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FOREWORD 

Associated with commercial nuclear power production in the United States 

is the generation of potentially hazardous radioactive waste products. The 

Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) 

Program, is seeking to develop nuclear waste isolation systems in geologic 

formations. These underground waste isolation systems wi I I preclude contact 

with the biosphere of waste radionucl ides in concentrations which are suffic­

ient to cause deleterious impact on humans or their environments. Comprehen­

sive analyses of specific isolation systems are needed to assess the postclo­

sure expectations of the system. Assessment of Effectiveness of Geologic 

Isolation Systems (AEGIS) program has been establ ished for developing the 

capabi I ity of making those analyses. 

Among the analyses required for isolation system evaluation is the detai led 

assessment of the postclosure performance of nuclear waste repositories in geo­

logic formations. This assessment is concerned with aspects of the nuclear 

program which previously have not been addressed. The nature of the isolation 

systems (e.g., involving breach scenarios and transport through the geosphere) 

and the great length of time for which the wastes must be control led dictate 

the development, demonstration, and application of novel assessment capabi I ities. 

The assessment methodology must be thorough, flexible, objective, and scienti­

fical Iy defensible. Furthermore, the data uti I ized must be accurate, documented, 

reproducible, and based on sound scientific principles. 

The current scope of the Assessment of Effectiveness of Geologic Isolation 

Systems program is I imited to long-term, postclosure analyses. It excludes the 

consideration of processes that are induced by the presence of the wastes, and 

it excludes the consideration of nuclear waste isolation in media other than 

geologic formations. The near-field/near-term aspects of geologic repositories 

are being considered by ONWI/DOE under separate programs. They wi I I be inte­

grated with the AEGIS methodology for the actual site-specific repository 

safety analyses. 
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The assessment of repository postclosure safety has two basic components: 

• identification and analyses of breach scenarios and the pattern of events 

and processes causing each breach; 

• identification and analyses of the environmental consequences of radio­

nucl ide transport and interactions subsequent to a repository breach. 

The Scenario Methodology Development task is charged with identifying and 

analyzing breach scenarios and their associated patterns of events and processes. 

The Scenario Methodology Development task is concerned with evaluating 

the geologic system surrounding an underground repository and describing the 

phenomena which alone or in concert could perturb the system and possibly 

casue a loss of repository integrity. Output from the Scenario Methodology 

Development task wi I I establ ish the boundary conditions of the geology and 

hydrology surrounding the repository at the time of an identified breach. 

These bounding conditions wi I I be used as input for the consequence analysis 

task, which wi I I employ sophisticated hydrological transport models to evaluate 

the movement of radionucl ides through the groundwater system to the biosphere. 
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1.0 INTRODUCTION AND SUMMARY 

Simulation of the response of a waste repository to events that could initiate a 

fault tree to breach and failure is currently a keystone to the Battelle Waste 

Isolation Safety Assessment Program (WISAP). The repository simulation, which 

is part of the Disruptive Event Analysis Task, models the repository for its entire 

design life, one million years • 

This is clearly a challenging calculation, requiring input unlike any other response 

analysis (nuclear power plants, LNG storage terminals, etc.) by virtue of the long 

design life of the facility. If selecting a design earthquake is difficult for a 50 

year design life power plant, what technology will provide design criteria for a 

million year design life? 

Answers to questions like this can, to some extent, be based on data, but always 

require some subjective judgments. The subjectivity, which is sometimes driven 

by inadequate or incomplete data, or by a lack of understanding of the physical 

process, is therefore a crucial ingredient in an analysis of initiating events. 

Because of the variety of possible initiating events (glaciation, man-caused 

disruption, volcanism, etc.), many expert opinions will be solicited as input. 

The complexity of the simulation, the variety of experts involved, and 

the volume of applicable data all suggest that there may be a more 

direct, economical method to solicit the expert opinion. This report 

addresses the feasibility of such a system. 

In Section 2, we present background information that demonstrates the 

advantages of a computer interrogation system over conventional interrogation 

and assessment techniques. In the subsequent three sections we thoroughly 

review the three elements-structure and decomposition, scaling, and synthesis­

that are basic to any interrogation and assessment technique. Figures I-I and 

1-2 schematize the interrelationship between these three fundamental elements 

and, therefore, serves as a useful guide to these three sections. Each of these 

three sections begins with our recommended approach to the particular element 

and ends with an illustration of representative dialogue. 
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Briefly, we consider it not only feasible, but also highly desirable, to use an 

interactive computer system, perhaps linked with the Disruptive Event Analysis 

computer code, to interrograte and assess selected experts. Specific advantages 

of such a computer system include: 

• Detailed, systematic interrogation 

• Low cost interrogation 

• Efficient analysis 

• Significant feedback and iteration capabilities 

• Consistency and logical response evaluation 

• Unlimited data storage capabi lities 

Because it operates so efficiently, the system would be effective not only for 

developing input for the Disruptive Event Analysis, but also as a vehicle for 

public interest group participation during the licensing process. 

Our estimates indicate that the computer-based techniques are cost-effective, as 

well as versatile and capable. We believe that assembling and applying the 

necessary interrogation software package would be less costly than developing 

and applying alternative (questionnaire, Delphi, frequent workshops, etc.) 

subjective probability assessment procedures: the entire programming effort 

could range from $100,000 to $200,000, depending on the detailed applicability of 

existing software packages. The existing computer hardware at the PNL would 

be more than adequate to accommodate our envisioned software. 
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2.0 SUBJECTIVE PROBABILITIES AI'D COMPUTER ASSESSMENT 

Probabilities and probability distributions of many events and parameters asso­

ciated with waste isolation are difficult to quantify. Some of these can be 

dismissed as so improbable as to be effectively impossible (e.g., glaciation in the 

Southwest), while some are probable enough to be considered certain (e.g., cli­

mate changes). Between these extremes, though, are variables for which not-so­

easily-dismissed probabilities are required, such as evaluations for which normal 

empirical relations or theoretical models are difficult to develop. Quantification 

of these variables depends on expert judgment. 

The current plan for developing input information for the WISAP Disruptive 

Event Analyses is to solicit the advice and judgment of selected experts, so the 

most important question is: How can we effectively elicit that advice and 

judgment? How can we avoid those arbitrary numbers which are too easi Iy 

specified, and develop an assessment procedure that efficiently results in 

quantifications that reflect carefully evaluated judgment? There are a number 

of ways to do so, including workshops, questionnaires, personal reflection, 

interviews and Delphi techniques. Each of these has advantages and disadvan­

tages. Since the early 1950's a pool of evaluated experience has been developing 

on subjective probability assessment. Work has been done on scaling techniques 

(e.g., Winkler, 1967; Stael von Holstein, 1970), psychological biases (e.g., 

Edwards, 1968; Tversky, 1974), group effects (e.g., Dalkey, 1970; Morris, 1974), 

and other facets of the problem. This work provides a background against which 

assessment schemes can be evaluated. 

An assessment scheme should provide a quantification of probabilities or 

probability distributions, an indication of the precision of those quantifications, 

and an explicit description of the logical reasoning behind the numbers. This 

al lows the numbers to be evaluated and compared by experts and to be 

aggregated across a group of experts. The logical reasoning behind the numbers 

is especially important because the probabilities of major interest are beyond 

mere intuition. Indeed, studies by Lichtenstein and Newman (1967) and Selvidge 

(1972), among others, have shown that people do not even have a vocabulary for 
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describing the probability of truly rare events. Therefore, to assess such 

probabilities, the variables must be broken down into more manageable parts and 

recombined according to some set of logical relationships. To judge the numbers, 

one must also judge the logic through which they are calculated. 

2.1 TRADITIONAL ASSESSMENT TECHNIQUES 

For purposes of discussion, traditional assessment techniques might be divided 

into three groups: 

• Questionnaires and personal interrogation 

• Interviews and clinical procedures 

• Workshops, group meetings, and Delphi techniques 

These alternatives should be compared according to their cost, and the faith one 

has in their resulting numbers. 

Questionnaires are the least expensive way to solicit and assess expert opinion. 

Well-written questionnaires consist of structured sets of redundant questions that 

force the person answering them to reflect on his opinion--that is, to interrogate 

himself. Major advantages of questionnaires are that a large number of experts 

can be interviewed and a broad range of topics can be covered with limited man­

power and cost. An example of a carefully designed assessment performed using 

questionnaires is the resource appraisal carried out by the Oil and Gas Branch of 

the U.S.G.S., and published as U.S.G.S. Circular 725 (1975). 

One problem with questionnaires, though, is that they are "static": the person 

answering them has no feedback to his answers, and no one pointing out logical 

inconsistencies. He is not given suggestions or asked why particular aspects of a 

problem fail to appear in his analysis. A related problem with questionnaires is 

that the depth of interrogation on particular issues is necessarily limited. It is 

difficult to design a sequence of questions that do not depend on the respondents' 

answers to develop detailed information. Second-round questionnaires are 
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sometimes used to feedback the distribution of group opinion and see if answers 

tend toward a consensus, but in general, questionnaires are better suited to 

assessing broad distributions of opinion or, as in the U.S.G.S. case, opinions from 

many experts on different topics which combine to give an answer. Because 

there is little or no opportunity for feedback, precise wordings of questions often 

have more significant affect on questionnaire results than on the results of other 

assessment techniques. 

Interviews require substantially more investment than questionnaires, but yield 

higher quality results. Yet, interviewing is a clinical skill, requiring considerable 

experience: the quality and consistency of assessments depend greatly on the 

skill of the interviewer. Even so, if higher cost and more manpower were not 

considerations, direct interviews would probably be a favored technique, because 

they provide extensive feedback and questioning of the logic behind assessments, 

and of course allow the interviewer to tailor the sequence and tone of questions 

to a particular expert. Interviews carry the disadvantage of not easily allowing 

reinterrogation after the response of an entire group has been obtained. 

Delphi techniques-which vary widely-are essentially interview procedures in 

which anonymous feedback of group assessments is provided to the experts and 

second or even third rounds of questioning undertaken. The set of techniques 

included under various definitions of Delphi is so broad that it includes nearly all 

assessment procedures and, therefore, is not a technique in itself. The only 

unifying feature is anonymous feedback. Group assessments which are the goal 

of most Delphi studies are obtained by consensus. 

Workshops and meetings are the other extreme of assessment. They are costly 

because a number of experts must be brought together in one place, but they 

allow open (and often heated) discussion of the bases for assessing probabilities. 

In workshops, logical structures are explicit, feedback is considerable, and new 

approaches to a problem are sometimes uncovered. On the other hand, careful 

reflection is often sacrificed to debate', and strong or persuasive personalities 

often have major influence on final results. Reconciling conflicting opinion or 

eliciting the opinion of reticent panel members is often difficult, and work on 
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"brain-storming" during the late 1950's and early 60's has indicated that a group 

working together may be no more effective than an equally large group of people 

working individually (McGrath, 1966). 

2.2 COMPUTER-AIDED ASSESSMENT 

In order for computer-aided assessment to be useful it must meet two criteria: 

it must be feasible to develop within a reasonable amount of time for a 

reasonable cost; and it either must provide better assessments than traditional 

techniques (e.g., interviews) or equally good assessments more easily. This 

section considers the advantages of computer-aided assessment. The feasibility 

of computer-aided assessment is discussed in detail in Sections 3 through 5 of 

this report. 

The quality of computer-aided assessment can be judged only by comparing it to 

the quality of assessment resulting from interviews. The quality of computer 

assessment depends on the user being somewhat familiar with the goals and 

general procedure of assessment, and on the "interactibility" of the computer 

code. Therefore, in computer assessments, the subject must be made familiar 

with the goals, required precisions, and procedures of probability assessment. 

This can be accomplished in several ways: someone can tell the subject about 

the goals, etc.; an informative introductory text can be written into a code; or a 

briefing session can precede use of the code. Because the familiarization is so 

important, alternative procedures might be experimented with. 

The advantages unique to computer-aided assessment are cost and speed, rapid 

consistency and sensitivity analysis, redundancy and feedback, and data storage. 

Data storage could prove of significant importance, particularly in a long 

program of research like WISAP, since previous assessments of expert opinion 

and the logic underlying those assessments must be reviewed at various stages of 

the program. Each of these advantages is elaborated upon below. 
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Cost and Speed of Assessment 

The time required to quantitatively assess subjective probabilities can be much 

less than that required to verbally describe degrees of belief. This was reported 

.in the earliest applications of subjective probability to industrial problems (e.g., 

Grayson, 1960). Many of the techniques of assessment, though, attempt to back­

figure probabilities implied by choices among uncertain events and orderings. 

The computer can quickly do the calculations involved in these back-figurings so 

more questions can be asked in a given length of time, convoluted questions can 

be asked, and a greater number of redundancies can be introduced. Using 

computer-aided assessment, the user can proceed at his own pace, and stop when 

he is satisfied. Construction of logic diagrams is entirely automatic, and can be 

rapidly checked for consistency and completeness using techniques described in 

Section 3. Hard copies of scalings and logic diagrams are directly provided by 

the system. Although computer-aided assessment is only an additional tool to be 

used in obtaining input information and would not replace regular meetings or 

workshops, the capability of remote use offers extra freedom. Once initiated, 

the expert can work in his own office, and obtain a set of assessments required 

for new variables without having to spend time traveling. 

Consistency and Sensitivity Analyses 

Central to assessment is the development of the logical basis for quantification, 

testing it for consistency and completeness (i.e., removing any hidden logic), and 

varying the component probabilities to test sensitivity. All of these tasks are 

computationally intensive. Testing the logical structure is an inductive problem; 

it cannot be done automatically. However, if computation limits are not a 

problem--as they are when done by hand-then the interrelational properties of 

the entire set of identified variables can be explored using interaction matrices, 

conditional probabilities and correlations, network diagrams, and other tech­

niques for summarizing interaction. These mathematical abstractions of the 

logic can be treated computationally to infer structures in the originally 

specified logic that are either inconsistent or incomplete. This provides 

redundant ways of checking logical structures which are not possible in an 

interview. 
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Sensitivity analysis in interviews is, in the same way, constrained by compu­

tational needs. Variables for geological modeling are often related through 

equations or correlations, and to propagate parametric uncertainty through three 

or more nested equations by hand is difficult: interview assessment cannot take 

. advantage of the immediate feedback of output sensitivity to imprecision in 

variable scalings in the way that computer assessment can. This feedback of 

sensitivity calculations at potentially all levels of a logic hierarchy provides 

worthwhile information to the user and influences his assessments. 

Redundancy and Feedback of Individual Scalings 

Redundancy and feedback are important not only for developing the logical 

structure interrelating variables, but also for assessing probabi Iities or proba­

bility distributions over individual variables. Scalings are generated by asking 

questions in a number of ways, backfiguring the implied probabi lities, and 

presenting the expert with conflicts that should be resolved. This redundancy 

and feedback are important parts of any scaling (Section 4), and are used in 

interviews as well as computer-aided assessments. The number of redundant 

checks one can make in an interview, however, is limited for several reasons. 

F or one, if redundant sets of quest ions are to be valuable, they must not be so 

obvious that, recognizing the redundancy, an expert tailors his answer to appear 

consistent. This problem can be overcome with complicated sets of parallel 

questions written to camouflage redundancy. However, convoluted computations 

are then often required to develop implied probabilities. The available scope of 

redundant questioning is broadened by the use of computer processing. 

Data Storage 

The capacity for large data storage and rapid retrieval is unique to computer­

aided assessment, and introduces operational capabilities which would otherwise 

not be available. When an expert uses the program to assess the probability or 

distribution for some variable, he identifies a set of subvariables and their logical 

relation to the upper event on parameters, a set of equations where appropriate, 
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a matrix of interrelational properties among subvariables, and finally a 

probability scaling over each subvariable. With computer-aided assessment all of 

this information can be stored and quickly retrieved. Therefore, if a probability 

estimate is required for some future analysis, not only may the numbers 

themselves be retrieved, but also the entire reasoning that led to them and the 

assessment of variables on which the event or parameter depends. 

The ability to retrieve this complete set of information provides new opportuni­

ties. First, it provides a basis for re-evaluating the numbers when they are used. 

Second, if new information becomes available at some later date the earlier 

assessment can be updated rather than a whole new assessment being required. 

Thus, if a new way for some event to occur is uncovered, it can be included in an 

original event hierarchy. If the new sequence can be decomposed into 

subvariables already scaled, implied modifications of probabilities or distribu­

tions can be directly calculated at the time. Third, if another expert disagrees 

with an assessment, comparisons can be made at each step of the reasoning that 

led to the numbers. Thus, the actual basis for disagreement is sharpened. 

2.3 EXISTING ASSESSMENT PROGRAMS 

The review of assessment needs for WISAP (Section 2) and an inventory of exist­

ing code indicate that direct transfers are impractical. Existing codes have, in 

general, been written for specialized tasks, somewhat different from those 

involved in the current analysis of needs. Nevertheless, there is much to be 

learned from existing codes and their applications, and in limited ways the logic 

of existing codes could be expanded to form the basis of service subroutines in a 

computer-aided assessment for WISAP. 

Several programs exist for direct scaling of the probability of an event or prob­

ability distribution over a parameter (e.g., Schlaifer, 1964; Sickerman, 1975). 

These programs are more limited than that required for WISAP, but they have 

been successfully used for simple assessments and seem to yield quantifications 

not very different from interview assessments. Most existing programs are 

limited, however, in that they do not address the logical reasoning behind an 

2.7 



assessment (Section 3), and therefore are inferior to direct interviews in which 

the underlying reasoning is extensively discussed. For WISAP, the structuring of 

event logic would have to be incorporated in the assessment program. Lapp and 

Powers (1977), in their work on computer-aided fault tree construction, report 

that computer construction is superior to manual construction, because fewer 

mistakes are made and constructions proceed more quickly. Computer-aided 

assessments can be equal in quality to interview assessments as long as the 

program forces the user into careful reflection, explicit decomposition of his 

logical reasoning, and internal consistency. 

Existing codes related to probability assessment can be grouped in three classes: 

scaling codes for assessing event probabilities or probability distributions over 

parameters, which are found primarily in decision analysis; value function codes 

for assessing weighting and utility function, found in policy analysis and to some 

extent in decision theory work; and logic or fault tree construction codes, found 

primarily in reliability and safety analysis. In addition there are a number of 

interactive design codes in engineering and architecture that incorporate system­

identification options, but these are not directly related to present needs. 

Scaling codes have been in use for at least a decade. The earliest of these were 

developed at the Harvard Business School (e.g., Schlaifer, 1969), and were devel­

oped to aid in single assessments of "routine" events or parameters (i.e., not rare 

events, which would require logical structuring prior to assessment). In general 

these codes are written as assessment aids for Bayesian decision theory, and thus 

assume familiarity with subjective probability theory and typical formats of 

assessment. Within Bayesian theory, probabilities are taken as reflection of an 

individual's willingness to act on a belief, so these assessment codes are based on 

choices among idealized betting options (commonly called "lotteries"). Lotteries 

ore structured to incorporate random events with which the user has 

familiarity-coins, dice, wheels-of-fortune. In principle, a user may not be able 

to directly associate numbers with his degrees of belief, but should be able to 

order lotteries on an intuitive level. More recent work has led to the 

development of assessment codes for multi-variable events and parameters, and 

limited stochastic variables (e.g., time series) typically modeled as multi-variate 

processes (e.g., Sicherman, 1975). 
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Value and utility function assessment codes have enjoyed broad popularity in 

recent years, particularly for participatory planning and multi-attributed 

problems. Existing codes encompass a spectrum of levels of sophistication. The 

goal of value function codes is a quantified objective function defined over the 

. multi-attributed outcomes of decisions, usually public policy decisions. The 

objective function requires quantification of marginal rates of benefit or cost for 

each attribute of an outcome, and marginal rates of substitution among outcome 

attributes. In the special case of utility function assessment, measures of risk 

aversion (or proneness) must also be quantified. Many such codes exist, but due 

to recent public exposure, the most widely known is possibly that of Hammond 

and Adelman (1976) who have used their code to explore public sentiment in the 

case of the Denver Police Department bullet decision. Among other value or 

utility assessment codes are those of Sheridan (1975), Meyers (Richard Meyers, 

Harvard University, Personal Communication), and Sickerman (1975). 

Most value and utility function assessment codes impose a structure on the 

assessments. For example, the objective function must be a weighted sum, or a 

weighted sum including cross-products (multi-nominal or so-called multiplicative 

forms). Although many existing codes are supposed to foster concensus and 

obtain group objective functions, in fact any synthesis of opinion is mostly 

exogenous to the code. 

Logic and fault tree construction codes have been developed to assess inter­

relational properties among variables in a complicated system and construct 

logic diagrams or hierarchies. These codes ore still being developed. Typical of 

these codes are those of Lapp and Powers (1977), F ussel (1972), and Taylor 

(1973). These codes are not aimed at assessing probabilities or probability 

distributions for variables within the system, but rather at the structure of the 

variables. Numerical assignments are made subsequent to the structuring. 

For present purposes, existing logic and fault tree construction codes are overly 

specialized. In analyzing systems reliability, 1,000 or more variables are not 

uncommon. These variables are by necessity interrelated through simple logical 
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structures (e.g., "and/or" gates) and are usually considered to be statistically 

independent. Codes for handling multi-valued logic, in which components are not 

single zero-one variables, are only now in development. As discussed in 

Section 3, present purposes do not require the expansiveness of system structure 

analyzed by large fault trees. Therefore, an assessment code for WISAP can be 

and should be more detailed in the types of relationships and variables it has the 

capability to handle. 
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3.0 STRUCTURE AND DECOMPOSITION 

Whether the probability assessment is done intuitively or with computer 

assistance, the variables must be broken into easily assessed or logically isolated 

components. This decomposition will be an important part of the proposed 

program, and therefore deserves particular attention. Decomposition involves 

identifying component variables, and specifying functional relations among them. 

The set of functional relations will then be used to recombine probabilities of 

more easily assessed components into probabilities or probability distribution for 

the variable of interest. 

3.1 RECOMMENDATIONS 

The most promising way to identify the structure of subvariables is a combined 

approach using logic hierarchies and interrelational matrices. The logic 

hierarchy is simply a generalized form of "event tree" in which functional and 

statistical relations as well as simple event chains describe the sequencing of 

variables. In its simplest form, hierarchical analysis is well known and widely 

discussed in the literatures of reliability, decision theory, and operations re­

search. For application to probability assessment, however, hierarchical analysis 

will have to be broadened to incorporate functional relations among variables, 

and multivalued (or continuous) logic. Given the limited size of the hierarchies 

involved, this increase in complexity should not provide programming or 

computational difficulties. 

To complement the logic hierarchy and to provide a vehicle for checking logical 

consistency and completeness, an "interrelational (lR) matrix" will be developed. 

The IR matrix is a square matrix of dimension equal to the number of 

subvariables in the hierarchy. Elements of the matrix encode the strength and 

direction of functional or statistical interrelation among subvariables, along a 

simple ordinal scale (0, ± I, ± 2). The IR matrix will not be directly used for 

computation, but for exploring the logical structure of the hierarchy and 

uncovering implied relationships not explicitly identified in the assessment. 

3. ! 



Calculations of top-variable probabilities or probability distributions will be 

performed directly from the logic hierarchy. Gates in the hierarchy are speci­

fied either as functional relations (i.e., equations), as causal chains (i.e., zero-one 

event sequences), or as statistical correlations (i.e., conditional probabi lities). 

Calculations and subvariable scalings will be structured so that each level in the 

hierarchy involves redundancy. This will provide an additional check on 

numerical values resulting from the analysis. 

Currently available computer programs for fault-tree construction, cross-impact 

(including input-output) analyses, and simulation modeling provide only a starting 

point for the development of a hierarchy assessor, because the demands of the 

present problem are somewhat different from, and in ways more logically 

complicated than, the problems many available programs deal with. 

Existing programs are not, therefore, directly transferable. Although relation­

ships among variables in the present case are more involved than, say, in fault­

tree construction, the number of variables and gates in the present case is lim­

ited; the difficult programming and computation problems associated with 

extensive logic branches do not have to be dealt with in developing simple inter­

rogation programs. 

3.2 EXISTING DECOMPOSITION COMPUTER CODES 

Computer-aided construction of cross-impact and input-output matrices has been 

developed by DaJky (J 975), Turoff (1975), and Gordon, et aJ (1970), among others. 

Much of the work in these efforts has been directed at reconciling incon­

sistencies in conditioned probabilities and at simple simulation studies. The use 

of interaction diagrams ("diagraphs") for constructing logic trees is considered by 

Lapp and Powers (1977). Of course, much work has been done in simulation 

modeling on relating interrelation matrices to "system" structure. 

Although the logic hierarchy and interrelational matrix proposed here are related 

to fault-tree analysis and to input-output or cross-impact analysis, the required 

capabilities of the proposed methods are sufficiently unique that direct transfer 

3.2 



of existing programs is not possible. Again, however, existing programs offer a 

foundation on which to build, as well as methodological insight. 

Computer-aided fault-tree construction has been an intensively worked problem 

for at least five years. Although problems associated with automatic construc­

tion are not entirely solved, codes now exist for constructing fairly complicated 

fault-trees (e.g., Lapp and Powers, 1977, have constructed a I ,ODD-gate tree this 

way). Other fault-tree construction programs are discussed by Fussell (1972). 

These codes indicate that computer-aided construction of logic hierarchies is 

possible, that it is much quicker and more convenient than hand-construction, 

and that fewer mistakes and omissions are made than in hand constructed trees. 

3.3 DECOMPOSITION METHODOLOGY FOR WISAP 

Figure 3-1 presents a flowchart representation of the recommended decomposi­

tion portion of the code. This figure will serve as a focal point for the rest of 

the section, it can be folded out to provide easy reference to the rest of this 

section. 

In attempting to assess any uncertain event, parameter, or variable, one always 

begins by decomposition, by dividing a complex or difficult assessment into 

somewhat isolated pieces each of which may be more easily assessed. Then, 

having obtained at least rough numbers for the components, logical relationships 

of the decomposition are used to deduce numbers for the more complicated 

event, parameter, or variable. A decompositional approach of one form or 

another is used even when assessments are made intuitively, based only on 

internal reflection. Thus a central part of computer-aided assessment must be 

directed at uncovering the logical structure of the event or parameter to be 

assessed, and the causal or statistical interrelationships among the variables 

contained in that logical structure. 

The decomposition of most events or parameters in repository modeling is 

neither complicated nor extensive, as Figure 3-2 indicates. Direct intuitive 
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assessment, on the other hand, of the probability of hydrofracturing is at least 

difficult and maybe impossible. Furthermore, the resulting numbers are either 

very imprecise or not believable. To sharpen the estimate, one procedes by 

asking what hydrofracturing depends on, or what is correlated to it. Clearly, 

hydrofracturing depends on the minimum in-situ stress, and the internal 

pressures. If fractures are to propagate, energy availability is also important. 

Thus, the overall event can be decomposed into components, and in a similar way 

the components can be decomposed into subcomponents. Finally the decomposi­

tion leads to events that are isolated enough or predictable enough to be more 

easily assessed. Here, for example, the rock-temperature at a specified time 

after burial can be estimated within a reasonable range. Combining these 

estimates through the structure of the decomposition leads to an estimate of the 

probability of hydrofracturing which is more precise than a direct assessment 

would be. 

Obviously, the decomposition of complicated events or processes into simpler 

parts is an underlying theme of all engineering. Fault and event tree analysis, 

decision theory, simulation modeling, analysis of variance, and many other 

techniques are all variants of decomposition analysis. The reason is clear: it is 

the way people solve problems intuitively, and the techniques force a logical 

orderliness on the analysis which might otherwise be wanting. The advantages of 

explicit techniques like computer-aided decomposition are that they foster 

logical consistency, mitigate omissions, and provide feedback so that more 

complete analyses can be performed. Because they maintain the logical 

structure of a decomposition they can be used to indicate structural relations 

which may not be intended by the user, but which are implied by the relation he 

explicitly identifies. The further advantage of computer-aided techniques is that 

redundant information can be quickly gathered for consistency checks. 

Hydrofracturing illustrates the extent of decomposition required for most 

geological and repository modeling: three or four levels of subevents, and two or 

three subvariables at each node. The problem is not computationally extensive, 

which means that a variety of straightforward interrogation techniques can be 
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used. With a small number of nodes end branches, the logic structure can be 

highly over-determined by the parallel use of differing decomposition techniques. 

This section ootlines the requirements of a computer-aided decomposition pro­

cedure, and develops a set of techniques to satisfy those requirements. 

Requirements of Decomposition Analysis 

The decomposition program must have the capability to: 

• Efficiently handle simple hierarchical logic structures and 
graphically display them to the user 

• Incorporate both functional relations (i.e., mathematical 
equations) rnd statistical relations (i.e., correlation 
matrices) among variables 

• Deduce relations among variables implied by but not 
explicitly stated in assessments, and test for logical 
consistency 

• Treat multivalued logic (i.e., include event or parameters 
magnitudes as well as dichotomous occurrence/non-occur­
rence). 

The central part of the decomposition program will be the development of 

hierarchy diagrams much like fault or event trees. The program must be written 

so that events and parameters are keyed to variable names, and stored as English 

sentences. A branching sequence of questions will be presented to the user, 

which will ask for a specification of the names of subevents and parameters for a 

specified top event, and the logical relation of those subevents or parameters to 

the top event (e.g., and/or relation, functional equation, statistical correlations, 

etc.). 

The questioning will continue for each stbevent until the user CJ1swers either that 

the subevent cannot be further divided or that it is isolated sufficiently to be 

assessed. A graphical display showing the logic diagram is developed, from the 

listings of subevents and their functional relations upward through the hierarchy, 
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as illustrated in Figure 3-2. This diagram, presented on CRT display, can be 

altered with a light pen by the user to rearrange elements and relationships not 

fitting his ideas. 

In decomposing an event or parameter for probability assessment, the relation­

ships which join subvariables and lead to the event or parameter of interest can 

be more complicated than those usually allowed in fault or event tree analyses. 

To be realistic, the assessment program must allow for this complexity. In 

particular, the program must allow for functional (equations), causal (event 

chains), and statistical (correlation) relationships; it must allow for subvariables 

that act jointly and subvariables that act independently; and it must allow for 

interdependencies among subvariables and subvariables common to more than one 

branch. 

The logic hierarchy developed this way will be similar to, but distinct from a 

fault tree. The hierarchy will be much less complicated than common fault trees 

and therefore need not be constrained by the normal limitations of fault trees 

(e.g., 0/ I variables, direct causal linkage, etc.). Variables may be multivalued 

and relationships among variables may be causal or statistical. 

The structuring program must also be capable of testing consistency and 

searching for implicit relationships. In many cases the logic hierarchy will be too 

simple to require complicated checks for consistency, but even moderately large 

hierarchies may tax the user's ability to recognize inconsistencies merely by 

inspecting of the diagram-particularly when there are dependencies among 

lower level variables or common variables entering at several places in the 

hierarchy. 

Precise scaling of conditional probabilities will be performed for upward sequen­

ces of events or parameters. However, precise scalings, at least in the struc­

turing stage, will not be possible "horizontally" across lower level variables. 

Nevertheless, information on dependencies among these variables will be re­

quired. So in the structuring stage, an interrelational matrix will be assessed for 

the entire set of lower level variables, as schematized in Figure 3-3. This matrix 
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will scale the "strength and direction" of interdependence to a simple ordinal 

measure--perhaps -2, -I, 0, + I, +2, where ,,! 2" indicates high positive or 

negative correlation or functional dependence, " ! I" indicates modest positive or 

negative correlation or dependence, and "0" indicates independence. The 

interrelational matrix generated this way will be used with a simple graph theory 

approach and the original hierarchy to search for implied relationships and 

inconsistencies. This is considered in more detail later in this report. 

In sum, an assessment program must be realistic. To be realistic the 

decomposition analysis must allow for a variety of relational forms through 

which subvariables lead to events or parameters, and it must account for the 

interdependencies, functional or statistical, among subvariables. This would not 

be computationally possible where the logic hierarchy is not limited in size. 

Algorithms for Decomposition 

The basic algorithms for eliciting logic structures and calculating probability 

distributions will be quite similar to those now used for computer assisted fault 

tree construction (Fussell, 1975; Lapp and Powers, 1977) and cross-impact analy­

sis (Dalkey, 1975; Turoff, 1975), and will be based on concepts, approaches, and 

special techniques used in current codes. Of course, the structuring code 

envisioned must be more comprehensive than fault tree and cross-impact codes, 

since it must admit causal and statistical relations, interdependencies among 

subvariables, and multi-level variables. Essentially all fault tree and most cross­

impact codes treat larger and more complex sets of variables, and of necessity 

cannot be designed with the capabilities proposed here. 

Enumeration of Subvariables and Their Relationships 

Because the extent of the logic trees is limited, the elicitation itself can proceed 

by direct enumeration of subvariables. The user will be required to provide three 

types of information: an enumeration of subvariables, the gate type linking 

subvariables, and the form of predictive relation leading from subvariable to top 

event. 
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For each set of subvariables, a two-way categorization of the logic gate con­

necting them to the top event will be possible. These involve determining: (a) 

the functional form, and (b) whether subevents act jointly or individually in 

leading to the top event. The program will require the user to select one from 

among each of two sets: 

* 

** 

Functional Form 

Functional (F) Meaning subevents are related to the top event 
through a functional equation. Subevents may 
be either continuous or discrete variables. If 
"functional" is elected, the user wi II be re­
quired to specify the form of the relationship 
as an equation, which may be empirical, 
theoretical, or simply an intuitive heuristic of 
the user.* 

Causal (C) Meaning that the occurrence or non-occur­
rence of the top event is a result of the occur­
rence or immediate non-occurrence of sub­
events. Causal relations are those commonly 
found in fault trees, and treat only discrete 
events. In fact "causal" relations are a special 
case of "functional" relation, but the distinc­
tion facilitates assessments, as people tend to 
think of the two somewhat differently. 

Statistical (S) Meaning that top events relate to subevents 
through statistical correlation. Events and 
subevents are either not causally related, or 
the nature of the relationship is imperfectly 
known and therefore summarized by condi­
tional probabilities.** 

The relation of "water present" and "temperature" to internal steam pressure 
is an example. Water present is a dichotomous variable; temperature is 
continuous. Internal steam pressure is related to these variables through the 
saturated steam tables. The program should have the flexibility to accept the 
relationships either in equation form, or graphically via the CRT and light pen 
in order to allow simple use of tabulated data. 

F or example, the density of fractures (i.e., number per rock volume) caused by 
hydro fracturing can only be related in an imprecise way to rock properties and 
energy sources. This relation might best be described through correlation. 
Usually, statistical relations will not have a directional nature, in that 
correlations and conditional probabilities must satisfy common probabilistic 
propert i es. 
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Interaction 

Jointly (J) Meaning that the level of each subevent is 
important in predicting the top event. The 
effect on the top event may be of an additive 
type in which each sub event contributes inde­
pendently; for example, the energy require­
ment for hydrofracturing depends somewhat 
independently on stress-state and fracture 
surface energy (additively). Or the effect can 
be interdependent; for example energy re­
quirement for hydrofracturing is interde­
pendent with stress-state and rock defor­
mation properties. For "causal" relationships, 
"joint" interaction would be equivalent to an 
"and" gate in fault tree analysis. 

Independent (I) Meaning that the top event depends only on 
the independent occurrence or extreme level 
of any of the subevents. F or example, 
"internal pressure" depends either on steam 
pressure or on boundary layer effects, which­
ever is more severe. Again, for "causal" 
relations, "independent" interaction would be 
equivalent ta an "or" gate in fault-tree analy­
sis. "Independent" interaction with a "func­
tional" relationship would take the set of 
functional equations, evaluate it for each 
subevent, and the effect select the maximum 
or minimum. 

Thus, for anyone gate in the tree, one of six possible combinations is possible: 

F / J, F /1, C/ J, C/I, 5/ J, 5/1. The sequence of further questions and the form of 

the computations with the tree depend on which combination is selected. 

Therefore at each gate the program branches to a sequence of questions aimed at 

eliciting the precise form of the functional relation and the form of aggregation 

(for which "joint" variables may already be contained in the functional equation). 

Calculation of Top Events 

When the logic hierarchy is formed and gates are identified by explicit relation­

ships, the scaling subroutine is called to assess probabilities or probability dis­

tributions over lowest level subevents. When scaling is completed, the program 
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procedes to a calculation phase in which subevent scalings are propagated 

through the logic hierarchy to arrive at a scaling for the top event. In the 

process, scalings for intermediate level events or variables are stored for later 

redundancy checks. 

The simplest calculation algorithm is that associated with CI J and CII gates. 

These are simple Boolian operations on the zero-one variables, and have exten­

sive precedence in reliability studies (e.g., Vasely and Narum, 1970). The result 

of these calculations is a zero-one variable representing the intermediate or top 

variable. Given the simplicity of the envisioned logic hierarchies, CI J and CII 

gates should present little programming difficulty. 

Calculations for 51 J and 5/1 gates will follow standard statistical methods using 

conditional probabilities. Because conditional probabilities in this case must 

satisfy the whole probability theorem, Bayes' theorem and other inverse tech­

niques can be used either to improve efficiency or to provide redundancy checks. 

In most cases, lower level variables will themselves be described by distributions, 

making numerical integrations or related numerical techniques necessary. Given 

the limited number of variables, this presents little difficulty. For 5/1 gates, 

only the set of conditional probabi lity distributions given each individual 

subvariable and the marginal distributions of each subvariable are required to 

obtain the upper variable distribution «y/x I' •.• ,xn) can be shown to equal 

(y/x I) • •• (y/xn)). However, for 51 J gates the joint distributions of the 

subvariables are also needed. Thus, 51 J gates wi /I require both more scaling and 

more computation than 5/1 gates. 

F IJ and F II gates will require calculation of functions with random variable 

parameters. There are well developed techniques for performing variable trans­

formations either exactly or approximately. In most cases, scaling of variable 

distributions will not follow analytical distributions and will not have explicitly 

identified moments, therefore simulation techniques (e.g., Monte Carlo) seem a 

natural way of performing the calculations. From the scatings, inverse trans­

formation can be obtained numerically so that a uniform pseudo-random number 

generator can be used to perform simulations. Computational efficiency will be 
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a key ingredient in these simulations because feedback times to the user should 

be short. 

The result of the entire computational phase will be graphical displays of prob­

ability distributions over upper level variables, or ranges of probabilities for 

discrete events. 

Logic Checks 

A strength of computer-aided assessment is that the user immediately sees the 

implication of his assessments, and can assess variables in redundant ways as a 

check on consistency. 

Two types of structural information are assessed: a direct logic hierarchy or 

tree, and an interaction matrix. Taken together, these are used to (I) check for 

internal consistency of the logic, and (2) uncover implied branches of the 

hierarchy. Both of these functions are performed interactively with the user 

deciding whether inconsistencies or implied structure are significant, and 

altering logic relationships to balance his perception of the variables with the 

underlying implications. 

In the logic hierarchy of Figure 3-2, variable assessments would be made at all 

three or four levels, and the resulting tmpJications checked either at the 

uppermost or intermediate levels. If these assessments are internally consistent, 

one can have increased confidence in the numbers obtained. If the assessments 

are inconsistent, the user goes back through the hierarchy to see the implications 

for subvariable scalings. With the computer acting as accountant, cycles of 

feedback aid adjustment procede quickly, and a balancing among subvariable 

scalings is finally obtained. 

If no balancing seems satisfactory, further work on the logic hierarchy is pro­

posed by the program. One possibility is that hinting or reminder phrases be 

stored by key words in the program. These phrases would briefly describe physi­

calor geological processes related to the variables being structured. For 
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example, in the hydrofracturing case, one reminder phrase would ask, "DOES 

THE EXISTING JOINT SYSTEM INFLUENCE (HYDROFRACTURING DUE TO 

INTERNAL PRESSURE)?" As long as the subject matter under consideration has 

limited scope, as in the geological factors case, storage of such phrases presents 

few problems, and may be simply the collection of subvariables entered by other 

users for the same variable. Clearly, though, any feedback of other users' hier­

archies or scalings should come after a complete attempt has been made by the 

current user, so as not to prejudice the results beforehand. 

The idea of searching a logic hierarchy for inconsistencies and using interrela­

tional (input-output) matrices to infer branches of logic trees is not new. 

Attempts at computer-aided fault-tree construction, cross-impact analysis and 

statistical decomposition analysis have all to one extent or another addressed 

this problem. Techniques from these works can, of course, be brought to bear in 

actually building the present program. 

Implied structures, to a first approximation, can be found by searching the inter­

relational matrix for chains of variables connected by non-zero matrix entries. 

An exhaustive search of small matrices is computationally simple. For example, 

in the matrix of Figure 3-2, "available energy balance" is affected by "tempera­

ture" (i.e., entry (7, 9) is non-zero). "Temperature," in turn is affected by "water 

present" and "internal pressure," and "water present" is affected by "boundary 

layer properties," "in situ stress," "and tectonic stress changes." The latter two 

are primary variables because their respective column entries are entirely zero. 

"Boundary layer properties" has non-zero column elements, but the user may 

elect to truncate the tree at that point. This leads to the implied logic branch 

shown in Figure 3-4. The user mayor may not agree that the implied branch is 

important. Entries in the interrelational matrix do not specify absolute 

magnitude, only direction and relative strength. If he thinks it unimportant he 

may truncate it. If he thinks it may be important, he can call the routine to 

identify gate properties, then recall stored scaling for the variables, and 

recalculate implied probability distributions for upper variables. In this routine 

the program acts as a classical interrogator, pointing out non-obvious implication 

of the user's intuition and forcing a confrontation. 
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Finding logical inconsistencies may be somewhat more difficult than uncovering 

implied structures, but it is equally important. At least these directions must be 

considered. The first would use the interrelational matrix to generate existing 

branches of the logic hierarchy and compare the generated branches with those 

directly assessed. The second would check that completed feedback loops, 

through which a variable is functionally related to itself, do not exist in the tree. 

The third would identify "common-mode" variables through which branches of the 

hierarchy are de facto correlated. In itself the last is not an inconsistency unless 

the calculation phase treats them as independent. If inconsistencies are found 

(for example, if the assessed hierarchy and interrelational matrix do not agree) 

the user is presented with them so that he can obtain a resolution. 

3.4 DECOMPOSITION: AN ILLUSTRATION 

The purpose of the decomposition routines is to develop three aspects of the 

logic structure underlying an event or parameter: the hierarchical tree of sub­

variables, the relational form through which subvariables at any mode lead to 

upper variables, and an interrelational matrix that codifies the degree of 

interrelationship between each pair of subvariables. The form of questioning of 

this interactive process is exemplified in the following small pieces of dialogue. 

In the course of interrogation, the program or the user identifies, for example, 

lithe probabil ity of undetected faults" as the variable to be assessed. The code 

then asks: 

Can you decompose the (probability of undetected 
faults) into major component events or parameters on 
wbicb it depends? Please indicate eacb on a sepa­
rate line. 

Spatial fault density in the region. 

Amount of exploration effort. 

How are these variables related to the (probability 
of undetected faults)? Is the relationsbip causal, 
mathematical, or statistical? 

Mathematical. 
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ffbat is the equation relatin; (spatial fault density 
in region) and (alIDunt of exploration effort) to the 
(probability of undetected faults)? Use the follow­
in; variable labels: 

y = 

X(l) = 

X(2) = 
y = 

(probability of undetected faults) 

(spatial fault density) 

(amount of exploration effort) 

(1 - B It .. (- X(l))) (1 - X(2))/(1 - ~* (- X(l))) 
(1 - X(2)) + B** (- X(l)). (D) 

Based upon present information, the logic bierarcby 
is as follws: 

probability of undetected fault 

It 
It 

Spatial Pault Density 

It 

It 

F(l) 

* 
It 

It 
It 

Aa::nznt of Bxploration Bffort 

P(1): Y = (1 - B*1t (-X(l))) (1 - X(2))/(l - ~It (-X(1)) 
(1 - X(2)) + B*1t (-X(l)). 

Can you decompose (amount of exploration effort) 
into major component events or parameters on whicb 
it depends? Please indicate eacb on a separate 
line. 

Type of exploration. 

Density of exploration. 

(D) This is Bayes' Theorem in which amount of exploration effort is taken to 
mean the conditional probability of finding <rI existing fault with the ex­
ploration program. 
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How are these variables related to the (amount of 
exploration effort)? Is the relationship causal, 
mathematical, or statistical? 

Mathematical. 

What is the equation relating (type of exploration) 
and (density of exploration) to (amount of explora­
tion effort)? Use the following variable labels: 

X(2) = (amount of exploration effort) 

Z(l) = (type of exploration) 

Z(2) = density of exploration) 

X(2) = (1 - E** (-Z(1)Z(2))) * (E) 

Can you decompose (spatial fault density) into major 
component events or parameters on which it depends? 
Please indicate each on a separate line. 

In situ stress 

Geological medium 

How are these vax iab1es related to (spatial fault 
density)? Is the relationship causal, mathematical, 
or statistical? 

Statistical 

What is the correlation between (spatial fault den­
sity) and (in situ stress) and (geological medium)? 
Use the following variable labels: 

X( 1) = (spatial fault density) 

Z(3) = (in situ stress) 

Z(4) = (geological medium) 

Statistical relationships can be specified as corre­
lation coefficients, regression equations, or data 
tables (graphs). Select one. 

Data table 

(E) This is a simple exploration saturation function. 
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The user can now specify the relationship using a light pen or by typing in 

variable pairs. The code would respond with a graphical display of the current 

logic hierarchy, then try to further decompose the current lowest variables, and 

so on. 

Having exhausted direct interrogation, the code moves to assessing an inter­

relational matrix among the set of subvariables. 

The following subvar iables have been identified as 
contributing to the (probability of undetected 
faults) : 

X( 1) = (spatial fault density) 

X(2 ) = (amount of exploration effort) 

Z(l) = (type of exploration) 

Z( 2) = (density of exploration) 

Z( 3) = (in situ stress) 

Z(4) = (geologic medium) 

Rank the degree of interrelation between each pair 
of subvar iab1es, as they appear, on the scale: 

-2 

-1 

0 

+1 

+2 

= 

= 

= 

= 

= 

functionally related in a negative direc­
tion 

negatively correlated 

no interrelationship 

positively correlated 

functionally related in a positive direc­
tion 

(Spatial fault density) and (amount of exploration 
effort)? 

o 

(Type of exploration) and (exploration density)? 

+1 

(Type of exploration) and (in situ stress)? 

o 
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• .. and so on, until a matrix is developed. The matrix is used to explore for 

implicit logic structures and inconsistencies, and changes computed internally 

are fed back to the user for confirmation and agreement. The final hierarchy 

and IR matrix are stored. The code moves on to other top level events, or to 

scaling the individual subvariables. 
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4.0 SCALING VARIABLES 

4. I RECOMMENDA TIONS 

The scaling subroutines will present the expert with sequences of 

questions and from his answers back figure implied probabilities or 

distributions. Many mathematical and procedural techniques for scaling 

uncertainties have been proposed in the literature. The issue is to 

extract the most useful techniques and coalesce them into a practical 

scheme. To the extent possible, the logical structuring developed in the 

decomposition stage must be extended to the point that subevents over 

which probabilities are scaled do not have diminishingly small probabil­

ities. 

A three-phase procedure is suggested, consisting of pre-conditioning, 

scaling, and verification. Pre-conditioning identifies the dimension 

and range of a subvariable and presents key words which might trigger 

further introspection by the expert. Scaling introduces relative rank­

ing of subevent probabilities and back figures probabilities implied by 

the expert's choices between dichotomous alternatives. Verification 

checks the internal consistency of probability assessments and feeds 

back inconsistencies for resolution. Figure 4-1 presents a flowchart 

representation of the scaling procedure for a global variable. A 

detailed flow chart focusing on the scaling of a subvariable is presented 

in Figure 4-2. These figures will serve as the focal point of this 

section. 

4.2 OVERVIEW 

Decomposition of an upper level event as discussed in Section 3 leads to a set of 

subvariables which can be logically related to the upper event. Thus, to obtain a 

probabilistic description of the upper event, probabilities or probability distribu­

tions over the subevents can be mathematically combined according to the 

logical structure assessed in the decomposition. The question at present, 

therefore, is how to obtain those probabilistic statements on subvariables. 
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Fundamental to the entire idea of quantitative scaling of expert opinion is that 

"snap" judgments about nebulous variables are replaced by carefully thought out 

responses about precisely defined events. In quantifying those "carefully thought 

out" responses, it is of course much better to develop vague but true reflections 

of uncertainty rather than precise but wrong numbers. There are many 

competing, but in some ways complementary, methods for assessing and scaling 

uncertainties. Some work well in certain situations and for certain people, 

others work well for different situations and for different people. In all cases, 

responses to opinion assessments depend heavily on psychological variables. 

Assessment has strong "clinical" facets. To the extent possible, assessment 

methods should reflect what is known of psychological trends and biases. As the 

issue resolves to obtaining accurate reflections of opinion, a dogmatic approach 

of using only scaling techniques from one field (e.g., decision analysis, 

psychophysical scaling, Delphi) must be avoided in favor of a more eclectic and 

pragmatic approach. 

The single most important result of probability scaling over subvariables is an 

accurate reflection of uncertainty and ranges within which some parameter 

might be realized. This bounding is much more important than "best estimates" 

or other measures of central tendency. Any assessment program must 

concentrate attention on ensuring, to the extent possible, that uncertainties and 

ranges of variables are not erroneously constrained by the form of questioning. 

As discussed in Section 4.4, the sequence of "what is asked" may strongly 

influence biases in measures of uncertainty. 

4.3 NATURE OF PROBABILITY AND UNCERTAIN JUDGMENT 

The nature of probability based on expert opinion is philosophically different than 

relative frequency concepts underlying classical statistics. Judgmental assess­

ments result in what might be called "inductive" probability, or the degree to 

which a set of propositions or evidence supports or lends confirmation to some 

other proposition(s); that is, the degree to which full belief in some set of 

propositions leads to partial belief in others. 
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Mathematical probability theory can be based on a finite set of axioms within 

which the term probability is primitive: its properties are defined but its 

* meaning is not. This means the definition of probability is a question of 

philosophy, not mathematics, and has led to various schools of thought. The most 

well-known of these schools might be broadly categorized as relative-frequency 

and degree-of-belief, the latter defining probability as the degree to which one 

believes in the truth of some proposition or occurrence of an event. An 

objectivist view of degree-of-belief thought has been propounded in the 

literature by Keynes and Jeffreys, but today most degree-of-belief theory is 

subjectivist: degree-of-belief is unique to the individual, conditioned on his own 

unique experience, but modified formally upon new and enumerable information 

(i.e., evidence). As the formal modification of belief is accomplished through 

Bayes' Theorem, this school is often called "Bayesian." While the distinction 

between frequency and belief is widely argued in the literature, the important 

point at present is that the epistemological underpinnings of subjective 

probability or quantification of expert opinion are well developed and not ad hoc. 

Within subjectivist theory the "goodness" of a probability assessment is reflected 

only in how accurately the assessment portrays an individual's judgment. 

Different people (experts) have different probabilities for the some events and 

all of them are "right." The extent to which some people have probabilities that 

are more externally valid than others (i.e., predictive accuracy as manifest in the 

real world) only reflects that some people have better judgment than others. So, 

the key in scaling is to accurately reflect true (personal) uncertainties. •• not 

to approximate reality. The latter is not possible except by selecting people 

with high substantive expertise. Well-designed methods of assessment 

cannot compensate for technical ignorance, nor can they increase external 

validity beyond that inherent to the judgment of the expert. Miracles are not 

allowed. 

* F or example, probability is a number between 0 and I; the sum of the 
probabilities of exclusive and exhaustive events is I; the probability of the 
joint occurrence of independent events is the product of the individual 
probabilities. 
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Opinions, and thus subjective probabilities, are often changed by group 

discussion, advocacy, and argumentation. Peer review through confrontation 

strengthens and clarifies the chains of assumptions leading to predictions and, in 

principle, increases the external validity of projections. The history of science, 

however, is full of examples of persuasive, brilliant, dynamic scientists who have 

been fundamentally wrong about important physical processes, and who through 

dint of personality have led the course of science astray. The first task is to 

have an expert argue with himself, and only then to compromise differences 

among experts. For, whatever the failings or successes of Delphi techniques, this 

principle of avoiding, at least initially, the interpersonal dynamics of small group 

discussion often proves fruitful in eliciting full ranges of opinion. Discussion of 

the problem of coalescing individual probabilities into group distributions is 

presented in Section 5. This is a question with a substantial literature. 

4.4 CLINICAL ASPECTS OF SCALING AND EMPIRICAL BIASES 

The consistency of probability assessment requires only that opinions expressed 

as probabilities satisfy the axioms of probability. In other words, that probability 

distributions integrate to 1.0 and the like. Thus the internal check for 

consistency, redundancy, feedback and related techniques do not ensure external 

validity. However, considerable work has been done in attempts to evaluate the 

validity of assessed probabilities, and that work indicates rather consistent biases 

in the opinions people give. These biases must be recognized in computer scaling 

routines. Some methods do exist for reducing such biases. 

To evaluate past work on biases in probability estimation one might ask first 

"how well" people assess their uncertainties, and then "how" they assess. In other 

words, what is the empirical external validity of probabilities and what rules of 

thumb do people rely on in answering questions about uncertainties. 

Briefly, at least three major and consistent biases are commonly observed in 

subjective probabi lity distributions: gambler's fallacy, overconfidence, and 

conservatism. When asked to estimate the probability of a discrete event, or 

when subjective probabi lities are inferred from risky decisions, a trend of 

4.8 



overestimating small probabilities and underestimating large probabilities 

emerges (Figure 4-3). The crossover probability reported varies from study to 

study, but seems to be in the range 0.2 to 0.5. An implication for scaling routine 

development is that when asked to compare some uncertainty with an objective 

random device (e.g., roll of a die), subjects "misperceive" the objective 

probability. This bias is sometimes called gambler's fallacy. Similarly, when 

assessing probability distributions over continuous or multinomial variables, 

subjects tend to consistently underestimate their actual uncertainty. That is, 

assessed probability distributions tend to be too tight. Tail regions of an 

assessment, which should only see very small percentages of realizations (e.g., 

values of the uncertain variable outside the five and 95 percentiles should be 

realized in only 10 percent of the cases), empirically see up to half of the 

realizations (Figure 4-4). An implication for scaling is that techniques 

encouraging dispersion in assessed probabilities should be promoted. This bias is 

usually called overconfidence. Finally, when shown data and asked to modify 

their subjective probabilities, subjects tend not to change their opinions as much 

as Bayes' Theorem would specify. Subjects tend not to give as much credence to 

data as statistical theory would specify (Figure 4-5). An implication for scaling 

is that subjects should not be asked to express uncertainties as equivalent sample 

sizes or otherwise asked to perform intuitive updating from which a priori sub­

jective probabilities are inferred. This bias is usually called conservatism. 

In each of the above cases the conclusion of a consistent bias across subjects 

rests on considerable empirical verification. However, the interpretation of 

underlying causes or of the sources of the biases, whether in the subject or in the 

experimental procedure, is hotly debated. Nevertheless, it is clear that biases do 

exist when probabilities are scaled using common techniques. 

The way subjects evaluate uncertainties, and, therefore, the source of observed 

biases, has been the subject of work by Tversky, Kahneman, and their colleagues, 

and has led to three broad heuristics. Tversky and Kahneman (1974) in their 

well-known paper call these representativeness, availability, and anchoring. 

Representativeness is the tendency to assign the probability of an event 

according to the degree of similarity it has with a broader group of events. This 

4.9 



>-
~ 

-l 
co 
<t 
co 
0 

~ 
lJ.J 
> 
~ 

U 
lJ.J 
~ 

CD 
~ 
Vl 

6-
o 

o 

• • 

/.O ....... -----------_r_----------_ 

0.8 

0.6 

0.4 

0.2 

o ~----~----~~-~-~----~--------~ o 0.2 0.4 0.6 0.8 1.0 

OBJECTIVE PROBABILITY 

Mosteller, F., and P. Nogee (1951). "An Experimental Measurement of Utility," 
Journal of Political Economics, 59: pp. 371-404. 

Preston, M. G., and P. Baratta (1948). "An Experimental Study of the Aution­
value of an Uncertain Outcome," Am. Jour. Psychology,.§J.: pp. 183-193. 

Griffith, R. M. (1949). "Odds adjustment by American horse race bettors," Am • 
Jour. Psychol., 62: pp. 290-294. --

FIGURE 4-3 

GAMBLERS' FALLACY BIAS IN SUBJECTIVE PROBABILITY 

4.10 



• 

NOMINAL 
FREQUENCY 0.0 I 0.24 0.25 0.25 0.24 0.0 I 

Variable 
Number 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Totol 

VI 

0.0 I 0.25 0.50 0.75 0.99 

UNCERTAIN VARIABLE 

REGIOt\j 

I II III IV V VI TOTAL 

3 16 20 40 /I 10 

15 12 35 19 10 9 

II 8 28 29 13 /I 

51 41 6 I I 0 

I I 13 28 29 28 

24 14 12 13 10 27 

I 3 " 9 15 61 

9 2 13 10 8 58 

25 15 18 9 7 26 

18 8 8 12 16 38 

158 120 164 170 120 268 

FIGURE 4-4 

FRACTION OF TRUE VALUES L YINGIN RESPECTIVE REGIONS 
OF RESPONDENT'S ASSESSED PROBABILITY 

DISTRIBUTIONS, COMPARED WITH 
NOMINAL FREQUENCIES OF 

I, 24, 25, 25, 24, AND 1% 

AFTER ALPERT AND RAIFF A (1969) 

4.11 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

1000 



Likelihood 
Ratio 

95/05 

90/10 

85/15 

80/20 

75/25 

70/30 

65/35 

INFERRED FROM 
SUBJECT'S 

RESPONSES 

.J. .'. : .. 

:i 

.... 

:. 

):: 

--+1_5~~i';:-';~'_~' -+f-... ·;:·_+-, -+-I -1t---It---lI~~I~-lI~"'I-"""1 
-2 -I 1 2 3 4 5 6 7 8 9 10 II 12 

40/60 
35/65 
30170 

(Successes) - (Failures) 

FIGURE 4-5 

CONSERVA TI SM BIAS IN SUBJECTIVE PROBABILITY ASSESSMENT. 
INFERRED LIKELIHOOD RATIOS IN BERNOULLI TRIALS 

COMPARED WITH BAYES' THEOREM. 

AFTER PHILLIPS AND EDWARDS (1966). 

4.12 

• 



leads to a cluster of biases including 0.) insensitivity to prior or base frequencies 

when data is evaluated, (ii.) insensitivity to sample sizes in evaluating the weight 

of information, (iii.) misconceptions of chance self-correcting itself to cancel 

random fluctuations, (iv.) insensitivity to the predictability of information, and 

(v.) illusion of the validity of projections. An implication for scaling is that 

events should be structured in as much detail as possible. Availability is the 

tendency to assign greater probability to events that readily come to mind than 

to events that do not. Availability biases can be due to (i.) the ease of 

retrievabi lity of instances of an event, (ii.) the relative effectiveness of methods 

of mentally searching for past examples of events, (iii.) the comparative ease of 

imagining occurrences, and (iv.) intuitive associations between events leading to 

illusory correlations. An implication for scaling is that the subject should 

enumerate and broadly survey his information at the beginning and then 

throughout the assessment. Anchoring is the tendency to focus on one piece of 

information or hypothesis and then insufficiently adjust the assessment to 

encompass the full range of uncertainty about that point. Anchoring can 

manifest itself in at least the following three ways, (i.) given a "starting point" or 

best estimate, subjects tend not to adjust their assessments sufficiently away 

from that point, thus estimates of central tendency are influenced by the 

starting point, Oi.) given a best estimate, subjects tend to assess their 

distribution of uncertainty about that point too tightly, and (iii.) conjunctive and 

disjunctive events are assessed with a bias toward the individual probability (i.e., 

compound events requiring the joint occurrence of multiple events are given 

probabilities which are too high, and compound events that require only the 

occurrence of one or more of a set of subevents are given probabilities which are 

too low). An implication for scaling is that bounds and ranges should be assessed 

first and central tendencies should only be developed by iterative bounding. 

Thus, several perversions of quantitative judgment exist, and these apply whether 

subjective probabilities are quantified or not. The quantification itself is not the 

source of the biases explained in the Tversky and Kahneman's heuristics. 

Nevertheless, by identifying biases a scaling procedure can be developed which at 

the very least recognizes their existence. 
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One last bias must be mentioned, the bias due to motivation. Unlike the biases 

discussed above (usually called cognitive), motivational biases may be conscious, 

or nearly so. A subject may, for whatever reasons, wish to influence the 

outcome of a decision or the results of modeling. On the other hand, he may 

think that, as an "expert," he should make predictions about his subject with a 

strong degree of confidence. These biases can only be dealt with by trying to 

convince the subject to be honest in his assessments, and by impressing him with 

the importance of accurate statements of uncertainty. From the perspective of 

scaling methodology, motivational biases are difficult to deal with. However, 

this is not a problem unique to quantification. 

4.5 APPROACHES TO SCALING 

The scaling procedure within computer assessment might be divided into three 

phases: pre-conditioning, scaling, and consistency verification. In pre­

conditioning the subject is directed to explicitly present those considerations 

which are determinants of his opinion on the variable. In scaling, the subject's 

subjective probability distribution is quantified. Finally, in verification, the 

quantified scalings are checked for internal consistency. 

The events for which probabil ities are scaled are those at the lowest level of 

decomposition in the event hierarchy. Thus, further decomposition into logically 

related subevents only nests another level of structuring. Rather, the pre­

conditioning phase should be one in which the general dimension and range of the 

variable is identified, and questions and key words which might trigger further 

introspection by the subject are provided. These questions and key words would 

be provided exogenously in the development of the assessment code, and would 

be expanded by subjects' response as the code is implemented. For example, the 

subject would be asked for an "upper bound" on in-situ stress, and then asked if 

he can build a scenario consistent with an even higher level. He would also be 

asked to state in short phrases those pieces of evidence he thinks might bear on 

his judgment. These would, of course, probably not be quantitative. The intent 

would be to lay a groundwork for the subsequent scaling, and broaden the 

immediate perception at the time of scaling. This will require careful thought 
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and planning when the code is written, but is important enough to warrant the 

effort. A number of scaling techniques have been developed in the literature of 

psychological measurement, decision analysis, operations research, policy 

analysis, and other fields. Torgerson (1958) and Pfanzagel (1971), among others, 

present techniques from psychological measurement, including such things as 

conjoint scaling, paired comparisons, and canonical representation. Stevens 

(1976) presents a number of techniques from psychophysics, including cross­

modality matching and partitioning. Stael von Holstein (1970) reviews the 

decision analysis techniques, including inference from betting behavior. Quade 

(1976) discusses techniques from policy analysis as developed at RAND. To the 

extent that better assessments can be obtained, techniques from any or all of 

these disciplines should be used. 

In essentially all scaling techniques the subject is asked to rank relative 

probabilities (i.e., develop an ordinal scale), and to make dichotomous choices 

between uncertain alternatives. From the answers to these questions implicit 

probabilities are calculated. Questions are asked in several ways so that 

redundant information is obtained, and cumulative probability distributions are 

developed. The scalings are usually performed by direct responses, in which 

probabilities are directly asked for; by indirect responses, in which probabilities 

are back figured; by graphs, in which the subject sketches his cdf or plots points 

using a light pen; or by relating probabilities of events to semantic variables 

(e.g., "likely," "unlikely," "probable," "improbable"). In the latter case great care 

must be taken to properly encode the quantitative meaning of the descriptive 

phrases because substantial variability exists across subjects (see, e.g., 

lichtenstein and Newman, 1967; or Selvidge, 1972). * 

* In general, semantic variables are at best a crude vehicle for encoding 
probability, and should be used only in conjunction with other techniques. Even 
then, great care must be used in their interpretation. Some workers would 
even hold that semantic variables can only be considered as ordinal. 
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In the initial work on developing an assessment, code techniques from subjective 

probability theory and decision analysis might be used. These techniques have 

the advantage of evaluated use, directness, and mathematical simplicity. 

Furthermore, codes now exist which might be straightforwardly adapted to the 

present purpose (Section 2.3). An illustration of this approach is given in the 

example following this section. In the course of initial implementation and 

testing, the adequacy of this approach should be evaluated, and modifications 

making use of other or related scaling techniques introduced. 

Among the more difficult problems of scaling is correlation among variables. 

When the number of variables is limited (e.g., two or three dimensions), 

conditional distributions can be assessed. Scaling proceeds by fixing the level of 

one variable and assessing cdf's over the remaining variables. However, if more 

than two or three variables are statistically dependent, this approach rapidly 

becomes too detailed and expansive to be practical. Approximation techniques 

have been worked on for multiple variables by which joint cdf's are inferred from 

the set of bivariate assessments (e.g., Dalkey, 1975). Such techniques might be 

used. However, the degree to which the approximation introduces error is a 

function of the dimension of the joint cdf and the level of statistical correlation 

among the variables. 

Other procedures for assessing joint cdf's include searching for variables upon 

which conditional independence is approximated, introducing transformations 

which lead to independence (e.g., the sum and difference between two variables 

are often independent even if the variables themselves are not), adopting 

restrictive families of distributions which have parameters specifying correlation 

(e.g., multivariate Normal distributions), and bounding correlations and testing 

for sensitivity in upper level event probabilities. The applicability of such 

techniques is discussed by Robinson (1971). 

Redundant information should be collected in the scaling phase and evaluated in 

a verification stage. This last stage encompasses calculations by the code of 

conflicting or inconsistent probabilities, and resolution of conflicts or inconsist­

encies by the subject. At present, resolution is almost always accomplished by 
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presenting the subject with the inconsistency and having him reflect introspec­

tively and correct it. This seems to work in practice. 

4.6 SCALING RARE EVENTS 

The purpose of decomposition is to structure rare events into a series of 

subevents the probabilities of which are not either diminishingly small or 

extraordinarily large. People have a very difficult time thinking about the 

probabilities of rare events, and may not even have a language with which to 

describe them. The findings of Lichtenstein and Newman seem to substantiate 

this last point. Here "rare" is taken to mean outside the range (0.0 I to 0.99). 

There is even some debate over whether people's assessments can be refined to 

precisions as small as one percent (e.g., can subjects actually distinguish between 

25 and 26 percent, or even 25 and 30 percent?). However, precision may be a 

function of relative and not absolute magnitude. That is, a subject might be able 

to distinguish between one and two percent, but not between 50 and 51 percent. 

However, most of the subevents will not be rare. 

If, in fact, a rare event probability must be directly scaled, some approximation 

technique wi II be required. To date, the only comprehensive work on scaling rare 

events is a Ph.D. thesis by Selvidge (1972)--see also Selvidge (1973)--coming out 

of the decision analysis literature. However, other work on this topic is 

currently under way. Selvidge presents a three-step procedure for assessing rare 

events: description and decomposition (conceptually similar to the intent of 

Section 3), relative ranking of probability, and numerical assignments. The latter 

is accomplished with a variety of ad hoc devices (e.g., 103 by 103 square grids 

with varying numbers of squares darkened). In overall concept, Selvidge's 

approach is to rely heavily on description and structured introspection rather 

than direct scaling. The approach uses such devices as including an explicit 

event, "other things overlooked," and specifying populations at risk and exposure 

to risk. In this way some rare events can be approached by considering larger 

collectives of risks and dividing by the size of the larger--sometimes hypo­

thetical--population. It is not at all apparant that present techniques for 

treating direct scalings of rare events are satisfactory. The best way of dealing 
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with such events, as argued in Section 3, is to exhaustively structure the logical 

relations of subevents and continue the decomposition until either non-rare 

subevents are identified, or the required interrelational properties among 

subevents exceed our physical understanding of natural mechanisms. 

4.7 SCALING: AN ILLUSTRATION 

The scaling routines are divided into the three parts previously mentioned: pre­

conditioning, scaling, and verification. Continuing with the example of Section 

3, and focusing on in-situ stress ( C1 3)' the assessment might proceed as follows: 

We are now ready to scale probabilities for the 
elements identified in the deco~osition. The first 
of these is (in-situ stress). List elements OI 

references that may bear on (in-situ stress). For 
definitions, call HELP followed by the label. 

HELP, elements, references. 

ELEMENTS are quantities or variables upon which 
events may depend. 

REFERENCES are published studies. 

List elements or references that may bear on (in­
situ stress). 

Element: tectoni.c province, evidence of deformation, 
depth of burial, water pressure. 

Reference: Steinberg and Schwer, survey of North 
American rock bursts in mining. 

Summarize your general thoughts based on these ele­
ments and references. This information will be 
maintained. 

This region lies near a tectonically active area. It is 
thought to be undergoing fairly high rates of uplift. The 
formations are dry, therefore effective stresses will not 
be influenced by pore pressures. Steinberg and Schwer 
report considerable rock burst activity in deep mines 
within the same general area; thus, in-situ lateral stresses 
are probably high. As far as I know there is not much 
field evidence of large deformations in recent geological 
time. If there were, this would further confirm my 
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SUspIcions of high lateral stress. Because there is 
considerable soil overburden, existing evidence of defor­
mations might be obscured. 

Do you want to see a check list of other elements 
bear ing on (in-situ stress), or the responses of 
other users? 

No. 

What level of (in-situ stress) would you be very 
surprised to see exceeded? 

6,000 psi. 

Suppose you were told that (in-situ stress) were in 
fact greater than (6,000 psi). Could you build a 
scenario consistent with this? If yes, describe 
briefly. 

Yes. The region may be buttressing the tectonically 
active zone to the east. 

Would you like to reevaluate your upper bound of 
(6,000 psi)? 

Yes. 8,000 psi. 

The code would procede in a similar way to establish a lower bound on stress. A 

central result of the pre-conditioning phase is to establish elements which, while 

not leading to "best"estimates, bear on what the variable might be in its 

extremes. In any judgmental task people tend to ignore the exceptional in favor 

of the "bulk" of the information. Thus, assessments often do not reflect true 

ranges of uncertainty. 

After pre-conditioning, the code turns to scaling. 

We are now ready to attempt to quantify your feel­
ings about (in-situ stress). If you wish a 
description of the procedure for scaling call HELP, 
otherwise return. 

Return. 
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What answering mode do you wish to use? 

(1) probability wheel 

l. 

(2) probability segment 
(3) external reference list 
(4) internal reference: preference 
(5) internal reference: ratio 

Consider the following two bets. With one bet we 
spin the wheel in the left corner of the screen and 
if it stops with the pointer in the shaded sector you 
win $50; otherwise, you win nothing (the wheel is 
set at 10 percent shaded). With the other bet you 
win $50 ~f the (in-situ stress) is less than a . 
Which bet do you prefer? Type 1 if you prefer tAe 
wheel, 2 if you prefer the second bet. 

2. 

Which one do you prefer now? (the wheel has been set 
at 90 percent shaded). 

I. 

The size of the shaded area is varied until the expert is indifferent between the 

two bets. The expert is then asked to determine the probability that the in-situ 

stress will be smaller than a couple of 0., then greater than a few o. I O. 
I J I 

always using the probability wheel as a mode of comparison. The results are then 

displayed on the screen and the following question is asked: 

This is the information you provided by answering 
the above question. Choose from the following: 

1. additional questioning 
2. consensus for these answers 
3. other questioning method 
4. general consensus for this variable 
5. disregard this set of answers 

3. 

Which method would you like? 

5. 
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The variable range (1,000 psi, 8,000 psi) has been 
divided into seven equal intervals: 

1: (1,000, 2,000) 
2: (2,000, 3,000) 
3: (3,000, 4,000) 
4: (4,000, 5,000) 
5: (5,000, 6,000) 
6: (6,000, 7,000) 
7: (7,000, 8,000). 

Can you order them by increasing order of 
probability? 

I, 2, 7,3, 6, 4, 5. 

Can you determine the relative probability of these 
intervals? Answer as the ratio of their probabili­
ties where a negative multiple (-) indicates the 
first to be less favorable than the second. 

6:l? 

-3. 

4:7? 

2. 

The intervals are each covered once, and some are covered more than once to 

allow cross-checking. In general, the redundant information comes not by 

repeated questioning on the same pair but by the probabilistic implication of the 

set of answers. 

The code attempts to resolve inconsistencies by direct confrontation (i.e., 

"feedback"). 

The implication of your answers is inconsistent. 
This is natural, you should not consider it a flaw. 
However, the inconsistencies must be resolved. Your 
answers imply probabilities for the range (1,000, 
2,000) of (0.1), (0.05), and (0.01). Can you pick 
the most appropriate from this set? 

0.05. 
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The code then updates all the probabilities and searches for new or additional 

inconsistencies. The feedback continues until either consistency is achieved or 

the subject replies that he cannot refine his answers any further. In the latter 

case a best fitting cdf is calculated by least squares or a similar criterion. 

When the subject is satisfied with his answers and final cdf is graphically 

displayed and stored in memory the code moves on to the next variable •. While 

this procedure may seem tedious, experience has shown that with use such direct 

quantifications can be even quicker than personal introspection, since the 

computer acts as an accountant in maintaining logical consistency. In any event, 

the only alternative to careful and enumerated thinking about one's feelings is 

quick answers, which are probably not what one would like as input to further 

modeling. 

4.22 



5.0 SYNTt-ESIS OF EXPERT OPINION 

Expert opinions as input to modeling or decision-making are not probabilities in 

the sense of recurring natural phenomena. They are not guesses at "true" 

probabilities, which in the case of non-recurring events are undefined, or defined 

only as a degree-of-belief (e.g., Savage, 1954). Rather, expert opinions are quan­

tifications of individual beliefs, and are good or bad only to the extent that they 

have been properly assessed and represent the expert's actual belief. 

How to use such expert opinion in modeling or decision-making has long been a 

problem. Among the more intriguing questions raised are: What is a "good" 

expert? How should expert opinion be incorporated with the analyst's own 

opinion and with parallel empirical data? How should conflicting expert opinion 

be reconciled? Is there an appropriate quantitative measure of the knowledge of 

an expert and of a group of experts? For these questions there are only ad hoc 

answers, or phi losophical paradigms too complex or nebulous to be implemented. 

5.1 RECOMMENDATIONS 

A technique for synthesizing group opinion that is neither too ad hoc, and 

therefore improper, nor too sophisticated, and therefore unuseable, is needed. 

Several have been proposed. For example, a technique can be developed based on 

a two-part analysis: the first part would be a feedback and consensus phase with 

emphasis on reconciling logic hierarchies; and the second would be an error 

theory approach to synthesizing conflicting assessments. The error theory part is 

based on simple scalings of bias and random error, and correlation among 

experts. 

5.2 EXISTING TECHNIQUES FOR SYNTHESIS 

Synthesizing expert opinIon involves. the precision with which a probability is 

assessed, the confidence the expert has in the number, the knowledge the expert 

has on the particular variable, and the consistent bias errors which may stem 
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from the means of assessing or from the expert. A limited number of tools have 

been developed for combining the above considerations and coming to a synthesis 

of quantified opinion. These are of four types: 

• Consensus building 

• Weighting schemes 

• Error theory 

• Likelihood methods 

Each of these describes a related collection of tools, techniques, and tricks. 

Any technique for synthesizing opinion must not simply take numbers as given, 

and operate on them. Rather, it should force an exploration of the basis of 

differences, identify important discrepancies among experts, and reassess each 

expert's opinion in light of the variation of opinion across the group (i.e., the 

method should include group feedback). Strong emphasis on identifying the logic 

structure or hierarchy within the assessment code allows computer-aided 

exploration of the differences among experts. 

Consensus Building 

Consensus bui Iding schemes are a central part of Delphi methods. The Delphi 

method feeds back group opinion in an anonymous summary form to each expert 

and asks the expert to re-evaluate his own assessments in light of the group 

opinion. If a consensus is reached through this cycling, assessment ends. If a 

consensus is not reached, another feedback cycle can be undertaken. Sometimes 

each expert is asked to briefly justify the reasoning behind his assessment, and 

this information is also provided in the feedback cycle. There has been 

considerable work in Delphi techniques on predictive error (Figure 5-1), 

reproducibility (Figure 5-2), convergence (Figure 5-3), and other methodological 

variables. 
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A problem with consensus building is that there may be very good reasons why 

opinion varies, so the consensus may not be a better estimate than the original 

distribution. Also, a consensus may not be attainable, and even if it is, it may 

be 9rtificial. Work by Dalkey (1975) (Figure 5-4) and others suggests that the 

distribution of group opinion tends to be lognormal, so in cases where a consensus 

is not reached, an estimator like the median is usually suggested. The rationale 

for using the median is that it minimizes the "expected error" for variables 

generated by the obtained distribution (and in the lognormal case, coincides with 

the mode and geometric mean). This approach implicitly weights each expert's 

opinion the same and does not consider bias errors. Furthermore, no attempt is 

made by the analyst or user of the experts' opinions to interpret differences and 

reach a conclusion of his own. 

Weighting Schemes 

Weighting schemes take a "weighted average" of experts' opinions. The implicit 

assumption in weighting schemes is that one of the experts is "correct," but it is 

not .9. priori clear which one. Given experts' predictions (x I' •• , xn) and weights 

(wl"'" wn), the synthesized prediction is: 

1\ n 
x = ~ 

i= I 
w.x. 

I I 
(4.1 ) 

The set of weights can be interpreted as a probability mass function over the 

experts, in which case the estimator ~ would have the properties of an expecta­

tion. Except for this special interpretation of weighting schemes, the procedure 

is ad hoc: weights are usually generated by rules such as, "attach the most 

weight to the assessment of the better or more knowledgeable expert." 

The dimensions for measuring "better" or "more knowledgeable" experts are not 

immediately apparent. These qualities are probably multidimensional, which 

means reducing them to a single weight is difficult. In practice, weights are 

usually generated subjectively, either by asking each expert how he would weight 
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himself relative to others, or by asking experts to rank one another. Of course, 

the analyst could assign weights to the experts himself. Dalkey, Brown, and 

Cochran (1973) (Figure 5-5) have investigated the use of self-evaluated weights 

in forecasting, and Winkler (1968) has presented weighting schemes within a 

Bayesi an framework. However, there is st i II work to be done. 

A difficulty with weighting schemes is that they do not account for biases in 

experts responses. They take no account of optimism, pessimism or other sys­

tematic errors which are known to exist (e.g., Martino, 1970), and which may be 

suspected in a particular application. 

Error Theory 

Error theory is based on the assumption that experts are noisy transducers for 

"measuring" reality. Each assessment may contain both random error and bias 

error, and once estimates are made of the statistical properties of these errors, 

normal error propagation theory can be used to draw aggregate conclusions. 

Error propagation satisfies some of the objections to weighted averages, but 

appropriate procedures for obtaining the error variances, etc., are still difficult 

to identify. Suggestions are sometimes made that errors can be statistically 

inferred from experts' past performances. However, there simply may never be 

an entirely objective way to evaluate expert opinion. Long track records by 

which statistical calibration can be made simply do not exist for most real 

assessment problems: "What has expert X's success rate been for predicting ice 

ages?" Calibration histories that can be collected necessarily deal with different 

types of variables than long-term forecasts deal with. Therefore, weights, error 

variances or other evaluation techniques will have to be partly subjective. 

Li ke Ii hood Met hods 

Likelihood methods for synthesis have been suggested by Morris (J 977) in a Ph.D. 

dissertation and subsequent papers. Likelihood methods treat experts' opinions as 

information in the Bayesian sense, then use the familiar updating procedures to 
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combine experts' assessments with the analyst's own prior assessment to 

calculate a unique posterior probabi Iity or distribution. Evaluations of the 

experts' opinions are entirely contained within a joint likelihood function 

deocribing the conditional probability of each experts' assessments given the 

"true" state of nature. 

As with the previous techniques, the joint likelihood approach points out an 

important consideration for synthesizing opinion: experts' opinions are generally 

not statistically independent. Opinion, and therefore assessments, are predicated 

on similar theories or logical structurings of a problem. Empirical evidence is 

often common or at least partially shared by experts. If this common 

dependence is not accounted for in aggregating assessments, the results become 

more precise than they should be. The implication is that the reasoning behind 

different experts' assessments should be studied, so that fundamental sources of 

disagreement are brought forth, and shared opinions, either on the way variables 

affect one another or on assessments of individual subvariables, can be 

partitioned off. Morris (1976) suggests techniques for calibrating experts' 

assessments (i.e., likelihood functions) using hypothetical assessments, but this 

procedure suffers the limitation discussed above: the assessments are hypo­

thetical and of perhaps only marginally related variables. 

5.3 SYNTHESIS TECHNIQUES FOR WISAP 

Figure 5-6 presents a flowchart representation of synthesis techniques. This 

figure wi 11 serve as a focal point for the following discussion. 

There must be two phases to the reconciliation and synthesis of differing assess­

ments by different experts: an exploratory phase in which primary disagree­

ments are identified; and a synthesis phase in which disagreements are 

aggregated at the primary level. 
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A fundamental difference between the assessment code required by WISAP, and 

existing assessment codes is that the WISAP code would assess and store 

structural information in the form of a logic hierarchy underlying the reasoning 

leading to an assessment. Therefore, there is information other than simply the 

final numbers to be considered in synthesizing differing opinions. The first step 

in synthesis will be to recall logic hierarchies for a particular variable, feed all 

of these back to the experts, and have each expert re-evaluate his own hierarchy 

in light of the entire set of hierarchies. This may show that some variation is 

due to overlooked scenarios (i.e., branches) or overlooked interrelationships 

among subvariables. To the extent this is so, this first feedback cycle will lead 

to some convergence in final assessments. Further, to the extent that variations 

are due to differing perceptions of the logical structuring of events or 

parameters, the discussion is reduced to a fundamental rather than derived level. 

Basic differences are shown to exist and can be argued at the appropriate level. 

After the logic hierarchies are reviewed by the set of experts, individual 

subvariable scalings can be reviewed. If the experts agree fairly well on the 

logical structure, then differences must be caused by differing scalings of 

subvariables or by differing assessments of the interrelations of subvariables. 

Both sets of information can, of course, be retrieved. If individual subvariable 

scalings differ significantly among experts, methods of the type summarized in 

Section 5.2 must be used to form a synthesis. If the interrelations of 

subvariables differ, some other technique for synthesis must be used. 

The first step in reconciling interrelational differences should, again, be feed­

back and reconsideration by the group of differing experts. Beyond this strategy, 

a new set of methods will have to be developed. Any reconciliation must satisfy 

basic requirements of logical consistency, and consistency with the adopted logic 

hierarchy. The first step is sensitivity analysis on the differing components of 

subvariable interaction. It may be that differences that appear significant in the 

interrelational matrix are not, in fact, causing significant differences in top­

level probabilities. In this case, the discrepancies are being caused by 

differences in subvariable scalings. If sensitivity analyses fail--that is, if top 
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level probabilities are sensitive to differences in the interrelations of sub­

variables--then the range of top level variation must be determined and some 

form of weighting or calibration introduced to estimate a central tendency 

within that range. 

Thus far the difficult problem has been skirted. If differences either in sub­

variable scalings or interrelations of subvariables cannot be reconciled, then 

some scheme must be introduced to establish (I) a measure of central tendency 

in the top level assessment, (2) a measure of "reasonable" imprecision in the esti­

mate, and (3) the total range through which the assessment might vary. The 

third of these is easy) the first two are not. However, based on the previous 

discussion, a method can be divised. Clearly, though, epistemological constraints 

limit the objectivity that can be achieved in such a method. There is no way 

around this problem, because any realistic method will be in part ad hoc. 

For theoretical and operational reasons, the most favorable way of synthesizing 

assessments would appear to be a combination of error theory and cal ibration. 

Feedback and consensus building will not work because they would have been 

already tried. Weighted averages seem inappropriate because they do not allow 

for systematic biases or incorporate estimates of random error (j.e., impre­

cision). Joint likelihood methods involve difficult conditional (inverse) prob­

ability statements, and since there probably will be no analyst's prior probability 

to update (or if there is, it will be fairly diffuse), they appear to carry no 

advantage to error theory calibrations. I 

Error theory calibrations require an estimate of each expert's imprecision, or the 

random error in each expert's assessment, on estimate of potential bios error and 

the direction of the bios (this estimate need not be sharp), and a measure of 

Likelihood approaches use the conditional distribution p(x'/Y), where x. is 
the expert's assessr.ent and Y is the predicted variable! through Ba~es' 
Theorem to infer p (Y Ix.) a: p o(Y) p(x./Y). The "priorI! p o(Y) is the ana­
lyst's opinion. Error theory approac~es attempt to directly establish 
p(Y Ix.). 

I 
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correlation with other experts' assessments. Let the random error or imprecision 

be denoted e., the bias error be denoted b., and the correlation of assessments by 
1 1 

experts i and j be denoted ... The imprecision in the estimate b. will be denoted 
IJ 1 

by a variance term V(b.). 
1 

A best estimate of the variable is obtained by a minimum variance linear esti­

mator 

" 

" n 
y= ~ 

i= I 
w.x. 

1 1 
(4.2) 

where y is the estimate, x. are the experts' best estimates and (w.) is a set of 
1 1 

optimal weights subject to the constraint E w. = 1.0. Define a new variable, 
1 

2 o· = V(x.) + V(b.) 
1 1 1 

(4.3) 

where V(x i) is the variance of expert i's assessment. V(x i) can be approximated 

by inspection or calculated using a simple numerical algorithm. Define the 

covariance of experts' assessments as 

Cov(x.,x.)= p .. a.C1. 
1 J 1 J 1 J 

(4.4) 

If the bias in each expert's estimate is removed by the transformation2 

2 

" x. = x· - b. 
1 1 1 

(4.5) 

The bias b. could either be defined as a proportion or as a difference (as 
above). Th~ choice depends on which is more easily used by the expert. If 
defined as a proportion, equation (4.3) and (4.5) would be modified appro­
priately. 
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then the optimal set of weights can be obtained as that which minimizes the 

estimate variance 

min 
w. 
==1 

(4.6) 

Introducing a Lagrange multiplier A , the optimal weights can be shown to be 

(Appendix A), 

where 

~= 

= 

a 0 
Cov(xn, x I) 

.. 

I 
I 

C I : 
- I • _____ .2. _1._ 

I • • • I 

The variance in the estimate is found by substitution into equation (4.6) 

" n V(y) = L 
i=1 

n 
L w.w. Cov(x.x.) 
. I 1 J 1 J 
J= 

(4.7) 

(4.8) 

With a mathematical procedure for synthesizing assessments the question 

becomes, how can the required calibrations be established. This will be done 

through self-evaluation by each expert, and evaluations by the experts of one 

another. 

An assessment procedure, as any analytical technique, benefits from simplicity. 

It is usually better to know how an analytical procedure is working and therefore 

clearly recognize its limitations, than to inaugurate complex procedures which 

result in outputs that are difficult to interpret (hence, the old adage "it is better 

to be vaguely right than precisely wrong!!). Given the inability to specify an 

5.18 



objective or empirically based calibration methodology, the procedure for 

calibrating and aggregating experts' opinions should be simple. The critical test 

of such a procedure is its applicability in practice. Therefore, the procedure 

discussed below is a starting point, which must be refined and modified in initial 

testing phases of the assessment code. 

Each expert is asked to rate his knowledge and therefore the precision of his 

scaling of each subvariable on a simple 1-5 scale. "I" indicates very little 

knowledge about the variable and very low confidence in the precision of the 

scaling; "3" indicates familiarity with the variable and confidence that the 

precision of the estimate is "as high as for most experts in the field"; "5" 

indicates extensive knowledge (equal to the most knowledgable experts) and high 

confidence that the scaling is precise (there is little potential error in the scaled 

probabilities). Numerical levels of precision associated with the ranking (e.g., 

"2" corresponds to !30% error) are not explicitly stated in the questioning, but at 

the user's option may be input as associated with each rank along the scale. 

Also, each expert is asked to rank the other experts along the same scale. The 

timing of ranking other experts will have to be experimented with. It would 

seem that the "others" ranking should not take place until an initial assessment 

has been made, and possibly not until at least one cycle of feedback has 

occurred. 

From these rankings of knowledge and assessment precision, an estimate of 

random error must be made for each expert. There is some experience with self 

and others ranking in technology assessment (Dalkey, Brown, and Cochran, 1970; 

Dalkey, 1969; and North and Pyke, 1969, among others). This must be combined 

with initial experiments to develop a correlation between rankings and error 

estimates. Obviously, these error estimates will be rough, but the purpose at 

Dalkey, N. C. ( 1969). "The Delphi Method: An experimental study of group 
opinion." RAND Corporation, RM-5888-PR. 

North, H. P., and D. L. Pyke. "Probes of the technological future." Harvard 
Business Review, v. 3: 68-76. 
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hand is to form a synthesis of opinion and rough estimates of error differences 

are better than assuming all experts are equally precise. The mean ranking for 

an individual expert cannot be used to summarize his expertise, because the 1-5 

scaJe is only ordinal. However, the median ranking does have mathematical 

meaning, and might, therefore, be used instead. Even so, attention must be given 

to the question of balancing self rankings with others ranking. 

Bias errors (e.g., optimism or pessimism) are probably best estimated through 

ratings of others. Again, a simple rating is given over an ordinal scale, and that 

scale is then correlated to percent bias errors. The median rating is used as the 

summary statistic. At the user's option the scale may be directly associated with 

input bias errors specified in percent, or may be specified, for example, on a -5 

to +5 ranking, with zero indicating no bias. 

Correlations among experts' opinions reflect similarities in the schools of thought 

the experts represent. Certainly, if three experts all represent the same general 

philosophy on a particular scientific issue, their assessments will contain 

redundant information. If a fourth expert represents a different philosophy, then 

g priori his opinion should be given more weight than suggested by his 1:3 

minority position on the expert panel, because his opinion is more independent 

than the others' opinions are. The correlation among experts is easily and 

compactly represented by a correlation matrix of the terms p... These 
I J 

correlations could be directly requested from each expert for each pair of 

experts. This would be a scaling on -I, + I. However, statistical (j.e., 

quantitative) correlation coefficients are foreign to the intuition of most people, 

at least in their appropriate association with, say, data scattergrams, and a less 

direct ranking of interrelation would seem more conducive to valid responses. 

This might be done using an interrelational matrix of the type discussed in 

Section 2, in which perhaps a broader scale (-5, +5) is used and later associated 

with the appropriate correlation coefficient. 

As in all the synthesis problems, reasonable, rather than precise, solutions are 

sought since precise solutions are likely to be red-herrings. A simple ranking 
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device is developed, against which experts can easily and straightforwardly state 

their beliefs. Opinions on the credibility or knowledge of other experts can be 

strong, but they are seldom precise. Yet inability to specify precise numbers is 

no reason to abandon otherwise correct procedures. To obtain statistical 

measures for use in calculations, the ranking scale is correlated or associated 

with the statistical measures on the basis of experimentation in early 

implementation phases of the code. 

The output of synthesis calculations would be a graph showing individual assess­

ments, the ranges of those assessments, the synthesized assessment, variance, 

and range, as illustrated in Figure 5-7. 

5.4 SYNTHESIS: AN ILLUSTRATION 
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It 

It 

------------------... It ... 

... 
spatial fault 
density x(l) 

S(l) 
... 
... 

... 
amount of 
exploration 
effort x(2) 

It 

F(2) 

... 

existing 
seismicity x(3) 

. -------. .---------. 
... ... ... It 

in situ geological type of density 
stress medilZ17l exploration of 

Z(3) Z(4) Z(l) exploration 
Z(2) 
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Bow should relationship F(l) be modified? 

Y = (I - E .... (-XU))) (I - X(2) X(3»/(I - E .... {-XU))) 
(I - X(2) X(3) + E*'* (- X( I» • 

.... C ..... existing seismicity increases probability of detecting 
fault. The surrogate variable X(3) is defined as an en­
hancement factor whi<Jh will be subjectively correlated to 
microseismic activity. 

Would you make other modifications? 

No 

Indicate subvariables C017111rm to the set of hier­
archies. Use variable labels prefixed by expert 
number. 

I XU) = 2A(3) = 3Z(I) = 48(2) 

Scalings for variables lX( 1), 2A( 3), 3Z( 1), 4B(2) 
are shown below. lX( 1) and 3Z( 1) fail the 
similarity test based on overlap. Do you think this 
difference is significant? 

Yes 

In a similar way the code leads to an identification of differences among the 

sealings of individual variables. Internally, the code tests the sensitivity of top 

variable scalings to these differences through a Monte Carlo subroutine or 

related numerical technique. The code then proceeds to precision and knowledge 

ratings for subvariable sealings still not consistent. 

3 "Comment" notes might be permissible to be stored with logic hierarchy. 
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On a scale of 0 to 10, rate your own knowledge and 
t:he precision of your scaling of (spatial fault 
density). For reference, t:his scale should corre­
spond to: 

o = little or no knowledge 

5 = average familiarity of expert in general field 

10 = highly knowledgable 

7 

Previous calibration studies using t:his code have 
shown a rating of (7) to roughly correspond to an 
imprecision range of (70%) to (130%) of your esti­
mate. Jlould you agree? If you disagree, please 
specify an imprecision range. 

Agree 

A similar rating is made for the other experts. 

Do you consider yourself optimistic or pessimistic? 
In other words, might your answer be somewhat 
biased? Rate your own bias on the scale -10 to +10. 
This scale should correspond to: 

-10 = very biased to the low side 

o = unbiased 

+10 = very biased to the high side 

If more convenient, use a best estimate of your own 
percent bias. Indicate by symbol %. 

2 

Self ratings of bias are probably not very good, so each expert is next asked to 

rate every other expert on the same scales. 

Experts often base their opinions on similar schools 
of t:hought. To this extent, errors in experts' 
predictions would be correlated. Por each pair of 
experts, as they appear, indicate the degree of 
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correlation that you think will exist between their 
answers. Use the following scale: 

-5 = perfect inverse correlation 

-2 = aodest inverse correlation 

0 = totally independent 

+2 = modest simultaneous correlation 

+5 = perfect simultaneous correlation 

Expert 1 (George Smith) and Expert 2 (Robert 
Johnson)? 

+3 

••• and so on, until a matrix is completed. This matrix may be 5 x 5, or a 

similar dimension. Based upon the synthesis equations in the text, this ranking 

information is used to form a synthesized estimate of the subvariable scaling. 

This synthesis includes a "best" estimate, variance and range, and is presented as 

shown schematically in Figure 4-3. 
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APPEN:>IX 

DERIVATION OF OPTIMAL WEIGHTS IN SYNTt-ESrS 

y2 _ 2 L w.YE(x.) + nw.w. E(x.x.) 
I I I J I J 

subject to the constraint 

LW. = 1.0 
I 

(A.4.1) 

(A.4.2) 

Taking the derivation of A.4.1 with respect to wi and equating to zero yields the 

n equations, 

o = L w. (Cov(x.,x.)) + A, i = I, •.• , n 
I I J 

(A.4.3) 

where A is the Lagrange multiplier entering through the constraint. The 

(n + I) st equation is the derivative w.r. t. A , 

o = r. w. - I 
I 

Solving in matrix format, 

= 

where C is the expert covariance matrix, 

C= 

A A A A 

Cov(x I' x I) ••. Cov(x J' xn) 
. . . 

A.I 

= . . 

(A.4.4) 
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