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FOREWORD

Associated with commercial nuclear power production in the United States
is the generation of potentially hazardous radioactive waste products. The
Department of Energy (DOE), through the National Waste Terminal Storage (NWTS)
Program, is seeking to develop nuclear waste isolation systems in geologic
formations. These underground waste isolation systems will preclude contact
with the biosphere of waste radionuclides in concentrations which are suffic-
ient to cause deleterious impact on humans or their environments. Comprehen-
sive analyses of specific isolation systems are needed to assess the postclo-
sure expectations of the system. Assessment of Effectiveness of Geologic
Isolation Systems (AEGIS) program has been established for developing the

capability of making those analyses.

Among the analyses required for isolation system evaluation is the detailed
assessment of the postclosure performance of nuclear waste repositories in geo-
logic formations. This assessmehf is concerned with aspects of the nuclear
program which previously have not been addressed. The nature of the isolation
systems (e.g., involving breach scenarios and transport through the geosphere)
and the great lengfh\of time for which the wastes must be controlled dictate
the development, demonstration, and application of novel assessment capabilities.
The assessment methodology must be thorough, flexible, objective, and scienti=-
fically defensibie. Furthermore, the data utilized must be accurate, documented,

reproducible, and based on sound scientific principles.

The current scope of the Assessment of Effectiveness of Geologic [solation
Systems program is |imited to long-term, postclosure analyses. |t excludes the
consideration of processes that are induced by the presence of the wastes, and
it excludes the consideration of nuclear waste isolation in media other than
geologic formations. The near-field/near-term aspects of geologic repositories
are being considered by ONWI/DOE under separate programs. They will be inte-
grated with the AEGIS methodology for the actual site-specific repository

safety analyses.



The assessment of repository postclosure safety has two basic components:

® identification and analyses of breach scenarios and the pattern of events

and processes causing each breach;

® Jidentification and analyses of the environmental consequences of radio-

nuclide transport and interactions subsequent to a repository breach.

The Scenario Methodology Development ftask is charged with identifying and

analyzing breach scenarios and their associated patterns of events and processes.

The Scenario Methodology Development task is concerned with evaluating
the geologic system surrounding an underground repository and describing the
phenomena which alone or in concert could perturb the system and possibly
casue a loss of repository integrity. OQutput from the Scenario Methodology
Development task will establish the boundary conditions of the geology and
hydrology surrounding the repository at the time of an identified breach.
These bounding conditions will be used as input for the consequence analysis
task, which will employ sophisticated hydrological transport models to evaluate

The movement of radionuclides through the groundwater system to the biosphere.
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1.0 INTRODUCTION AND SUMMARY

Simulation of the response of a waste repository to events that could initiate a
fault tree to breach and failure is currently a keystone to the Battelle Waste
Isolation Safety Assessment Program (WISAP). The repository simulation, which
is part of the Disruptive Event Analysis Task, models the repository for its entire

design life, one million years.

This is clearly a challenging calculation, requiring input unlike any other response
analysis (nuclear power plants, LNG storage terminals, etc.) by virtue of the long
design life of the facility. If selecting a design earthquake is difficult for a 50
year design life power plant, what technology will provide design criteria for a

million year design life?

Answers to questions like this can, to some extent, be based on data, but always
require some subjective judgments. The subjectivity, which is sometimes driven
by inadequate or incomplete data, or by a lack of understanding of the physical
process, is therefore a crucial ingredient in an analysis of initiating events.
Because of the variety of possible initiating events (glaciation, man-caused

disruption, volcanism, etc.), many expert opinions will be solicited as input.

The complexity of the simulation, the variety of experts involved, and
the volume of applicable data all suggest that there may be a more
direct, economical method to solicit the expert opinion. This report

addresses the feasibility of such a system.

In Section 2, we present background information that demonstrates the
advantages of a computer interrogation system over conventional interrogation
and assessment techniques. In the subsequent three sections we thoroughly
review the three elements--structure and decomposition, scaling, and synthesis--
that are basic to any interrogation and assessment technique. Figures 1-1 and
-2 schematize the interrelationship between these three fundamental elements
and, therefore, serves as a useful guide to these three sections. Each of these
three sections begins with our recommended approach to the particular element

and ends with an illustration of representative dialogue.
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Briefly, we consider it not only feasible, but also highly desirable, to use an
interactive computer system, perhaps linked with the Disruptive Event Analysis
computer code, to interrograte and assess selected experts. Specific advantages

of such a computer system include:

. Detailed, systematic interrogation

. Low cost interrogation

. Efficient analysis

° Significant feedback and iteration capabilities
° Consistency and logical response evaluation

. Unlimited data storage capabilities

Because it operates so efficiently, the system would be effective not only for
developing input for the Disruptive Event Analysis, but also as a vehicle for

public interest group participation during the licensing process.

Our estimates indicate that the computer-based techniques are cost-effective, as
well as versatile and capable. We believe that assembling and applying the
necessary interrogation software package would be less costly than developing
and applying alternative (questionnaire, Delphi, frequent workshops, etc.)
subjective probability assessment procedures: the entire programming effort
could range from $100,000 to $200,000, depending on the detailed applicability of
existing software packages. The existing computer hardware at the PNL would

be more than adequate to accommodate our envisioned software.






2.0 SUBJECTIVE PROBABILITIES AND COMPUTER ASSESSMENT

Probabilities and probability distributions of many events and parameters asso-
ciated with waste isolation are difficult to quantify. Some of these can be
dismissed as so improbable as to be effectively impossible (e.g., glaciation in the
Southwest), while some are probable enough to be considered certain (e.g., cli-
mate changes). Between these extremes, though, are variables for which not-so-
easily-dismissed probabilities are required, such as evaluations for which normal
empirical relations or theoretical models are difficult to develop. Quantification

of these variables depends on expert judgment.

The current plan for developing input information for the WISAP Disruptive
Event Analyses is to solicit the advice and judgment of selected experts, so the
most important question is: How can we effectively elicit that advice and
judgment? How can we avoid those arbitrary numbers which are too easily
specified, and develop an assessment procedure that efficiently results in
quantifications that reflect carefully evaluated judgment? There are a number
of ways to do so, including workshops, questionnaires, personal reflection,
interviews and Delphi techniques. Each of these has advantages and disadvan-
tages. Since the early 1950's a pool of evaluated experience has been developing
on subjective probability assessment. Work has been done on scaling techniques
(e.g., Winkler, 1967; Stael von Holstein, 1970), psychological biases (e.g.,
Edwards, 1968; Tversky, 1974), group effects (e.qg., Dalkey, 1970; Morris, 1974),
and other facets of the problem. This work provides a background against which

assessment schemes can be evaluated.

An assessment scheme should provide a quantification of probabilities or
probability distributions, an indication of the precision of those quantifications,
and an explicit description of the logical reasoning behind the numbers. This
allows the numbers to be evaluated and compared by experts and to be
aggregated across a group of experts. The logical reasoning behind the numbers
is especially important because the probabilities of major interest are beyond
mere intuition. Indeed, studies by Lichtenstein and Newman (1967) and Selvidge

(1972), among others, have shown that people do not even have a vocabulary for
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describing the probability of truly rare events. Therefore, to assess such
probabilities, the variables must be broken down into more manageable parts and
recombined according to some set of logical relationships. To judge the numbers,

one must also judge the logic through which they are calculated.
2.1 TRADITIONAL ASSESSMENT TECHNIQUES

For purposes of discussion, traditional assessment techniques might be divided

into three groups:

° Questionnaires and personal interrogation
° Interviews and clinical procedures

° Workshops, group meetings, and Delphi techniques

These alternatives should be compared according to their cost, and the faith one

has in their resulting numbers.

Questionnaires are the least expensive way to solicit and assess expert opinion.
Well-written questionnaires consist of structured sets of redundant questions that
force the person answering them to reflect on his opinion--that is, to interrogate
himself. Major advantages of questionnaires are that a large number of experts
can be interviewed and a broad range of topics can be covered with limited man-
power and cost. An example of a carefully designed assessment performed using
questionnaires is the resource appraisal carried out by the Oil and Gas Branch of
the U.S.G.S., and published as U.S.G.S. Circular 725 (1975).

One problem with questionnaires, though, is that they are "static': the person
answering them has no feedback to his answers, and no one pointing out logical
inconsistencies. He is not given suggestions or asked why particular aspects of a
problem fail to appear in his analysis. A related problem with questionnaires is
that the depth of interrogation on particular issues is necessarily limited. It is
difficult to design a sequence of questions that do not depend on the respondents'

answers to develop detailed information. Second-round questionnaires are



sometimes used to feedback the distribution of group opinion and see if answers
tend toward a consensus, but in general, questionnaires are better suited to
assessing broad distributions of opinion or, as in the U.S.G.S. case, opinions from
many experts on different topics which combine to give an answer. Because
there is little or no opportunity for feedback, precise wordings of questions often
have more significant affect on questionnaire results than on the results of other

assessment techniques.

Interviews require substantially more investment than questionnaires, but yield
higher quality resuits. Yet, interviewing is a clinical skill, requiring considerable
experience: the quality and consistency of assessments depend greatly on the
skill of the interviewer. Even so, if higher cost and more manpower were not
considerations, direct interviews would probably be a favored technique, because
they provide extensive feedback and questioning of the logic behind assessments,
and of course allow the interviewer to tailor the sequence and tone of questions
to a particular expert. Interviews carry the disadvantage of not easily allowing

reinterrogation after the response of an entire group has been obtained.

Delphi techniques—which vary widely—are essentially interview procedures in
which anonymous feedback of group assessments is provided to the experts and
second or even third rounds of questioning undertaken. The set of techniques
included under various definitions of Delphi is so broad that it includes nearly all
assessment procedures and, therefore, is not a technique in itself. The only
unifying feature is anonymous feedback. Group assessments which are the goal

of most Delphi studies are obtained by consensus.

Workshops and meetings are the other extreme of assessment. They are costly
because a number of experts must be brought together in one place, but they
allow open (and often heated) discussion of the bases for assessing probabilities.
In workshops, logical structures are explicit, feedback is considerable, and new
approaches to a problem are sometimes uncovered. On the other hand, careful
reflection is often sacrificed to debate, and strong or persuasive personalities
often have major influence on final results. Reconciling conflicting opinion or

eliciting the opinion of reticent panel members is often difficult, and work on
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"brain-storming" during the late [950's and early 60's has indicated that a group
working together may be no more effective than an equally large group of people
working individually (McGrath, 1966).

2.2 COMPUTER-AIDED ASSESSMENT

In order for computer-aided assessment to be useful it must meet two criteria:
it must be feasible to develop within a reasonable amount of time for a
reasonable cost; and it either must provide better assessments than traditional
techniques (e.g., interviews) or equally good assessments more easily. This
section considers the advantages of computer-aided assessment. The feasibility
of computer-aided assessment is discussed in detail in Sections 3 through 5 of
this report.

The quality of computer-aided assessment can be judged only by comparing it to
the quality of assessment resulting from interviews. The quality of computer
assessment depends on the user being somewhat familiar with the goals and
general procedure of assessment, and on the "interactibility" of the computer
code. Therefore, in computer assessments, the subject must be made familiar
with the goals, required precisions, and procedures of probability assessment.
This can be accomplished in several ways: someone can tell the subject about
the goals, etc.; an informative introductory text can be written into a code; or a
briefing session can precede use of the code. Because the familiarization is so

important, alternative procedures might be experimented with.

The advantages unique to computer-aided assessment are cost and speed, rapid
consistency and sensitivity analysis, redundancy and feedback, and data storage.
Data storage could prove of significant importance, particularly in a long
program of research like WISAP, since previous assessments of expert opinion
and the logic underlying those assessments must be reviewed at various stages of

the program. Each of these advantages is elaborated upon below.
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Cost and Speed of Assessment

The time required to quantitatively assess subjective probabilities can be much
less than that required to verbally describe degrees of belief. This was reported
.in the earliest applications of subjective probability to industrial problems (e.g.,
Grayson, 1960). Many of the techniques of assessment, though, attempt to back-
figure probabilities implied by choices among uncertain events and orderings.
The computer can quickly do the calculations involved in these back-figurings so
more questions can be asked in a given length of time, convoluted questions can
be asked, and a greater number of redundancies can be introduced. Using
computer-aided assessment, the user can proceed at his own pace, and stop when
he is satisfied. Construction of logic diagrams is entirely automatic, and can be
rapidly checked for consistency and completeness using techniques described in
Section 3. Hard copies of scalings and logic diagrams are directly provided by
the system. Although computer-aided assessment is only an additional tool to be
used in obtaining input information and would not replace regular meetings or
workshops, the capability of remote use offers extra freedom. Once initiated,
the expert can work in his own office, and obtain a set of assessments required

for new variables without having to spend time traveling.
Consistency and Sensitivity Analyses

Central to assessment is the development of the logical basis for quantification,
testing it for consistency and completeness (i.e., removing any hidden logic), and
varying the component probabilities to test sensitivity. All of these tasks are
computationally intensive. Testing the logical structure is an inductive problem;
it cannot be done automatically. However, if computation limits are not a
problem--as they are when done by hand--then the interrelational properties of
the entire set of identified variables can be explored using interaction matrices,
conditional probabilities and correlations, network diagrams, and other tech-
nigues for summarizing interaction. These mathematical abstractions of the
logic can be treated computationally to infer structures in the originally
specified logic that are either inconsistent or incomplete. This provides
redundant ways of checking logical structures which are not possible in an

interview.
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Sensitivity analysis in interviews is, in the same way, constrained by compu-
tational needs. Variables for geological modeling are often related through
equations or correlations, and to propagate parametric uncertainty through three
or more nested equations by hand is difficult: interview assessment cannot take
* advantage of the immediate feedback of output sensitivity to imprecision in
variable scalings in the way that computer assessment can. This feedback of
sensitivity calculations at potentially all levels of a logic hierarchy provides

worthwhile information to the user and influences his assessments.

Redundancy and Feedback of Individual Scalings

Redundancy and feedback are important not only for developing the logical
structure interrelating variables, but also for assessing probabilities or proba-
bility distributions over individual variables. Scalings are generated by asking
questions in a number of ways, backfiguring the implied probabilities, and
presenting the expert with conflicts that should be resolved. This redundancy
and feedback are important parts of any scaling (Section 4), and are used in
interviews as well as computer-aided assessments. The number of redundant
checks one can make in an interview, however, is limited for several reasons.
For one, if redundant sets of questions are to be valuable, they must not be so
obvious that, recognizing the redundancy, an expert tailors his answer to appear
consistent. This problem can be overcome with complicated sets of parallel
questions written to camouflage redundancy. However, convoluted computations
are then often required to develop implied probabilities. The available scope of

redundant questioning is broadened by the use of computer processing.

Data Storage

The capacity for large data storage and rapid retrieval is unique to computer-
aided assessment, and introduces operational capabilities which would otherwise
not be available. When an expert uses the program to assess the probability or
distribution for some variable, he identifies a set of subvariables and their logical

relation to the upper event on parameters, a set of equations where appropriate,
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a matrix of interrelational properties among subvariables, and finally a
probability scaling over each subvariable. With computer-aided assessment all of
this information can be stored and quickly retrieved. Therefore, if a probability
estimate is required for some future analysis, not only may the numbers
themselves be retrieved, but also the entire reasoning that led to them and the

assessment of variables on which the event or parameter depends.

The ability to retrieve this complete set of information provides new opportuni-
ties. First, it provides a basis for re-evaluating the numbers when they are used.
Second, if new information becomes available at some later date the earlier
assessment can be updated rather than a whole new assessment being required.
Thus, if a new way for some event to occur is uncovered, it can be included in an
original event hierarchy. If the new sequence can be decomposed into
subvariables already scaled, implied modifications of probabilities or distribu-
tions can be directly calculated at the time. Third, if another expert disagrees
with an assessment, comparisons can be made at each step of the reasoning that

led to the numbers. Thus, the actual basis for disagreement is sharpened.
2.3  EXISTING ASSESSMENT PROGRAMS

The review of assessment needs for WISAP (Section 2) and an inventory of exist-
ing code indicate that direct transfers are impractical. Existing codes have, in
general, been written for specialized tasks, somewhat different from those
involved in the current analysis of needs. Nevertheless, there is much to be
learned from existing codes and their applications, and in limited ways the logic
of existing codes could be expanded to form the basis of service subroutines in a
computer-aided assessment for WISAP.

Several programs exist for direct scaling of the probability of an event or prob-
ability distribution over a parameter (e.g., Schlaifer, 1964; Sickerman, 1975).
These programs are more limited than that required for WISAP, but they have
been successfully used for simple assessments and seem to yield quantifications
not very different from interview assessments. Most existing programs are

limited, however, in that they do not address the logical reasoning behind an
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assessment (Section 3), and therefore are inferior to direct interviews in which
the underlying reasoning is extensively discussed. For WISAP, the structuring of
event logic would have to be incorporated in the assessment program. Lapp and
Powers (1977), in their work on computer-aided fault tree construction, report
that computer construction is superior to manual construction, because fewer
mistakes are made and constructions proceed more quickly. Computer-aided
assessments can be equal in quality to interview assessments as long as the
program forces the user into careful reflection, explicit decomposition of his

logical reasoning, and internal consistency.

Existing codes related to probability assessment can be grouped in three classes:
scaling codes for assessing event probabilities or probability distributions over
parameters, which are found primarily in decision analysis; value function codes
for assessing weighting and utility function, found in policy analysis and to some
extent in decision theory work; and logic or fault tree construction codes, found
primarily in reliability and safety analysis. In addition there are a number of
interactive design codes in engineering and architecture that incorporate system-
identification options, but these are not directly related to present needs.

Scaling codes have been in use for at least a decade. The earliest of these were
developed at the Harvard Business School (e.g., Schiaifer, 1969), and were devel-
oped to aid in single assessments of "routine" events or parameters (i.e., not rare
events, which would require logical structuring prior to assessment). In general
these codes are written as assessment aids for Bayesian decision theory, and thus
assume familiarity with subjective probability theory and typical formats of
assessment. Within Bayesian theory, probabilities are taken as reflection of an
individual's willingness to act on a belief, so these assessment codes are based on
choices among idealized betting options (commonly called "lotteries"). Lotteries
are structured to incorporate random events with which the user has
familiarity—coins, dice, wheels-of-fortune. In principle, a user may not be able
to directly associate numbers with his degrees of belief, but should be able to
order lotteries on an intuitive level. More recent work has led to the
development of assessment codes for multi-variable events and parameters, and
limited stochastic variables (e.qg., time series) typically modeled as multi-variate
processes (e.g., Sicherman, 1975).
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Vaiue and utility function assessment codes have enjoyed broad popularity in
recent years, particularly for participatory planning and multi-attributed
problems. Existing codes encompass a spectrum of levels of sophistication. The
goal of value function codes is a quantified objective function defined over the
. multi-attributed outcomes of decisions, usually public policy decisions. The
objective function requires quantification of marginal rates of benefit or cost for
each attribute of an outcome, and marginal rates of substitution among outcome
attributes. In the special case of utility function assessment, measures of risk
aversion (or proneness) must also be quantified. Many such codes exist, but due
to recent public exposure, the most widely known is possibly that of Hammond
and Adeiman (1976) who have used their code to explore public sentiment in the
case of the Denver Police Department bullet decision. Among other value or
utility assessment codes are those of Sheridan (1975), Meyers (Richard Meyers,

Harvard University, Personal Communication), and Sickerman (1975).

Most value and utility function assessment codes impose a structure on the
assessments. For example, the objective function must be a weighted sum, or a
weighted sum including cross-products (multi-nominal or so-called multiplicative
forms). Although many existing codes are supposed to foster concensus and
obtain group objective functions, in fact any synthesis of opinion is mostly

exogenous to the code.

Logic and fault tree construction codes have been developed to assess inter-
relational properties among variables in a complicated system and construct
logic diagrams or hierarchies. These codes are still being developed. Typical of
these codes are those of Lapp and Powers (1977), Fussel (1972), and Taylor
(1973). These codes are not aimed at assessing probabilities or probability
distributions for variables within the system, but rather at the structure of the

variables. Numerical assignments are made subsequent to the structuring.
For present purposes, existing logic and fault tree construction codes are overly

specialized. In analyzing systems reliability, 1,000 or more variables are not

uncommon. These variables are by necessity interrelated through simple logical
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structures (e.g., "and/or" gates) and are usually considered to be statistically
independent. Codes for handling multi-valued logic, in which components are not
single zero-one variables, are only now in development. As discussed in
Section 3, present purposes do not require the expansiveness of system structure
analyzed by large fault trees. Therefore, an assessment code for WISAP can be
and should be more detailed in the types of relationships and variables it has the
capability to handle.
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3.0 STRUCTURE AND DECOMPOSITION

Whether the probability assessment is done intuitively or with computer
assistance, the variables must be broken into easily assessed or logically isolated
.componem‘s. This decomposition will be an important part of the proposed
program, and therefore deserves particular attention. Decomposition involves
identifying component variables, and specifying functional reiations among them.
The set of functional relations will then be used to recombine probabilities of
more easily assessed components into probabilities or probability distribution for

the variable of interest.
3.1 RECOMMENDATIONS

The most promising way to identify the structure of subvariables is a combined
approach using logic hierarchies and interrelational matrices.  The logic
hierarchy is simply a generalized form of "event tree" in which functional and
statistical relations as well as simple event chains describe the sequencing of
variables. In its simplest form, hierarchical analysis is well known and widely
discussed in the literatures of reliability, decision theory, and operations re-
search. For application to probability assessment, however, hierarchical analysis
will have to be broadened to incorporate functional relations among variables,
and multivalued (or continuous) logic. Given the limited size of the hierarchies
involved, this increase in complexity shouid not provide programming or
computational difficulties.

To complement the logic hierarchy and to provide a vehicle for checking logical
consistency and completeness, an "interrelational (IR) matrix" will be developed.
The IR matrix is a square matrix of dimension equal to the number of
subvariables in the hierarchy. Elements of the matrix encode the strength and
direction of functional or statistical interrelation among subvariables, along a
simple ordinal scale (0, + I, +2). The IR matrix will not be directly used for
computation, but for exploring the logical structure of the hierarchy and

uncovering implied relationships not explicitly identified in the assessment.
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Calculations of top-variable probabilities or probability distributions will be
performed directly from the logic hierarchy. Gates in the hierarchy are speci-
fied either as functional relations (i.e., equations), as causal chains (i.e., zero-one
event sequences), or as statistical correlations (i.e., conditional probabilities).
Calculations and subvariable scalings will be structured so that each level in the
hierarchy involves redundancy. This will provide an additional check on

numerical values resulting from the analysis.

Currently available computer programs for fault-tree construction, cross-impact
(including input-output) analyses, and simulation modeling provide only a starting
point for the development of a hierarchy assessor, because the demands of the
present problem are somewhat different from, and in ways more logically

complicated than, the problems many available programs deal with.

Existing programs are not, therefore, directly transferable. Although relation-
ships among variables in the present case are more involved than, say, in fault-
tree construction, the number of variables and gates in the present case is lim-
ited; the difficult programming and computation problems associated with
extensive logic branches do not have to be dealt with in developing simple inter-

rogation programs.
3.2 EXISTING DECOMPOSITION COMPUTER CODES

Computer-aided construction of cross-impact and input-output matrices has been
developed by Dalky (1975), Turoff (1975), and Gordon, et al (1970), among others.
Much of the work in these efforts has been directed at reconciling incon-
sistencies in conditioned probabilities and at simple simulation studies. The use
of interaction diagrams ("diagraphs") for constructing logic trees is considered by
Lapp and Powers (1977). Of course, much work has been done in simulation

modeling on relating interrelation matrices to "system" structure.
Although the logic hierarchy and interrelational matrix proposed here are related

to fault-tree analysis and to input-output or cross-impact analysis, the required

capabilities of the proposed methods are sufficiently unique that direct transfer

3.2



of existing programs is not possible. Again, however, existing programs offer a
foundation on which to build, as well as methodological insight.

Computer-aided fault-tree construction has been an intensively worked problem
for at least five years. Although problems associated with automatic construc-
tion are not entirely solved, codes now exist for constructing fairly complicated
fault-trees (e.q., Lapp and Powers, 1977, have constructed a |,000-gate tree this
way). Other fault-tree construction programs are discussed by Fussell (1972).
These codes indicate that computer-aided construction of logic hierarchies is
possible, that it is much quicker and more convenient than hand-construction,

and that fewer mistakes and omissions are made than in hand constructed trees.

3.3 DECOMPOSITION METHODOLOGY FOR WISAP

Figure 3-1 presents a flowchart representation of the recommended decomposi-
tion portion of the code. This figure will serve as a focal point for the rest of
the section, it can be folded out to provide easy reference to the rest of this

section.

In attempting to assess any uncertain event, parameter, or variable, one always
begins by decomposition, by dividing a complex or difficult assessment into
somewhat isolated pieces each of which may be more easily assessed. Then,
having obtained at least rough numbers for the components, logical relationships
of the decomposition are used to deduce numbers for the more complicated
event, parameter, or variable. A decompositional approach of one form or
another is used even when assessments are made intuitively, based only on
internal reflection. Thus a central part of computer-aided assessment must be
directed at uncovering the logical structure of the event or parameter to be
assessed, and the causal or statistical interrelationships among the variables
contained in that logical structure.

The decomposition of most events or parameters in repository modeling is

neither complicated nor extensive, as Figure 3-2 indicates. Direct intuitive

3.3



i

SHARPLY DEFINED EVENT/VARIABLE

{

!

CLASSIFY RELATIONSHIP
AMONG VARIABLES

CAUSAL FUNCTIONAL | STATISTICAL

' 1 !

IDENTIFY MAJOR
SUBVARIABLES OR EVENTS

IDENTIFY IDENTIFY SPECIFY

AND/OR EQUATION CORRELATION

1 ' y
!

DISPLAY HIERARCHY

1

< CAN ANY EVENT OR VARIABLE

BE FURTHER DECOMPOQSED?

YES

R |

1S HIERARCHY COMPLETE? NO
CORRECT? ADJUST
(INPUT FROM USER)

g vES

ASSESS INTERRELATIONAL
MATRIX FOR SUBVARIABLE

!

(INTERNAL) COMPLETENESS/

NOT OK

CONSISTENCY CHECK: ADJUSTMENT

AGREE WITH

OK YES

CHANGES?

DISPLAY FINAL HIERARCHY
WITH LOGIC RELATIONSHIPS

endiRmEm— ADJUST

!

END

FIGURE 3-1

DECOMPOSITION OF
LOGICAL HIERARCHY

3.4



G'¢

HYDROFRACTURING

DUE TO INTERNAL
PRESSURIZATION

IN-SITU
STRESS

"TECTONIC
CHANGE

PRESENT
STRESS

AVAILABLE
ENERGY > REQUIRED

WATER
PRESENT

INTERNAL
PRESSURE
STEAM B R Y ROCK
PRESSURE EpreTs PROPERTIES
TEMPERATURE TEMPERATURE MINERALOGY
FIGURE 3-2

DECOMPOSITION OF HYDROFRACTURING

IN-SITU
STRESS

CHEMICAL
STATE



assessment, on the other hand, of the probability of hydrofracturing is at least
difficult and maybe impossible. Furthermore, the resulting numbers are either
very imprecise or not believable. To sharpen the estimate, one procedes by
asking what hydrofracturing depends on, or what is correlated to it. Clearly,
hydrofracturing depends on the minimum in-situ stress, and the internal
pressures. |f fractures are to propagate, energy availability is also important.
Thus, the overall event can be decomposed into components, and in a similar way
the components can be decomposed into subcomponents. Finally the decomposi-
tion leads to events that are isolated enough or predictable enough to be more
easily assessed. Here, for example, the rock-temperature at a specified time
after burial can be estimated within a reasonable range. Combining these
estimates through the structure of the decomposition leads to an estimate of the
probability of hydrofracturing which is more precise than a direct assessment
would be.

Obviously, the decomposition of complicated events or processes into simpler
parts is an underlying theme of ail engineering. Fault and event tree analysis,
decision theory, simulation modeling, analysis of variance, and many other
techniques are all variants of decomposition analysis. The reason is clear: it is
the way people solve problems intuitively, and the techniques force a logical
orderliness on the analysis which might otherwise be wanting. The advantages of
explicit techniques like computer-aided decomposition are that they foster
logical consistency, mitigate omissions, and provide feedback so that more
complete analyses can be performed. Because they maintain the logical
structure of a decomposition they can be used to indicate structural relations
which may not be intended by the user, but which are implied by the relation he
explicitly identifies. The further advantage of computer-agided techniques is that

redundant information can be quickly gathered for consistency checks.

Hydrofracturing illustrates the extent of decomposition required for most
geological and repository modeling: three or four levels of subevents, and two or
three subvariables at each node. The problem is not computationally extensive,

which means that a variety of straightforward interrogation techniques can be
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used. With a small number of nodes and branches, the logic structure can be

highly over-determined by the parallel use of differing decomposition techniques.

This section outlines the requirements of a computer-aided decomposition pro-

cedure, and develops a set of techniques to satisfy those requirements.
Requirements of Decomposition Analysis
The decomposition program must have the capability to:
° Efficiently handle simple hierarchical logic structures and
graphically display them to the user
° Incorporate both functional relations (i.e., mathematical
equations) and statistical relations (i.e., correlation
matrices) among variables
° Deduce relations among wvariables implied by but not

explicitly stated in assessments, and test for logical
consistency

° Treat multivalued logic (i.e., include event or parameters
magnitudes as well as dichotomous occurrence/non-occur-
rence).

The central part of the decomposition program will be the development of
hierarchy diagrams much like fault or event trees. The program must be written
so that events and parameters are keyed to variable names, and stored as English
sentences. A branching sequence of questions will be presented to the user,
which will ask for a specification of the names of subevents and parameters for a
specified top event, and the logical relation of those subevents or parameters to
the top event (e.qg., and/or relation, functional equation, statistical correlations,
etc.).

The questioning will continue for each subevent until the user answers either that
the subevent cannot be further divided or that it is isolated sufficiently to be
assessed. A graphical display showing the logic diagram is developed, from the

listings of subevents and their functional relations upward through the hierarchy,

3.7



as illustrated in Figure 3-2. This diagram, presented on CRT display, can be
altered with a light pen by the user to rearrange elements and relationships not
fitting his ideas.

In decomposing an event or parameter for probability assessment, the relation-
ships which join subvariables and lead to the event or parameter of interest can
be more complicated than those usually allowed in fault or event tree analyses.
To be realistic, the assessment program must allow for this complexity. In
particular, the program must allow for functional (equations), causal (event
chains), and statistical (correlation) relationships; it must allow for subvariables
that act jointly and subvariables that act independently; and it must allow for
interdependencies among subvariables and subvariables common to more than one

branch.

The logic hierarchy developed this way will be similar to, but distinct from a
fault tree. The hierarchy will be much less complicated than common fault trees
and therefore need not be constrained by the normal limitations of fault trees
(e.g., 0/1 variables, direct causal linkage, etc.). Variables may be multivalued

and relationships among variables may be causal or statistical.

The structuring program must also be capable of testing consistency and
searching for implicit relationships. In many cases the logic hierarchy will be too
simple to require complicated checks for consistency, but even moderately large
hierarchies may tax the user's ability to recognize inconsistencies merely by
inspecting of the diagram—particularly when there are dependencies among
lower level variables or common variables entering at several places in the
hierarchy.

Precise scaling of conditional probabilities will be performed for upward sequen-
ces of events or parameters. However, precise scalings, at least in the struc-
turing stage, will not be possible "horizontally” across lower level variables.
Nevertheless, information on dependencies among these variables will be re-
quired. So in the structuring stage, an interrelational matrix will be assessed for
the entire set of lower level variables, as schematized in Figure 3-3. This matrix
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will scale the "strength and direction" of interdependence to a simple ordinal
measure--perhaps -2, -1, 0, +|, +2, where "2 2" indicates high positive or
negative correlation or functional dependence, " ¥ |" indicates modest positive or
negative correlation or dependence, and "0" indicates independence. The
interrelational matrix generated this way will be used with a simple graph theory
approach and the original hierarchy to search for implied reiationships and

inconsistencies. This is considered in more detail later in this report.

In sum, an assessment program must be realistic. To be realistic the
decomposition analysis must allow for a variety of relational forms through
which subvariables lead to events or parameters, and it must account for the
interdependencies, functional or statistical, among subvariables. This would not

be computationally possible where the logi¢ hierarchy is not limited in size.

Algorithms for Decomposition

The basic algorithms for eliciting logic structures and calculating probability
distributions will be quite similar to those now used for computer assisted fault
tree construction (Fussell, 1975; Lapp and Powers, 1977) and cross~-impact analy-
sis (Dalkey, 1975; Turoff, 1975), and will be based on concepts, approaches, and
special techniques used in current codes. Of course, the structuring code
envisioned must be more comprehensive than fault tree and cross-impact codes,
since it must admit causal and statistical relations, interdependencies among
subvariables, and multi-level variables. Essentially all fault tree and most cross-
impact codes treat larger and more complex sets of variables, and of necessity
cannot be designed with the capabilities proposed here.

Enumeration of Subvariables and Their Relationships

Because the extent of the logic trees is limited, the elicitation itself can proceed
by direct enumeration of subvariables. The user will be required to provide three
types of information: an enumeration of subvariables, the gate type linking
subvariables, and the form of predictive relation leading from subvariable to top

event.
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For each set of subvariables, a two-way categorization of the logic gate con-
necting them to the top event will be possible. These involve determining: (a)
the functional form, and (b) whether subevents act jointly or individually in
leading to the top event. The program will require the user to select one from
among each of two sets:

Functional Form

Functional (F) Meaning subevents are related to the top event
through a functional equation. Subevents may
be either continuous or discrete variables. If
"functional" is elected, the user will be re-
quired to specify the form of the relationship
as an equation, which may be empirical,
theoretical, or simply an intuitive heuristic of
the user.*

Causal (C) Meaning that the occurrence or non-occur-
rence of the top event is a result of the occur-
rence or immediate non-occurrence of sub-
events. Causal relations are those commonly
found in fault trees, and treat only discrete
events. In fact "causal" relations are a special
case of "functional" relation, but the distinc-
tion facilitates assessments, as people tend to
think of the two somewhat differently.

Statistical (S) Meaning that top events relate to subevents
through statistical correlation. Events and
subevents are either not causally related, or
the nature of the relationship is imperfectly
known and therefore summarized by condi-
tional probabilities.**

* The relation of "water present" and "temperature" to internal steam pressure
is an example. Water present is a dichotomous variable; temperature is
continuous. Internal steam pressure is related to these variables through the
saturated steam tables. The program should have the flexibility to accept the
relationships either in equation form, or graphically via the CRT and light pen
in order to allow simple use of tabulated data.

¥*

*For example, the density of fractures (i.e., number per rock volume) caused by
hydro fracturing can only be related in an imprecise way to rock properties and
energy sources. This relation might best be described through correlation.
Usually, statistical relations will not have a directional nature, in that
correlations and conditional probabilities must satisfy common probabilistic
properties.



interaction

Jointly (J) Meaning that the level of each subevent is
important in predicting the top event. The
effect on the top event may be of an additive
type in which each subevent contributes inde-
pendently; for example, the energy require-
ment for hydrofracturing depends somewhat
independently on stress-state and fracture
surface energy (additively). Or the effect can
be interdependent; for example energy re-
quirement for hydrofracturing is interde-
pendent with stress-state and rock defor-
mation properties. For "causal" relationships,
"joint" interaction would be equivalent to an
"and" gate in fault tree analysis.

Independent (lI) Meaning that the top event depends only on
the independent occurrence or extreme level
of any of the subevents. For example,
"internal pressure'" depends either on steam
pressure or on boundary layer effects, which-
ever is more severe. Again, for "causal"
relations, "independent" interaction would be
equivalent to an "or" gate in fault-tree analy-
sis. "Independent" interaction with a "func-
tional" relationship would take the set of
functional equations, evaluate it for each
subevent, and the effect select the maximum
or minimum.

Thus, for any one gate in the tree, one of six possible combinations is possible:
F/J, F/1, C/J, C/1, S/J, S/I. The sequence of further questions and the form of
the computations with the tree depend on which combination is selected.
Therefore at each gate the program branches to a sequence of questions aimed at
eliciting the precise form of the functional relation and the form of aggregation

(for which "joint" variables may already be contained in the functional equation).

Calculation of Top Events
When the logic hierarchy is formed and gates are identified by explicit relation-

ships, the scaling subroutine is called to assess probabilities or probability dis-

tributions over lowest level subevents. When scaling is completed, the program
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procedes to a calculation phase in which subevent scalings are propagated
through the logic hierarchy to arrive at a scaling for the top event. In the
process, scalings for intermediate level events or variables are stored for later
redundancy checks.

The simplest calculation algorithm is that associated with C/J and C/I gates.
These are simple Boolian operations on the zero-one variables, and have exten-
sive precedence in reliability studies (e.g., Vasely and Narum, 1970). The result
of these calculations is a zero-one variable representing the intermediate or top
variable. Given the simplicity of the envisioned logic hierarchies, C/J and C/I

gates should present little programming difficulty.

Calculations for S/J and S/I gates will follow standard statistical methods using
conditional probabilities. Because conditional probabilities in this case must
satisfy the whole probability theorem, Bayes' theorem and other inverse tech-
niques can be used either to improve efficiency or to provide redundancy checks.
In most cases, lower level variables will themselves be described by distributions,
making numerical integrations or related numerical techniques necessary. Given
the limited number of variables, this presents little difficulty. For S/I gates,
only the set of conditional probability distributions given each individual
subvariable and the marginal distributions of each subvariable are required to
obtain the upper variable distribution ((y/xl, cen ,xn) can be shown to equal
(y/x)). .. (y/x ). However, for S/J gates the joint distributions of the
subvariables are also needed. Thus, S/J gates will require both more scaling and
more computation than S/ gates.

F/J and F/l gates will require calculation of functions with random variable
parameters. There are well developed techniques for performing variable trans-
formations either exactly or approximately. In most cases, scaling of variable
distributions will not follow analytical distributions and will not have explicitly
identified moments, therefore simulation techniques (e.q., Monte Carlo) seem a
natural way of performing the calculations. From the scalings, inverse trans-
formation can be obtained numerically so that a uniform pseudo-random number

generator can be used to perform simulations. Computational efficiency will be
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a key ingredient in these simulations because feedback times to the user should
be short.

The result of the entire computational phase will be graphical displays of prob-
ability distributions over upper level variables, or ranges of probabilities for

discrete events.
Logic Checks

A strength of computer-aided assessment is that the user immediately sees the
implication of his assessments, and can assess variables in redundant ways as a

check on consistency.

Two types of structural information are assessed: a direct logic hierarchy or
tree, and an interaction matrix. Taken together, these are used to (1) check for
internal consistency of the logic, and (2) uncover implied branches of the
hierarchy. Both of these functions are performed interactively with the user
deciding whether inconsistencies or implied structure are significant, and
altering logic relationships to balance his perception of the variables with the
underlying implications.

In the logic hierarchy of Figure 3-2, variable assessments would be made at all
three or four levels, and the resulting tmplications checked either at the
uppermost or intermediate levels. If these assessments are internally consistent,
one can have increased confidence in the numbers obtained. If the assessments
are inconsistent, the user goes back through the hierarchy to see the implications
for subvariable scalings. With the computer acting as accountant, cycles of
feedback and adjustment procede quickly, and a balancing among subvariable
scalings is finally obtained.

If no balancing seems satisfactory, further work on the logic hierarchy is pro-
posed by the program. One possibility is that hinting or reminder phrases be
stored by key words in the program. These phrases would briefly describe physi-

cal or geological processes related to the variables being structured. For
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example, in the hydrofracturing case, one reminder phrase would ask, "DOES
THE EXISTING JOINT SYSTEM INFLUENCE (HYDROFRACTURING DUE TO
INTERNAL PRESSURE)?" As long as the subject matter under consideration has
limited scope, as in the geological factors case, storage of such phrases presents
few problems, and may be simply the collection of subvariables entered by other
users for the same variable. Clearly, though, any feedback of other users' hier-
archies or scalings should come after a complete attempt has been made by the

current user, so as not to prejudice the results beforehand.

The idea of searching a logic hierarchy for inconsistencies and using interrela-
tional (input-output) matrices to infer branches of logic trees is not new.
Attempts at computer-aided fault-tree construction, cross-impact analysis and
statistical decomposition analysis have all to one extent or another addressed
this problem. Techniques from these works can, of course, be brought to bear in

actually building the present program.

Implied structures, to a first approximation, can be found by searching the inter-
relational matrix for chains of variables connected by non-zero matrix entries.
An exhaustive search of small matrices is computationally simple. For example,
in the matrix of Figure 3-2, "available energy balance" is affected by "tempera-
ture" (i.e., entry (7, 9) is non-zero). "Temperature," in turn is affected by "water
present" and "internal pressure,”" and "water present" is affected by "boundary
layer properties," "in situ stress," "and tectonic stress changes." The latter two
are primary variables because their respective column entries are entirely zero.
"Boundary layer properties" has non-zero column elements, but the user may
elect to truncate the tree at that point. This leads to the implied logic branch
shown in Figure 3-4. The user may or may not agree that the implied branch is
important.  Entries in the interrelational matrix do not specify absolute
magnitude, only direction and relative strength. If he thinks it unimportant he
may truncate it. If he thinks it may be important, he can call the routine to
identify gate properties, then recall stored scaling for the variables, and
recalculate implied probability distributions for upper variables. In this routine
the program acts as a classical interrogator, pointing out non-obvious implication

of the user's intuition and forcing a confrontation.
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Finding logical inconsistencies may be somewhat more difficult than uncovering
implied structures, but it is equally important. At least these directions must be
considered. The first would use the interrelational matrix to generate existing
branches of the logic hierarchy and compare the generated branches with those
directly assessed. The second would check that completed feedback loops,
through which a variable is functionally related to itself, do not exist in the tree,
The third would identify "common-mode" variables through which branches of the
hierarchy are de facto correlated. In itself the last is not an inconsistency unless
the calculation phase treats them as independent. If inconsistencies are found
(for example, if the assessed hierarchy and interrelational matrix do not agree)

the user is presented with them so that he can obtain a resolution.

3.4 DECOMPOSITION: AN ILLUSTRATION

The purpose of the decomposition routines is to develop three aspects of the
logic structure underlying an event or parameter: the hierarchical tree of sub-
variables, the relational form through which subvariables at any mode lead to
upper variables, and an interrelational matrix that codifies the degree of
interrelationship between each pair of subvariables. The form of questioning of

this interactive process is exemplified in the following small pieces of dialogue.

In the course of interrogation, the program or the user identifies, for example,
"the probability of undetected faults" as the variable to be assessed. The code
then asks:

Can you decompose the (probability of undetected
faults) into major component events or parameters on
which it depends? Please indicate each on a sepa-
rate line.

Spatial fault density in the region.

Amount of exploration effort.

How are these variables related to the (probability
of undetected faults)? Is the relationship causal,
mathematical, or statistical?

Mathematical.
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What is the egquation relating (spatial fault density
in region) and (amount of exploration effort) to the
( probability of undetected faults)? Use the follow-
ing variable labels:

Y = (probability of undetected faults)

X(1) = (spatial fault density)

X(2) = (amount of exploration effort)

Y = (1 -EB ** (-X(1))) (1 - X(2))/(1 - E** (- X(1)))

(1 - Xx(2)) + B** (- X(1)). (D)
Based upon present information, the logic hierarchy
is as foliows:

probability of undetected fault

Spatial Fault Density Amount of Explaration EBffort
F(l): Y = (1 -E** (-X(1))) (1 - X(2))/(1 - B** (=X(1))
(1 -Xx(2)) + B** (=X(1)).
Can you decompose (amount of exploration effort)
into major component events or parameters on which
it depends? Please indicate each on a separate
line.

Type of exploration.

Density of exploration.

(D) This is Bayes' Theorem in which amount of exploration effort is taken to
mean the conditional probability of finding an existing fault with the ex-
ploration program.
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How are these variables related to the (amount of
exploration effort)? Is the relationship causal,
mathematical, or statistical?

Mathematical.
What is the equation relating (type of exploration)

and (density of exploration) to (amount of explora-
tion effort)? Use the following variable labels:

X(2) = (amount of exploration effort)
2(1) = (type of exploration)

2(2) = density of exploration)

X(2) = (1 - E** (-2(1)Z2(2))) * (E)

Can you decompose (spatial fault density) into major
component events or parameters on which it depends?
Please indicate each on a separate line.

In situ stress

Geological medium

How are these variables related to (spatial fault
density)? Is the relationship causal, mathematical,
or statistical?

Statistical
What is the correlation between (spatial fault den-

sity) and (in situ stress) and (geological medium)?
Use the following variable labels:

X(1l) = (spatial fault density)
2(3) = (in situ stress)
2(4) = (geological medium)

Statistical relationships can be specified as corre-
lation coefficients, regression equations, or data
tables (graphs). Select one.

Data table

(E) This is a simple exploration saturation function.
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The user can now specify the relationship using a light pen or by typing in
variable pairs. The code would respond with a graphical display of the current
logic hierarchy, then try to further decompose the current lowest variables, and

SO on.

Having exhausted direct interrogation, the code moves to assessing an inter-

relational matrix among the set of subvariables.

The following subvariables have been identified as
contributing to the (probability of undetected

faults):

X(1l) = (spatial fault density)

X(2) = (amount of exploration effort)
2(1) = (type of exploration)

2(2) = {density of exploration)

2(3) = (in situ stress)

2(4) = {geologic medium)

Rank the degree of interrelation between each pair
of subvariables, as they appear, on the scale:

=2 = functionally related in a negative direc-
tion
-1 = negatively correlated
0 = no interrelationship
+1 = positively correlated
+2 = functionally related in a positive direc-

tion

(Spatial fault density) and (amount of exploration
effort)?

0

(Type of exploration) and (exploration density)?
+1

{Type of exploration) and (in situ stress)?

0
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. and so on, until a matrix is developed. The matrix is used to explore for
implicit logic structures and inconsistencies, and changes computed internally
are fed back to the user for confirmation and agreement. The final hierarchy
and IR matrix are stored. The code moves on to other top level events, or to

scaling the individual subvariables.
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4.0 SCALING VARIABLES

4.1 RECOMMENDATIONS

The scaling subroutines will present the expert with segquences of
questions and from his answers back figure implied probabilities or
distributions. Many mathematical and procedural technigques for scaling
uncertainties have been proposed in the literature. The issue is to
extract the most useful techniques and coalesce them into a practical
scheme. To the extent possible, the logical structuring developed in the
decomposition stage must be extended to the point that subevents over
which probabilities are scaled do not have diminishingly small probabil-

ities.

A three-phase procedure is suggested, consisting of pre-conditioning,
scaling, and verification. Pre-conditioning identifies the dimension
and range of a subvariable and presents key words which might trigger
further introspection by the expert. Scaling introduces relative rank-
ing of subevent probabilities and back figures probabilities implied by
the expert's choices between dichotomous alternatives. Verification
checks the internal consistency of probability assessments and feeds
back inconsistencies for resolution. Figure 4-1 presents a flowchart
representation of the scaling procedure for a global variable. A
detailed flow chart focusing on the scaling of a subvariable is presented

in Figure 4-2. These figures will serve as the focal point of this

section.
4.2 OVERVIEW

Decomposition of an upper level event as discussed in Section 3 leads to a set of
subvariables which can be logically related to the upper event. Thus, to obtain a
probabilistic description of the upper event, probabilities or probability distribu-
tions over the subevents can be mathematically combined according to the
logical structure assessed in the decomposition. The question at present,

therefore, is how to obtain those probabilistic statements on subvariables.
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Fundamental to the entire idea of quantitative scaling of expert opinion is that
"snap" judgments about nebulous variables are replaced by carefully thought out
responses about precisely defined events. In quantifying those "carefully thought
out" responses, it is of course much better to develop vague but true reflections
of uncertainty rather than precise but wrong numbers. There are many
competing, but in some ways complementary, methods for assessing and scaling
uncertainties. Some work well in certain situations and for certain people,
others work well for different situations and for different people. In all cases,
responses to opinion assessments depend heavily on psychological variables.
Assessment has strong "clinical” facets. To the extent possible, assessment
methods should reflect what is known of psychological trends and biases. As the
issue resolves to obtaining accurate reflections of opinion, a dogmatic approach
of using only scaling techniques from one field (e.g., decision analysis,

psychophysical scaling, Delphi) must be avoided in favor of a more eclectic and
pragmatic approach.

The single most important result of probability scaling over subvariables is an
accurate reflection of uncertainty and ranges within which some parameter
might be realized. This bounding is much more important than "best estimates"
or other measures of central tendency. Any assessment program must
concentrate attention on ensuring, to the extent possible, that uncertainties and
ranges of variables are not erroneously constrained by the form of questioning.
As discussed in Section 4.4, the sequence of "what is asked" may strongly

influence biases in measures of uncertainty.
4.3 NATURE OF PROBABILITY AND UNCERTAIN JUDGMENT

The nature of probability based on expert opinion is philosophically different than
relative frequency concepts underlying classical statistics. Judgmental assess-
ments result in what might be called "inductive" probability, or the degree to
which a set of propositions or evidence supports or lends confirmation to some
other proposition(s); that is, the degree to which full belief in some set of

propositions leads to partial belief in others.
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Mathematical probability theory can be based on a finite set of axioms within
which the term probability is primitive: its properties are defined but its
meaning is nof.* This means the definition of probability is a question of
philosophy, not mathematics, and has led to various schools of thought. The most
well-known of these schools might be broadly categorized as relative-frequency
and degree-of-belief, the latter defining probability as the degree to which one
believes in the truth of some proposition or occurrence of an event. An
objectivist view of degree-of-belief thought has been propounded in the
literature by Keynes and Jeffreys, but today most degree-of-belief theory is
subjectivist: degree-of-belief is unique to the individual, conditioned on his own
unique experience, but modified formally upon new and enumerable information
(i.e., evidence). As the formal modification of belief is accomplished through
Bayes' Theorem, this school is often called "Bayesian." While the distinction
between frequency and belief is widely argued in the literature, the important
point at present is that the epistemological underpinnings of subjective

probability or quantification of expert opinion are well developed and not ad hoc.

Within subjectivist theory the "goodness" of a probability assessment is reflected
only in how accurately the assessment portrays an individual's judgment.
Different people (experts) have different probabilities for the same events and
all of them are "right." The extent to which some people have probabilities that
are more externally valid than others (i.e., predictive accuracy as manifest in the
real world) only reflects that some people have better judgment than others. So,
the key in scaling is to accurately reflect true (personal) uncertainties ... not
to approximate reality. The latter is not possible except by selecting people
with high substantive expertise. Well-designed methods of assessment
cannot compensate for technical ignorance, nor can they increase external
validity beyond that inherent to the judgment of the expert. Miracles are not

allowed.

*
For example, probability is a number between 0 and I; the sum of the
probabilities of exclusive and exhaustive events is |; the probability of the
joint occurrence of independent events is the product of the individual

probabilities.
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Opinions, and thus subjective probabilities, are often changed by group
discussion, advocacy, and argumentation. Peer review through confrontation
strengthens and clarifies the chains of assumptions leading to predictions and, in
principle, increases the external validity of projections. The history of science,
however, is full of examples of persuasive, brilliant, dynamic scientists who have
been fundamentally wrong about important physical processes, and who through
dint of personality have led the course of science astray. The first task is to
have an expert argue with himself, and only then to compromise differences
among experts. For, whatever the failings or successes of Delphi techniques, this
principle of avoiding, at least initially, the interpersonal dynamics of small group
discussion often proves fruitful in eliciting full ranges of opinion. Discussion of
the problem of coalescing individual probabilities into group distributions is

presented in Section 5. This is a question with a substantial literature.
4.4 CLINICAL ASPECTS OF SCALING AND EMPIRICAL BIASES

The consistency of probability assessment requires only that opinions expressed
as probabilities satisfy the axioms of probability. In other words, that probability
distributions integrate to [.0 and the like. Thus the internal check for
consistency, redundancy, feedback and related techniques do not ensure external
validity. However, considerable work has been done in attempts to evaluate the
validity of assessed probabilities, and that work indicates rather consistent biases
in the opinions people give. These biases must be recognized in computer scaling
routines. Some methods do exist for reducing such biases.

To evaluate past work on biases in probability estimation one might ask first
"how well" people assess their uncertainties, and then "how" they assess. In other
words, what is the empirical external validity of probabilities and what rules of

thumb do people rely on in answering questions about uncertainties.

Briefly, at least three major and consistent biases are commonly observed in
subjective probability distributions: gambler's fallacy, overconfidence, and
conservatism. When asked to estimate the probability of a discrete event, or

when subjective probabilities are inferred from risky decisions, a trend of
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overestimating small probabilities and underestimating large probabilities
emerges (Figure 4-3). The crossover probability reported varies from study to
study, but seems to be in the range 0.2 to 0.5. An implication for scaling routine
development is that when asked to compare some uncertainty with an objective
random device (e.qg., roll of a die), subjects "misperceive" the objective
probability. This bias is sometimes called gambler's fallacy. Similarly, when
assessing probability distributions over continuous or multinomial wvariables,
subjects tend to consistently underestimate their actual uncertainty. That is,
assessed probability distributions tend to be too tight. Tail regions of an
assessment, which should only see very small percentages of realizations (e.g.,
values of the uncertain variable outside the five and 95 percentiles should be
realized in only |0 percent of the cases), empirically see up to half of the
realizations (Figure 4-4). An implication for scaling is that techniques
encouraging dispersion in assessed probabilities should be promoted. This bias is
usually called overconfidence. Finally, when shown data and asked to modify
their subjective probabilities, subjects tend not to change their opinions as much
as Bayes' Theorem would specify. Subjects tend not to give as much credence to
data as statistical theory would specify (Figure 4-5). An implication for scaling
is that subjects should not be asked to express uncertainties as equivalent sample
sizes or otherwise asked to perform intuitive updating from which a priori sub-

jective probabilities are inferred. This bias is usually called conservatism.

in each of the dbove cases the conclusion of a consistent bias across subjects
rests on considerable empirical verification. However, the interpretation of
underlying causes or of the sources of the biases, whether in the subject or in the
experimental procedure, is hotly debated. Nevertheless, it is clear that biases do

exist when probabilities are scaled using common techniques.

The way subjects evaluate uncertainties, and, therefore, the source of observed
biases, has been the subject of work by Tversky, Kahneman, and their colleagues,
and has led to three broad heuristics. Tversky and Kahneman (1974) in their

well-known paper call these representativeness, availability, and anchoring.

Representativeness is the tendency to assign the probability of an event

according to the degree of similarity it has with a broader group of events. This
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leads to a cluster of biases including (i.) insensitivity to prior or base frequencies
when data is evaluated, (ii.) insensitivity to sample sizes in evaluating the weight
of information, (iii.) misconceptions of chance self-correcting itself to cancel
random fluctuations, (iv.) insensitivity to the predictability of information, and
(v.) illusion of the validity of projections. An implication for scaling is that
events should be structured in as much detail as possible. Availability is the
tendency to assign greater probability to events that readily come to mind than
to events that do not. Availability biases can be due to (i.) the ease of
retrievability of instances of an event, (ii.) the relative effectiveness of methods
of mentally searching for past examples of events, (iii.) the comparative ease of
imagining occurrences, and (iv.) intuitive associations between events leading to
illusory correlations. An implication for scaling is that the subject should
enumerate and broadly survey his information at the beginning and then
throughout the assessment. Anchoring is the tendency to focus on one piece of
information or hypothesis and then insufficiently adjust the assessment to
encompass the full range of uncertainty about that point. Anchoring can
manifest itself in at least the following three ways, (i.) given a "starting point" or
best estimate, subjects tend not to adjust their assessments sufficiently away
from that point, thus estimates of central tendency are influenced by the
starting point, (ii.) given a best estimate, subjects tend to assess their
distribution of uncertainty about that point too tightly, and (iii.) conjunctive and
disjunctive events are assessed with a bias toward the individual probability (i.e.,
compound events requiring the joint occurrence of multiple events are given
probabilities which are too high, and compound events that require only the
occurrence of one or more of a set of subevents are given probabilities which are
too low). An implication for scaling is that bounds and ranges should be assessed

first and central tendencies should only be developed by iterative bounding.

Thus, several perversions of quantitative judgment exist, and these apply whether

subjective probabilities are quantified or not. The quantification itself is not the

source of the biases explained in the Tversky and Kahneman's heuristics.
Nevertheless, by identifying biases a scaling procedure can be developed which at

the very least recognizes their existence.

4.13



One last bias must be mentioned, the bias due to motivation. Unlike the biases
discussed above (usually called cognitive), motivational biases may be conscious,
or nearly so. A subject may, for whatever reasons, wish to influence the
outcome of a decision or the results of modeling. On the other hand, he may
think that, as an "expert," he should make predictions about his subject with a
strong degree of confidence. These biases can only be dealt with by trying to
convince the subject to be honest in his assessments, and by impressing him with
the importance of accurate statements of uncertainty. From the perspective of
scaling methodology, motivational biases are difficult to deal with, However,

this is not a problem unique to quantification.
4,5 APPROACHES TO SCALING

The scaling procedure within computer assessment might be divided into three
phases:  pre-conditioning, scaling, and consistency verification. In pre-
conditioning the subject is directed to explicitly present those considerations
which are determinants of his opinion on the variable. In scaling, the subject's
subjective probability distribution is quantified. Finally, in verification, the

quantified scalings are checked for internal consistency.

The events for which probabilities are scaled are those at the lowest level of
decomposition in the event hierarchy. Thus, further decomposition into logically
related subevents only nests another level of structuring. Rather, the pre-
conditioning phase should be one in which the general dimension and range of the
variable is identified, and questions and key words which might trigger further
introspection by the subject are provided. These questions and key words would
be provided exogenously in the development of the assessment code, and would
be expanded by subjects' response as the code is implemented. For example, the
subject would be asked for an "upper bound" on in-situ stress, and then asked if
he can build a scenario consistent with an even higher level. He would also be
asked to state in short phrases those pieces of evidence he thinks might bear on
his judgment. These would, of course, probably not be quantitative. The intent
would be to lay a groundwork for the subsequent scaling, and broaden the

immediate perception at the time of scaling. This will require careful thought
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and planning when the code is written, but is important enough to warrant the
effort. A number of scaling techniques have been developed in the literature of
psychological measurement, decision analysis, operations research, policy
analysis, and other fields. Torgerson (1958) and Pfanzage! (197!), among others,
present techniques from psychological measurement, including such things as
conjoint scaling, paired comparisons, and canonical representation. Stevens
(1976) presents a number of techniques from psychophysics, including cross-
modality matching and partitioning. Stael von Holstein (1970) reviews the
decision analysis techniques, including inference from betting behavior. Quade
(1976) discusses techniques from policy analysis as developed at RAND. To the
extent that better assessments can be obtained, techniques from any or all of

these disciplines should be used.

In essentially all scaling techniques the subject is asked to rank relative
probabilities (i.e., develop an ordinal scale), and to make dichotomous choices
between uncertain alternatives. From the answers to these questions implicit
probabilities are calculated. Questions are asked in several ways so that
redundant information is obtained, and cumulative probability distributions are
developed. The scalings are usually performed by direct responses, in which
probabilities are directly asked for; by indirect responses, in which probabilities
are back figured; by graphs, in which the subject sketches his cdf or plots points
using a light pen; or by relating probabilities of events to semantic variables
(e.g., "likely," "unlikely," "probable," "improbable"). In the latter case great care
must be taken to properly encode the quantitative meaning of the descriptive
phrases because substantial wvariability exists across subjects (see, e.g.,
Lichtenstein and Newman, [967; or Selvidge, l972).*

In general, semantic variables are at best a crude vehicle for encoding
probability, and should be used only in conjunction with other techniques. Even
then, great care must be used in their interpretation. Some workers would
even hold that semantic variables can only be considered as ordinal.
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In the initial work on developing an assessment, code techniques from subjective
probability theory and decision analysis might be used. These techniques have
the advantage of evaluated use, directness, and mathematical simplicity.
Furthermore, codes now exist which might be straightforwardly adapted to the
present purpose (Section 2.3). An illustration of this approach is given in the
example following this section. In the course of initial implementation and
testing, the adequacy of this approach should be evaluated, and modifications

making use of other or related scaling techniques introduced.

Among the more difficult problems of scaling is correlation among variables.
When the number of variables is limited (e.g., two or three dimensions),
conditional distributions can be assessed. Scaling proceeds by fixing the level of
one variable and assessing cdf's over the remaining variables. However, if more
than two or three variables are statistically dependent, this approach rapidly
becomes too detailed and expansive to be practical. Approximation techniques
have been worked on for multiple variables by which joint cdf's are inferred from
the set of bivariate assessments (e.g., Dalkey, 1975). Such techniques might be
used. However, the degree to which the approximation introduces error is a
function of the dimension of the joint cdf and the level of statistical correlation

among the variables.

Other procedures for assessing joint cdf's include searching for variables upon
which conditional independence is approximated, introducing transformations
which lead to independence (e.g., the sum and difference between two variables
are often independent even if the variables themselves are not), adopting
restrictive families of distributions which have parameters specifying correlation
(e.g., multivariate Normal distributions), and bounding correlations and testing
for sensitivity in upper level event probabilities. The applicability of such
techniques is discussed by Robinson (1971).

Redundant information should be collected in the scaling phase and evaluated in
a verification stage. This last stage encompasses calculations by the code of
conflicting or inconsistent probabilities, and resolution of conflicts or inconsist-

encies by the subject. At present, resolution is almost always accomplished by



presenting the subject with the inconsistency and having him reflect introspec-

tively and correct it. This seems to work in practice.
4.6 SCALING RARE EVENTS

The purpose of decomposition is to structure rare events into a series of
subevents the probabilities of which are not either diminishingly small or
extraordinarily large. People have a very difficult time thinking about the
probabilities of rare events, and may not even have a language with which to
describe them. The findings of Lichtenstein and Newman seem to substantiate
this last point. Here "rare" is taken to mean outside the range (0.0! to 0.99).
There is even some debate over whether people's assessments can be refined to
precisions as small as one percent (e.g., can subjects actually distinguish between
25 and 26 percent, or even 25 and 30 percent?). However, precision may be a
function of relative and not absolute magnitude. That is, a subject might be able
to distinguish between one and two percent, but not between 50 and 5! percent.

However, most of the subevents will not be rare.

If, in fact, a rare event probability must be directly scaled, some approximation
technique will be required. To date, the only comprehensive work on scaling rare
events is a Ph.D. thesis by Selvidge (1972)--see also Selvidge (1973)--coming out
of the decision analysis literature. However, other work on this topic is
currently under way. Selvidge presents a three-step procedure for assessing rare
events: description and decomposition (conceptually similar to the intent of
Section 3), relative ranking of probability, and numerical assignments. The latter

3 by 103 square grids

is accomplished with a variety of ad hoc devices (e.g., |10
with varying numbers of squares darkened). In overall concept, Selvidge's
approach is to rely heavily on description and structured introspection rather
than direct scaling. The approach uses such devices as including an explicit
event, "other things overlooked," and specifying populations at risk and exposure
to risk. In this way some rare events can be approached by considering larger
collectives of risks and dividing by the size of the larger--sometimes hypo-
thetical--population. It is not at all apparant that present techniques for

treating direct scalings of rare events are satisfactory. The best way of dealing
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with such events, as argued in Section 3, is to exhaustively structure the logical
relations of subevents and continue the decomposition until either non-rare
subevents are identified, or the required interrelational properties among

subevents exceed our physical understanding of natural mechanisms.

4.7 SCALING: AN ILLUSTRATION

The scaling routines are divided into the three parts previously mentioned: pre-
conditioning, scaling, and verification. Continuing with the example of Section

3, and focusing on in-situ stress ( 03), the assessment might proceed as follows:

We are now ready to scale probabilities for the
elements identified in the decomposition. The first
of these is (in-situ stress). List elements oz
references that may bear on (in-situ stress). For
definitions, call HELP followed by the label.

HELP, elements, references.

ELEMENTS are gquantities or variables upon which
events may depend.

REFERENCES are published studies.

List elements or references that may bear on (in-
situ stress).

Element: tectonic province, evidence of deformation,
depth of burial, water pressure.

Reference:  Steinberg and Schwer, survey of North
American rock bursts in mining.

Summarize your general thoughts based on these ele-
ments and references. This information will be
maintained.

This region lies near a tectonically active area. It is
thought to be undergoing fairly high rates of uplift. The
formations are dry, therefore effective stresses will not
be influenced by pore pressures. Steinberg and Schwer
report considerabie rock burst activity in deep mines
within the same general area; thus, in-situ lateral stresses
are probably high. As far as | know there is not much
field evidence of large deformations in recent geological
time. If there were, this would further confirm my



suspicions of high lateral stress. Becaouse there is
considerable soil overburden, existing evidence of defor-
mations might be obscured.

Do you want to see a check list of other elements
bearing on (in-situ stress), or the responses of
other users?

No.

What level of (in-situ stress) would you be very
surprised to see exceeded?

6,000 psi.

Suppose you were told that (in-situ stress) were in
fact greater than (6,000 psi). Could you build a
scenario consistent with this? If yes, describe
briefly.

Yes. The region may be buttressing the tectonically
active zone to the east.

Would you like to reevaluate your upper bound of
(6,000 psi)z

Yes. 8,000 psi.

The code would procede in a similar way to establish a lower bound on stress. A
central result of the pre-conditioning phase is to establish elements which, while
not leading to "best"estimates, bear on what the variable might be in its
extremes. In any judgmental task people tend to ignore the exceptional in favor
of the '"bulk" of the information. Thus, assessments often do not reflect true

ranges of uncertainty.
After pre-conditioning, the code turns to scaling.

We are now ready to attempt to quantify your feel-
ings about (in-situ stress). If you wish a
description of the procedure for scaling call HELP,
otherwise return.

Return.
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wWhat answering mode do you wish to use?

(1) probability wheel

(2) probability segment

(3) external reference list

(4) internal reference: preference
(5) 1internal reference: ratio

[

Consider the following two bets. With one bet we
spin the wheel Iin the left corner of the screen and
iIf it stops with the pointer in the shaded sector you
win $50; otherwise, you win nothing (the wheel is
set at 10 percent shaded). With the other bet you
win $§50 iIf the (in~situ stress) is less than O ..
Which bet do you prefer? Type 1 if you prefer t%e
wheel, 2 if you prefer the second bet.

2.

Which one do you prefer now? (the wheel has been set
at 90 percent shaded).

The size of the shaded area is varied until the expert is indifferent between the
two bets. The expert is then asked to determine the probability that the in-situ
stress will be smaller than a couple of 95 then greater than a few 0. ¢ o
always using the probability wheel as @ mode of comparison. The results are then
displayed on the screen and the following question is asked:

This is the information you provided by answering
the above gquestion. Choose from the following:

additional questioning

consensus for these answers

other questioning method

general consensus for this variable
disregard this set of answers

L W N~

3.

Which method would you like?

5.
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The variable range (1,000 psi, 8,000 psi) has been
divided into seven equal intervals:

(1,000, 2,000)
(2,000, 3,000)
(3,000, 4,000)
(4,000, 5,000)
(5,000, 6,000)
(6,000, 7,000)
(7,000, 8,000).

N W N

Can you order them by increasing order of
probability?

l,2,7,3,6,4,5.

Can you determine the relative probability of these
intervals? Answer as the ratio of their probabili-
ties where a negative multiple (-) indicates the
first to be less favorable than the second.

6:1?
-3.

4:7?

The intervals are each covered once, and some are covered more than once to
allow cross-checking. In general, the redundant information comes not by
repeated questioning on the same pair but by the probabilistic implication of the

set of answers.

The code attempts to resolve inconsistencies by direct confrontation (i.e.,
"feedback").

The implication of your answers 1s Iinconsistent.
This is natural, you should not consider it a flaw.
However, the inconsistencies must be resolved. Your
answers imply probabilities for the range (1,000,
2,000) of (0.1), (0.05), and (0.01). Can you pick
the most appropriate from this set?

0.05.
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The code then updates all the probabilities and searches for new or additional
inconsistencies. The feedback continues until either consistency is achieved or
the subject replies that he cannot refine his answers any further. In the latter

case a best fitting cdf is calculated by least squares or a similar criterion.

When the subject is satisfied with his answers and final cdf is graphically
displayed and stored in memory the code moves on to the next variable. While
this procedure may seem tedious, experience has shown that with use such direct
quantifications can be even quicker than personal introspection, since the
computer acts as an accountant in maintaining logical consistency. In any event,
the only alternative to careful and enumerated thinking about one's feelings is
quick answers, which are probably not what one would like as input to further

modeling.
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5.0 SYNTHESIS OF EXPERT OPINION

Expert opinions as input to modeling or decision-making are not probabilities in
the sense of recurring natural phenomena. They are not guesses at "true"
probabilities, which in the case of non-recurring events are undefined, or defined
only as a degree-of-belief (e.qg., Savage, 1954). Rather, expert opinions are quan-
tifications of individual beliefs, and are good or bad only to the extent that they

have been properly assessed and represent the expert's actual belief.

How to use such expert opinion in modeling or decision-making has long been a
problem. Among the more intriguing questions raised are: What is a "good"
expert? How should expert opinion be incorporated with the analyst's own
opinion and with paralle! empirical data? How should conflicting expert opinion
be reconciled? Is there an appropriate quantitative measure of the knowledge of
an expert and of a group of experts? For these questions there are only ad hoc

answers, or philosophical paradigms too complex or nebulous to be implemented.
5. RECOMMENDATIONS

A technique for synthesizing group opinion that is neither too ad hoc, and
therefore improper, nor too sophisticated, and therefore unuseable, is needed.
Several have been proposed. For example, a technique can be developed based on
a two-part analysis: the first part would be a feedback and consensus phase with
emphasis on reconciling logic hierarchies; and the second would be an error
theory approach to synthesizing conflicting assessments. The error theory part is
based on simple scalings of bias and random error, and correlation among
experts,

5.2 EXISTING TECHNIQUES FOR SYNTHESIS
Synthesizing expert opinion involves the precision with which a probability is

assessed, the confidence the expert has in the number, the knowledge the expert

has on the particular variable, and the consistent bias errors which may stem
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from the means of assessing or from the expert. A limited number of tools have
been developed for combining the above considerations and coming to a synthesis
of quantified opinion. These are of four types:

® Consensus building
) Weighting schemes
® Error theory

) Likelihood methods
Each of these describes a related collection of tools, techniques, and tricks.

Any technique for synthesizing opinion must not simply take numbers as given,
and operate on them. Rather, it should force an exploration of the basis of
differences, identify important discrepancies among experts, and reassess each
expert's opinion in light of the variation of opinion across the group (i.e., the
method should include group feedback). Strong emphasis on identifying the logic
structure or hierarchy within the assessment code allows computer-aided
exploration of the differences among experts. ‘

Consensus Building

Consensus building schemes are a central part of Delphi methods. The Delphi
method feeds back group opinion in an anonymous summary form to each expert
and asks the expert to re-evaluate his own assessments in light of the group
opinion. |f a consensus is reached through this cycling, assessment ends. If a
consensus is not reached, another feedback cycle can be undertaken. Sometimes
each expert is asked to briefly justify the reasoning behind his assessment, and
this information is also provided in the feedback cycle. There has been
considerable work in Delphi techniques on predictive error (Figure 5-1),

reproducibility (Figure 5-2), convergence (Figure 5-3), and other methodological
variables.
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A problem with consensus building is that there may be very good reasons why
opinion varies, so the consensus may not be a better estimate than the original
distribution. Also, a consensus may not be attainable, and even if it is, it may
be artificial. Work by Dalkey (1975) (Figure 5-4) and others suggests that the
distribution of group opinion tends to be lognormal, so in cases where a consensus
is not reached, an estimator like the median is usually suggested. The rationale
for using the median is that it minimizes the "expected error" for variables
generated by the obtained distribution (and in the lognormal case, coincides with
the mode and geometric mean). This approach implicitly weights each expert's
opinion the same and does not consider bias errors. Furthermore, no attempt is

made by the analyst or user of the experts' opinions to interpret differences and
reach a conclusion of his own.

Weighting Schemes

Weighting schemes take a "weighted average" of experts' opinions. The implicit
assumption in weighting schemes is that one of the experts is "correct," but it is
not apriori clear which one. Given experts' predictions (xl, cey xn) and weights
(WI’ .o oy Wn)’ the synthesized prediction is:

Q- 4. 1)

T Y )
b3
X

o i

The set of weights can be interpreted as a probability mass function over the
experts, in which case the estimator Q would have the properties of an expecta-
tion. Except for this special interpretation of weighting schemes, the procedure
is ad hoc: weights are usually generated by rules such as, "attach the most

weight to the assessment of the better or more knowledgeable expert.”

The dimensions for measuring "better" or "more knowledgeable" experts are not
immediately apparent. These qualities are probably multidimensional, which
means reducing them to a single weight is difficult. In practice, weights are

usually generated subjectively, either by asking each expert how he would weight
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himself relative to others, or by asking experts to rank one another. Of course,
the analyst could assign weights to the experts himself. Dalkey, Brown, and
Cochran (1973) (Figure 5-5) have investigated the use of self-evaluated weights
in forecasting, and Winkler (1968) has presented weighting schemes within a

Bayesian framework. However, there is still work to be done.

A difficulty with weighting schemes is that they do not account for biases in
experts responses. They take no account of optimism, pessimism or other sys-
tematic errors which are known to exist (e.g., Martino, 1970), and which may be

suspected in a particular application.

Error Theory

Error theory is based on the assumption that experts are noisy transducers for
"measuring" reality. Each assessment may contain both random error and bias
error, and once estimates are made of the statistical properties of these errors,

normal error propagation theory can be used to draw aggregate conclusions.

Error propagation satisfies some of the objections to weighted averages, but
appropriate procedures for obtaining the error variances, etc., are still difficult
to identify. Suggestions are sometimes made that errors can be statistically
inferred from experts' past performances. However, there simply may never be
an entirely objective way to evaluate expert opinion. Long track records by
which statistical calibration can be made simply do not exist for most real
assessment problems: "What has expert X's success rate been for predicting ice
ages?" Calibration histories that can be collected necessarily deal with different
types of variables than long-term forecasts deal with. Therefore, weights, error

variances or other evaluation techniques will have to be partly subjective.

Likelihood Methods

Likelihood methods for synthesis have been suggested by Morris (1977) in a Ph.D.
dissertation and subsequent papers. Likelihood methods treat experts' opinions as

information in the Bayesian sense, then use the familiar updating procedures to
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combine experts' assessments with the analyst's own prior assessment fto
calculate a unique posterior probability or distribution. Evaluations of the
experts' opinions are entirely contained within a joint likelihood function
describing the conditional probability of each experts' assessments given the

"true" state of nature.

As with the previous techniques, the joint likelihood approach points out an
important consideration for synthesizing opinion: experts' opinions are generally
not statistically independent. Opinion, and therefore assessments, are predicated
on similar theories or logical structurings of a problem. Empirical evidence is
often common or at least partially shared by experts. If this common
dependence is not accounted for in aggregating assessments, the results become
more precise than they should be. The implication is that the reasoning behind
different experts' assessments should be studied, so that fundamental sources of
disagreement are brought forth, and shared opinions, either on the way variables
affect one another or on assessments of individual subvariables, can be
partitioned off. Morris (1976) suggests techniques for calibrating experts'
assessments (i.e., likelihood functions) using hypothetical assessments, but this
procedure suffers the limitation discussed above: the assessments are hypo-

thetical and of perhaps only marginally related variables.
5.3 SYNTHESIS TECHNIQUES FOR WISAP

Figure 5-6 presents a flowchart representation of synthesis techniques. This
figure will serve as a focal point for the following discussion.

There must be two phases to the reconciliation and synthesis of differing assess-
ments by different experts: an exploratory phase in which primary disagree-

ments are identified; and a synthesis phase in which disagreements are
aggregated at the primary level.
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A fundamental difference between the assessment code required by WISAP, and
existing assessment codes is that the WISAP code would assess and store
structural information in the form of a logic hierarchy underlying the reasoning
leading to an assessment. Therefore, there is information other than simply the
final numbers to be considered in synthesizing differing opinions. The first step
in synthesis will be to recall logic hierarchies for a particular variable, feed all
of these back to the experts, and have each expert re-evaluate his own hierarchy
in light of the entire set of hierarchies. This may show that some variation is
due to overlooked scenarios (i.e., branches) or overlooked interrelationships
among subvariables. To the extent this is so, this first feedback cycle will lead
to some convergence in final assessments, Further, to the extent that variations
are due to differing perceptions of the logical structuring of events or
parameters, the discussion is reduced to a fundamental rather than derived level.

Basic differences are shown to exist and can be argued at the appropriate level.

After the logic hierarchies are reviewed by the set of experts, individual
subvariable scalings can be reviewed. If the experts agree fairly well on the
logical structure, then differences must be caused by differing scalings of
subvariables or by differing assessments of the interrelations of subvariables.
Both sets of information can, of course, be retrieved. If individual subvariable
scalings differ significantly among experts, methods of the type summarized in
Section 5.2 must be used to form a synthesis. If the interrelations of

subvariables differ, some other technique for synthesis must be used.

The first step in reconciling interrelational differences should, again, be feed-
back and reconsideration by the group of differing experts. Beyond this strategy,
a new set of methods will have to be developed. Any reconciliation must satisfy
basic requirements of Iogicdl consistency, and consistency with the adopted logic
hierarchy. The first step is sensitivity analysis on the differing components of
subvariable interaction. It may be that differences that appear significant in the
interrelational matrix are not, in fact, causing significant differences in top-
level probabilities. In this case, the discrepancies are being caused by

differences in subvariable scalings. If sensitivity analyses fail--that is, if top
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level probabilities are sensitive to differences in the interrelations of sub-
variables--then the range of top level variation must be determined and some

form of weighting or calibration introduced to estimate a central tendency
within that range.

Thus far the difficult problem has been skirted. |f differences either in sub-
variable scalings or interrelations of subvariables cannot be reconciled, then
some scheme must be introduced to establish (1) a measure of central tendency
in the top level assessment, (2) a measure of "reasonable" imprecision in the esti-
mate, and (3) the total range through which the assessment might vary. The
third of these is easy; the first two are not. However, based on the previous
discussion, a method can be divised. Clearly, though, epistemological constraints
limit the objectivity that can be achieved in such a method. There is no way

around this problem, because any realistic method will be in part ad hoc.

For theoretical and operational reasons, the most favorable way of synthesizing
assessments would appear to be a combination of error theory and calibration.
Feedback and consensus building will not work because they would have been
already tried. Weighted averages seem inappropriate because they do not allow
for systematic biases or incorporate estimates of random error (i.e., impre-
cision). Joint likelihood methods involve difficult conditional (inverse) prob-
ability statements, and since there probably will be no analyst's prior probability
to update (or if there is, it will be fairly diffuse), they appear to carry no
advantage to error theory calibrca'rions.I

Error theory calibrations require an estimate of each expert's imprecision, or the
random error in each expert's assessment, an estimate of potential bias error and

the direction of the bias (this estimate need not be sharp), and a measure of

Likelihood approaches use the conditional distribution p(x./Y), where x; is
the expert's ossessrlnen'r and Y is the predicted variable, through Bayes'
Theorem to infer p' (Y/x.) « p°(Y) p(x./Y). The "prior" p2(Y) is the ana-
l)EsT}s )opinion. Error fheory approaches attempt to directly establish
p(Y x:).
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correlation with other experts' assessments. Let the random error or imprecision
be denoted e, the bias error be denoted bi’ and the correlation of assessments by
experts i and j be denoted i The imprecision in the estimate b; will be denoted
by a variance term V(bi)'

A best estimate of the variable is obtained by a minimum variance linear esti-

mator

(4.2)

x>
1
™M
b3
X

A
where y is the estimate, X, are the experts' best estimates and (Wi) is a set of

optimal weights subject to the constraint g W = 1.0. Define a new variable,

o= Vix) + Vib) (4.3)
where V(xi) is the variance of expert i's assessment, V(xi) can be approximated
by inspection or calculated using a simple numerical algorithm. Define the

covariance of experts' assessments as

.0.0. (4.4)

Cov(xl., xJ.): pij %1 9]

If the bias in each expert's estimate is removed by the Tronsformc:ﬁon2

A
X, = X; - bi (4.5)

The bias b. could either be defined as a proportion or as a difference (as
above). The choice depends on which is more easily used by the expert. If
defined as a proportion, equation (4.3) and (4.5) would be modified appro-
priately.
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then the optimal set of weights can be obtained as that which minimizes the
estimate variance

min g [(? . wixi)z] (4.6)

=i
Introducing a Lagrange multiplier A\ , the optimal weights can be shown to be
(Appendix A),

{wil g ¢ :

LSS G M O et i-

i (4.7)

A | l...1 ) @
]

where
Cov(fl, gl) Cov(gl, gn)
C= : : (4.8)
Cov(fn, gl) Cov(gn, gn)

The variance in the estimate is found by substitution into equation (4.6)

3

A n
Viy)= > > w.w. Covx.x.)
4 4 ij i”j
i=1 J=|
With a mathematical procedure for synthesizing assessments the question
becomes, how can the required calibrations be established. This will be done
through self-evaluation by each expert, and evaluations by the experts of one
another.

An assessment procedure, as any analytical technique, benefits from simplicity.
It is usually better to know how an analytical procedure is working and therefore
clearly recognize its limitations, than to inaugurate complex procedures which
result in outputs that are difficult to interpret (hence, the old adage "it is better

to be vaguely right than precisely wrong"). Given the inability to specify an
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objective or empirically based calibration methodology, the procedure for
calibrating and aggregating experts' opinions should be simple. The critical test
of such a procedure is its applicability in practice. Therefore, the procedure
discussed below is a starting point, which must be refined and modified in initial

testing phases of the assessment code.

Each expert is asked to rate his knowledge and therefore the precision of his
scaling of each subvariable on a simple 1-5 scale. "I" indicates very little
knowledge about the variable and very low confidence in the precision of the
scaling; "3" indicates familiarity with the variable and confidence that the
precision of the estimate is "as high as for most experts in the field"; "5"
indicates extensive knowledge (equal to the most knowledgable experts) and high
confidence that the scaling is precise (there is little potential error in the scaled
probabilities). Numerical levels of precision associated with the ranking (e.g.,
""2" corresponds to +30% error) are not explicitly stated in the questioning, but at
the user's option may be input as associated with each rank along the scale.
Also, each expert is asked to rank the other experts along the same scale. The
timing of ranking other experts will have to be experimented with. It would
seem that the "others" ranking should not take place until an initial assessment
has been made, and possibly not until at least one cycle of feedback has
occurred.

From these rankings of knowledge and assessment precision, an estimate of
random error must be made for each expert. There is some experience with self
and others ranking in technology assessment (Dalkey, Brown, and Cochran, 1970;
Dalkey, [969; and North and Pyke, 1969, among others). This must be combined
with initial experiments to develop a correlation between rankings and error

estimates. Obviously, these error estimates will be rough, but the purpose at

Dalkey, N. C. (1969). "The Delphi Method: An experimental study of group
opinion.” RAND Corporation, RM-5888-PR.

North, H. P., and D. L. Pyke. "Probes of the technological future." Harvard
Business Review, v. 3: 68-76.
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hand is to form a synthesis of opinion and rough estimates of error differences
are better than assuming all experts are equally precise. The mean ranking for
an individual expert cannot be used to summarize his expertise, because the |-5
scale is only ordinal. However, the median ranking does have mathematical
meaning, and might, therefore, be used instead. Even so, attention must be given

to the question of balancing self rankings with others ranking.

Bias errors (e.g., optimism or pessimism) are probably best estimated through
ratings of others. Again, a simple rating is given over an ordinal scale, and that
scale is then correlated to percent bias errors. The median rating is used as the
summary statistic. At the user's option the scale may be directly associated with
input bias errors specified in percent, or may be specified, for example, on a -5
to +5 ranking, with zero indicating no bias.

Correlations among experts' opinions reflect similarities in the schools of thought
the experts represent. Certainly, if three experts all represent the same general
philosophy on a particular scientific issue, their assessments will contain
redundant information. If a fourth expert represents a different philosophy, then
a priori his opinion should be given more weight than suggested by his 1:3
minority position on the expert panel, because his opinion is more independent
than the others' opinions are. The correlation among experts is easily and
compactiy represented by a correlation matrix of the terms P ijr These
correlations could be directly requested from each expert for each pair of
experts. This would be a scaling on -I,+l . However, statistical (i.e.,
quantitative) correlation coefficients are foreign to the intuition of most people,
at least in their appropriate association with, say, data scattergrams, and a less
direct ranking of interrelation would seem more conducive to valid responses.
This might be done using an interrelational matrix of the type discussed in
Section 2, in which perhaps a broader scale (-5, +5) is used and later associated

with the appropriate correlation coefficient,

As in all the synthesis problems, reasonable, rather than precise, solutions are

sought since precise solutions are likely to be red-herrings. A simple ranking
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device is developed, against which experts can easily and straightforwardly state
their beliefs. Opinions on the credibility or knowledge of other experts can be
strong, but they are seldom precise. Yet inability to specify precise numbers is
no reason to abandon otherwise correct procedures. To obtain statistical
measures for use in calculations, the ranking scale is correlated or associated
with the statistical measures on the basis of experimentation in early

implementation phases of the code.

The output of synthesis calculations would be a graph showing individual assess-
ments, the ranges of those assessments, the synthesized assessment, variance,

and range, as illustrated in Figure 5-7.

5.4 SYNTHESIS: AN ILLUSTRATION

Displayed below are the assessments of the entire
group of experts for th: variable (probability of
undetected faults). Are these sufficiently consis-
tent simply to take their average?

PROBABILITY LOG
N

0 b—e—e—eo—o—

EXPERT NUMBER
! 2 3 4 S

No
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PROBABILITY LOG
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EXPERT NUMBER SYNTHESIS
I 2 3 4 5
BIAS ERROR

+2 +1 0 + | -2

RANDOM ERROR
2 | 3 2 4

FIGURE 5-7
INDIVIDUAL AND SYNTHESIZED ASSESSMENTS
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Shown below (for bhard copies return HC ) are the
logic hierarchies of the (4) experts for the vari-
able (probability of undetected fault). Please
study these.

HC

Baving seen the group of hierarchies, would you
modify your own?

Yes

How? Indicate by ®"add" or "delete® branch at node
indicated by variable number.

Add (existing seismicity) at node Y

Your hierarchy is now:

probability of undetected fault (Y)

F(1)
*
*
* T T T T T T Ty T T T T T T T Y
* * *
spatial fault amount of existing
density x(1) exploration seismicity x(3)
effort x(2)
* *
* *
S(1) P(2)
* *
* *
T T T T T T % - T T T T T T T Y
* * *
in situ geological type of density
stress medium exploration of
z(3) z2(4) 2(1) exploration
z(2)
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How should relationship F(1l) be modified?

Y = (I - E** (-X(1))) (I - X(2) X@)/(1 - E**(-X(1)))
(1 - X(2) X(3)) + E** (- X(I)).

#*C** existing seismicity increases probability of detecting
fault. The surrogate variable X(3) is defined as an en-
hancement factor whigh will be subjectively correlated to
microseismic activity.

Would you make other modifications?

No

Indicate subvariables common to the set of hier-
archies. Use variable labels prefixed by expert
number.

IX(1) = 2A(3) = 3Z(1) = 4B(2)

Scalings for variables 1x(1), 2A(3), 3z2(1), 4B(2)
are shown below. I1x(1) and 32(1) fail the
similarity test based on overlap. Do you think this
difference is significant?

Yes

In a similar way the code leads to an identification of differences among the
scalings of individual variables. Internally, the code tests the sensitivity of top
variable scalings to these differences through a Monte Carlo subroutine or
related numerical technique. The code then proceeds to precision and knowiedge

ratings for subvariable scalings still not consistent,

"Comment" notes might be permissible to be stored with logic hierarchy.
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On a scale of 0 to 10, rate your own knowledge and
the precision of your scaling of (spatial fault
density). For referemce, this scale should corre-

spond to:

0 = 1little or no knowledge

5 = average familiarity of expert in general field
10 = highly knowledgable

7

Previous calibration studies using this code have
shown a rating of (7) to roughly correspond to an
imprecision range of (70%) to (130%) of your esti-
mate. Would you agree? If you disagree, please
specify an imprecision range.

Agree
A similar rating is made for the other experts.

Do you consider yourself optimistic or pessimistic?
In other words, might vyour answer be somewhat
biased? Rate your own bias on the scale =10 to +10.
This scale should correspond to:

=10 = very biased to the low side
0= unbiased
+10 = very biased to the high side

If more convenient, use a best estimate of your own
percent bias. Indicate by symbol X%.

2

Self ratings of bias are probably not very good, so each expert is next asked to

rate every other expert on the same scales.

Experts often base their opinions on similar schools
of thought. To this extent, errors in experts'
predictions would be correlated. For each pair of
experts, as they appear, indicate the degree of
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correlation that you think will exist between their
answers. Use the following scale:

-5 = perfect inverse correlation
-2 = modest inverse correlation
0 = totally independent
+2 = modest simultaneous correlation
+5 = perfect simultaneous correlation

Expert 1 (George Smith) and Expert 2 (Robert
Johnson)?

+3

... and so on, until @ matrix is completed. This matrix may be 5x 5, or a
similar dimension. Based upon the synthesis equations in the text, this ranking
information is used to form a synthesized estimate of the subvariable scaling.
This synthesis includes a "best" estimate, variance and range, and is presented as
shown schematically in Figure 4-3.
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APPENDIX
DERIVATION OF OPTIMAL WEIGHTS IN SYNTHESIS

min E [(9 - ¥ wixi)2 ] = min 92 -2 ZwiQE(xi) + Z)Swiwj E(xixj)
w. W.

i i (A.4.1)
subject to the constraint
Iw, = 1.0 (A.4.2)

Taking the derivation of A.4.] with respect to w; and equating to zero yields the
n equations,

0=Zw, (Cov(xi,xj)) + XA, di=l,e.4n (A.4.3)

where A is the Lagrange multiplier entering through the constraint. The

(n + 1) st equation is the derivative w.r.t. A ,

0= Zw, - | (A.4.4)

Solving in matrix format,

{*)

=
e}

1]

by | ool

where C is the expert covariance matrix,

Cov(;tl, ;l) Cov(;zl, ;n) Cov(xl, xl) Cov(xl, xn)

1 @]
n
0

Cov(x , %) +++ Covix, X)) i Covlxs x|) *** Covlx, xn)_

b —

A.l
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