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ABSTRACT

The ductile fracture toughness3 JT 3 and tearing modulus,

T, of ASTM A533, Grade B, Class 1 steel were evaluated by
the unloading compliance method for determining J-R curves.
These properties were measured for a matrix of IT specimens
in which the relative crack length, a/W, and the depth of
side grooving were systematically varied to determine their
individual effects. In addition, the applicability of an
LVDT extensometer system was investigated for use in the
unloading compliance method for J-R curve determination.
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FOREWORD

The Heavy Section Steel Technology (HSST) Program is a United States Nuclear
Regulatory Commission (NRC) sponsored effort coordinated by the Oak Ridge
National Laboratory (ORNL) with G. D. Whitman as the HSST Program Manager.

The HSST work performed at HEDL is being conducted under Department of
Energy Contract DE-AC14-76FF02170 through a technical service contract with
ORNL (Purchase Order 11Y-50317V). Westinghouse Hanford Company technical
representative is L. D. Blackburn.
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THE EFFECT OF CRACK LENGTH AND SIDE GROOVES
ON THE DUCTILE FRACTURE TOUGHNESS PROPERTIES OF

ASTM A533 STEEL

I.  SUMMARY AND CONCLUSIONS

The objective of this investigation was to determine the effect of relative
crack length (a/W) and depth of side grooving on the parameters obtained
from a J-R curve; these parameters are J*c, dJ/da (slope), and T (tearing
modulus). The J-R curves were developed using the single specimen unloading
compliance technique. In so doing, assessment of the experimental proce-
dures for conducting an unloading compliance J-R curve test was made. The

following conclusions were drawn as a result of this investigation:

1) As both a/W and the depth of side grooving increase, the degree of
triaxiality through the thickness of the specimen at the crack tip
increases. The resulting higher constraint tends to give straighten

crack fronts with tunnelling reduced or eliminated.

2) The slope of the crack extension line on the R-curve decreased as

the depth of side grooving increased.

3) The physical location of each of the two extensometers on the test
specimen was different and, thus, the compliance behavior of each
extensometer separately was modeled by employing different compliance
relationships. The Saxena-Hudak relationship was found to work
quite satisfactorily for the clip gage location at the load-line
on the crack plane. A tenth order polynomial was developed to
model the LVDT behavior for its location mounted on the front face

straddling the load-line.

4) The compliance equations gave accurate predictions of the initial

crack lengths where the crack fronts were relatively straight.



5)

Final crack lengths were consistently underestimated because crack
front tunnelling produced a deviation between the measured average
crack length and that predicted by the compliance relationships.
Therefore, the crack extension was consistently underestimated,
but the magnitude of this difference decreased at higher a/W and

% SG.

The R-curves developed from crack extension computed from the LVDT
and clip gage compliances are different from one another for the
same test. In some specimens, particularly those with smaller a/W
and no side grooving, the difference was relatively large. For
deeper cracks and side grooves, the differences were essentially
negligible. The disparity between the R-curves developed from the
clip gage and LVDT compliance is the subject of an ongoing

investigation.

From the LVDT results, it is observed that Jjc generally decreases

as a/W and depth of side grooving increase.



I1.  INTRODUCTION
A. BACKGROUND

In recent years a considerable effort has been expended on the development
of a ductile fracture toughness criterion to characterize the fracture
behavior of structural materials employed at temperatures where they exhibit
elastic-plastic behavior. This effort has focused, to a large extent, on
the J-integral, first proposed by Rices1 21 and later advanced as a failure

criterion by Begley and Landes. (3,44

Subsequently, methodology for J-
integral testing and analyses has evolved.However, the optimum
procedures and analyses have yet to be conclusively defined and standard-

ized.

The current recommended J-integral test procedure entails determining the
critical plane strain J value, Jlc’ from the J-R curve, which is a plot of
J as a function of crack extension, Aa. The most widely used method of
obtaining a J-R curve is the multiple specimen, heat tint method where a
number of identical specimens (usually five to ten) are loaded to various
points on the load-deflection record corresponding to different amounts of
crack extension. The specimen is unloaded, heat tinted in a furnace, and
broken. The tinted crack extension can then be measured. This procedure,
while generally considered reliable, has the disadvantage of requiring a
number of specimens which greatly increases specimen costs, analysis time
and, in the case of nuclear reactors, the amount of capsule space needed
to irradiate numerous specimens. Hence, there is a need for a J-integral
test requiring only a single specimen. A number of techniques for detecting
the onset of crack extension were reported in the literature. A
promising procedure is the monitoring of instantaneous crack length (and,
consequently, crack extension) by use of unloading compliance. In this
procedure, the load-deflection test is interrupted at frequent intervals,
unloaded a small amount (about 10-15% of the expected maximum load), and
the compliance during the unloading accurately measured. The elastic

compliance can be related to the crack length by experimentally established



relationships. Consequently, a change in compliance can be related to a
change in crack length. Thus, during the course of a single test, J and
Aa can be monitored and used to produce an R-curve. Again, the optimum

procedures and analysis for this technique need to be defined.

Another facet of J-integral testing that needs to be resolved is the effect
of specimen size and geometry on the critical J value. To be a useful
quantity, Jjc should be a material parameter. Thus, conditions must be
established in which Jlc does not depend on size and geometry but represents
(91

plane strain conditions, Current recommended practice suggests these

conditions are met when

B, b, a > 25 ?
0
where: B thickness
b remaining uncracked ligament
a crack length
s * ays
a0 flow stress =
7ts tensile stress
7ys yield stress (0.2% offset)

The adequacy of this size criterion requires additional confirmation.

B. SCOPE

The primary objective of this investigation was to determine the effects of
relative crack length, a/W, and side grooving of the remaining ligament
section on the J-R curve. Side grooving is of interest because it increases
the degree of stress state triaxiality ahead of the crack tip, thus imposing
a larger degree of plane strain behavior. Because of the desirability of

a single specimen test for nuclear reactor applications, the unloading
compliance technique was employed to generate the J-R curve. As a secondary
objective, the development and applicability of a second extensometer system
was studied. The reason for investigating the second extensometer is the
need for a redundant measurement in the event that the primary extensometer
fails during a test; also, a second system might prove more suitable for

unloading compliance tests conducted in a hot cell.



111.  EXPERIMENTAL PROCEDURE

A. MATERIAL

The material used in this investigation was ASTM A533, Grade B (A533-B1),
Class 1 steel. The material was supplied by Oak Ridge National Laboratory
under the auspices of the Heavy Section Steel Technology (HSST) Program.
The A533-B1 material was removed from the HSST plate 02. The heat treat-
ment for plate 02 consisted of normalizing at 913°C (1675°F), austenitizing
at 871°C (1600°F), water quenching, temperating at 663°C (1225°F), and
stress relieving at 607°C (1125°F). The chemical composition, given in

Table 1, and the heat treatment were reported by Childress. (14)

TABLE 1
CHEMICAL COMPOSITION OF ASTM A533-B1 STEEL (HSST PLATE 02)
(Wt%)

C Mn Ni Mo Si S P Cu Fe
0.22 1.48 0.68 0.52 0.25 0.018 0.012 0.012 Balance

The specimens were removed from between the 1/4 and 3/4 thickness of the
30.48 ¢cm (12 in.) plate. Mechanical properties'™ ™ are given in Table 2

All specimens tested for this investigation were 2.54 c¢cm (IT) compact speci

mens machined in the T-L orientation.

TABLE 2

STRENGTH AND IMPACT MECHANICAL PROPERTIES OF
ASTM A533-B1 STEEL AT 149°C (300°F)

Yield Strength 434 MPa (63,000 psi)
Ultimate Strength 579 MPa (84,000 psi)
Cv Energy 126 joules (93 ft-1b)



B. TESTING AND ANALYSIS

As discussed previously, standard J-integral test procedures have not yet
been established. Therefore, for this investigation, a set of guidelines
for testing and analysis was agreed upon by a group of HSST contractors at
a meeting in Annapolis, MD in September 1978. These guidelines were the
basis for this investigation and are reviewed in this section. This will

be referred to as the "baseline" analysis.

To systematically assess the effect of a/W and side grooving on the J-R
curve, a test matrix was established varying a/W and the depth of side
grooving. All specimens were IT compact specimens with varying notch depths
so that after fatigue precracking, three specimens each had a/W values of
0.5, 0.6, 0.7 and 0.8. In each of these groups one specimen was left with
smooth surfaces (0% side grooving), one was given 45° V-shaped side grooves
to a total depth of 10% (5% on each side) of the thickness, and the third
was given side grooves to a total depth of 20% of the thickness. The sketch
in Figure 1 shows a side grooved specimen (the smooth specimens were identi-
cal except the side groove was not present). To insure consistently sharp
crack tips, all specimens were precracked in fatigue at least 2.5 mm (0.100

in.) at loads low enough that plastic flow at the crack tips was minimized.

The fracture toughness tests were conducted at 149°C (300°F) where upper
shelf behavior was observed. The temperature was controlled to approxi-
mately t 2°C in an air-circulating electrically-heated furnace. The speci-
men temperature was sensed with a thermocouple attached to the specimen
surface. The IT specimens were brought to test temperature in the furnace
and then allowed to soak at test temperature for at least an hour prior to

testing.

A J-integral test requires an accurate load versus load-point deflection
record. The tests were performed on an 89.0 kN (20,000 Ib) capacity closed-
loop servo-controlled, hydraulic test system. The tests were conducted in

stroke control at a rate of 0.5 mm (0.02 in.) per minute.. Loading clevises
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with flat bottom holes were used to test the compact specimens. The load
was monitored by the system load cell. Two independent extensometer systems
were used to measure displacement and provide redundancy in the event that
one system failed during the test. Because of its widespread use and
acceptance for J-integral testing, an electrical resistance clip gage (CG)
served as the primary extensometer and was mounted on razor blade edges
affixed to the crack notch at the load-line. The secondary extensometer
was a linear variable differential transformer (LVDT) system, described
elsewhere,mounted on the front face and straddling the load-points on
each side of the specimen. The signals from the LVDT's were added to give
average load-line displacement measurements. The extensometer systems are

shown in Figure 2.

To compute J for the compact specimens the formula developed by Rice, et
al.,”™) modified for the tensile component of load after Merkle and Corten,

91

and shortened by the ASTM Task Group E24.01.09, was used. This equation

is
2A (1 + a)
J Bb (1 + a2) (1)
22 2 4a 1/2 2a
where: a = [< b> + b0+ 2] - < b0 + ()
A = area (energy) under the load deflection record
= thickness (net section thickness for side grooved
specimens)
b = remaining uncracked ligament
ao = Initial crack length

To compute crack length from the measured compliance, the compliance
equation developed by Saxena and Hudak”™”* for the load-line on the crack

plane was used,

alW = 1.000196 - 4.06319 U + 11.242 U2 - 106.043 U3 3)
+ 465.335 U4 - 650.677 US
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FIGURE 2. Dual LVDT and Clip Gage (CG) Extensometers
Mounted on a Compact Specimen.



where: U 1

/ECB + 1
E = modulus of elasticity
C = compliance

For a given specimen, the initial crack length was computed from the mean of
ten compliance measurements at a low load level (about 25% of expected maxi-
mum load). Crack extension was computed by subtracting this value from the

crack lengths computed from compliances measured during subsequent unloadings

as the test progressed.

In order to determine the Jjc value, it was necessary to represent the crack
tip blunting behavior and crack extension behavior. The intersection of the
lines representing these two phenomena was taken as the Jjc value. The base-
line analysis agreed upon was based on the procedures recommended in Reference

9. The blunting line was assumed to follow the theoretical relationship

Aa = J/2 ao 4)

The data points utilized for the construction of the crack extension line
were those contained in an interval defined by lines parallel to the blunting
line. Equation (4), but offset by 0.254 mm (0.010 in.) and 1.397 mm (0.055
in.) from the origin. The crack extension portion of the R-curve was
constructed by a least squares linear regression through these points.

This R-curve analysis is shown schematically in Figure 3.

After completion of a test, the specimen was heat tinted in a furnace at
649°C (1200°F) and then fractured after cooling in liquid nitrogen. The
blue oxide coating clearly delineates the fatigue crack and crack extension;
these quantities were measured at nine equally-spaced points along the crack
front under a microscope with a vernier calibrated traveling stage at 48X
magnification. The crack extension was taken as the mean of eight points:
the seven interior measurements plus the average of the two surface measure-
ments. The initial crack length as measured on the specimen fracture surface

was used to compute the J values.

10
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To facilitate the intricate and complicated data acquisition and computation,
a mini-computer system was used. The system consisted of a magnetic tape
programmable computer, X-Y plotter, thermal printer, and a magnetic disk
drive for data storage. The system was programmed to accurately record load
and displacements, compute the compliance, and assess the accuracy of compli-
ance measurements. Real time computations of the compliance, the crack
length, and the estimated J values were made and printed at the time of each
unloading; all data were stored on a magnetic disk. Simultaneously, the X-Y
recorder was autographically producing the load-deflection record. Upon
completion of the test, the data from all the unloadings were assembled and
plotted as a temporary J-R curve. After subsequent crack length measurements
were made from the broken specimen, the data were recalled from the magnetic
disk and more accurate J and Aa data were computed and plotted as a final
J-R curve; these new data values were also stored on the magnetic disk.

With all data permanently stored on the magnetic disks, the data were easily

retrievable for subsequent analyses or replay.

All test recording and measurement equipment was calibrated to MBS traceable
standards as a normal requirement. Test machines were checked for calibra-
tion prior to test. Extensometers were calibrated at test temperature and
for a deflection range exceeding that required for the maximum deflection
encountered during testing; for the extended ranges accuracy was better than

one percent.

12



IV. RESULTS AND DISCUSSION
A. J-R CURVE RESULTS FROM THE BASELINE ANALYSIS

The intersection of the blunting line and crack extension line (see Figure 3)
was defined as the onset of crack extension and the J value was attributed
the Jjc designation. Paris, et al. @ have proposed that the slope of the
crack extension line is related to a parameter which describes stable crack

extension; the "tearing modulus”, T, is given by

dJ E

da a2 ®)
where dJ/da = slope of the crack extension line. The J~, dJ/da, and T
results for this matrix of tests are given in Table 3. Table 4 summarizes
the initial crack length, final crack length, and crack extension computed
from the clip gage compliance and from direct measurement. The R-curve
constructions are shown in Figures 4 through 15. Figure 16 shows the frac-

ture surfaces of all specimens in the test matrix.

A significant observation, seen in Figure 16, is that the crack front becomes
straighter with crack tunnelling reduced or eliminated as a/W and depth of
side grooving (% SG) increase. This indicates that the through-the-thickness
constraint increased with the greater depth of side grooving and also with
increased crack length. As a result of the increased constraint, the slope
of the R-curve, dJ/da, and, consequently, the tearing modulus, T, tended to
decrease as the depth of side grooving increased; however, a consistent
trend in dJ/da or T as a/W increased was not conclusively discernible. The
Jjc results for these tests (Table 3) also do not show a distinct trend with
either % SG or a/W but rather tend to vary over a large range. As shown in
Table 4, the crack lengths computed from the elastic unloading compliance
using the Saxena-Hudak relationship, Equation (3), for the initial fatigue
cracks (straight crack fronts) were generally in good agreement with the
direct nine-point measurement. Agreement after crack extension occurred

was still good when crack fronts remained straight, but deteriorated when

13
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TABLE 3

RESULTS FROM THE CLIP GAGE EXTENSOMETER

0%

0.52
187.8 |
271

215

0.61
395.2 |
175

139

0.72
350.0 |
198

157

0.85
207.7 |
359

286



TABLE 4

COMPARISON OF COMPUTED AND MEASURED CRACK LENGTHS
BASED ON CLIP GAGE EXTENSOMETER RESULTS

a/Ww

0.5

0.6

0.7

0.8

% SG 0% 10% 20%
Meas CG Meas CG Meas CG

a0 1.0530 1.0369 1.0387 1.0269 1.0290 1.0356

1.1603 1.1198 1.1437 1.1308 1.1150 1.1272
Aa 0.1073 0.0829 0.1050 0.1039 0.0860 0.0916
ao 1.2301 1.2328 1.2384 1.2371 1.2461 1.2570
ah, 1.3244 1.2990 1.3281 1.3101 1.3280 1.3355
Aa 0.0943 0.0662 0.0897 0.0731 0.0819 0.0785
ao 1.4464 1.4481 1.4468 1.4481 1.4391 1.4491
ah 1.5467 1.5262 1.5291 1.5123 1.5083 1.5186
Aa 0.1003 0.0781 0.0823 0.0642 0.0692 0.0695
a0 1.7096 1.7112 1.6249 1.6309 1.6232 1.6383
af 1.7676 1.7503 1.7063 1.6961 1.7013 1.7079
Aa 0.0580 0.0391 0.0814 0.0653 0.0781 0.0696
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FIGURE 4. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-47
(@/Ww = 0.5, % SG = 0).
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FIGURE 5. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-34
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FIGURE 6. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-36
(a/wW = 0.5, % SG = 20).
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FIGURE 7. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-143
(@a/Ww = 0.6, % SG = 0).
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FIGURE 8. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-38
(@aW = 0.6, % SG = 10).
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FIGURE 9. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-40
(@a/Ww = 0.6, % SG = 20).
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FIGURE 10. R-Curve from the Clip Gage for Matrix Specimen 02GA603
(aw = 0.7, % SG = 0).

22



CRACK ENTENS ION, Aa, mm

0 0.5 1.0 1.5 2.0 25

T=173

INTEGRAL

— 200

CRACK EXTENSION,Aa, in

FIGURE 11. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-41
(aw = 0.7, % SG = 10).
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FIGURE 12. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-43
(a/wW = 0.7, % SG = 20).
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FIGURE 13. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-28
(a/w = 0.8, % SG = 0).
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FIGURE 14. R-Curve from the Clip Gage for Matrix Specimen 02GAA1-45
(a/wW = 0.8, % SG = 10).
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R-Curve from the Clip Gage for Matrix Specimen 02GAA1-46
(a/w = 0.8, % SG =20).
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HEDL MATRIX TESTS

FIGURE 16. Heat Tinted Fracture Surfaces for
the Test Matrix Specimens.
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crack extension manifested itself by crack front tunnelling near the mid-
thickness of the specimen. The trends suggest that to obtain consistent
plane strain ductile fracture toughness properties, it may be necessary to

employ side grooves or perhaps deeper cracks.

The absence of consistent trends in these test results is believed to be the
effect of shortcomings in the accepted data analysis procedures. Specifi-
cally, the applicability of the theoretical blunting line, Equation (4), as
a model for the unloading compliance-based crack length during crack-opening
stretch is questioned. This can be observed in the R-curves of Figures 4
through 15. In most of the R-curves, the experimental data points for the
blunting portion of the R-curve do not lie on the theoretical blunting line,
Equation (4). The reason is simply that Equation (4) yields a quantity
which is a physical displacement at the crack tip due to local plastic
deformation, while the compliance relationship. Equation (3), relates the
elastic compliance with physical crack length. Thus, there seems to be no
intrinsic reason for the apparent crack extension resulting from the crack
tip blunting phenomenon to be quantitatively described by the elastic compli
ance measurement in the same way it is in the multiple specimen heat tint
measurement. Some revisions in describing blunting as detected by the
compliance method may be appropriate to effectively characterize the onset
of crack extension. Alternatives for the blunting line described by Equa-

tion (4) will be studied in subsequent work.

B. J-R CURVE RESULTS USING THE LVDT EXTENSOMETER SYSTEM

The dual LVDT extensometer system described earlier was studied to assess
its applicability for unloading compliance J-R curve tests. The LVDT system
was intended to be a redundant extensometer in the event that the clip gage
failed during the test of an irradiated specimen. However, if its applica-
bility is demonstrated, it may eventually be used as the primary system

because of its ease of use with manipulators in a hot cell compared to the

clip gage.
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Good agreement between computed crack lengths from the LVDT and clip gage
extensometers requires the use of compliance relationships appropriate for
the specific extensometer location. The Saxena-Hudak relationship, Equation
(3), was used with good results for the clip gage compliance data because it
was compatible with clip gage location. As expected, the Saxena-Hudak rela-
tionship did not satisfactorily model the compliance behavior of the LVDT

which was located on the front face.

To account for the location of the LVDT system, a separate compliance rela-
tionship was developed for the initial crack length data points from the
LVDT; the clip gage results were still modeled by the Saxena-Hudak relation-

ship. The LVDT data were fit to a tenth order polynomial given by

aW = A+ BU + CU2 + DU3 + EU4 + FUS + GU6 + HU7 )
+ 118 + JU9 + KU10
where: A = 1.99703336 x 10" ¢ = -457086111 x 10-15
B = 1.02757992 x 102 H = 3.20604500 x 10718
C = -9.21439591 x 105 | = -6.86811088 x 10722
D = 498545748 x 10"7 J = -4.66766016 x 10729
E = -1.67770409 x 10 K = 234185204 x 10728
F = 354602681 x 10712

This relationship is valid in the interval 0.5 f a/W < 0.86 and provides a
good Ffit for the initial crack length data as seen in Figure 17. This rela-
tionship was developed from data obtained from IT specimens and as yet

requires verification for other sizes.

In Figure 17, the experimental data points were plotted as normalized compli-
ance, ECB, as a function of measured a/W (recall that the weighted nine-
point average measurement technique was used). To demonstrate the similarity
of this relationship to the Saxena-Hudak relationship. Figure 18 shows the
normalized clip gage crack length with the Saxena-Hudak relationship super-

imposed. In both figures, the initial and final crack lengths from the
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Experimental LVDT Compliance Data from the Smooth Matrix
Specimens (% SG = 0) with an Empirical 10th Order Poly-

nomial Equation Fit Through the Initial Crack Length
Data.
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FIGURE 18. Experimental Clip Gage Compliance Data from the Smooth
Matrix Specimens (% SG = 0) Compared with the Saxena-
Hudak Relationship.
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experimental data are plotted to observe the effect of crack tunnelling.

To keep the comparison simple, only the data from smooth specimens (% SG = 0)
were plotted. In both figures the initial measured crack lengths, where the
crack fronts are relatively straight, show good agreement with their respec-
tive compliance equation. The final crack lengths deviate from the compli-
ance relationships as the crack fronts bow out or tunnel. Therefore, the
final crack lengths predicted from the compliance relationships are under-
estimated compared to the measured weight, nine-point average. Thus, it is
apparent that after crack front tunnelling begins, the compliance relation-

ships deteriorate as models for compliance response to crack extension.

All LVDT extensometer data was analyzed using Equation (6). Table 5 summa-
rizes the Jjc, dJ/da, and T results obtained from the LVDT extensometers.
Initial crack length, final crack length, and crack extension for the LVDT
extensometer and from the weighted nine-point average measurement are
presented in Table 6. The R-curves developed from the LVDT data using the
experimental compliance equation for the test matrix are shown in Figures
19 through 30.

Some trends were discernible from the data obtained from the LVDT exten-
someters. In general, Jjc decreases as a/W and % SG increase and dJ/da and
T decrease as % SG increases (see Table 5). These observations, coupled
with the increasingly straighter crack fronts observed as a/W and % SG
increase, support the assertion that plane strain behavior is being
approached as a/W and % SG increase. Table 6 shows that, similar to the
clip gage, the crack length predicted by the compliance equation is in
better agreement with the weighted nine-point average measured crack exten-
sion for the initial crack length where the crack front is relatively
straight. In Figures 19 through 30, most of the R-curves, like those from
the clip gage, reveal that the data points from the blunting portion of the

R-curve do not lie on the theoretical blunting line. Equation (4).

While additional work is needed on the extensometer systems, the results

reported herein indicate that the LVDT system modeled by the experimental
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TABLE 5

0%

0.527

426.6 (2436)

188  (27,327)
150

0.615

330.6 (1888)

199  (28,819)
158

0.723

342.7 (1957)

216 (31,398)
172

0.855

140.1 (800)

274  (39,753)
218

10%

0.519

322.1 (1839)

217 (31,515)
173

0.619

314.0 (1793)

163 (23,637)
130

0.723
272.3 (1555)
185  (26,904)

147

0.812
206.3 (1178)
168 (24,411)

134

FOR THE LVDT

20%

0.515

272.1 (1554)

143 (20,694)
113

0.623

264.8 (1512)

146 (21,150)
116

0.720

235.9 (1347)

157  (22,828)
125

0.812

215.9 (1231)

134  (19,407)
106



a/W

0.5

0.6

0.7

0.8

TABLE 6

COMPARISON OF COMPUTED AND MEASURED CRACK LENGTHS BASED ON
THE EXPERIMENTAL COMPLIANCE EQUATION FOR THE LVDT RESULTS

% SG 0% 10%
Meas LVDT Meas LVDT Meas

ao 1.0530 1.0440 1.0387 1.0333 1.0290
1.1603 1.1227 1.1437 1.1148 1.1150

a 0.1073 0.0787 0.1050 0.0815 0.0860
ao 1.2301 1.2332 1.2384 1.2431 1.2461
an 1.3244 1.3024 1.3281 1.3174 1.3280
a 0.0943 0.0692 0.0897 0.0743 0.0819
ao 1.4464 1.4431 1.4468 1.4470 1.4391
af 1.5467 1.5161 1.5291 1.5087 1.5083
a 0.1003 0.0730 0.0823 0.0617 0.0692
a0 1.7096 1.7101 1.6249 1.6177 1.6232
ah. 1.7676 1.7615 1.7063 1.6931 1.7013

a 0.0580 0.0514 0.0814 0.0754 0.0781

20%

LVDT

1.0406
1.1179
0.0773

1.2599
1.3394
0.0795

1.4524
1.5138
0.0614

1.6245
1.7106
0.0861
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FIGURE 20. R-Curve for Specimen 02GAA1-34 (a/W = 0.5, % SG = 10) from
the LVDT.
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FIGURE 21. R-Curve for Specimen 02GAA1-36 (a/W = 0.5, % SG = 20) from
the LVDT.
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FIGURE 22. R-Curve for Specimen 02GAA1-143 (a/W = 0.6, % SG = 0) from
the LVDT.
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FIGURE 23.
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R-Curve for Specimen 02GAA1-38 (a/W = 0.6, % SG =
the LVDT.
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FIGURE 24. R-Curve for Specimen 02GAA1-40 (a/W = 0.6, % SG = 20) from
the LVDT.
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FIGURE 25. R-Curve for Specimen 02GA603 (a/W = 0.7, % SG = 0) from
the LVDT.
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FIGURE 26.
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R-Curve for Specimen 02GAA1-4T (a/W = 0.7, % SG = TO) from
the LVDT.
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FIGURE 27.
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R-Curve for Specimen 02GAA1-43 (a/W =
the LVDT.
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FIGURE 28. R-Curve for Specimen 02GAA1-28 (a/W = 0.8, % SG = 0) from
the LVDT.
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FIGURE 29.
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R-Curve for Specimen 02GAA1-45 (a/W = 0.8,
the LVDT.
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the LVDT.
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compliance equation. Equation (6), yields comparable results to the clip
gage mounted at the load line on the crack plane and modeled by the Saxena-
Hudak equation. Equation (3). Both systems measure initial compliance and
compute initial crack length reasonably well; the respective compliance
equations did not account for crack front tunneling. There are, however,
some differences in the R-curves from the clip gage and LVDT extensometers.
While they measure comparable initial crack lengths, the clip gage compliance-
based crack length extension line often seems to indicate the onset of crack
extension at a lower J value than that indicated by the LVDT compliance-
based crack length extension line. This difference was largest where the
aW and % SG was the smallest (a/W =0.5 and % SG = 0) and decreased as a/W
and % SG increased. The R-curves for specimens with high a/W and deeper
side grooves (where constraint is greatest) show a negligible difference
between extensometers. Work is currently in progress to resolve this

matter.

The J-R curve results from both analyses indicate the shortcomings of the
theoretical blunting line approximation. Equation (4), for use in unloading
compliance J-R curves. For many specimens, the compliance-based apparent
crack extension did not lie on the straight line defined by Equation (4).
The reason is simply that Equation (4) yields a quantity which is a physical
displacement at the crack tip due to local plastic deformation while the
compliance equations. Equations (3) and (5), relate the elastic compliance
with physical crack length. Alternatives for the blunting line described

by Equation (4) will be studied in subsequent work.

C. RECOMMENDED FUTURE WORK

It is recommended that multiple-specimen heat tint R-curves be developed for
a number of specimen dimensions contained in the present test matrix. In
doing this, the directly measured crack extension characteristics can be

correlated with the unloading compliance behavior of the two extensometers.
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It is also desirable to develop an alternative to the theoretical blunting
line. Equation (4), which actually fits the unloading compliance data during
blunting. A linear regression line through these data points may serve

quite wel 1.
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