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ABSTRACT

The intermetallic compound MnaSn has a triangular spin configuration below
the Neel point at 420 K. Below 230 K, this triangular spin arrangement remains
within each hexagonal layer, but the spins rotate about the ¢ axis with a period of
about 10 c0. We have studied the magnetic excitations of this itinerant electron
antiferromagnet along high-symmetry directions at temperatures above and below
the helical phase transition Th- At 295 K, the spin-wave dispersion is approximately
linear in ¢ along {100} and {110} and quadratic in ¢ along the {1,0,} and {I,1,"}
directions. The spin-wave energies at 295 K can be described by (ho))- = A2 + 4-g-
and £0) = A + Bg2 where the anisotropy gap A = 4.3 meV, A = 100 meV-A for {100},
A - 135 meV-A for {110}, and B = 130 meV-A2 for {1,0,"} and {I,/4)- Below Th, the
zone center shifts to the satellite positions of the helical structure, and the

dispersion along {1,0,"} becomes linear in ¢ with Eo) = 95 * [meV].
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The intermetallic compound MnjSn has a hexagonal crystal structure with
lattice constants at room temperature of all = 5.665 and c0 = 4.531 A, [l] There are six
Mn atoms per unit cell. Below T"r = 420 K, a triangular antiferromagnetic order
develops in which nearest-neighbor spins within the basal planes are oriented at
120°, while ferromagnetic alignment occurs for those spins along the ¢ axis
connected through an inversion center. [1,2,3] Since the magnetic and nuclear unit
cells are the same, the antiferromagnetic and the nuclear Bragg peaks superimpose.
Below 230 K, another magnetic phase transition occurs for which the basal plane
spin arrangement remains, but the spins rotate about the ¢ axis with a period of
about 10 c0. In this phase, the antiferromagnetic reflections appear as satellite peaks
around each nuclear peak. The occurrence of this second magnetic transition
appears to depend on the heat treatment of the compound.

Recently, Radhakrishna and Tomiyoshi [4] studied the magnetic excitations of
this compound at temperatures above and below the helical phase transition. Their
room temperature results show an anisotropy gap of about 4.1 meV and essentially
linear dispersion in the {100} and {110} directions with the velocity in the {110}
direction being about 35% higher than {100}. Because of low intensities, their low-
temperature data were limited to energy transfers below 10 meV and, in this region,
constant energy scans along Q = (1,0,£) showed an unresolved three-peak structure
with the outer peaks close to the modulation wave vector of the helical structure,
t = (0,0,£0.1), and with essentially vertical dispersion. This paper describes an
extension of those measurements to higher energy transfers to better resolve the
dynamic behavior of MnsSn, The sample is the same as that used in Ref. 4; it is
non-stoichiometric with composition Mns.>Sn.

Neutron inelastic scattering measurements were made on the triple-axis
spectrometers at the HEIR located at the Oak Ridge National Laboratory. Data were

obtained around the (100), (101), and (110) Bragg positions for the triangular
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antiferromagnetic phase at T = 295 K and around the (100) and (101) peaks for the
helical phase at T = 12 and 100 K. Most of the data were obtained in the constant-E
mode with pyrolytic graphite monochromators, analyzers and filters, and with fixed
final energies of either 14.8 or 35 meV. Some of the higher energy transfer data were
taken with a Be monochromator and a fixed final energy of 35 meV. The room-
temperature results are in substantial agreement with those of Ref. 4, while the low-
temperature results provide additional insight into the spin dynamics of the helical
phase. Quite generally, the longitudinal scans along {100} and {110} directions give
well-resolved spin-wave peaks with linear dispersion. Here we concentrate on the
results along O = (1,0,Q and (1,0,1+Q for which appreciably different spectra are
observed for the two phases. This is illustrated in Fig. | which shows constant
energy scans along (1,0,1+Q for the triangular phase at 295 K and for the helical
phase at 100 K. Although the peaks are broad and not well resolved, these spectra
indicate a single cone of dispersion centered at (101) at 295 K, and two dispersion
cones centered at (1,0,1£T) at 100 K. These cones are shown as dashed lines in the
figure. Constant-Q data are given in Fig. 2 for these two temperatures. At Q = (100),
these show a pronounced anisotropy gap near 4 meV at 295 K but not at 100 K. A
much broader gap-like structure appears at both temperatures near the satellite
position at Q = (1,0,-0.1). The peak at 295 K is readily understood as an intersection
with the quadratic dispersion surface for the triangular phase. It is more difficult to
understand the origin of the peak at 100 K since an anisotropy gap is not usually
expected for the helical phase. However, the spin-wave dispersion relations have
not yet been derived for this lattice. Several spin-wave branches are to be expected
since there are three magnetic sublattices even for the relatively simple triangular
phase. This gap-like structure observed for the helical phase at 100 K may be

associated with another branch which has not yet been resolved.
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The results are summarized in Fig. 3 which gives the dispersion curves for
both magnetic phases of MnsSn. There are several features in the T = 295 K data
that merit comment. First, we note that the velocity is quite high for spin waves
propagating in the basal plane. Here, the spin-wave energies can be written as
(Fco)2 = A2 + A2g2 with A = 4.3 meV, A = 100 meV-A for {100}, and 4 = 135 meV-A
for {110}. These velocities are comparable to that found in other itinerant electron
systems such as MnCu and MnNi (-150 meV-A). The anisotropy within the basal
plane is unusual but probably arises from different interaction paths in these
Kagom£-like hexagonal layers where some Mn atoms are replaced by non-magnetic
Sn atoms. Also unusual, for an antiferromagnet, is the quadratic dispersion along
{10£} and {!!£} wTiere the spin-wave energy can be described by Fco = A + 130 ¢
[meV]. This quadratic behavior results from the ferromagnetic coupling through
the inversion center along the ¢ axis.

The available results for the helical phase at T = 100 K are shown in the right
panel of Fig. 3. If we discount the gap-like structure in the constant-Q data, then the
constant-E data are well represented by linear dispersion as shown in the figure.
This dramatic changeover from quadratic to linear dispersion is reminiscent of that
observed in the ferromagnetic and helical phases of the rare-earth metals. [5] The
dispersion is of course much steeper here, but not vertical as suggested in Ref. 4.
The energy can be written as Fco = 95 [meV], where ¢ is now the displacement
from the modulation wave vector of the helical structure.
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Figure Captions

Fig. 1. Constant-E scans along Q = (1,0,1+C) for MnaSn at T = 295 K (triangular
phase) and at 100 K (helical phase). The dashed lines indicate the dispersion cones

for the two magnetic phases.

Fig. 2. Constant-Q scans for the two magnetic phases of MnsSn. These show a
well-defined energy gap near 4 meV at 295 K and a gap-like intensity enhancement

at Q = (1A-0.1) and T = 100 K.

Fig. 3. Dispersion curves for the two magnetic phases of MnsSn. The arrow in the

right panel indicates the modulation wave vector of the helical phase.
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