential inequality 

'To compare great things with small." 
—John Milton 

Paradise Lost 

y + g(x)y + h(x)y = 0 ; h(x) < 0 . (1) 

u + gii + hu > 0 

with the boundary inequalities 

(2) 

u(a) < y(a) , 

u{b) < y(b) . 

(3a) 

(3b) 

If we subtract Eq. (2) from Eq. (1) and write w = y — u we get 

ib -f gw -f- hw < 0 . (4) 



62 

Furthermore, from Eq. (3) we get 

UJ (O ) , w(b) > 0 . (5) 

The function w(x) cannot have a negative minimum, for at a negative minimum 
w < 0, w — 0, iv > 0, which cannot satisfy Eq. (4). But then w can never dip below 
zero in the interval [a,6|. So w > 0 or, what is the same thing, 

y ^ u . (6) 

The assertions made above hold if the direction of all inequalities is reversed. 
The assertions are true as well if on the right-hand side of Eqs. (1) and (2) zero is 
replaced by a function f(x). 

4.2 The restriction h < 0 plays an essential role in the foregoing arguments, which 
collapse completely without it. But even if h is not everywhere negative in [a,6], if 
it is possible to find a function t(x) positive in [a,6] and such that 

t + gt + ht < 0 , (7) 

then the above theorems can be rescued. To see how this works, let us start again 
with Eqs. (1), (2), and (3) and proceed exactly as before to Eqs. (4) and (5). If 
a positive function t obeying Eq. (7) can be found, then we set w = at. A short 
computation shows that 

( . f i + 9*- + ht\ 
s+[g + 2-)s + ^ y~ J 3<0 (8) 

while 
j ( a ) , s(b) > 0 . (9) 

In view of Eq. (7), Eq. (8) is covered by the h < 0 case. Therefore, as in Sect. 4.1, 
s > 0. Since t > 0, this means w > 0 and y > u. 

As an example of the use of these techniques, we take the following problem of 
Collatz: given 

y + (1 + x2)y + 1 = 0 (10a) 

with 
y ( ± i ) = o , (10b) 

estimate y(0). To get a lower limit we need a function u(x) that will make the left-
hand side of Eq. (10a) greater than zero in the interval ( — 1, +1). If it + u + 1 = 0 
and if u > 0 in ( - 1 , +1) then u + (1 + x2)u + 1 > 0 since x2u > 0. If we take 
t t (± l ) = 0, too, we then find u — see l - cosa; - 1. If, as before, w = y - u, we find 
ib + (1 + x2)w < 0, i y ( i l ) = 0. Here g = 0 and h = (1 + x2) > 0, so we must look 
for a function i satisfying Eq. (7) on the interval ( — 1, +1). The function t = 1 — ac2 

suffices, for i + (1 + x2)t = - 2 + (1 - x*) = - 1 - i 4 < 0. Then, as above at the 
beginning of this section, w > 0 or y > u. Thus, T/(0) > u(0) = sec 1 — 1 = 0.8508. 
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To get an upper limit we need a function u(®) that will make the left-hand side 
of Eq. (10a) less than zero in the interval ( - 1 , -f1). We try v = o(l — a:2), where 
a is a constant yet to be determined. Then i> -f (1 -f x2)v + 1 = 1 — o(l + ®4). For 
the right-hand side to be <0, we mu6t have a > (1 - fa:4) - 1 . The largest value of 
the right-hand side of this last equation occurs where x = 0. Thus we must have 
a > 1. If w = y - v, then tu -f (1 -f x2)iv > 0, iu(±l) = 0. Then, using the same 
kind of reasoning as at the beginning of this section, we find w < 0 or y < v. Then 
y(0) < v(0) — a, which we can take to be as low as but not lower than 1. So finally 
0.8505 < y(0) < 1. The geometric mean of these values, 0.9224, has the smallest 
maximum error, namely 8.4%. 

Because Eq. (10a) is linear it can easily be solved by the sum of the solution 
of the inhomogeneous equation and a multiple of the solution of the homogeneous 
equation for both of which y(0) = 0 and y(0) = 1, say. Both of these solutions 
are easily calculated numerically. The multiple of the solution of the homogeneous 
equation must be chosen to make y(l) = 0 for the sum. In this way, we find 
y(0) = 0.932054. The closeness of the geometric mean to the exact value is pure 
coincidence! 

The same kind of logic as applied above to the two-point boundary value prob-
lem can be applied to the initial value problem, i.e., to the differential equation (1) 
with the values of y(a) and y(o) specified. Suppose we have a function obeying the 
differential inequality of Eq. (2). As before, we find that the difference w = y — u 
cannot have a negative minimum. If w(0) < 0 and tb(0) < 0, then w must be <0 
everywhere. So if u(a) > y(a) and u(a) > y(a), then u > y everywhere. If h is not 
<0, we can again rescue the various theorems if we can find a t satisfying Eq. (7). 

4.3 The subject of this book is nonlinear differential equations, and the foregoing 
discussion of linear differential equations has been used only to illustrate the central 
idea of this chapter, namely, that the differential equation or differential inequality 
restricts the kind of extrema the solutions may have. Let us now turn our attention 
to a nonlinear two-point boundary value problem of the type we encountered in 
Sect. 3.6: 

y + y2-y2 = 0 , ( l l a ) 

y(0) = 1, y(oo) = 0 . ( l ib ) 

Equation ( l l a ) has been chosen specifically because it is not invariant to an affine 
group.* 

In order to solve the problem just posed, we need to learn how the integral 
curves through the point (0,1) behave. Maximum principles alone will not tell us 
everything we want to know, and their proper use, as we shall see in the examples 
below, is as an adjunct to other, more direct methods of analysis. A first cursory 
glance tells us that the integral curves of Eq. ( l la ) can never have maxima because 
at an extremum (if one exists at all!) y = y2 > 0. A corollary is that integral curves 
emanating from the point (0,1) with non-negative slopes are monotone increasing. 
A slightly less obvious conclusion is this: two integral curves that emanate from the 

*It is, however, invariant to the translation group y' = y, x' = ® + A. 
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point (0,1) with different slopes and always remain positive never intersect a second 
time. To see this, call the two solutions y\ and y2 and suppose that yi(0) > ^2(0) 
while 3/1 (0) = 2/2(0) = 1. If we subtract Eq. (11a) written for y2 from Eq. (11a) 
written for y\ , we find that w = yi — y2 obeys the ordinary differential equation 
w + (yi + jte)™ ~ (2/1 + y2)w = 0 and the boundary and initial conditions u>(0) = 0, 
ii;(0) > 0. Since by hypothesis yi and t/2 are positive, w can never have a positive 
maximum (at which w < 0, w = 0, w > 0). Therefore w > 0 everywhere, which 
means yx > y2. 

In order to find out more about the integral curves through (0,1), we study 
their asymptotic behavior for large x. This is easier than studying their behavior 
in general because we need keep only the dominant terms. In the extreme of large 
x, we expect one of the three terms in Eq. (11a) to become negligible with respect 
to the other two [which remain comparable, since they must cancel according to 
Eq. (11a)]. (1) Suppose the first two terms are comparable and the last negligible. 
Then y = — y2, which can be integrated at once to give y = ln(Ax 4- B). But then 
y — Aj Ax -+- B <C y when x is large, contrary to hypothesis. So this supposition 
is wrong. (2) Suppose the middle term is negligible compared with the other two. 
Then y = y2, which can be integrated once to give 3y2 = 2y3 + A. Now if y gets 
large as x —» 00, eventually A becomes negligible. If y gets small as x —» 00, so must 
y, in which case A must equal zero. So in either case, we continue by integrating a 
second time the differential equation 3y2 = 2y3 to obtain y = 6/(x + B)2 ~ 6/x2. 
The neglected middle term y2 ~ 144/a:6 is truly small compared with the first or 
third terms, 36/a:4, when x is large enough. So 6 /x 2 is a consistent asymptotic 
behavior. (3) Suppose the first term can be neglected compared with the other two. 
Then y2 = y2 so that y ~ Ae±x. If y = Aex, y — Aex < y 2 = A2e2x, so Aex is a 
consistent asymptotic behavior. If y = Ae~x, |y| = Ae~x y2 = A2e~2x, so i4e-* 
is not a consistent asymptotic behavior. All three terms cannot be asymptotically 
comparable because no two pairs lead to the same asymptotic behavior. The upshot 
of this line of argument is that the only possible asymptotic behaviors for the curves 
through (0,1) are Aex and 6 /x 2 . 

In view of these findings, the integral curves through the point (0,1) behave as 
sketched in Fig. 1. The upper curves behave asymptotically as Aex with positive 
A, the lower curves as Aex with negative A, and the separatrix between them as 
6 /x 2 . It is the separatrix that we want. From the sketch we see that numerical 
integration in the forward direction will be unstable. So to calculate the separatrix 
we shall have to integrate backward. 

To get a pair of consistent boundary values y(x) and y(x) with which to start 
the backward integration, we calculate an asymptotic series for the separatrix: 

- A A JL £ £ 
2 1713 /p4 m 5 <ti 0 ' «L< 1L> w/ «L 

where 
B = (A2 — 144)/8 , (12b) 

C = A(A2 - 432)/72 , (12c) 
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Fig. 1. A sketch of the integral curves of Eq. ( l l a ) emanating from the point 
(0 ,1) . 

anc 
D = 5v44/3456 - 5A 2 /4 + 342/5 . (12d) 

Equations (12b)-(12d) have been obtained by inserting Eq. (12a) into the differential 
equation ( l la ) , collecting terms, and equating the coefficient of each power of x 
individually to zero. Each value of A corresponds to a particular value of y(0). By 
trial and error, aided in the last stages by interpolation to get the next guess, we 
find that for A = -22.12, y(0) = 0.999957 and y(0) = -0.657483. The curve of y(x) 
obtained by backward integration is drawn in Fig. 2. Drawn also is another curve 
obtained by forward integration using the above values of y(0) and y(0); it shows 
clearly the instability caused by the divergence at large x of the integral curves in 
Fig. 1; 

We can get quite satisfactory upper and lower bounds for y(x) by using the 
maximum principle and taking as our family of comparison functions the family 

u = 
:2 + ax 4- 6 ' 

(13) 

for which u(0) = 6/6 = y(0), ti(0) = - 6 a / b 2 , and u -- 6 /x 2 for large x. 
but straightforward calculation shows that 

A tedious 

u ~ u = 36(: ax b) 1 1 
46) ax 61 4 a2 - 46j (14) 
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X 

Fig. 2. The solution of Eqs. ( l la ) and ( l ib) . The upper curve was obtained by 
a forward, unstable integration; the lower curve by a backward, stable integration. 

To get a lower limit we want the right-hand side of Eq. (14) to be >0.* Now 
since 6 > 0 and a > 0, x2 + ax + b is positive and monotone increasing for x > 0. (Its 
minimum occurs at x — —a/2 < 0; at x = 0 it equals b > 0.) If the right-hand side 
of Eq. (14) is to be positive, then 4 + ( l /3) (a 2 — 46) must be positive, for if it were 
negative, then for large enough x the right-hand side of Eq. (14) would be negative. 
The smallest positive contribution the product of the square brackets makes occurs 
when x = 0. For the right-hand side of Eq. (14) still to be >0 when x = 0, we must 
have 

1 
4 + 46) 

or 
a2 > 

6 + a — 46 > 0 

462 

6 + 3 

(15a) 

(15b) 

The best lower limit of the family of Eq. (13) will have the smallest allowable value 
of a, namely, 

2 b , V a = . (15c) 
\ / £ T 3 ' 

When 6 = 6 [y(0) = 1], a = 4. 

*This is proved below. 
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To get an upper limit we want the right-hand side of Eq. (14) to be <0.* Then 
4 + ( l /3 ) (a 2 - 4b) must be negative. Then 

a2 < 4b - 12 . (16a) 

[This incidentally requires 6 > 3 since a2 > 0. Thus, the family (13) will give an 
upper limit only if y(0) = u(0) < 2.] The best upper limit of the family (13) will 
have the largest allowable value of a, namely, 

a = 2 Vb - 3 . (16b) 

When b = 6, a = 2\/3. Thus 

6 6 
x2 + 4x+ 6 <V K x2 + 2%/Ix 4- 6 ' 

To prove the first inequality rigorously, we start with the case of Eq. (15c) 
for which ii + u2 - u2 > 0, u(0) = y(0) = 1, and u(x) ~ y(x) ~ 6/x2. Then 
w + (y + u)w — (y 4- u)w < 0, where w = y — u. Furthermore, u>(0) = 0 and w —• 0 
faster than 6 /x 2 as x —> oo. Since y 4- u > 0, w can have no negative minimum. 
Then w must be >0 everywhere, so that y > u. The second inequality is proved 
in an entirely analogous manner: when u 4- u2 — u2 < 0, w can have no positive 
maximum and so must be <0. Therefore, y < u. 

Shown in Table 1 are values of y(x) calculated by backward numerical integra-
tion with A = —22.12 and values given by the upper and lower limits in Eq. (17). 
The geometric mean of the two bounds differs fractionally from either bound by 
less than 3% so that, for practical purposes, it may be a satisfactory estimate. 

In our brief study of linear equations in Sects. 4.1 and 4.2, we achieved some 
generality, but any such generality in the study of nonlinear equations hardly seems 
possible because of their wide variety of form. 

4 .4 Not only do ordinary differential equations have maximum principles, but so 
do partial differential equations. The best and simplest examples are Laplace's and 
Poisson's equations and the ordinary diffusion equation. We begin with them, and 
after making the principles clear, we move on to some nonlinear partial differential 
equations. 

••"This, too, is proved below. 
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Table 1. Exact values of y{x), the solution of Eqs. (11a) and 
( l i b ) , and the upper and lower bounds of Eq. (17) 

X Lower bound Exact value Upper bound 

0.0 1.0000 1.0000 1.0000 
0.5 0.7273 0.7318 0.7517 
1.0 0.5455 0.5523 0.5734 
2.0 0.3333 0.3402 0.3544 
3.0 0.2222 0.2276 0.2363 
4.0 0.1579 0.1618 0.1673 
5.0 0.1176 0.1205 0.1242 
6.0 0.09091 0.09305 0.09556 
7.0 0.07229 0.07391 0.07571 
8.0 0.05882 0.06008 0.06140 
9.0 0.04878 0.04977 0.05077 

10.0 0.04110 0.04189 0.04266 
12.0 0.03030 0.03083 0.03132 
14.0 0.02326 0.02362 0.02395 
16.0 0.01840 0.01867 0.01890 
18.0 0.01493 0.01512 0.01529 
20.0 0.01235 0.01250 0.01262 

Solutions of Laplace's equation, V2<f> — 0, always have their largest and smallest 
values on the boundary B on any closed region R and not in the interior. For, at 
a relative maximum (f>xx < 0 and (f>yy < 0, whereas at a relative minimum <f)xx > 0 
and <j)yy 0. Both of these necessary conditions are incompatible with Laplace's 
equation V2<f> = <f>zx + <t>yy — 0. So (j> cannot have a relative maximum or a relative 
minimum in R. Its largest and smallest values therefore lie on B, the boundary of 
R. For such functions 4> it is possible at every point to find at least one direction 
in which 0 increases and at least one direction in which <f) decreases. 

This property of Laplace's equation enables us to get bounds on the solutions 
to problems involving Laplace's and Poisson's equations. Consider, for example, 
the following problem: V2<f> — —1; <f> — 0 on the perimeter P of a square S of side 
2; find $ at the center of the square. One way to get an estimate of $(0 ,0) is to 
construct a function such that V2ip = - 1 ; in general this function will not vanish 
on P. The difference ijj — <f> satisfies Laplace's equation V2(^> — <f>) = 0 in 5", so its 
maximum and minimum values must lie on P, where <f) — 0. Therefore, everywhere 
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in 5, V'mln(P) < i/>-(f> < V'nittx(P)- The art in this method is to try to make ipmi„{P) 
and ^max(P) close together. 

The linearity of Laplace's and Poisson's equations enables us to form solutions 
by superposition. The function V = - ( l / 4 ) ( x 2 -t- y2) satisfies V2V> = - 1 . Its 
maximum and minimum on the perimeter of the square (sides x = ±1, y = ±1) are 
- 1 / 4 and - 1 / 2 , respectively. If we add a constant A to the ij) we have a rj> that 
still obeys V2i/> = — 1, but whose maximum and minimum values on the perimeter 
are now A — 1/4 and A — 1/2. To minimize the absolute deviation of <f> from ij) we 
choose A to make >1 — 1/4 and A — 1/2 equal but opposite in sign, i.e., we choose 
.4 = 3/8. Since V»(M) = A = 3/8, we have at last - 1 / 8 < 3/8 - <£(0,0) < 1/8 or 
1/4 < <£(0,0) < 1/2. The estimate <£(0,0) = 3/8 is thus correct within a maximum 
possible error of 33%. 

To improve our estimate we must add to our trial function additional solutions 
of Laplace's equation. Since we are working in two dimensions, we can find such 
functions by taking the real and imaginary parts of any analytic function of the 
complex variable x + iy• The necessary symmetry of <j> —x,y) = (f>(x,y) = 
<£(x, — y)] requires us to take the real part. Let us try adding a multiple of Re(x 4-
iy)4 = x4 - 6x2y2 4- y4, i.e., let us take 

V, = A - ^(x2 + y2) + a(x4 - 6x2y2 + y4) . (18) 

Because of the symmetry of i]> we need consider only the line segment x = 1, 
0 < y < 1 in determining the largest and smallest values of ip on P: 

,y) = A-\( 1 + y2) + a(l - 6y2 + y4) . (19) 

Our task is now to choose A and a to make the difference between V'max and ^>min 
calculated from Eq. (19) as small as possible. A moment's thought should make it 
clear that this task can be accomplished by choosing a to make the difference of the 
largest and smallest values of 

/ (y ) = - ^ ( i + y 2 ) + " ( i - 6 y 2 + y 4 ) (20) 

on the interval 0 < y < 1 as close together as possible. 
This task is more challenging than it might appear at first glance. The first 

thing we do is to find out whether / (y ) has an extremum on the interval (0,1) and 
what kind it is. The extremum ( / = 0) lies at values of y satisfying y2 = 3 + 1/8a. 
So there will be an extremum in the y interval (0,1) only if —1/16 < a < —1/24. 
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Outside this range of a, the largest and smallest values of / ( y ) occur at y = 0 and 
y = 1; their absolute difference equals |5o + ( l /4 ) | . The smallest value this absolute 
difference has outside the interval —1/16 < a < —1/24 occurs for o = —1/24 and 
equals 1/24. 

When - 1 / 1 6 < a < - 1 / 2 4 , f ( y ) has an extremum for y2 = 3 + 1/8a. At this 
extremum, / = 24a + 1 < 0, so the extremum is a maximum. A short computation 
shows / m a x = —(1 + 8a + l /64a) . The minimum value of / occurs at either y = 0 
or y = 1; it is the smaller of a - (1/4) and —4a — (1/2). For a < —1/20, fm-)n — 
a - (1/4); for a > - 1 / 2 0 , / m i n = - 4 a - (1/2). Thus, for - 1 / 1 6 < a < - 1 / 2 0 , 
A / = /max — /min = —3/4 — 9a — l /64a, which is monotonic decreasing in that 
interval. For - 1 / 2 0 < a < - 1 / 2 4 , A / = - 1 / 2 - 4a - l /64a, which is monotonic 
increasing in that interval. Clearly, then, the best value of a = 1/20, for which 
A / = 1/80; then / m a x = - 2 3 / 8 0 , / m i n = -24 /80 . If we choose A = 47/160, we 
find - 1 / 1 6 0 < A- $( 0,0) < 1/160 or 23/80 < $(0,0) < 24/80. Thus, the estimate 
$(0,0) = 47/160 has a maximum possible error of ±1/160 (±2.1%). 

Our estimates so far have been based on a solution of the partial differential 
equation that does not satisfy the boundary conditions. We can also get estimates 
from functions that do satisfy the boundary conditions but do not satisfy the partial 
differential equation. Suppose, for example, we have a function rp that vanishes on 
the perimeter P of the square S but satisfies only the differential inequality V 2 ^ > 
— 1. The difference xj) — <j> vanishes on P and satisfies the differential inequality 
V 2 ( $ — $) > 0. Therefore $ — $ cannot have a relative maximum anywhere 
(although now a relative minimum is possible). Its largest value occurs on the 
perimeter P—this value, of course, is zero. So inside S, i/» — $ < 0 or xj) < 
In particular, ^(O^) < $(0,0). A similar result holds when the sense of all the 
inequalities is reversed. 

Let us choose for ^ the function 

^ = ( l - a ;
2 ) ( l - y 2 ) [ a + 6 ( x 2 + y 2 ) ] , (21) 

where a and 6 are constants yet to be determined. (This function has been chosen 
in the following way. The first two factors have been chosen to ensure that -0 = 0 
when x = ±1 or y = ±1. The squares are used to give even symmetry under 
the transformation x' = —x and y' = —y, to which the partial differential equation 
and boundary conditions are invariant. Similarly, xp has been made symmetric 
under interchange of x and y just as the partial differential equation and boundary 
conditions are.) A short computation shows that 

V2V> = 4(6 - a) - (166 - 2a)(x2 + y2) + 246x2y2 + 26(x4 + y4) . (22) 

In the corners of the square (x = ±1, y = ±1), V2,0 = 0 no matter what the values 
of a and b. So the trial function of Eq. (21) can at most satisfy the inequality 
V2V> > — 1 and therefore can only provide us with a lower limit to Our task is 
to find the largest possible value of a = i/!>(0,0) consistent with the inequality 

G(x,y, a, 6) = 4(6 - a) - (16a - 2a)(x2 ± y2) + 246x2y2 + 26(x4 + y4) > - 1 . (23) 
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We begin by determining if G has any extrema in the square S. Differentiating, we 
find 

Gx = -4 (86 - a)x + 486xy2 + 86x3 , (24a) 

Gxx = -4 (86 - a) + 486y2 + 246x2 , (24b) 

and corresponding expressions for Gy and Gyy in which x and y are interchanged. 
Furthermore, 

Gxy = 966xy . (24c) 

Relative maxima and minima can occur only where Gx = Gy = 0. These points are 

O : x = 0, y = 0 , (25a) 

Q : x = 0, y2 = (86 - a)/2b and y = 0, x2 = (86 - a)/2b , (25b) 

R-. x2 =y2 - (86 - a)/146 . (25c) 

The origin 0 is a relative minimum when 86 < a and a relative maximum when 
86 > a. The points Q are relative minima when 86 > a and relative maxima when 
86 < a. The points R are saddle points ( G x x G y y < G2

xy). 
When 86 < a, the minimum of G is at the origin and equals (7min = 4(6 — a) > 

— 1. To find the largest value of a consistent with these inequalities, we plot the 
lines 86 = a and 4(6 — a) = —1 (see Fig. 3). The only admissible values of a and 
6 correspond to points below the first line and above the second (hatched area). 
The largest possible value of a is that corresponding to the intersection a — 2/7, 
6 = 1/28. 

When 86 > a, the minimum value of G occurs at the points Q, where 

Gm i n = 4(6 - a) - ^ ^ > - 1 . (26) 

To find the largest value of a consistent with the inequality (26) and the inequality 
86 > a, we again plot them as equalities (see Fig. 4). The admissible values of a 
are in the hatched area. The largest value of a corresponds to the intersection R : 
a = 2/7, 6 = 1 /28. [The maximum M of the curve lies at 6 = (7 + \ / l4 ) /280 > l / 2 8 
and so cannot fulfill the requirement that 86 > a.] 

The lower limit a = 2/7, which we obtain in both cases, is close to the lower 
limit 23/80 that we obtained earlier and is slightly inferior to it. 

The restriction that ijj obey the boundary condition t/) = 0 on P is more stringent 
than we need, and i>(P) < 0 is enough to prove that ifi < <f> everywhere in S. For 
then V2(^> — <£) > 0 and (ifr — 4>)p > 0. Since the maximum value of — 4> occurs 
on the boundary P, ij; — <f> < (ij) — <£)max < 0, so that ifr < (j) everywhere. 

Many different combinations of differential and boundary inequalities are possi-
ble and have been discussed exhaustively by Protter and Weinberger. Always at the 
root of the discussion lie restrictions placed by the differential equation or inequality 
on the kind of extrema the solution may have. 

4 .5 A nonlinear analogue of Laplace's equation arises when we attempt to calculate 
steady temperature distributions in superfluid helium (He-II). Superfluid helium 
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Fig. 4. Graphical determination of the maximum possible value of a when 
86 > a. 
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(He-II) is a very-low-temperature phase of helium (T < 2.2 K) that has some 
unusual physical properties. One of these, which interests us here, is that for heat 
fluxes in the practical range (^0.1 W/cm2), the heat flux Q is proportional not to 
the temperature gradient T, but to its cube root: 

Q = -K{VT)l/3 , (27) 

where K is a constant of proportionality taken to be independent of temperature. 
In steady heat flow, V • Q = 0, so that 

V- [ / f ( v r ) 1 / 3 ] = 0 . (28) 

Equation (28) has a maximum principle, i.e., the largest and smallest temper-
atures lie on the boundary B of any region R. To see this, suppose that T has a 
relative maximum at some point P in the interior of R. In the neighborhood of P, 
the level surfaces of T are closed surfaces enclosing P. The vector — VT is the out-
ward normal to these surfaces. Now VT = -Q2Q/KZ, so Q - ( - V T ) = Q*/Kz > 0, 
which means that the vector Q makes an acute angle with — VT, the outward nor-
mal to the level surfaces of T. Hence J J Q • ds > 0 when taken over a level surface 
of T. But since V • Q = 0 everywhere, this integral must vanish. This is a contra-
diction, so our original supposition that T had a relative maximum must be false. 
A similar argument applies to relative minima. 

In the case of a linear equation, the difference of two solutions, being a solution 
itself, has a maximum and a minimum principle. However, this simple argument 
does not suffice for Eq. (28) because it is nonlinear. Nevertheless, even though 
the difference of two solutions is not necessarily a solution, the difference obeys 
a maximum and a minimum principle. Suppose the two solutions are T\ and 
Then 

- T2) • - Q2) = (<??<?! - QlQ2) • (Qi - Q2) 

= Q\-(Q\ + Q\)Qi-Q2 + Q\ 

> Qt - (Ql + QDQ1Q2 + Qt 

= [Q\ - Q\){Qx - Q*) 

= (Qi + Q1Q2 + QlHQi - Q2)2 > 0 . (29) 

Thus Q1 — Q2 makes an acute angle with the normal — V(Tj — T2) to the level 
surfaces of T\ — T2. Since V • (Qi — Q2) = 0, these level surfaces cannot be closed, 
i.e.. Ti — T2 cannot have either a relative maximum or a relative minimum in the 
interior of any region R. 

This argument can be extended to functions T\ obeying differential and 
boundary inequalities. Suppose, for example, we have a function Ti for which 
V • [if(VT1)1/3] > 0 and for which T^B) < T2{B), where T2 is a solution of 
Eq. (28). Then V • Qi < 0 and so V • (Qi - Q2) < 0. Thus Tx - T2 cannot have a 
relative maximum in B. For then, J J(Q 1 — Q2) • dS must be >0 when taken over 
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a closed level surface around the maximum. This contradicts V • (Qi — Q2) < 0. 
Therefore, the largest value of T\ — T2 lies on B. Then 7\ — T2 < (T\ — T2)mB.x < 0 
since T\(B) < T2{B), and thus Ti < T2 everywhere in R. The same argument 
applies when the inequalities are reversed and the words "largest" and "maximum" 
are replaced by the words "smallest" and "minimum," respectively. 

As a numerical example let us choose the analogous problem to that considered 
in Sect. 4.4, namely V • (VT)1/3 = - 1 ; T = 0 on the perimeter P of a square S 
of side 2; find T at the center of the square. (For convenience we work in spe-
cial units in which K = 1.) The function = (R4 — r4)/32 is a solution of the 
partial differential equation V • (VT)1/3 = - 1 written in cylindrical coordinates, 
(l/r)(d,/dr)[r(dT/dry/3} — —1. Here R4 is a constant of integration yet to be cho-
sen. The difference of the solution T we seek and the solution Ty has its maximum 
on the perimeter P of the square 5. Since T(P) = 0, we have in the interior of S 

min[r,(P)] < T, - T < max[r,(P)] . (30) 

Owing to the geometric symmetry of the problem, we need only consider the values 
of Ti(P) on the interval's: = 1, 0 < y < 1, where Tj(P) - [R4 - (1 + y2)2)/32. 
Then we see at once that min[Ti(P)] = (R4 - 4)/32 and max[7\(P)] = (R4 - l) /32. 
Since ft(0,0) = R4/32, it follows from Eq. (30) that 1/32 < T(0,0) < 1/8. The 
geometric mean of these extremes, 1/16, is then correct to within a factor of 2. 

4.6 The ordinary diffusion equation Ct = Czz has maximum and minimum princi-
ples. Consider the following typical boundary-initial value problem: C(a, <), C(b, <), 
and C(z,0) are specified; what is the value of C at any point z, a < z < b, at any 
time t > 0? (See Fig. 5.) The solution C cannot have either a minimum or a 
maximum in the interior R of any finite region a < z < b, 0 < t < 00. For, at a 
maximum, Ct = Cz = 0 and Czz < 0, which contradicts the equality Ct = Czz, 
and similarly at a minimum. Hence the largest and smallest values of C lie on the 
boundary. Furthermore, they cannot lie on the segment AB, for if the maximum of 
C lay on the interior of segment AB, then there Ct = Czz would be <0. But then 
larger values of C would lie at smaller t and the same z, i.e., inside the region R. A 
similar argument holds for the minimum of C. So the largest and smallest values 
of C are determined by the boundary and initial conditions. 

Since the ordinary diffusion equation is linear, the difference w of the two so-
lutions Cj and C2 is also a solution. If C\(a,t) > C2(a.,t), Ci(b,t) > C2(b,t), 
and Ci(z,0) > (^2(2,0), then C1 > Cz everywhere in R, for the smallest value of 
w = C\ - C2 must be on the boundary. But there w > 0. So w > 0 in JR, i.e., 
Ci - C2 > 0 in R. 

Solutions of the ordinary diffusion equation with a linear source term, Ct = 
Czz + h(z, i)C, can similarly be compared when h < 0. If C\ > C2 on z — a, z = b, 
and t = 0, then w — Cy — C2 obeys wt — wzz + hw and w > 0 on z = a, z = 6, and 
t = 0. Can w have a minimum in R? If it does, then at the minimum wt = 0 and 
wzz > 0. Therefore w > 0, too. So if w has a minimum in R it must be positive, 
and therefore w > 0 everywhere in R. If w does not have a minimum in R, its 
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Fig. 5. A sketch of the boundary and initial conditions for the diffusion equation. 

smallest value lies on the boundary where w > 0. Thus the smallest value of u; is 
always positive, so Cj — C2 = w > 0 everywhere in R. 

If h is not always negative, but is bounded in the interval a < z < 6, we can 
rescue the result of the preceding paragraph by considering the function g(z,t) 
defined by C = geXi. Substitution into the partial differential equation for C shows 
that g obeys the partial differential equation gt = gzz + (h — A)g. If we choose 
A > max (/i), then we can apply the reasoning of the foregoing paragraph to g and, 

a < z < 6 

because eXt > 0, ultimately to C. 
An application of these ideas arises in a problem drawn from the domain of 

applied superconductivity. Shorn of its physical derivation, the mathematical prob-
lem comes down to this: the temperature C in a certain kind of superconducting 
magnet obeys to a good approximation the diffusion equation with source 

where 

Ct = C„ + G(C) , 

G(C) = 0, C < a , 

G(C) = b(C — o), C > a . 

(31a) 

(31b) 

(31c) 

At time t — 0, a sudden heat pulse of strength q is introduced at the origin; that is 
to say, for t = 0+ , the initial temperature distribution is taken to be 

exp( -3 2 /41) 
q (47Tty/2 (32) 
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The reader may recognize the second factor on the right-hand side of Eq. (2) as 
the pulsed-source solution of Eq. (3.14) of Sect. 3.4. If q is small enough, the 
temperature C everywhere eventually approaches zero (called recovery). If q is 
large enough, the temperature C everywhere eventually grows without bound (called 
quenching). We seek the value of q that divides these two kinds of behavior. 

The key to solving this rather formidable nonlinear eigenvalue problem is to 
consider functions (trial solutions) of the form* 

(33) 

where S is an abbreviation for the pulsed source solution (3.14). If we substitute 
Eq. (33) into Eq. (31a), we get 

( C , ) « + G{CX) - ( C J t = hSzz + G{hS) - hS 

= G(hS) - hS . 

hSt 

We choose h to make the right-hand side of Eq. (34b) vanish when z 
satisfy 

With this value of h, the right-hand side of Eq. (34b) becomes 

G{hS) -hS = G — e 
(4trt)1/2 ,(4trty/2 

Because G(C) is concave upward, it has the property that 

GlflCi + (1 - 9)C2] < BGiCi) + (1 - 0)G{C2), 0 < 0 < 1 

(34a) 

(34b) 

0, i.e., to 

(35) 

(36) 

(37a) 

(see Fig. 6). This means G(hS) — hS < 0 with the equality occurring only for z = 0. 
Therefore (Ci)zz + G(Ci) — (Ci)t < 0 with the equality occurring only at z = 0. 

Now let us consider the difference w between C and C\\ w — C — It must 
satisfy 

wzz + G(C) ~ G(Cx) -wt > 0 (37b) 

or 
wzz + G\9C + (1 - 9)Ci)v> - wt > 0 (37c) 

if we use the law of the mean. Again, there is equality only if z = 0. If we choose 
the same initial values of Eq. (32) for C\ as for C, then io(z,0) = 0. Furthermore, 
since C(±oo, t) = Ci(±oo, rf) = 0, iw(±oo, t) = 0. By symmetry, ro2(0,/) = 0. 
These boundary and initial conditions are summarized in Fig. 7. 

*While this trial solution may look like a Deus ex machina of the type I promised not to 
introduce, a little experimentation will show the reader that there is hardly any place else to begin— 
at least, I have not found any. 



77 

O R N L - D W G 8 7 C - 2 3 5 0 FED 

G(C) 

I f l G t q ) + (1 - 9 )G (C 2 ) 

G(C, ) G{0C, + 

(1 - 0 ) C 2 ) 

Fig. 6. Sketch illustrating property (37a) of functions that are concave upward. 

ORNL-DWG 87C-2344 FED 

W = 0 

2 

Fig. 7. Sketch showing the boundary and initial conditions w obeys. The line 
BC lies at very large z. 
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The function w cannot be positive in the interior of the rectangle OABC, To 
prove this we need to consider not w but the related function v, defined by w = ueAt; 
this is because G > 0. The function v obeys the differential inequality 

vzz + (G -\)v-vt>0 (38) 

with equality only if z = 0. As a consequence of Eq. (38), v < 0 in the rectangle 
OABC. We prove this most easily by reductio ad absurdum. 

Assume v > 0 somewhere in OABC. Then v can have no maximum in the 
interior of OABC. For if it did, then at the maximum, vzz < 0, vt = 0, which, 
together with v > 0, contradict Eq. (38) [if A > max(G)]. The largest value of v 
must then lie on the boundary of OABC. It cannot be on OC or CB, for then the 
largest value of v would be zero. If the maximum of v lay on OA, then there v > 0 
and vt = 0, so that, from Eq. (38), vzz > 0. But since v2 — 0 on OA, vzz > 0 means 
there are larger values of v just inside OABC than on OA, so the largest value of v 
cannot be on OA. It cannot be on AB either, because if it were, vzz would be <U 
and v would be >0, so that from Eq. (38), vt would be <0. Then there would be 
larger values of v just inside OABC, again a contradiction. Thus we are ajways led 
to a contradiction. So we must reject the hypothesis v > 0 somewhere and therefore 
must have v < H in OABC. But since eXt > 0, w < 0, or C < C\. 

This inequality means that if we choose h(Q) so that C\ recovers, so must C. 
The solution C will surely recover for any smaller value of q, so /i(0) will be a lower 
limit to the limiting value of q. It remains only to calculate the largest value of /i(0) 
for which Cj recovers. 

We are interested only in temperature distributions for which Ci(0,tf) > a. But 
then, since h/(A-Kt)ll2 = Ci(0,£), G on the right-hand side of Eq. (35) is given by 
Eq. (31c): 

h = (4tt<)1/26 — a (39a) 
(4Tr4)1/a 

-bh- a6(47rt)1/z . (39b) 

The solution of Eq. (39b) is 

h = h{0)-ab f (4 t t t ) l f 2 e~ b t d t 
JO 

ebt . (40) 

When t —• oo, the second term in the square brackets approaches the value 7raj\fb. 
If /i(0) > 7ra/Vb, h —> oo exponentially (quench). If h(0) < ira[y/b, h —> 0 ex-
ponentially. [In fact, it does not, for once h./(4wt)*/2 drops below a, G must be 
replaced by zero, i.e., Eq. (39) no longer applies.] This corresponds to recovery. If 
/i(0) = ira/y/b, 

—> a as t —r oo . (41b) 
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Clearly, then, /i(0) — na/s/b is the limiting value of /i(0) we have been seeking. 
So finally, then, if q < -Kajsfh, C must recover; therefore the limiting value of q is 
>ira/\fb. 

4 .7 The problem of the previous paragraph has an interesting group-theoretic 
property: it is invariant to the one-parameter family of groups of transformations 

C - AQC b' = A~2b 

t1 = \2t a' = A"a 0 < A < oo , (42) 

z' = \z qf = \a+1q 

where a is arbitrary. Now the limiting value of q can only be a function of a and 
6: q = F(a,b). Moreover, this function relationship must hold unchanged for the 
primed values since, they, too, satisfy the stated problem. Thus 

q'=F(a',b'), (43) 

\a+1F = \a+1q= F{\aa,\~2b) . (44) 

If we differentiate with respect to A and set A = 1, we find 

(a + = aaFa - 2bFb . (45) 

The characteristic equations are 

da db dF 
aa = ^2b = (a + 1 )F ' ^ 

so that, most generally, 

F(a,b) = a{a+1)/aH{a2bQ) , (47) 

where H is an arbitrary function. 
Suppose we consider Eq. (47) written in terms of the primed variables for a 

particular value of a, namely, ao: 

F' = a ' ( Q n + 1 ) / a " i / ( a ' 2 0 . (48) 

Let us now replace the primed variables by the unprimed variables according to 
Eq. (42): 

A Q + l F = A Q ( a o + 1 ) / a " a ( a o M ) / a , , ^ ( A 2 ( Q _ a o ) a 2 6 a o ) . (49) 

If we introduce the abbreviations fi = \2(o-a„) a n { j x _ O2joii a n t j substitute for F 
from Eq. (47) on the left-hand side x̂ Eq. (49) we get, after some rearrangement, 

H(ftx) = fi~ll2a"H{x) . (50) 
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We can determine the form of H(x) by differentiating Eq. (50) with respect to 
/i and then setting /i — 1: 

xff = --—H. (51) Zao 

Equation (51) has the solution 

H{x) = const B - ( i / 2 o , , ) . (52) 

Then 

q = F(a, 6) = a("'>+l)/a„ . C Q n s t . (a26 Q ( ,y-l/2a„ _ c n n s t . q{)-1/2 ^ g j 

This is precisely the form derived at the end of Sect. 4.8, where the lower limit 7r 
was obtained for the constant. 

Having discovered the form in Eq. (53), we now need only to find q numerically 
for a single choice of a and b in order to know it for all a and 6. We can do this 
by repeatedly solving Eq. (31a) for various q, thereby bracketing the sought-for 
limiting value. The constant in Eq. (53) turns out to be 3.88 to three figures, about 
24% larger than the lower bound 7r. 
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Chapter 5 

M O N O T O N E O P E R A T O R S AND I T E R A T I O N 

Does the road wind up-hill all the way?' 
'Yes, to the very end."' 

—Christina Rossetti 
Up-Hill" 

5 .1 Iteration is a very old technique for getting solutions of all kinds of equations— 
algebraic, transcendental, ordinary and partial differential, etc. Two problems beset 
its use. The first is the increasing complexity of computation required to evaluate 
higher iterates. The second, an issue of principle, is whether or not the sequence 
of iterates converges. Collatz has identified a broad class - r iteration problems for 
which the question of convergence can be answered, naiaeiy, those based on the 
iteration of monotone operators. 

An operator T is monotone if w > v implies Tw > Tv. An operator T is 
antitone if w > v implies Tw < Tv. Monotone and antitone operators and operators 
that can be written as the sum of a monotone and an antitone operator can all be 
made the basis of convergent iteration schemes. How to do this is the subject of 
this chapter. 

Suppose we begin with the simple case of a pure monotone operator T, and 
suppose we can find an upper solution no and a lower solution vo, i.e., functions Uo 
and Vo that obey the following conditions: 

If we then create two iterative sequences, u n + i = Tu n starting with uo and v n + 1 = 
Tvn starting with v0, we can show by induction that the sequence of u-iterates 
decreases, the sequence of u-iterates increases, and the nth u-iterate is greater than 
the nth u-iterate. The induction proceeds straightforwardly as follows. If un < 

then u n + i = Tun < Tu n _] = un; furthermore the inductive hypothesis holds 
for n = 0. Similarly, if vn > u n _i , u n + 1 ~ Tvn > Tvn-\ — vn\ the inductive 
hypothesis again holds for n = 1. Finally, if vn < ttn, u n + 1 = Tvn < Tun = un+i, 
and the inductive hypothesis holds for n — 0. 

The sequence of u-iterates decreases and is bounded from below; the sequence 
of u-iterates increases and is bounded from above. The sequences therefore have 
limit points u and v which obey u — Tu and v = Tv. Frequently these limit points 
will be the same. So the iterates give upper and lower bounds to the solutions of 

To see how we can apply this scheme to the approximation of solutions of 
differential equations, let us begin with an example of Collatz's, namely the first-
order ordinary differential equation and boundary conditions 

u0 > Tu0 = Ui , 

u0 < Tu0 = ui , 

u0 < u0 . 

( la) 

( lb) 

( lc) 

u = Tu. 

y = (1 - x)y2 (2a) 
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y(0) = l . (2b) 

Equations (2a) and (2b) can be written as 

y = 1 + / (1 - t)y2(t) dt , (3) 
Jo 

where / is a dummy variable of integration. We take the right-hand side of Eq. (3) 
to be the operator T: 

Ty = 1 + f (1 - t)y2(t) dt . (4) 
Jo 

fs T monotone? From Eq. (4) we see that 

Tu — Tv = f (1 - t)(u2 - v2)dt =-- f (1 - t)(u + v)(u ~v)dt . (5) 
J 0 J 0 

So long as x < 1 and u and v are positive, T is monotone. 
Since y is monotone increasing for x < 1 [see Eq. (2a)], a possible value for 

= 1. Then, 

i/i = 1 + x - x2/2 , (6a) 

v2 = 1 +x + x2/2-2x3/3-xi/4 + xs/4-x6/24 . (6b) 

For x < 1, t>i > x»o as desired. For u0 we try the form 

u0 = 1 + ® + ax2 , (7a) 

with a as yet undetermined. Then 

= 1 -t-x + x 2 / 2 + ( 2 o - l ) x 3 / 3 - x 4 / 4 + (a2 - 2 a ) x s / 5 - a 2 x 6 / 6 . (7b) 

By comparing Eqs. (7a) and (7b) we can see that u\ will be <uo if o = 1/2. Then 

uj = 1 + x + X 2 / 2 - X 4 / 4 - 3X 5 /20 - X 6 / 24 . (7c) 

Further iteration is extremely laborious so we stop here, noting that v2 < y < u2 < 
uj, so that u\ is an upper limit to y and v2 is a lower limit. Equation (2a) was picked 
deliberately because it is solvable in terms of simple functions: y = (1 — x + x2 / 2 ) _ 1 . 
Shown in Table s a comparison of v2, y, and U\. 

Table 1. A comparison of v2, y, and for x = 1 
X V 2 y KJ 

0.0 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0 

0.2 1.2143 1.2195 1.2195 
0.4 1.4333 1.4706 1.4719 
0.6 1.6211 1.7241 1.7340 
0.8 1.7473 1.9231 1.9575 
1.0 1.7917 2.0000 2.0583 
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5.2 Our next example is the Poisson-Boltzmann equation V 2 y = ey that comes up 
in certain problems of ionic distribution in strong ion exchangers. Suppose we look 
for the regular solution inside a region R that vanishes on the boundary B of R. 
The operator T we identify with (V2)jnversee^ \ that is to say, we define Ty as the 
solution of 

V 2 (Ty) = ey , (8a) 

Ty{B) = 0 . (8b) 
ntitone, as we prove next. 

, mm. two functions Uo and vo such that uo > vo. If we define 
ti i i'Uq and vi = Tvo, we have 

V 2 ui = e"° , Ul(B) = 0 , (9a) 

V 2
V l = e*n , u , ( f l ) = 0 . (9b) 

If we subtract Eq. (9b) from Eq. (9a), we get 

V 2 (uj — vi) = eu" — ev" > 0 . (10) 

Thus, ii\ — Vi cannot have a maximum in the interior of R [for at a maximum 
(ui - Vi)xx < 0, [ui ~~ vi)yy ^ a n d ( u i ~ i>i)zz < 0]. The largest value of — v\ 
must thus occur on the boundary. But the boundary value is zero. Hence in R, 
u\ — V\ < 0 or Ui < vi . So T is antitone. 

We start again with upper and lower solutions «o a n d uo, now defined such that 

v0 < u0 , (Ha) 

vi = Tu0 > v0 , ( l i b ) 

Uj = Tv0 < uo , (11c) 

and create the iterative sequence v n + 1 = Tun and u n + i = Tvn. As before, we prove 
by induction the assertions vn < un > un+i, and vTI < un. Thus, as before, 
the two sequences provide upper and lower bounds to stationary solutions y = Ty 
confined between them. 

Let us take for the region R a cylinder of radius 1. The reason for this choice 
is that this problem has an analytic solution that we can use to compare with the 
limits we calculate by iteration. For u0 we choose Uo = 0. The rationale behind 
this choice is the following. Since V 2 y = ey > 0, y cannot have a maximum inside 
the region R. Since y(B) = 0, and the largest value of y occurs on 5 , y < 0 in R. 
So uo = 0 is a simple convenient upper limit. For Vo we take u0 = — b, where b is 
an as yet undetermined positive constant, thus satisfying Eq. (11a). Then 

i s ' v - * - - 1 ' " ' ( 1 ) = 0 • ( 1 2 a ) 



u 

so that 
= (r2 - l)/4 , (13a) 

Ul = e~b(r2 - l ) / 4 . (13b) 

Since r < 1, (r2 — l ) / 4 < 0 and u\ and UQ satisfy Eq. (11c). In order to sati 
Eq. ( l i b ) , we must have vx = (r2 - l ) / 4 > -b = v0 or b > (1 - r 2 ) / 4 . Thus b > i, 
and 

e~ 1 / 4 ( r 2 - l ) / 4 >y>(r2 - l ) / 4 . (14) 

The Poisson-Boltzmann equation V2y = is solvable in cylindrical coordinates. 
The most direct approach is to make use of the invariance to the group y' = y — 
2 In A, r' = Ar and apply the method of Sect. 2.5. The computations are tedious 
and will not be repeated here—they are summarized in my paper in J. Math. Phys. 
12 (7), 1339 (1971). The result, which can be verified by substitution, is 

, a = 5 + \ /24 = 9.8990 . (15; 

A comparison of the limits, Eq. (14), and the exact solution, Eq. (15), is shown 
in Table 2. The geometric mean of the limits has the smallest maximum possible 
error, namely 13%. Because of the exponential on the right-hand side of the Poisson-
Boltzmann equation, further iteration is extremely difficult. 

Table 2. A comparison of the limits, Eq. (14), 
and the exact solution, Eq. (15) 

r I/ lower yexact 3/upper 

0.0 " -0 .2500 -0 .2130 -0 .1947 
0.1 -0 .2475 -0 .2110 -0 .1928 
0.2 -0 .2400 -0 .2049 -0 .1869 
0.3 -0 .2275 -0 .1947 -0 .1772 
0.4 -0 .2100 -0 .1804 -0 .1635 
0.5 -0 .1875 -0 .1618 -0 .1460 
0.6 -0 .1600 -0 .1389 -0 .1246 
0.7 -0 .1275 -0 .1115 -0 .0993 
0.8 -0.090G -0 .0793 -0 .0701 
0.9 -0 .0475 -0 .0423 -0 .0370 
1.0 0 0 0 

This iterative technique can be extended to a region R of any shape. If we take 
Uo = 0 and vQ = b, we find that <j> < y < <£exp(<£min), where (f> is the solution of 
the linear problem V2<£ = 1, <f>(B) = 0, and <£min is its minimum value in R. So for 
a sphere of unit radius, for example, (r2 - l ) / 6 < y < e - 1 / 6 ( r 2 - 1 ) /6. No exact 
solution is available for this case. 

-In 
i ' 1 

5.3 Another equation to which Collatz's method of monotone operators might be 
applied by way of example is the equation of D. Anderson and M. Lisak, which they 
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obtained from a similarity treatment of a problem in plasma physics [IEEE Trans. 
Plasma Sci. P S - 9 (2), 73-75 (1981)]: 

y + xye~y — 0 , (16a) 

1/(0) = a , (16b) 

y(oo) = 0 . (16c) 

By dividing Eq. (16a) by y and integrating twice with respect to x, we obtain 

y = a — b J^ exp j f x" e'^'^dx'^j dx' , (17) 

where a and b are positive numbers equal to y(0) and —y(0), respectively. The 
right-hand side of Eq. (17) is defined as the operator T acting on y. If y increases, 
the inner exponential decreases, the outer exponential increases, and the right-hand 
side decreases. Thus if u > v, Tu < Tv, and T is antitone. So we look for upper 
and lower solutions u0 and v0 such that (i) u0 > tio, (ii) Tv0 = < a nd (iii) 
Tu0 = Vi > v0 to start our iterative sequence u n + 1 = Tvn and vn+i = Tun. We 
choose uq = a and vo = 0. Then 

Conditions (i) and (ii) are satisfied by these functions no matter what the (positive) 
values of a and 6. What about condition (iii)? Since the error function is <1 (and 
approaches 1 as x —» oo), v\ > 0 requires 

^ • (19) 

i>i 

When Eq. (19) is satisfied, then tij > y > ui, i.e., 

According to Eq. (20), when x —• oo, 

(20) 

a - y ^ > y ( o o ) > a - f c ^ e a / 2 , (21) 

the last inequality following from Eq. (19). 
When a and b obey the strict equality (19), i.e., when the left-hand side is 

greater than the right-hand side, then it follows from Eq. (21) that y(oo) > 0. Thus 
the solution that the limits of Eq. (20) enclose cannot be the one we seek [remember 
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Eq. (16c)!]. Only if both sides of Eq. (19) are equal is there even a chance for y(oo) 
to be zero. But numerical calculations show that even then y(oo) > 0. So Collatz's 
iteration method tells us nothing about Anderson and Lisak's problem propounded 
in Eq. (16), although a certain amount of analysis is required to determine this. 

In spite of this disappointment, the monotonicity of operator on the right-hand 
side of Eq. (17) can be of use of us. For if y is the exact solution of Eq. (16), then 
Eq. (17) gives 

1 = J^ exP / x'e~y{x">dx'^ dx . (22) 

The right-hand of Eq. (22) is a monotone operator acting on y. Now y itself is 
monotonic decreasing, as we can see from Eq. (16). For if it were not, it would have 
to possess an extremum at which y = 0 and y = 0. But the only solution for which 
y and y vanish simultaneously is a constant, which cannot fulfill Eqs. (16b) and 
(16c) at the same time. Thus a — y(0) > y > 0 = y(oo). Using y = a and y = 0 in 
Eq. (22), we obti 

so that 

(23*) 

> 6 > y | a e - ° / 2 . (23b) 

Shown in Fig. 1 is a curve of fe vs a calculated numerically, as described below, and 
the limits shown in Eq. (23b). 

Another procedure exactly like the one just carried out begins by integrating 
the differential equation (16a) from zero to x: 

y + b = — I xye vdx = xe y — I 
Jo Jo 

~ydx . (24) 

Since y is monotonic decreasing and positive, y = —ye~y > 0. Thus y is also 
concave upward. But then y > a — bx, 0 < x < a/6. If we choose x > a/6 and 
replace y in the integral by the comparison function 

a — bx , a < x < a/b , , 
U = n » 2 5 ) 0 , a / b < x v ' 

we find 
y + b > x(e~y — 1) + (a — 1 + e _ a ) / 6 . (26) 

In passing from Eq. (24) to Eq. (26) we have used the fact that the operator Ty = 
J0

X e~vdx is antitone. If we now let x —> oo, then y —> 0 and so does x(e~y — 1). 
Thus Eq. (26) becomes 

6 > (a - 1 + e~a)1^2 . (27) 

Figure 1 shows the limits (23b) and (27) as well as a curve calculated numeri-
cally. The numerical calculations were carried out with the aid of the invariance of 
the differential equation (16a) to the mixed translation-stretching group x' = Ax, 



87 

O R N L - D W G 8 7 C - 2 3 4 9 FED 

1 0 1 

b 1 0 ° 

1 0 " 1 

1 0 " 1 1 0 ° 101 10 2 

a 

Fig. 1. The limits (23b) and (27) and a curve calculated numerically. 

y' = y + 2 In A. We proceed by picking y(0) and y(0) arbitrarily and finding y(oo) 
by numerical integration (the integral curves all approach constants for large x). 
Then we transform the integral curve to get an image with y'(oo) = 0. In this way, 
we find one point on the curve b vs a with each numerical integration. 

It is clear from Eq. (23b) that b —> y/2/ira as a —> 0. It also happens that 
b approaches the limit (27) for large a, and this should not surprise us because 
the comparison function (25) becomes a closer and closer lower limit to the true 
solution, the larger a is. 

5.4 Occasionally, one meets with operators that are neither monotone nor antitone, 
but which can be written as the sum of a monotone operator T\ and an antitone 
operator T2. To solve the problem u = Tu + r, Collatz sets up the iterative scheme 

un+i = TiVn + T2un 4- r , (28a) 

(28b) v-n+1 = Txun 4- T2vn + r , 

with starting values that obey the inequalities 

vo < vi < Uj < Uo (28c) 
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The success of the whole method depends on finding a uo and a v0 that fulfill 
Eq. (28c). If we can do so, then 

Vn-i < Vn < Un < Un-1 . (29) 

We prove Eq. (29) straightforwardly by induction: 

u n + i -Tivn + T2un + r > Txvn_x -f T2un„x + r = 7;n , (30a) 

= Txun + T2vn + r < Tx un_ i -f 7 > n _ i + r - un , (30b) 

Vn+1 = Txvn -f- Tzun + r < Txun + T2vn + r = un+l . (30c) 
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Chapter 6 
C O M P L E M E N T A R Y VARIATIONAL P R I N C I P L E S 

"Searcher For the fecund minimum." 
—Wallace Stevens 

"The Comedian as the Letter C" 

6 .1 The variational technique for solving differential equations is based on the con-
nection between the extrema (maxima or minima) of a functional and the solution 
of a related differential equation. (A functional is a function of a function: you 
put in a function as the independent variable and get back a number. For example, 
fg y(x) dx is a functional of y.) The connection between functionals and differential 
equations is explored thoroughly in the calculus of variations, where the functionals 
are chosen because of their intrinsic interest. For example, in the classical brachis-
tochrone problem the functional is the time it takes for a bead to slide down a wire 
connecting two points. Desired is the shape of the wire to make the time of transit 
a minimum. The wire shape is calculated by solving a related differential equation 
calculable from the particular functional. How to obtain this differential equation 
from the functional is part of the lore of the calculus of variations. 

The process can be inverted. Given a particular differential equation, we may 
sometimes be able to find a functional that is minimized or maximized by solutions 
of the differential equation. Then we can choose a family of trial functions containing 
one or more undetermined parameters, evaluate the functional, and choose the 
parameters to make the functional an extremum. Used in this way, the functional 
provides a criterion of best fit. But it is not the only criterion of best fit. Indeed, it 
is not always even the most convenient. Its real power shines when the functional 
represents a quantity in which we may have some interest. Then, because the 
functional is an extremum for the solutions of the differential equation, when the 
error e in the trial function is small, the error in the value of the functional is of 
order e2. Roughly speaking, then, a 10% trial function will provide a 1% estimate 
of the functional. If the latter is something we should like to know, we shall have 
gotten something for nothing. 

The variational method has been used for a long time in the manner just de-
scribed, and variational estimates have been obtained for myriad quantities of in-
terest in science and technology. But all of these estimates suffered the peculiar 
defect that, while they were felt to be accurate, no rigorous measure of their error 
was available. 

About 20 years ago, B. Noble remedied this defect for a wide class of differential 
equations. He showed that it was possible to find two variational principles, called 
complementary, one of which attained a maximum and the other an equal minimum 
for exact solutions of the differential equation. In such a case, trial functions provide 
two estimates of the desired quantity of second-order accuracy, and furthermore one 
necessarily is a lower limit and the other an upper limit. So Noble's method provides 
us with close upper and lower bounds to the desired quantity. Noble's method has 
been elaborated in a very fine monograph by A. M. Arthurs. 
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6.2 The key to Noble's method is the formulation of the problem in the Hamil-
tonian form. To understand the Hamiltonian form, we must first understand the 
Euler-Lagrange form. Suppose we start with an ordinary second-order differential 
equation, which is the so-called Euler-Lagrange equation of a Lagrangean L(q,q): 

d (dL\ 8L n 

dt{Tq)-!Tq=0 • M 

For example, the differential equation q — q = 0 (whose solutions are e*4) is the 
Euler-Lagrange equation of the Lagrangean L = q2/2 + q2/2. The importance of the 
Lagrangean is this. Among all the functions q(t) for which q(a) = q\ and q(b) = q2, 
the solution q*{t) of the Euler-Lagrange differential equation (1) that fulfills the 
boundary conditions q*(a) = qi and q*(b) — q2 makes the functional 

L 
b 

L{q,q)dt (2) 

an extremum (in the example being discussed, a minimum). 
To see the meaning of this last statement in some detail and to set the stage for 

further developments, let us consider the problem of finding the solution of q — q = 0 
and its associated value of A when g(0) = 0 and q( 1) = 1. The exact solution is 
q = sinh i /sinh 1 = The value of A corresponding to it is sinh 2 /4 sinh2l = 
0.656518. Another function of t, not a solution of the differential equation q — q = 0, 
but obeying the boundary conditions g(0) = 0 and g(l) = 1, is q = t. For it, the 
value of A is 2/3, a slight overestimate of the correct value by about 1.5%. 

It is easy to see from the differential equation that ^ 0 in general. In fact, 
qt must be concave upward. The trial function q = i, on the other hand, has no 
curvature. We can try to improve our trial function by including some curvature. 
So, for example, we can take as our trial function q — at + (1 — a)t2. where a is 
some number not yet specified. For this trial function, A = (5a2 — 8a 4- 19)/24. In 
order to make A an extremum (in this case, a minimum, as we shall see below) we 
set dA/da = 0. Then we find at once that a = 4/5. The corresponding value of A 
is 79/120, which overestimates the correct value by a scant 0.28%. Shown below in 
Table 1 are the values of g* and the two trial functions t and <(4 + t)/5. The trial 
function t is larger than g* by as much as 17% in places, but the corresponding 
value of A is only 1.5% larger than AThe trial function i(4 + <)/5 sometimes 
exceeds q. and sometimes is exceeded by it, but the percentage difference between 
them is at most about 4% and is usually less. The corresponding value of A exceeds 
A* by only 0.28%. This example shows clearly how much better an estimate A is 
of A* than q is of qt. 
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Table 1. The exact solution q, and two trial functions 

t q, t t ( 4 + t ) / 5 

0.00 0 0 0 
0.10 0.085234 0.10 0.082000 
0.20 0.171320 0.20 0.168000 
0.30 0.259122 0.30 0.258000 
0.40 0.349517 0.40 0.352000 
0.50 0.443409 0.50 0.450000 
0.60 0.541740 0.60 0.552000 
0.70 0.645493 0.70 0.658000 
0.80 0.755705 0.80 0.768000 
0.90 0.873482 0.90 0.882000 
1.00 1.000000 1.00 1.000000 

I have said above that in the example being discussed the functional A is a 
minimum when q = q*, and now is the time to show it. Suppose we choose as trial 
functions the family of functions q = q+ + r}, where 77 is an arbitrary function of t 
except that 77(a) = 77(b) = 0. ThuB q(a) = q*(a) = q 1 and q(b) = q*(b) = q2, i.e., q 
obeys the same boundary conditions as g*. Then 

\ /'(?; +ll)dt + j \ m . +W.) i i + \ + 1*) it . (3) 
The first term on the right-hand side of Eq. (3) is Am. The second term we treat 
by integration by parts: 

rb b rb 
/ im* + m*) dt = w* + v(q* -q*)dt = o 

Ja a J a 
(4) 

The integrated term vanishes because 77(a) = 77(6) = 0. The integral on the right-
hand side vanishes because q* obeys the differential equation <7* — = 0. Thus, 

A = + . (5) 

Since the integral on the right-hand side is always positive, A > A*, with equality 
being achieved if and only if 77 = 0, i.e., q = q*. Thus A has as its minimum value A*, 
which is attained only for the solution of the differential equation. Furthermore, the 
integral on the right-hand side is of second order in 77, so if 77 is small, the estimate 
that Eq. (5) provides of A» is much better than the estimate that q provides of 9*. 

6 .3 The reasoning just applied to the functional A given in Eq. (3) can be extended 
to the general functional A given in Eq. (2). Thereby we shall show that the soiution 
of the Euler-Lagrange equation, Eq. (1), makes A an extremum, and we shall find 
conditions that will tell us whether the extremum is a minimum, a maximum, or 
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neither. Suppose q = q* + rj, q — qt + 17, where q, is the Bolution of the Euler-
Lagrange equation obeying the boundary conditions g*(a) = q\ and q*(b) = q2 and 
where q is a trial function obeying the same boundary conditions. Then, to second 
order in 77 we have 

(6a) f h j \ r , -S dL 9L • 2 d2L . 1 d2L., 
Ja ^ ^ ^ w . ^ w . ^ m 1 ' + d ^ v n + - 2 w v 

fb ( dL &L.\.X 

1 (h (d2L 2 n d2L . d2L ,2\ 

In order for A to differ from A* in second order, the first-order term, which is 
the first integral on the right-hand side of Eq. (6b), must vanish for any arbitrary 
77 for which 77(a) = 77(6) = 0 [remember, 77(a) = g(a) — g„(a) = 0]. A possible and 
convenient choice for 77 is a sharply peaked function centered on some point t = to 
in the interval a < t < b (see Fig. la). The first term in the first integral on the 
right-hand side of Eq. (6b) is then (dL/dq+)t=zt„ f^V dt. We lose no generality by 
taking the area under the sharp peak to be unity, so that J^rf dt = 1. Then the 
first term in the first integral is just (dL/dq^)i=t„-

We can use the vine trick on the second term with one slight addition of 
complexity. Because the derivative 77 does not have a single sharp peak (see Fig. lb), 
it does not simply pick out the value of its coefficient at t = t0. But an integration 
by parts is all we need to complete our calculation: 

dt (dq*) t = t o ^ 

The integrated term vanishes because 77(a) = 77(b) = 0. Adding the two terms, we 
find for the first integral on the right-hand side of Eq. (6b) 

rdL d f d L \ 1 n , ^-aUJL."0 • (7c) 

If this first integral is to vanish, the quantity in brackets in Eq. (7c) must vanish. 
Since the choice of 10 on which to center the sharply peaked function was arbitrary, 
Eq. (7c) must vanish for all t0 in the interval (a,b). But this means that then q* 
satisfies the Euler-Lagrange equation, Eq. (1). 

Next we determine whether the extreme value A* of the functional A is a min-
imum, a maximum, or neither. We can write the second integral as 

I / V k.f. +2L,.tm ( j ) +LM. ( j ) 1 a . (8a) 
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(For convenience, I abbreviate Lq,q, = d2 L/dq2, etc.) The quantity in the paren-
theses is a quadratic expression in the variable 77/77. If it has a positive discriminant, 

(Lq.q. )2 - Lq.q. Lq,q. , (8b) 

it has real roots, i.e., there are values of 17/77 for which it vanishes, and it is positive 
for some values of 77/77 and negative for others. Hence A can be either greater than 
or smaller than A,, although it always differs from A* in second order. On the other 
hand, if the discriminant is negative, there are no roots, and the expression in the 
parentheses must always have the same sign. It will always be positive if Lq,q, and 
Lq^m are both positive [if the discriminant (8b) is negative, and must 
have the same sign]. Then A is always greater than A*, and A„ is a minimum. If 
Lq,gm and L a r e negative, A will always be less than Aand A„ is a maximum. 

6 .4 As a simple example illustrating the application of the foregoing ideas, let 
us consider a problem suggested by Collatz (L. Collatz, Differentialgleichungen, 
B. G. Teubner, Stuttgart, 1967, pp. 172-5), namely, the linear eigenvalue problem 

y + Xxy = 0 , (9a) 

y(0) = 0 , y ( l ) = 0 , (9b) 

which arises in the calculation of the mechanical stability of a vertical rod supporting 
its own weight. (The lowest eigenvalue X gives the critical value of [igl3/B at which 
the rod buckles under its own weight. Here fi is the mass of the rod per unit length, 
g the acceleration of gravity, I the length of the rod, and B its flexural rigidity.) 
The Lagrangean for the differential equation (9a) is 

L = \y2-l-Xxy
2 , (10a) 

and the functional A (in mechanics called the action) corresponding to it is 

A=l-J\y2 -Xxy2)dx . (10b) 

What is the value of the action when y = y*, the solution of the eigenvalue 
problem (9a,b)? If we integrate the first term on the right in Eq. (10b) by parts, 
we get 

2A, = y ,y , - [ (y*y* + Xxyl) dx = 0 (10c) 
0 Jo 

because yy = 0 when x = 0 [y(0) = 0] or 1 [y(l) = 0] and, according to Eq. (9a), 
y*y* = —Xxyl• What this means is that, when y is a trial function that obeys the 
boundary conditions of Eq. (9b) and differs from y* by an error of order e, 

m = I J\y2 - W ) dx = At + 0(e2) = 0(e2) . (lOd) 
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Thus Eq. (10d) provides the estimate for the eigenvalue, 

A ( l l a , 
Jo xv2 dx 

the error in which is of order e2. 
A simple trial function that obeys the boundary conditions of Eq. (9b) is y = 

1 — xn, where n is a parameter yet to be determined. A short calculation then shows 
that, according to Eq. ( l la ) , 

A = 2 ( „ + ! ) („ + 2 ) 
2 n — 1 

The best value of n is that which makes the right-hand side of Eq. ( l i b ) an ex-
tremum. (To see this, note that two trial functions, with neighboring values of n 
near the best value, must each lead to trial values of A that differ from the correct 
value in second order. Hence the trial values of A must differ from one another in 
second order.) The extremum of the right-hand side occurs when n = (v^15 + l ) / 2 
and is equal to Vl5 + 4 = 7.872983. 

Collatz's problem is soluble in terms of Bessel functions of order 1/3, and using 
the properties of these functions, Collatz has obtained the value A = 7.83735, from 
which our variational estimate differs by only 0.45%. 

6.5 The Euler-Lagrange equation is a second-order equation. Hamilton's equations 
are an equivalent set of two coupled first-order equations. To derive them, Hamilton 
employed the so-called Legendre transformation that is used in thermodynamics to 
change independent variables. [A simple example of the Legendre transformation is 
the passage from the internal energy U to the Helmholtz free energy F. According 
to the two laws of thermodynamics, dU — TdS — P dV\ thuc U may conveniently be 
considered a function of the entropy S and the volume V. If we subtract d(TS) from 
both sides, we obtain d(U-TS) = T dS-P dV-S dT-T dS = -SdT-PdV. The 
new function F = U — TS, called the Helmholtz free energy, is most conveniently 
considered a function of T and V.] 

To reduce the Lagrange equation to a pair of first-order equations, Hamilton 
introduced the new variable p = dL/dq. In terms of it, the Euler-Lagrange equation, 
Eq. (1), becomes p = dp/dt = dL/dq. Hamilton then introduced, in place of the 
Lagrangean, a related function H that could be considered a function of p and q\ 
this he did by means of the Legendre transformation 

H = p'q - L . (12a) 

Then 

dH = q dp + p dq — Lq dq — L^ dq 

= q dp + p dq — p dq — p dq 

= q dp — p dq (12b) 
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because Lq = p and Lq — d/dt(Lq) — p. Thus 

uii . . 
Hq = - = - p . (13b) 

, (13a) 

dH_ 
dq 

Equations (13a) and (13b) are the coupled first-order equations of Hamilton. The 
function H is called, appropriately enough, the Hamiltonian. 

6 .6 In terms of the Hamiltonian, the functional A has the form 

A = [ {pq-H)dt . (14) 
J a 

Noble's idea is to study the behavior of A when p and q are trial functions that 
(i) are closc to the exact solutions p+ and q* of Eqs. (13a) and (13b) and (ii) obey 
either Eq. (13a) or Eq. (13b). If the Hamiltonian is of a certain type, then one of 
these families of trial functions will give an upper limit to A and the other will give 
a lower limit. Thus we shall be able to bracket the true value. 

Suppose 
P = P* + C » (15a) 

q = q* + i1 • (15b) 

Then to terms of second order in £ and 77, 

A = [ [(p. + 0 ( q * +V)~ H{p„ -f- C ,q* + v)] dt 

J a 

= J (p*q* + Cq* + VP* + Cv~ H * - CHP, - R/FF,. 

C v2 \ - y t f p . p . - v £ H P , q , ~ - j H i ' i ' ) d t 

= A* + (Cg* + 77p* - (Hp, - rjHg,) dt 
J a a 

+ J* (vt - YhP-P- - - dt • ( 1 6 ) 

If we integrate the term ^p* in the first integral by parts we get 

rb b r<> 
/ VP* DT = VP* ~ / VP* DT • (IT) 

J a 0 Ja 

The integrated term vanishes if 77(a) = 77(b) = 0, i.e., if q obeys the same boundary 
conditions as g*. Using the Hamilton equations, (13a) and (13b), we see then that 
the first-order term (first integral on the right) vanishes. 
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Suppose now we consider trial functions p and g that obey Eq. (13a). Then 

q = q, + rj = Hp(p* + ( , q , + V ) = Hp. + HPmP.( + Hp,q,rf ( 1 8 a ) 

or 
V = HP.PX + Hp,q.r) . (18b) 

Substituting Eq. (18b) into the second-order term (second integral on the right), 
we find 

A ^A, + ^jjC2Hp.P.-v2Hq.q,)dt LP,9 obey (13a)] . (19) 

If p and q instead obey Eq. (13b), then 

P = P* + C — —Hq{p* + C ,q* + r}) = - H q . - Hq,pX - Hq.q.V ( 2 0 a ) 

or 
C = -Hq.p.C - Hq.q.V (20b) 

Since Ja dt = rj(|J[ — Ja tj( dt = - Ja T]( dt (because ij(a) = T}(b) = 0—remember, 
q and g* obey the same boundary conditions), 

A = A*+l-j\r)
2Hq.q.-?Hp.p.)dt [p, q obey (13b)] . (21) 

[N.B.: Th>j symbols TJ and £ appearing in Eq. (21) are not numerically the same as 
those appearing in Eq. (19)!] 

If ffq.q, and -ffp.p. have opposite signs, or if one of them is zero, then the 
second-order terms in Eqs. (19) and (21) will have opposite signs. Thus, one of 
these equations will give an upper limit to A* and the other a lower limit. 

As an illustrative example, let us take the problem dealt with in Sect. 6.2, 
namely, q - q = 0, g(0) = 0, g( l) = 1. Then H = (p2 - q2)/2 so that Hamilton's 
equations are p = q and q — p, which are clearly the equivalent of the second-order 
equation. The functional A is then given by 

If p = p* and q = q*, then p« = g* and 

I f 1 i f 1 / " 1 
A* = 2 J0 + q d t = 2 q*q* o ~ J ~ dt 

(22) 

= * ( 2 3 > 

So the limits we shall get will provide upper and lower bounds of second-order 
accuracy on the slope g* at t = 1. 

When p and g obey Eq. (13a): g = p, we get an upper limit to A t (since Hpp = 1 
and Hqq = —1). Then A given by Eq. (22) becomes 

A=\j\q2+q2)dt , g(0) = 0 , g( l ) = 1 (24) 
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This is what we had earlier in Sect. 6.2. There the choice q - t gave A = 2/3. 
When p and q obey Eq. (13b): p = q, we get a lower limit to A*. If we take q = i 
to satisfy the requirement that q and q, obey the same boundary conditions, then 
we find p = a + <2/2, where a is an as yet undetermined constant of integration. 
Then, substituting into Eq. (22), we find 

Since Eq. (25) provides a lower limit, its maximum value of 59/90, which occurs 
when a = 5/6, is the best such lower limit. So we find then that 59/90 < A* < 2/3. 
The geometric mean of these limits, 0.661088, cannot be in error by more than 
0.84% (its error is in fact 0.70%). 

In Collatz's example (Sect. 6.4), the differential equation y + A xy = 0 has 
the Hamiltonian H =•• p 2 /2 + Xxy2/2. Then Hpp = 1 and Hyy = A®, and both 
are positive. Thus, the conditions for applying Noble's idea are not fulfilled, and 
although both Eqs. (19) and (21) provide second-order estimates of A, we have no 
guarantee that one is always an upper and the other always a lower bound. 

6.7 The work up to now has dwelt on solutions q(t) of ordinary differential equa-
tions. Now we turn to solutions q(x,y,z) of partial differential equations. If such 
solutions make a Lagrangean of the form L(q,qx,qy,qz) an extremum, what is the 
form of the Euler-Lagrange differential equation? To answer this question, we pro-
ceed just as we did in Sect. 6.3 and set q = q„ + r/: 

A = j j j L dx dy dz = A* + J J J ( L q r j + Lqxrjx + Lqyrjy + LqM-qz)dx dy dz 
R R 

+ ••• , (26) 

where the derivatives are to be evaluated for q = q*. This can be written con-
veniently in vector notation if we define the vector L-qq to be the vector with 
components Lqz, Lqv, and Lqt. Then Eq. (26) becomes 

A = A* + J J j i L r f + LVq • Vr))dx dy dz + • • • (27a) 
R 

JJ r]LVqdS + J J J { L q - V - L V q ) T i dx dy dz + --- . (27b) 

R 

= A* + 
a R 

Here C is the bounding surface of the region R and dS is its outward normal. The 
passage from Eq. (27a) to Eq. (27b) is by means of the vector identity V • (sv) = 
v • Vs 4- aV • v and the divergence theorem. 

If 77(C) = 0 but 77 is otherwise arbitrary, we find the Euler-Lagrange equation 

V • LVq ~ Lq = 0 (28) 
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for the exact solution qt. So if we confine our trial functions q to those that obey 
the same boundary conditions as q,, namely, q(C) = q*(C), then A differs from A, 
in second order. 

The partial differential equation V2g = - 1 furnishes an example of these con-
siderations. This partial differential equation occurs in many applications with 
the boundary conditions q(C) = 0. Among those known to me are eddy current 
generation in noncircular plates by ramped fields, torsion of noncircular bars, and 
laminar flow of viscous fluids through noncircular pipes. According to Eq. (28), the 
Lagrangian L is 

L = \ { V q f - q . (29) 

The functional A, when evaluated for q = q*t the exact solution of the partial 
differential equation and boundary conditions, is 

A* = ~ \ f j f (Vl*)2dx dV dz = J J J 9• d * dy dz . (30) 
R R 

In the three problems mentioned above, the value of A* is directly related to the 
total eddy power dissipation in the plate, the torsional rigidity of the bar, and the 
total flow in the pipe, quantities of incontestable physical interest. 

6.8 By recasting these equations in the Hamiltonian form, we can obtain upper 
and lower limits to the extreme value A„. If we set 

p = Lvq (31a) 

and 
H=pVq-L , (31b) 

we find 

dH = dp-Vq + p- d(Vq) - Lvq • <*(Vg) - Lq dq 

= dp-Vq-V -p dq . (31c) 

Thus the Hamilton equations become 

Vq = H? , (31d) 

- V p = Hq , (31e) 
where Hp is the vector with components dH/dpx, 8H/dpy, and dH/9pz. In terms 
of H, A becomes 

A = JJJip Vq- H{p,q)} dx dy dz . (32) 
R 

Suppose now we substitute into Eq. (32) trial functions p and q that differ 
slightly from the true solutions p* and q+: 

P = P* + ( i (33a) 
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q = q. + i} . (33b) 

Then, to terms of second order in 77 and 

A = JJJ [ (p. + C) • (V q + V77) - Hp • c - Hq 77 - \ f •• Hpp • < 
R 

-rjHgp-t-^H^dx dy dz , (34) 

where all derivatives are to be evaluated for q = g* and p = p*. Here Hpp is the 
symmetric tensor whose components are HPXPX, HPTPV, etc. The first-order term 
vanishes if p and q obey appropriate boundary conditions on C, as we now see: 

[p* • V77 + ( • Vg* - Hp • ( - Hqr)}dx dy dz 
R 

= JJr1P,.d'S+ J J J [ - V V P . 

C R 

+ C • Vg* - Hp-C - Hqr})dx dy dz . 

This transformation has been achieved using the vector identity V • (p+77) = 77V • 
p* + p* • V77 and the divergence theorem. Because p* and g* obey the Hamilton 
equations [(31d) and (31e)] the terms in the last integral cancel in pairs (first and 
fourth, second and third). So if either (i) 77(C) = 0 or (ii) p* • dS = 0, i.e., p* 
is tangential to C, the surface integral vanishes and so does the first-order term. 
The first of these conditions means that the trial function q must obey the same 
boundary condition on C as does the exact solution. The second boundary condition 
depends on the problem we are solving and may or may not be fulfilled. Thus, to 
terms of second order, 

A = A, + | JJJ[2< • V77 - C -Hpp • < - HqqT}2 - 2r,Hqp • ()dx dy dz . (35) 
R 

If p and q obey the first Hamilton equation, Eq. (31d), then 

Vg» + V77 = Hp(p, + ( , q* + V) = Hp + Hpp • C+ Hptf . (36) 

Since g* and p# obey the Hamilton equations, the first terms on the left-hand side 
and right-hand side of Eq. (36) cancel. Substituting from Eq. (36) for V77 into 
Eq. (35), we find 

A = A.+ 1-JJJ[CHpp-Z-HqqV
2]dx dy dz . (37) 

R 

If, on the other hand, p and q obey the second Hamilton equation, Eq. (31e), then 

-V.p.-V-C = Hq(p. + ( ,q,+r,) = Hq + Hqp.( + H<}q7, . (38) 
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Again, the first terms on the left-hand s'.de and the right-hand side cancel because 
and qt obey the Hamilton equations. We shall use Eq. (38) to obtain the term 

2C ' Eq. (35) by means of an integration by parts: 

I I I ^ dX ^ dZ = I I ^ dS ~ I I I ^ dX ^ ̂  
R C R 

{r}Hqp • C + HqqT}2)dx dy dz . (39) ///< 
The surface integral vanishes if either (i) 77(C) = 0 or (ii) ( • dS = 0. Substituting 
from Eq. (39) into Eq. (35), we find 

A ^ A . + ^ J J J i H ^ - C - H p p - O d x d y d z . (40) 
R 

If the tensor Hpp is positive or negative definite and if Hqq has the opposite 
sign to it, then Eqs. (37) and (40) give an upper and a lower limit to A*. Another 
condition under which this would be true would be if, say, Hqq were zero and Hpp 
were either positive or negative definite. Acceptable boundary conditions for q and p 
are these: (1) either q(C) = q*(C) or p+ -dS = 0 on C for the trial functions obeying 
the first Hamilton equation, Eq. (31d), Vg = Hp, and (2) either q(C) = g*(C) or —* ^ 
p+ • dS — p • dS = 0 on C for the trial functions obeying the second Hamilton 
equation, Eq. (31e), —V • p = Hq. 

Let us now return to the example we pursued in Sect. 6.7, namely, V2g = —1, 
g(C) = 0. The Lagrangean is given in Eq. (29). According to Eqs. (31a) and (31b), 
p = Vg and H = p 2 /2 + q. Thus the tensor Hpp has 1 for its diagonal elements and 
zero for all others; it is therefore positive definite. Furthermore, Hqq — 0. So we 
expect the two estimates of A obtained from Eq. (32) by choosing trial values of p 
and q that satisfy one or the other of Hamilton's equations to be upper and lower 
bounds. Hamilton's equations are 

Vq=Hp = p , (41a) 

- V -p = Hq = 1 . (41b) 

If p and q obey Eq. (41a), then 

/// [l™ 
R 

2 q dx dy dz , q(C) = 0 . (42) 

Except for the boundary conditions g(C) = 0, g is completely arbitrary. If p obeys 
Eq. (41b), no restriction is placed on g. If we choose g = 0 so as to satisfy the 
requirement that q(C) = g*(C), then Eq. (32) becomes 

A = ~ \ J J J V2dx dy dz , V - p = - l . (43) 



102 

The same result can be obtained by choosing q = <7*; since <7* does not appear in 
Eq. (43) we do not actually have to know it to imagine q — q,. Combining Eqs. (43), 
(42), and (30), we get 

where V • p = —1 and q(C) = 0 but p and q are otherwise arbitrary. 
Suppose now that R is a thin square disk with corners ( ± 1 , ± 1 ) . A convenient 

trial function for q is o( l — ®2)(l — y2), where a is a constant yet to be determined. A 
short computation shows that the right-hand side of Eq. (44) is (160a — 256a2)/45. 
The maximum value of this expression occurs when a = 5/16 and equals 5/9 , which 
is the best lower limit attainable with the family of trial functions chosen for q. A 
suitable trial function for p is the vector ( — x /2 , — y/2), whose divergence is —1. A 
short computation then shows that the left-hand side of Eq. (44) is 2 /3 , which is an 
upper limit. The geometric mean of these limits, 10/27 = 0.6086, has a percentage 
difference from the exact value of no more than 9.5%. The exact value, 0.5623, can 
be calculated from a series given by Sikora. 

The inequalities of Eq. (44) can be made the basis of a number of formulas for 
estimating fff(Vq*)2 dx dy dz for a variety of irregularly shaped two-dimensional 

disks. [See, for example, my paper "Eddy Current Heating of Irregularly Shaped 
Plates by Slow Ramped Fields," p. 89 in Proceedings of the Eighth Symposium on 
Engineering Problems of Fusion Research, San Francisco, California, November IS-
IS, 1979, IEEE, New York, 1979, and the references contained therein. This paper 
deals largely with means of choosing suitable trial functions and evaluating the 
multiple integrals on the left-hand and right-hand sitles of Eq. (44).] 

6 . 9 The foregoing section was devoted to an important but linear problem. This 
section is devoted to the nonlinear problem of Sect. 4.5, namely, steady heat flow 
in superfluid helium [see Eqs. (4.27) and (4.28)]. A Lagrangean for Eq. (4.28) is 

(We assume here, as before, that K is independent of temperature. The factor 3 / 4 
has been inserted for convenience.) According to Eq. (31), 

R R R 

R 

i = | | v r | 4 / 3 . (45) 

P = (VT) 1 / 3 = V T / I V T I 2 / 3 (46) 

and 
(47) 

The Hamiltonian equations are then 

VT = f (= p2p) , (48a) 
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V p = 0 . (48b) 

The functional A is given by 

A = J J J ( p - V T - ^ d x dy dz . (49) 
R 

In order to see if the method of complementary variational principles is of any 
use in this problem, we must identify the meaning of A+, the exact value of A. Now 

a. = JfJtf*-vr* - p*/4)dx dydz 
R 

= ^ J J J p* • VT„ dx dy dz [remember p* and T* obey both Eqs. (48a) and (48b)] 
R 

= \ J J J V-{?.T.)dxdydz ( V - p , = 0) 

- U J c 

R 

T.p.-dS . (50) 

Suppose we now take R to be a duct with two plane parallel isothermal surfaces 
and two irregular adiabatic surfaces (see Fig. 2). From Eq. (46) or Eq. (48a) we see 
that p* is parallel to the heat flux vector and is therefore parallel to the adiabatic 
surfaces. Therefore, on the adiabatic surfaces p* • dS = 0. Since T, = 0 on the 
isothermal surface BD (T is the temperature rise), 

A. = | ( A T ) J I ( V T . ) 1 / 3 • dS = l^-Q , (51) 
AC 

where Q is the total heat flow into the face AC of the duct [N.B.: (V71*)1/3 and dS 
are oppositely directed on AC.] So our variational principles will give us accurate 
bounds on the total heat flow through tjie duct, a quite useful quantity to have. 

First, let us choose trial functions T and p obeying Eq. (48a). Then Eq. (49) 
becomes 

J J J | V r | 4 / 3 dx dy dz , (52) 
R 

where the trial function T must obey the boundary conditions T = AT at x = 0 and 
T = 0 at x = L. It is easy to see that Eq. (52) will give the upper limit to A«: since 
T is arbitrary except on the isothermal surfaces, we can add to it a high-frequency 
flutter that can make V T as large as we please. 
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O R N L - D W G 8 7 C - 2 3 5 0 FED 

Fig. 2. The He-II-filled duct with isothermal surfaces x = 0 and x = L and 
adiabatic surfaces y = Yi(®) and y = V^®). 

Second, let us choose trial functions p and T obeying Eq. (48b). Since V -p = 0, 
the first term in Eq. (49) can be converted to a surface integral, and A becomes 

A = J J T.pdSJJJ p4 dx dy dz (53) 
c R 

if we choose T = T*. So finally we have 

J J J \ V T \ 4 / 3 d x d y d z > ^ > l J j T « p . d S - ± J J J p A d x d y d z . (54) 
R C R 

6.10 In this section and the next, we shall undertake the evaluation of the left-
and right-hand sides of Eq. (54). Let us begin with the left-hand side, which is the 
easier of the two. Suppose we consider a unit width of duct in the ^-direction and 
take the isothermal surfaces to be planes parallel to the end planes. This means we 
take T = T(x). Then 

J J J |VT|4 / 3 dx dy dz = £ ( j ^ J ' (Yj - Y2) dx . (55) 
R 
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We choose the function T(x) so as to minimize the right-hand side of Eq. (55). A 
straightforward variational calculation will give us the minimizing function; call it 
To(®). If we set T(x) = To(®) + v(x)> then the first-order term in the expansion of 
Eq. (55) in powers of i\ is 

(56) 

If T0 is to minimize the right-hand side of Eq. (55), Eq. (56) must vanish for all rj. 
If we integrate by parts, Eq. (56) becomes 

1 / 3 
T] dx . (57) 

Now T, and perforce T0, must obey the boundary conditions T(0) = AT, T(L) = 0, 
so 7/(0) = r,(L) = 0. Therefore, the integrated term vanishes. From the second term 
we see that TQ must obey the Euler-Lagrange differential equation 

A. 
dx 

1 / 3 

= 0 

Thus 
(dT0 \ 1 / a

= B 
\ d x ) Yi-

(58) 

(59a) 

where B is a constant of integration determined by 

AT = f — * Jo W - i Y2)3 " 
(59b) 

Substituting Eqs. (59a) and (59b) into Eq. (55), we find for Eq. (55) the result 

( A T ) 4 / 3 

so that from Eq. (54) we have 

r dx_ 
Jo Y2)3 

-1/3 
(60a) 

. K j & T y ' 3 

' [ j f d t / i Y x - Y W * 
(60b) 

There is a "simple" derivation of Eq. (60b) that proceeds from the assumption 
that at every abscissa the temperature gradient is given by 

fdT\1/3
 = Q_ 

\dx J K(Yi -
(61) 
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But this simple derivation does not show that the value of Q in Eq. (61) is an upper 
limit of variational accuracy, two things that are worth knowing. 

6 .11 Now we turn to the evaluation of the right-hand side of Eq. (54). Since p 
must be a divergenceless vector, let us set 

0V> dip . . 
= py = ~di • ( 6 2 ) 

In order to evaluate the first integral (the surface integral) we must know T* on C. 
We only know it on the bounding isotherms, not on the lateral adiabats, i.e., not 
on y = Y\ and y = Y2. But if we take y — Yi and y = Y2 to be level surfaces of tjj, 
then on them p • dS will be zero. Then 

jJ T.p • dS =-\{AT) f ^ =-^{AT)^ - i>2) . (63) 
c Y' 

The minus sign occurs in the last two terms because the outward normal to R on 
the end surface AC points in the negative ^-direction; thus dSx = — dy. So 

^ > T){i>, - fc) _ IJJJ(VVO4 dx dy dz . (64) 
R 

Now in order that our trial functions may include the exact solution, we take 

A-i>2 = - r p* • ds* = - f (Vr») 1 / 3 'dS, = -% . (65) JJh J A a k 

Combining Eqs. (64) and (65), we get 

^T" ~ III(VV>)4 dx dy dz ' (66) 
R 

In spite of the direction of the inequality in Eq. (66), we shall ultimately get a lower 
limit to Q. This is because also involves Q. 

We choose as level surfaces* for the trial function ip the surfaces 

y = Ayi («) + (1 - X)Y2{X) , 0 < A < 1 . (67) 

*This procedure is called by Polya and Szego the method of assigned level surfaces. 
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The most convenient way to evaluate the integral in Eq. (66) is to introduce the new 
coordinates A, x. Since the new coordinates are not Cartesian, we employ tensor 
formalism for the calculations: 

(dx)2 + (dy)2 = (dx)2 + {(Yj - Y2)dX + [\Yx + (1 - A)K2]rf*}2 , 

<7** = l + [AKi + ( l - A ) y - 2 ] 2 , 

g*x - gx* = [AFi + (1 - A)F2](Ki - Y2) , 

9X^(Y1-Y2)2 , 

g = det(gij) = (Y1-Y2)2 , 

_ i l l - i + [Ari + ( i - A ) y » ] a 

(Y\ ~ Y2)2 

If V' is a function only of A, 

Since 

we finally have 

J J ( V i , ) A d x d y = J J ( V V > ) 4 y / g dXdx , 

J j W U x d y = j \ x { ^ ) [ d x 
{ i -h [Ayi + ( i - A ) r 2 ] 2 } 2 

(Y1-Y2)3 (68) 

Equation (68) has the form 

jf«@y <?(A) , (69) 

where (7(A) is • • •dx. We shall choose i]) so as the maximize Eq. (69). A short 
variational calculation shows that ip must obey the Euler-Lagrange differential equa-
tion 

d_ 
dX 

G( X) = 0 . (70) 

The solution that obeys the boundary conditions if)i = —Q/K, ij>2 = 0 [see Eq. (65)] 

QSQXG-*>>dX 
KtfG-^dX ' 

(71) 
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Substituting Eq. (71) into Eq. (69), we find that Eq. (66) takes the form 

QAT 
K 

or 

Q > K(AT)1/S f G~ll3d\ , (72b) 
Jo 

where 

c m - 1 1 1 + * • ( 7 2 c ) 

The function G is simple to evaluate when the adiabatic surfaces are straight 
lines, i.e., when R is a trapezoid. By way of example, consider the trapezoid shown 
in Fig. 3, for which Yi = —a and Y2 — 0- I n case, Eq. (72b) becomes 

> K(AT)1^ A i + a V ) - 2 / 3 dX . (73) 
~ [ t f d x / i W - Y t n / ' Jo 

O R N L - D W G 8 7 C - 2 3 4 8 FED 

/77777777777777777777 
Fig. 3. A trapezoidal duct. The hatched surfaces are adiabatic. 

Comparing Eq. (73) with Eq. (60b), we see that the A-integral in Eq. (73) gives the 
ratio of the upper and lower variational estimates of Q. The A-integral is easy to 
evaluate either by series or with Simpson's rule. A few values are given in Table 2. 
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Table 2. Values of the integral /Q
l( 1 + A 2 a 2 )~ 2 / 3 rfA 

a / 0
l ( l +• A 2 a 2 ) " 2 / 3 dA 

0.0 1.000000 
0.1 0.997789 
0.3 0.980852 
0.5 0.950452 
0.7 0.911607 
1.0 0.847138 
1.5 0.743754 
2.0 0.656516 

These numerical values show that, even for substantial slopes, the two bracketing 
estimates are quite close together. 

6.12 The variational method is not without use even when the desired quantity is 
not the one represented by the functional A. Consider, for example, the problem 
dealt with at the end of Sect. 4.5, namely: V - ( V T ) 1 ^ = —1; T = 0 on the perimeter 
P of a square 5 of side 2; find T at the center of the square. The Lagrangean for 
this problem is 

L = ^ | v r | 4 / 3 - r , (74) 

and the extreme value of the functional A is 

A * = I I (i|vt*,4/3 ~ t 0 d x dy (?5a) 
s 

= / / { ^ V . [ T + ( V T , ) 1 / 3 ] - ^ J c i x d y (75b) 
s 

= l j T . { V T m ) V * - d S - ^ j j T . d z d y (75c) 
P s 

= - ^ J J n d x d y (75d) 
s 

since T* = 0 on the perimeter P. {It also follows that A* = - \ Jf |VT*|4/3d x dy 
s 

[equate Eqs. (75a) and (75d)].} So if we wanted the average value of T in 5 , the 
variational method could give us a second-order estimate of it. But we are interested 
in T at the center of the square, for which no such second-order estimate is possible. 
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The variational method can help us to find the "best" trial function of a chosen 
family- The word "best" is in quotes because the trial function is best only in the 
sense of making A as close to its extreme value Af as possible, but in actual fact 
this is achieved by making the trial function resemble the exact solution as much 
as possible. In thrJ problem being considered we can again make use of Polya and 
Szego's method of assigned level surfaces. Let us choose the center of the square as 
the origin of polar coordinates (r, 9) in terms of which the perimeter of the square is 
given by r = R(6). Let us choose as the level surfaces of T the surfaces r = AR(9), 
0 < A < 1, that are geometrically similar to P. Since we are taking T = T(A) only, 
it is convenient to introduce the nonorthogonal coordinates (A,9) in place of the 
coordinates (r, 9). Proceeding as before, we evaluate A: 

dr2 + r2d92 = {RdX + AR d9)2 + A2R2 d92 

gxx = R2 g = det(</jj) = A2 R* 

xx 9ee R2 + R2 
9 = 9X6 = 9ex = A RR 

906 = A2(/*2 + R 2 ) 

Thus 

-IS 
- f A dX f 

Jo Jo 

2 IT 
do 

= / 
Jo 

X dX 

X R2 dX <10 

3 f R2 + r2 ( * r y ° _ R 2 T 

2A,T (76) 

where 

' = / 
Jo 

2* { R2 + R2 

, R 

2 / 3 

de (77a) 

ant 
1 f27! 

• « L R
 d e (77b) 

is the area of the square S. 
We choose T(A) to minimize Eq. (76). A short variational calculation shows 

that T must satisfy the Euler-Lagrange equation, 
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+ 2A.X -= 0 . (78) 

The solution (78) that is regular at A = 0 and obeys the boundary condition T(l) = 
0 at A = 1 is 

1 / 4 \ 3 

T = l [ ~ ( 1 - A 4 ) • (79) 

From Eq. (79) it follows that 

(80a) 

and 

• (80b) 
s 

Equation (80b) is accurate to second order; Eq. (80a) is not. The results [Eqs. (80a) 
and (80b)] apply to any geometric figure. For the square of side 2 an easy calculation 
shows that a = 8 and A, = 4. Thus, we estimate that T(0) = 1/32 and (T) = 1/48. 

6 .13 When the quantity we are interested in is represented by the functional A 
and the Hamiltonian has certain properties, we can get rigorous upper and lower 
bounds for At. We are dealing with exact mathematics and we know by how much 
at most our estimates can be wrong. But when the quantity we are interested in 
is not the one represented by the functional A, as in the previous section, we can 
rigorously say little that is useful about our estimate of it. So although we may 
feel that the estimate T(0) = 1/32 is reasonably accurate, there is nothing in the 
analysis that led to it that can help us quantify this feeling. 

Nevertheless, the approach used in Sect. 6.12 and extensions of it mentioned 
below can be used to get estimates of various quantities that, though they might 
not satisfy a mathematician, might well satisfy an engineer. I call these methods 
curve-fitting methods and their common features are these: a family of curves of 
some generality is chosen to represent the solution of the differential equation, and 
then the best curve is picked out according to some criterion of best fit. In Sect. 6.12 
the criterion of best fit was the variational criterion—the best curve is the one that 
makes the functional A an extremum. But other criteria are possible. Some deal 
with the residual, the amount by which the sum of all the terms in the differential 
equation misses being zero. In the method of collocation, the parameters of the best 
member of a multiparameter family of trial functions are determined by requiring 
the residual to vanish at several discrete points. In the method of least squared 
residual, the parameters are chosen to minimize the integrated squared residual, 
possibly multiplied by some weighting function. In the Galerkin method, used 
mainly for linear problems, the trial solution is written as a finite sum of orthogonal 
functions and the expansion coefficients are chosen to make the residual orthogonal 

d 
ld\ 

dT 
dX 

1 / 3 -
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to all those functions used in the sum (thus we solve the differential equation in the 
subspace spanned by the trial functions). A method that I personally like is the 
integral method, in which integral relations constraining the solution are obtained 
by multiplying the differential equation by various functions and integrating it over 
the interval of interest. The success of these methods depends more on the choice of 
trial family than on the criterion of best fit, and generally the latter can be chosen 
to minimize the labor of calculation. 

As an example of these ideas, let us consider the differential equation (3.26) and 
the boundary conditions (3.27a) and (3.27b): 

3j/ + xyy - y2 = 0 , (3.26) 

y(0) = - 1 , y(oo) = 0 . (3.27) 

This example is especially interesting because it cannot be written in the Lagrangean 
form. Now, we know from the analysis of Sect. 3.6 that for large x, y ~ 6 /x 2 . A 
simple, one-parameter trial family that has this behavior and for which y(0) = — 1 
is 

y = (a + a2x + x 2 / 6 ) - 1 . (81) 

If we insert Eq. (81) into Eq. (3.26), we find the residual 
6a4 + a2x - 2a , . 

( o + a2x + x 2 / 6 ) 3 ' 1 ' 

If we require the residual to vanish at x = 0, we find a = 3 - 1^3 = 0.6934. On the 
other hand, if we require it to vanish when x = 1, we find a = 0.6136. If we require 
a to minimize the integrated squared residual (this integral was done numerically), 
we find a = 0.6738. 

The integral method can be applied to Eq. (3.26) by integrating it over the 
entire interval from zero to infinity. After integrating the middle term by parts we 
find 

poo 

/ y2 dx + 2y(0) = 0 . (83) 
Jo 

Substituting Eq. (81) into Eq. (82) and carrying out the indicated integration, we 
find the following equation for a: 

2 arccosy/3a3/2 a 
3 ( 2 a / 3 - a 4 ) 3 / 2 (2a/3 - a4) ' K V 

Equation (84) can be solved without too much effort by the Newton-Raphson 
method and yields a = 0.6468. 

The result obtained in Sect. 3.6 by numerical integration of the differential 
equation was a = (1.511)—1 = 0.6618. The results obtained above are all within 8% 
of the correct value. Had we not done the numerical integration of the differential 
equation, these results would suggest to us that the correct value is likely to lie 
between 0.6 and 0.7. But it should constantly be borne in mind that these results 
have no rigorous significance. Regarding nonvariational curve-fitting methods, all I 
can say is let the user beware. 
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Chapter 7 
STABILITY OF N U M E R I C A L M E T H O D S 

"There is nothing stable in the world; uproar's your only music." 
—John Keats 

Letters 

7.1 We have already seen in earlier chapters of this book how a brute-force nu-
merical approach to certain problems involving ordinary differential equations runs 
into difficulties because of numerical instability (see e.g., Sects. 2.6, 3.6, and 4.3). 
By instability, I mean runaway departure of the numerically calculated values from 
the correct solution. The cause of instability in all of these cases was the divergence 
of neighboring integral curves from one another and from the one we were trying to 
calculate (see Fig. 4.1). When we tried to advance in the direction of the divergence, 
the unavoidable small errors of truncation in the numerical procedure threw us off 
the curve we were trying to calculate onto a near neighbor. Because the integral 
curves diverge, the numerical solution departed by ever greater amounts from the 
solution we were trying to calculate, and the numerical solution eventually became 
worthless. Figures 2.2 and 3.2 show this clearly. A similar thing occurs in the 
development of "chaos," about which much has been written lately; there, as here, 
the problem is caused by a very sensitive dependence of the asymptotic behavior 
on the initial conditions. 

When the cause of instability is seen clearly, one realizes that there is no way of 
finessing a solution marching in the direction of divergence. But, as we have already 
seen in the examples cited above, numerical integration in the opposite direction is 
quite successful. All of those examples were two-point boundary-value problems on a 
semi-infinite interval. In all of them, an asymptotic limit was used to find consistent 
values of y and y for some large value of x that then served as starting values for a 
stable integration in the backward x-direction. In the examples of Sects. 2.6 and 3.6, 
we made explicit use of the affine group invariance of the differential equation, but 
in the example of Sect. 4.3, we deliberately considered a differential equation (4.11a) 
not invariant to an affine group. There, we postulated the asymptotic series (4.12a) 
and determined the coefficients A, B, C, etc., by substituting into the differential 
equation and equating the coefficients of individual powers of x to zero. 

In general, the last approach will prove satisfactory, but it must be handled with 
some delicacy, as the following illustration based on Eq. (3.26) shows. Suppose we 
want to handle the two-point boundary-value problem of Eqs. (3.26), (3.27a), and 
(3.27b) without invoking invariance to an affine group. A little numerical trial and 
error convinces us that forward integration is unstable (try it!). So we look for an 
asymptotic series with which to start a backward integration. Substitution of the 
trial form y ~ A/xm into Eq. (3.26) gives 

3m(m + I) A mA2 A2 

j»ni-f 2 Tn jt 2 77X ( i ) 
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which can be satisfied if 2m = m + 2 and A = 3m, i.e., if m = 2 and A = 6. Thus 
we find the special solution 6/x2. It is tempting at this point to again postulate the 
asymptotic form, Eq. (4.12a), but a quick calculation shows that all the coefficients 
of the higher powers, A, B, C, etc., must vanish. This leaves us in a quandary. 

The reason for our difficulty is that the form in Eq. (4.12a) assumes too much 
about the solution to Eq. (3.26). If we assume less at the outset, we fare better. 
Suppose we assume 

6 A B 
+ — + — + • • • , 2 

X2 xm xn 

where 2 < m < n. Substitution of Eq. (2) into Eq. (3.26) gives 

(3m2 - 3m - 24)Ax^m+2) + (3n2 - 3 n - 24)Bx~<n+2> - (m + l)A2x~2m 

- (n + m + 2 ) A B x - { m + ^ - (n + 1 )Bx~2n + • • • = 0 . 

(3) 

Since we do not want A to vanish, we must choose m to be the positive root of 
3m2 — 3m — 24 = 0, namely, m = ( \ /33 + l ) / 2 = 3.372. Since n > m, 3 n 2 - 3 n - 2 4 ^ 
0; thus B must vanish, unless ra + 2 = 2m, in which case 

(3ra2 — 3ra — 24)i? = (m + I)A2 . (4) 

If we add additional terms to Eq. (2) at the start, we can continue in this way, but 
the calculations are tedious. What we have is sufficient, namely, 

6 A B 
2/ ~ —r -I — -+ , + • • • , (5a) X X X 

m = (V^3 + l ) / 2 , (5b) 

= V33 + 3 a 2 

6(27 - 3V^3) ' V ' 

We expect that different values of A will correspond to different slopes at the 
origin. Equation (3.27) directs our attention to the curve for which y(0) = — 1. To 
find the corresponding value of A we use trial and error, improving our guesses with 
the Newton-Raphson method. If we define 1 + y(0) = f(A), then 

^ = ^ (6) 

is the Newton-Raphson iterative procedure for finding the root of f(A) = 0. Table 1 
shows the actual work. The first four trials were guesswork to locate the root 
approximately. Thereafter, the Newton-Raphson method was used to accelerate 
convergence. Two initial values of x were used to demonstrate that the final result 
did not depend on its particular value (as long as it was large enough). Each line 
represents a numerical integration, carried out by the fourth-order Runge-Kutta 
method on a time-share VAX 8600 in a couple of seconds. The final result, y(0) = 
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1.511, is the same as that obtained in Sect. 3.6 at the cost of a single numerical 
integration. 

Table 1. Trial and error solution for A using the Newton-Raphson method 

x /(A) f(A + h) y(o) 
10.0 

20.0 

-1 .0 
-0.10 
-10.0 
-30.0 
-30.3373 
-30.343630 
-30.0 
-28.30 
-28.5108 
-28.513135 

-1490 
•228952 
-8.850 
-0.021214 
-0.03383800 
-0.06149 
0.103469 

-0.016270 
-0.03176209 
-0.07626 

- 0 . 0 1 
-0 .0001 

-0.020585 
-0.03377737 

- 1 . 0 
- 0 . 0 1 
-0 .0001 

0.164363 
-0.015498 
-0.03168664 

1.511171 

1.511176 

7.2 Instability of another kind sometimes occurs when we try to solve partial 
differential equations. Consider, for a moment, the pulsed-source problem in an 
infinite medium for the ordinary diffusion equation: Ct = Cxz; C(±oo,<) = 0; 
(7(2,0) = 0; J^^Cdz = 1, t > 0. This problem is useful for discussion because it 
has the known solution C(z,t) = exp( — z2 / At)/{Airt)ll2. To solve it numerically we 
might use the finite-difference representation 

C(z,t + fe) - C(z,t) _ C(z - h,t) - 2(7(2,0 + C(z + h,t) 
Jfe ~ h2 

or 

(7a) 

(7b) Cn,m+1 ~ Cn<m Cn—i[jn — 2Cn,m Cn+ i|Tn 

fe h2 

where Cn,m is a n abbreviation for C(z = nh,t = mk). Equation (7b) can easily be 
solved for Cn,m+i'-

Cn,m+1 — CntTn + — ( C n _ i , m — 2 Cn<m + Cn+\<ln) . (7c) 

It is easy to see that Eq. (7c) allows computation of the C values at the next 
time step, C n i T n + i , from the C values at the present time step Cn,m- Shown in 
Figs. l a - I d are the results of such a computation. Figure l a shows the initial 
condition calculated from the known analytic solution for t = 0.25. The space step 
h has been taken to be 0.01, the time step fc to be 1 0 - 4 . Figures lb , lc , and Id 
show the calculated profiles of C after 33, 35, and 37 time steps, respectively. As 
the reader can see, an oscillatory disturbance appears and grows rapidly, eventually 
destroying any information we hope to gain from the numerical integration. 

Armed with the results of this numerical experiment, we might now guess that 
the difference equation (7c) has a solution of the form 

Cn,m — ("") em (8) 
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(1a) 

(1c) 

Hb) 

(Id) 

Fig. 1. Numerical integration of the ordinary diffuson equation CT — CZZ. 
(a) Initial condition at t = 0.25; (b) after 33 steps with h = 0.01 and fe = 10—4; 
(c) after 35 steps; (d) after 37 steps. The z-axis contains 1000 space points. 
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Here the factor ( —)n provides the rapid fluctuation from point to point that is 
evident in the numerical calculations. Substituting Eq. (8) into Eq. (7c), we find at 
once that 

em+i = e m - ^ . (9) 

From Eq. (9) we see that if |1 — (Ak/h2)\ > 1, the e m will diverge exponentially, 
whereas if |1 — (Ak/h2)\ < 1, they will tend toward zero. Thus, if 

(10a) 

the em tend to zero, whereas otherwise they diverge exponentially. Now Eq. (10a) 
is equivalent to 

h2 

— > k > 0 . (10b) 

The integration that led to Figs. l a - I d had k > h2/2, so it is now understandable 
that it became unstable. Reducing the time step by a factor of l / y / 2 or more cures 
the instability, i.e., prevents the appearance of unbounded fluctuations. Bounded 
fluctuations still occur. They originate from the inadequacy of the finite-difference 
scheme accurately to represent the solution of the partial differential equation (trun-
cation error) and from the finite-decimal representation of numbers in the computer. 
If the time step is chosen to satisfy Eq. (10b), and if the errors just mentioned are 
initially small, they will remain small and not trouble us. 

The restriction of the time step expressed by Eq. (10b) is inconvenient because 
it demands small time steps, and small time steps mean long computing times. This 
restriction was quite serious in the distant past, when the calculations were done by 
hand, or even in the recent past, when computers were slow. But with today's fast 
mainframe computers, the restriction of the time step is not so important. There 
are finite-difference methods, the so-called implicit methods, that are stable for all 
values of k /h 2 . However, they involve the solution of large (but sparse) matrices, 
which complicates their programming and slows down their running. They are 
nonetheless worth a moment's consideration. 

Suppose on the right-hand side of Eq. (7) we estimate the second space derivative 
Czz using the values of C at time t + k. Then Eq. (7c) would become 

k 

Cn,m+1 = Cn,m + ^ ( C n - l . m + l — 2CniTn+i + C„,+ i l 7 n+i) . (11) 

If we now substitute the trial solution, Eq. (8), into Eq. (11), we find 
em+i = em/ (i + ^ f ) • (12) 

Thus, no matter what the value of k/h2, the e m never become unbounded. The 
equations (11) are a coupled set of linear equations for the Cn,m+i which require 
some small labor to solve. They are linear because the underlying partial differential 
equation is linear. When the underlying partial differential equation is nonlinear, 

i > i - i § > - i 
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the labor of solving these equations can be immense and the implicit method may 
lose its utility. 

7 . 3 The stability condition, Eq. (10b), between k and h applies for the ordinary 
diffusion equation, and other conditions may apply for other partial differential 
equations. Consider, for example, the wave equation Czz = C\f A simple finite-
difference approximation to it is 

Cn,m-1-1 ~ 2 C n | T n + c 2 Cn 
— _ _ (13a) 

or 
k2 

Cn,m +1 — 2Cn,m — Cn,m~l + —(Cn+ 1 ,m — 2 C n , m + C n - i , m ) . (13b) 

If we substitute Eq. (8) into Eq. (13b), we get 

( 4k2 \ 
e m + i = ( 2 - — J em - e m _ ! (14a) 

( 4k2 \ = Aem - e m _ i , where = f 2 — — J . (14b) 

Equation (14) is a linear difference equation of the second order and has therefore 
two linearly independent solutions of the form e m = Bekm, where fc is a root of the 
equation 

ek = A-e~k or (ek)2 - Aek + 1 = 0 . (15) 

Now A cannot exceed 2. If 2 > A > - 2 , then ek = (A ± W4 - A2)/2, the 
modulus of which is unity. Thus k is pure imaginary and equals iO, where 9 = 
cos"1 ( A / 2 ) . Then 

e m = R e ( f i + e ' m 0 + B_e~im9) (16) 

is the general solution of Eq. (14). The modulus of e m never becomes different in 
order of magnitude from that of eo. The em do not become unbounded and we have 
stability. 

If A < - 2 , e* = [A ± VA2 - 4 ) / 2 . The root with the minus sign has a modulus 
larger than 1; the root with the plus sign has a modulus smaller than 1. For large 
m , the larger root dominates, so that eventually 

A < —2 . (17) em 2 

The right-hand side of Eq. (17) is negative and has a modulus > 1, so the e m fluc-
tuate in sign and grow in magnitude without bound. This means there is instability 
for A < - 2 . 

When 2 > A > - 2 , 0 < k2/h2 < 1, so the condition for stability for the wave 
equation is k < h, which allows much more generous time steps than the ordinary 
diffusion equation. 
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The stability criteria derived in this section and the last are necessary criteria. 
They are also sufficient, but this is more difficult to prove. They refer, of course, 
to particular finite-difference representations of the underlying partial differential 
equation. 

7 . 4 The partial differential equation 

Ct = {ClJ>)t (18) 

arises in the study of transient heat transfer in superfluid helium (He-II); see 
Sect. 4.5. A simple finite-difference representation of Eq. (18) is 

C n ' m + \ ~ C n ' m = ^ \ { C n + h m - C n , m ) ' / 3 - (Cn, m - C n - r , m y ' 3 } (19a) 

or 

k 
Cn,m+1 ~ Cn,m + ,m ~ ~ (Cn,m ~ C„_ i.m)'^3] . (19b) 

If we substitute Eq. (8) into Eq. (19b) we get 

24/3fc . 
em+i = e m - j t j r e V * . (20) 

A little numerical experimentation with Eq. (19) shows that it has as a solution a 
two-cycle, which turns out to be given by 

em = ± { - ) (21) 

for all values of fc//i4/3. The reader can verify Eq. (21) by substitution into Eq. (20). 
From this we might expect that solutions of Eq. (18) will be perturbed by high-
frequency fluctuations of the constant amplitude given by Eq. (21). 

To test this I performed calculations of the infinite-medium, pulsed-source prob-
lem for the partial differential equation (18). I chose this problem because it has 
the known exact solution 

C = t~3'2y{x) , (22a) 

x = z/t3/2 , (22b) 

y = ( J T ' ( 2 2 c ) 

2 frCMl2 
b = A— — 2.854535 • •. . (22d) 

(This similarity solution was obtained using the techniques of Chap. 3. The details 
can be found in the author's book mentioned in Sect. 3.8.) Shown in Fig. 2 is the 
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Fig. 2. Numerical integration of Eq. (18). (a) Initial condition at t = 0.25; 
(b) after 1000 steps with k = 2.5 x 10- 4. Here h = 0.01 and the space axis has 1000 
points stretching from z = - 5 to z = +5. 
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initial condition (22) for t = 0.25 and a numerically calculated value for i = 0.50 
(determined by 1000 time steps with k = 2.5 x 10 - 4 ; here h = 0.01 and the space 
axis contains 1000 points stretching from z = — 5 to z — 4-5). The amplitude of 
the oscillations agrees perfectly with the value ±0.05590 given in Eq. (21). But the 
curve itself does not agree at all with what we expect from Eq. (22). For example, 
C(0,<) at i = 0.5 should be 0.267210, which is less than half the value given by 
curve (b). 

It appears, then, ihat the oscillations destroy the utility of the numerical inte-
gration. It is not hard to see why. If we add a fluctuating quantity to the C's in 
the differences on the right-hand side of Eq. (19), we can seriously distort the value 
of the differences, especially when the fluctuating quantity is large compared with 
the true value of the difference. This reasoning implies, on the other hand, that if 
we make em small enough, by making the time step small enough, the numerical 
scheme should give the right answer. 

To test this last supposition, I performed a second set of calculations going from 
t = 0.25 to t = 0.50 but this time with h = 0.025, k = 2.5 x 1 0 - 5 , and 104 time 
steps (now z stretches from —12.5 to +12.5). Now the amplitude of fluctuations is 
only ±2.828 x 1 0 - 4 , 200 times smaller than in the first case. The results are shown 
in Fig. 3. Included in Fig. 3 is the exact result for t — 0.50 calculated from Eq. (22). 
The agreement between the numerically calculated result (b) and the exact result 
(c) is very good, but some small discrepancies persist, e.g., the flattening in the 
wings of the numerically calculated curve. 

In practical computations, in which no exact solution is available for comparison, 
one should calculate over and over again with smaller and smaller time steps until 
good convergence is achieved. 

Finally, a stable, implicit finite difference scheme for integrating Eq. (18) can 
be based on its representation in the form Czz = 3q2Ct, q — Cl^3, namely 

Cn-t-l.m+l ~ 2Cn,m-H + Cn-l.m+l Tiim (23a) 

(23b) 
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(3a ) 

Fig. 3. Numerical integration of Eq. (18). (a) Initial condition at i = 0.25. 
(b) After 104 time steps with k — 2.5 x 10~5. Here h = 0.025 and the space axis has 
1000 points stretching from z = —12.5 to z — +12.5. (c) Exact result for t = 0.5 
calculated from Eq. (22). 
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