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Abstract

This thesis reports a measurement of the average lifetime of hadrons containing
bottom quarks. It is based on data taken with the DELCO detector at the
PEP e%e~ storage ring Bt A center of mass energy of 29 GeV. The decays of
hadrons containing botiom guarks are tagged in hadronic events by the presence

of electrons with a large component of momentum transverse to thegaxis.

Such electrons are jdentified in the DELCO detector by an atmosph sure
Cerenkov counter assisted by a lead/scintillator electromagnetic sho tex.
The lifetirne measured is 1175027 (stat.) ¥017 (ays.) psec, consistent wit ious
measurements. This measurement, in conjunction with a limit on the arm

branching ratio in b-decay obtained by cther experiments, can be used to constrain
the magnitude of the V,y element of the Kobayashi-Maskaws matrix {o the range
0.042F390% (stat.) £390% (sy8.), where the errors zefiect the uncertainty on 7 only
and not the uncertainties in the calculations which relate the b-lifetizne and the

element of the Kobayashi-Maskawamatrix.
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1. INTRODUCTION

This thesis reports a measurement of the average lifetime of hadrons containing
bottom quarks. It is based on the data taken with the DELCO detector at the PEP
ete™ storage ring during the years 1982 to 1084, Hadrons containing bottom quarks
( B-hadrens ) are produced by electron positron annihilation at the storage ring with
a cross section of approximately 3 - %?—zez (eq= —% is the b-quark charge ).l Ata
center of masc energy of /3 = 29 GeV this amounts to 34.4 pb. This production of
B-hadrons is understood to be the result of the production of » bb quark pair { or
quark pairs plus gluons, bbg ), followed by the subsequent “fragmentation™ of this
system into hadrons. Two of the subsequent hadrons will contain one of the original
b-quarks. The properties of these hadrons are dominated by the characteristics of
the b-quark. Because of this, while the hadron ia thought to be a spin-0 boson,
its decays are in some ways characteristic of a heavy spin-% fermion. Among these
characteristics is a large branching fraction ( = 10 — 15% ) into the light leptons
( e,s ) with 2 momentum spectrum characteristic of a V-A interaction. This is
typical for a decay which proceeds through the production of & virtual W ( the
intermediate vector boson ). The copious production of electrons in ti\e decays of
B-hadrons makes it possible to tag these events with reasonable efficiency. Fig. 1.1
shows an example of such an event recorded by the DELCO detector. Because
B-hadrons decay by way of the weak interaction, their lifetime is comparatively
long. This makes it possible to measure the average lifetime of these particles by
Iooking at the displacement of the tracks from the decay products relative to the
point where the hadrons were first produced. The remainder of this thesis discusses

the many details involved.

1.1 THEORETICAL CONSIDERATIONS

The Standard Model [SU(2) x U(1) X SU(3)o10r], Which appears to provide
an adequate? description of the decay of heavy { bottom and charmed ) hadrons,

is briefly summarized in Fig. 1.2. It contains three “generations” of quarks and

L e i g

Fil Fl10

Figure 1.1. A high p; electron in a hadronic event logged by the DELCO detector
at PEP. The electron is identified by the Cerenkov counter ( the large trapesaid
in the first quadrant of the figure ) in conjunction with the lead /scintillator shower
counters { the rectangles around the periphery ). The Cercnkov countars provide
efficient electron identification at low momentum. The electron in this event hasa
pt relative to the sphericity axis greater than 1 GeV and ia probibly from the decay
of a B-hadron. See the next chapter for a more complete discussion of the detector.
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Figure 1.2. A summary of the Standard Model. Quarks and leptons are

subscripted { or r for the left-handed and the right-handed components

respectively.
leptons. For instance the lightest generation consists of the leptons e~ and v, and
the quarks u and d. Within a generation the quarks and leptons are further grouped
according to their weak interactions. In the first generation the left-handed part of
the u and the d quarks form a weak isodoublet as do the left-handed parts of the
¢~ and the ve. The right-handed parts of the u and d quarks as well as the right-
handed part of the e~ are all in weak isosinglets. Transitions within the doublets
are mediated by the charged vector boson W%, For our present purposes the effects
of the photon ( 4 ) and the ncutral vector boson { Z° ) will be neglected. This is
possible because firstly neither one changes the “Bavor™ of the particle with which

it interacts and therefore it is not possible for it to be responsible for a decay,

T S e e e RN T A e e

Table 1.1. Quark composition of some hadrons containing bottom quarks.
An asterisk in the mass column indicates that the particle is expected to
exist, but has not yet been observed.

HADRON | quarks | mass (GeV)
B~ bi 5.271
Be ba 5.274
By bs *
Ap bdu *

and secondly, to the accuracy with which these calculations are done, neither one
introduces a significant radiative correction. The remaining gauge boson, the gluon
( g ), is also not capable of initiating the decay of heavy quarks, but it produces
a correction to the decay rate. The gluon couples only to the quarks which carry
the SU(3)} color charge { hence the distinction between quarks and leptons ). These
QCD corrections are not necessar,'v small and it is not possible to calculate them
in all the cases where it would be useful. This difficulty is ameliorated by the
availability of measurements of the ratio of B — Xe to B — Xt ( the semileptonic
branching ratio ).

The B-hadrons, whose lifetimes are reported on in this thesis, are composed
of a single b-quark and some other combination of quarks so that the total color
charge of the hadron is zero. Some of the possibilities are shown in Table 1.1.
The simplest model of heavy quark decay ignores the presence of these so
called “spectator quarks” and computes the decay rate as if the heavy quark
were an isolated free object.

in Fig. 1.3.

This is shown schematically by the diagram
Since m¢ > wmy it is clear that in the absence of mixing
between the generations the decay rate would be exactly zero. Because
heavy quarks ( including the bottom quark ) do decay, it must be that

the weak interaction eigenstates are not the same as the mass eigenstates.

t The symbol X stands for anything.



Figure 1,3. Contributions to B-meson decay in the spectator model
assumning no mixing between the generations. Multiple labels on the
tap two fermion lines represent the six different diagrams which could
in principle contribute to the decay.

This mixing is desciibed by the Kobayashi-Maskawa® { K-M ) matrix:

d' Vud Vus Vs d
S h=|Va Vs Vo |-]| ], - (L1)
v Vie Vs Vi ]

where the primed quarks are now eigenstates of the weak interactions. Constraints
of unitarity and the ability to remove unphysical phases from the matrix by
redefining the phases of the quark states can be used to restrict the K-M matrix.
For the case of three families of quarks, which is being considered here, it is
possible to reduce the number of parameters in the matrix from 18 to 4. A typical

parameterization in terms of 3 angles ( ¢,8,9 ) and a phase ( § ) is

N Bg Cy B4 Sy
~6g¢p  cycpcy —eldsysy g cp sy +eilyy ey |- (1.2)

54 Bg ~Cp 8g cy --e”ce Sy ~Cy Sy Sy + ei6c9 cy

In this expression ¢y = €os¢ , 54 = sing and so forth. The mixing introduced

by the K-M matrix results in the single diagram in Fig. 1.3 being replaced by the

q 9

vub vub

Figure 1.4. Contributions to b-quark decay in the presence of mixing.
Each diagram has an amplitude proportional to the element of the K-M
matrix shown directly beneath it. The fermion pair labeled g3’ can be any
of the six pairs of fermions shown in Fig. 1.3.
three diagrams in Fig. 1.4. As before the diagram invelving a b — ¢ transition does
not contribute. The amplitude of each diagram is proportional to the corresponding

element of the mixing matrix. The total decay rate can then be =ritten in the form:
Peot =T(b— eX) +T(b — uX), (1.3)

where ['(b — cX) and I'(6 — uX) are presumably calculable ir the standard
madel and proportional to [V,g|? and |V,,|? respectively. It is possible to calculate
I'{b — cX) and T'(b — uX) by summing all of the various decay modes represented
by the ¢’ in Fig. 1.4.45 This involves caleulating the amplitudes for the diagrams
where ¢’ is a pair of quarks. Because of QCD eflects these calculations are more
uncertain than the calcuiations for the semileptonic decays. This difficulty can be

avoided by making use of the measured semileptonic branching ratio for the decay
of B-hadrons:

T (b — cepe) + T' (b — uep,)
T~ cX)+T (b S5uX)

BR(b ~ Xebe) = (1.4)

Plugging this expression into equation 1.3 gives

Ftot = ﬁ(b__l.’ﬂf) T (6 — ceBe) + T (b — uebe)]. (L5)




Figure 1.5. QCD corrections due to soft gluon radiation from either the
initial or the final quark leg.

One is then left with the job of calculating I' (6 — ceb,) and T (b — uel,). The

relevant matrix eleme.t is

G
M= qubh“(l + 15)ved 7 (1 + ¥5)b. (1.6)

The task of squaring this and integrating over the appropriate phase space is left
to Appendix D. The result is

2m

G S
T [1-82%+825 - 2 — 245%In z] .

(b — gepe) = [V ?

wheregiscoruand z = %;1 The %’g— term is the well known expression for the
muon lifetime with the muon mass replaced by the bottom quark mass, The term
in the parenthesis is a correction due to the not necessarily negligible mass of the
final state quark and will be referred to as g(z).

There are also small modifications to the above expressions due to radiative
QCD corrections. To the lowest order in a,, two sets of graphs contribute.
The first, which corresponds to the radiaticn of a gluon off either the initial or
the final quark leg, is shown in Fig. 1.5. The second sei, which represents the
radiation and subsequent reabsorption of a gluon is shown in Fig. 1.6. The

matrix elements for these processes have been calculated® and integrated first

Figure 1.6. QCD corrections due to radiation and subsequent reabsorption
of 2 gluon from one of the two quark legs of the graph.

numerically® and then analytically”® to obtain the electron spectrum. This,
in turn, can be integrated to obtain the total rate. For the case at hand
parts of this procedure can be by-passed. It was observed some time ago
that the QCD corrections to heavy quark decay are simply related to the QED
corrections to muon decay.? Therefore it is possible to obtain the corrections to the
decay rate for heavy quarks by integrating the electron spectrurn from muon decay

after making the substitution:

1 LI 4
o — aa.z AN = 3% (1.8)

=1

where

127

(33~ 2r/)In (lh'ft)

ay =

(1.9)

In the above ny is the number of flavors, my is the mass of the bottom quark, and
A = 0.2 GeV. This produces e, = 0.28. The electron spectrum from muon decay
has been calculated as a function of %_m,u,u This spectrum ( which corresponds
to the momenturmn spectrum of the charmed quark in b-decay ) has been integrated

in ref. 9 for various values of %ﬁ. The result is to modify the previous expression

|
i




for T (b — gere) to

GZ 5
(b — gebe) = Vypl? b o(z) [1 - %a,f(z)] . (1.10)

The function f(z) is tabulated in ref. ® and is plotted in Fig. 1.7 along with the
phase space correction which appears in equation 1.7. Taking m, = 4.7 GeV,
me = 1.5 GeV, and ry = 0.15 GeV gives g(z} = 0.48 and f(z) = 2.5 for § — c and
¢(2) = 0.99 and f(2) = 3.5 for & — u. The total semileptonic rate is then

szs
T(b — Xene) = £ [0.41 Wl +079. |v,,,,12] . (L.11)

This calculation suffers from a large uncertainty due to the factor of mj. While the
masses of the B-mesons are well known, the m; which appears in the expression
is the mass of the “bare” quark and is uncertain at least at the level of 0.2 to 0.4
GeV. This produces an uncertainty on T which is comparable to that due to the
erroy on Ty, .

The difficulty associated with the mE term can be alleviated ( albeit jn a mode!
dependent way ) by using some of the information which can be obtained from the
momentum spectrum of electrons produced in the decay of B-mesons. The end
point of the electron spectrum is sensitive to the mass of the bottom quark as well
as to the mass of the charmed quark. B-mesons are produced copiously in ete~
annihilations at the T{4S). Two experiments at CESR have reported results on the
lepton spectrum.14:16 In fitting the momentum spectrum from the decay b — cep,
it is necessary to account for the efiect of the binding of the bottom quark to the
spectator quark. The model used here is due to Altarelli et. al.!® It accounts for
the Fermi motion within the meson in a way which respects kinematic constraints.
In particular, if the B-meson has a mass of Mz and the spectator quark has a mass

of m,p, then the b-quark mass is taken to be

mZ =M% + mZ, - 2Mp [ + m2,, (112)

10

z=1m, / m,

Figure 1.7. Corrections to the leptonic decay rate of B-hadrons. The
lower curve labelied g(z) is simply a phase space correction caused by the
non-negligible mass of the charmed quark in the final state. The upper
curve is due to lowest order QCD corrections to the simple spectator model
caleulations ( see equation 1.10 ). This analysis uses z = 0.34.

where p is the spectator momentum which is randomly distributed according to

P(p)pidp = ‘/;p% exp (* 1—:5) pidp. {1.13)
In this expression pr is a parameter which describes the Fermi motion. J. Lee-
Franzini has used this procedure to fit the CUSB electron data taken at the T (45).16
The §it takes into account gluon corrections as calculated in ref. 8 and accounts
for the initial velocity of the B-meson, detector resolution, and other sources of
electrons. She finds my = 5.0 GeV and m. = 1.7 GeV. Acceptable fits are obtained
using various values of m,p and pr in the range of 0 to 300 MeV. The uncertainty
on my and m. associated with this is apparently small ( & 0.05 GeV ) compared
to the uncertainty on r,. While this model has an obvious intuitive appeal, it is

not clear how large the systematic uncertainties sssociated with it are, Using the
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values of my and m, obtained above and my = 0.15 GeV, the total semileptonic
decay rate is

G?m}

T(b— Xewe) = 19273

[0.37 Va2 +0.79- |V.,,,|-"} . (1.14)
24}
For my = 5.0 GeV the ?9_2% term becomes 1.08 - 1024 sec—! 50 that the total rate

can be written as
T(b — Xeme) = [0.40- W + 085 - |vu,,1=] . 10Msec 1, (1.15)

An alternative approach is to calculate the semileptonic decay rates of B-mesons
into specific decay products and to then sum the different channels to get the
total rate.1718 This requires a model for the B-meson involved as well as for its
weak interactions. The matrix element is w™- “ified so that it has the form { for
B - XgePe; g=Db,c):

M = S Vigena(1+ o) (Xotoe52)li418(02))- (1.16)

The new object on the right hand side describes the hadronic part of the decay.
In refs. 17 and 18 the hadrons are described by a non-relativisiic quark potential
model. Within this model the quarks are given masses of mu = my = 0.33 GeV,
m, = 0.55 GeV, m, = 1.82 GeV, and my, = 5.12 GeV, The authors find that for the
decay B — X,eD, the decays to D and D* account for nearly the entire rate. They
find the contribution to the total rate from b — ¢ decays to be 0.58-1014 |V, 4|2 sec™1.
The uncertainty on this, which comes from varying the wave functions in the
quark model, is estimated to be less than 20%. This compares with a rate of
0.49-101)V,3|? sec—1 which is obtained for free quarks with the masses used in this
model. For the case of B — Xyeb,, they find that the total rate is not saturated by
the decays to the lowest lying states and that the absolute normalization of their

answer is quite sensitive to the wave functions used. They suggest using a free

12

quark rate of 1.18 - 1014]V,3j2 sec™! for the b — u decays. This results in a total

semileptonic rate given by
_ 2 2 4, —1
L(b — Xeoe) = [0~58'|Vcb| + 118+ [V ] -10Maec™ (117}

This differs substantially from equation 1.15. For the b — u transition this
difference stems partially from the larger value of m;, { = 10% ) and partially from
the lack of a QCD correction { &~ 20% ). €ince the b — u transition makes only a
negligible contribution to the total rate { see Chapter 6 ), this difference does not
affect the constraints on [V,p|. The difference for the b — ¢ transition is larger than
for the b — u transition and directly affects the constraints on |V,y|. The factor
of 0.58 in equation 1.17 is approximately 20% larger than the corresponding free
quark factor of 0.49. This is within the 20% uncertainty claimed by the authors
in ref. 17. The free quark factor of 0.49 is approximately 20% lazger than what
appears in equation 1.15. This difference is due to the different quark masses and

the lack of a QCD correction,



13

2. THE DELCO DETECTOR '

This thesis is based on data taken with the DEL 201 detector at the PEP e+e—
storage ring. Fig. 2.1 shows a cross section of the detector and Fig. 2.2 shows an
end-on view. DELCO ran at interaction region 8 until the spring of 1984. It logged
data corresponding to a total luminosity of 214 pb=". All of this data was taken at a
center of mass energy of 29 GeV. The DELCO detector emphasizes the identification
of electrons at relatively low momenta, Thke detector combines charged particle
tracking from drift chambers in a magnetic field with particie identification from
an atmospheric pressure Cerankov counter. Since one of the principle aims of the
detector was to study the production of electrons from the decay of heavy ( charm
and bottom )} quarks, particular attention was given to the problem of detecting
electrons in hadronic events. The major backgrounds come from the production of
real electrons by gamma conversions and Dalitz decays. Particular effort has been
made to minimize the amount of material before the Cerenkov counters ard thereby
mipimize the number of conversion electrons produced. The material between the
beams and the beginning of the gas volume in the Cerenkov counter amounts to
only 3% of a radiation length for the final configuration of the detector. This
material is summarized in Table 2.1, There is a second set of drift chambers outside
the Cerenkov counters. In addition to providing tracking information, gamma
conversions which are not detected in the inner tracking chambers can sometimes

be tagged by the presence of track stubs in these chambers.

2.1 CHARGED PARTICLE TRACKING

The direetion and momentum of charged particles are measured by three sets
of drift chambers ir. 8 magnetic field. The magnetic field is produced by a set of
coils and an iron flux return. The field ( which is far {from uniform ) is 3.3 kG at the
center of the detector and has a total integrated bending strength of 1.8 kG-m. The

momentum resolution is 2 = (0.027 + 0.062p2) 7, where the first term comes from

t MELCO is an acronyzm for the Direct ELectron COunter.
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Figure 2.1. A cross section of the DELCO detector. Limited material
between the interaction point and the gas volume of the Cerenkov counter
reduces the number of electrons produced by gamma conversions in
hadrenic events. This allows the efficient identification of low ruomentum
electrons from heavy quark decay.
multiple Coulomb scattering and the second from the limited resolution of the drift
chambers. The drift chamber closest to the beam pipe is the Inner Drift Chamber
{IDC ). Immediately outside the IDC is the Central Dzift Chamber ( CDC ). The
last drift chambers, the Planar Drift Chambers { PDC's ), are the anes mentioned
above which are outside the &erenkov counter. All of the drift chambers ran on
a mixture of 50% argon and 50% ethane in 1982, and Q0% argon, 8.5% carbon
dioxide, and 1.5% methane in 1983 and 1984. The &rift chambers were read out
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Figure 2.2. An end-on view of the DELCO detector. The fine segmentation

in the Cerenkov counter ( 36 cells } is necessary in order to identify

electrons in hadronic events,
using multi-hit TDC's with 4 nsec bins.1? These drift chambers pravide solid angle
coverage over approximately +0.8 in cos# ( 8 is the polar angle ) and very nearly
2n in ¢ ( ¢ is the azimuthal angle ). Because of the importance of minimizing the
material in the detector before the Cerenkov counter gas volume, the walls of the
drift chambers and the beam pipe were made from a hexagonal cell core material
sandwiched between two thin skins of aluminnm.202! Ax stated previously, this
technique made it possible to reduce the material before the Cerenkov counter to

only 3% of a radiation lenpth.

1e

Table 2.1. A summary of the material in DELCO. The numbers given are
for tracks at normal incidence. Two numbers separated by a slash indicate
changes ta the detectar. The original thick beam pipe and the entrance
wall of the Cerenkov counter were replaced between '83 and '84. The two
numbers given far the Cerenkov gas correspond to isobutane and nitrogen

respectively,
Material in DELCO
What # of radiation lengths
beam pipe 0.0225 / 0.0059
IDC - entrance 4.0070
- Ras + wires 0.0033
- exit 0.0019
CDC - entrance 0.0035
- gas 4+ wires 0.0041
- exit 0.003%
Cerenkov - entrance 0.0040 / 0.0014
- gas 0.0047 / 0.0028
- mirrors 0.0540
- exit 0.0710

2.1.1 The inner drift chamber

The IDC consists of 6 layers of sense wires with 64 cells per Jayer in a cylindrical
geometry. The active volume of the chamber is 62 cm in length. The wire pattern
and a typical residual distribution are shown in Fig. 2.3 for one Jayer. The other
layers are similar, The sense wires were operated at ground potentisal, the field wires
st approximately -2.4 kV and the guard wires at approximately +1.2 kV, These
voltages varied from year to year depending on the gas nsed and on the amovni of
background radiatjon produced by the storage ring. The sense wire pattern at z=0
is shown in Fig. 2.4. The inner layer of the IDC is at a radius of 12,07 ¢m and the

spacing between the layers is 1.71 cm. Alternate layers are offset in ¢ by one half
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Figure 2.3. Wire pattern for one cell and residuals in the IDC for layer

3. The sense wire appears as a small diamond, the field wires as vertical

crosses and the guard wires as diagonal crosses. The curve is a Gaussian

fitted to the residual distribution.
of a celt width so that the lefi/right ambiguity can be resolved. In layers 3 and 4
the wires run paralle] to the z-axis. The wires in the remaining layers are tipped
at a small angle relative to the z-axis to provide information on the z-coordinate
of the track origin and the track’s dip angte. This small “stereo angle” is achieved
by displacing the wires by two cells in the end plate of the drift chamber. This
displacement results in a sterec angle of 8, = 2.9°. Layers 1 and 2 are tipped in
the same direction and layers 5 and 6 are tipped in the opposite direction. Because
the precision obtained in this drift ¢hamber is central to the lifetime measurement,
special care has been taken in locating the wires. The mechanism used is shown
schematically in Fig. 2.5.22 It results in wire location errors less than 60 pm. This
chamber achieved the best resolution of the three tracking chambers in DELCO.

The resolution obtained for each year and layer is shown in Table 2.2,

2.1.2 The central drift chamber

The CDC consists of 10 layers of wires with 64 cells per layer in layers 1 to 6

and 96 cells per layer in layers 7 to 10. The active volume of the chamber js 100 cm
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Figure 2.4, Sense wire pattern in the IDC. This figure shows the wire

locations in the z=0 plane ( the r-axis is oriented along the beam line ).

The first two layers and the last two layers are at amall angles relative

to the z-axis. Alternate layers are staggered to allow for the resolution of

left-right ambiguities. Only sense wire locations are ahown in this figure.

For the location of the field and guard wires relative to the sense wires,

see the cell in Fig. 2.3.
in length. The wire pattern is similar to that in the IDC and a typical cell is shown
in Fig. 2.6 along with & typical residual distribution. The sense wires were operated
at ground potential, the field wires at epproximately -2.8 kV and the guard wires
at approximately -1.4 kV, These voltages varied from year to year. As in the IDC
alternate layers are offset by one half of a cell width. In the CDC layers 1,2,56,8,
and 10 have their wires parallel to the z-axis. Layers 3 und 4 have & stereo angle
in one direction and layers 7 and 8 hzve a stereo angle in the opposite direction.
In the CDC the stereo angle results from a displacement of one cell width which
produces a stereo angle of 8, ~ 1.7°. The resolution obtained for each year and

layer is shown in Table 2.2.
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Table 2.2. Drift chamber resolution by layer and year. Numbers given are

A rme e Eoseo obtained from a least squares fit of Gaussians to the residual distributions.
K Feoetn w8 Guteve They represent averages over all the cells in a layer.
K e 1DC resolution Year
{um) 1082 1983 1884
/ ( Jayer 1 142 221 141
/,; - & AW layer 2 137 212 142
4 layer 3 165 209 180
layer 4 159 213 186
layer 5 127 199 155
Figure 2.5. Drift chamber feedthroughs. This figure shows a cross section layer 6 131 205 135
of the mechanism used to locate the wires in the IDC. In each end plate
there are plastic ( Delrin ) feedthroughs (A} which provide high voltage DO resotot
insulation between the wires and the end plate. The wire is located and resolution Year
held in the feedthrough by means of a hollow stainless steel crimp pin (B). {um) 1982 1983 1984
The crimp pin is retained in the feedthrough by means of the crimp in hyer1 194 280 228
conjunction with either a metal sleeve (C} or a spring (D). The springs
serve t0 maintain a constant tension on the wires during the stringing - layer 2 bd 206 185
process. A gas seal is provided by a drop of epoxy around the crimp pin layer 8 162 228 191
and a layer of cast silicon rubber between the plastic feedthroughs and the Jayer 4 s PN 210
aluminum end plate.
layer 5 151 215 185
2.1.3 The planar drift chambers layer 6 151 224 170
. . . . . layer 7 170 231 186
The PDC’ consist of six sets of planar chambers with six layers in each set. ek
. layer 8 184 238 198
Each set covers approximately one side of a hexagon around the outside of the
layer 9 173 201 178
Cerenkov counter. Fig. 2.7a shows a schematic representation of the construction layer 10 214 257 253
of one layer of the PDC. Layers 1,2,5, and 6 run parallel to the z-axis and layers
3 and 4 are at large stereo angles of £30°. The residual distribution for layer 3 is PDC resolution Vear
shown in the same figure. The resolution obtained by layer and year is shown in {rsm) 1982 1983 1984
Table 2.2. The ribs are operated at -3.2 kV and the wire at 2.0 kV, These voltages layer 1 505 sm 164
also varied from year to year. layer 2 536 595 512
layer 3 441 505 308
2.2 THE CERENKOV COUNTERS layer 4 460 529 s
N . . . . . 1 5 7
Electron identification in the DELCO detector is provided principally by & large T sed o £0
layer 6 600 683 860




21

T Y T T

+
x
+

+ . + B N .
g
+ x + g L
— = {0cm 1
I
-1000 -500 [+) 500 1000

CDC fit residuals { um )

Figure 2.6. Wire pattern for one cell and residuals in the CDC for layer

2. The sense wire appears as a small diamond, the field wires as vertical

crosses and the guard wires as diagonal crosses. The curve is a Gaussian

fitted to the residual distribution,
solid angle Cerenkov counter. This counter covers from +0.62 to -0.62 in cos8 and
nearly all of 27 in ¢. The counter system is segmented in both ¢ and 8. Each cell
of the counter covers from 0 to 0.62 { or -0.62 ) in cos# and 20° in ¢. A cross
section of one ¢ell of the Cerenkov counter is shown in Fig. 2.8. The ellipsoidal
first mirrot in the Cerenkov counter provides for a constant path length between
the interaction point and the phototube face independent of the initial direction of
the particle producing the radiation. Because of this all light produced by particles
originating from the interaction point arrives at the phototube face at the same time.
The faces of the phototubes { 5 inch diameter RCA 8854 Quantacons ) are coated
with p-terphenyl, a wavelength shifter. This improves the total light yield since a
substantial part of the Cerenkov radiation is in the UV where the glass window of
the phototube is absorptive. The p-terphenyl absorbs the short wavelength light

and re-emits it at a longer wavelength which can be transmitted through to the
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Figure 2.7. A cross section and the residuals for a layer in the PDC. The

curve is a Gausgsian fitted to the residual distribution.
photocathode. As in most of the counter systeran at DELCO, the phototubes in
the Cerenkov counter are *read out” in three separate ways. For each tube there
is a latch to indicate the presence of a signa), 3 TDC ( Lecroy 2228A ) which gives
the time of the signal relative to the beam crossing, and an ADC { Lecroy 2249A )
to record the amplitude. Fig. 2.9 shows a seatter plot of the pulse height in the
Cerenkov counter versus momentum for isolated iracks in hadronic events. The
quantity plotted here is the “corracted number” of photoelectrons. This is obtained
from the “raw number” ( ADC information after pedesial subtractions and gain
corrections ) by making corrections for the path length in the radiator, the curvature
of the track, and the Cerenkov light spot size on the phototube, A separate band
is clearly visible for pions above threshold. Isobutane was used as the radiator for
the data in this figure. Two different gases where used as radistors. A total of 147
pb—! of data was taken with isobutane and 67 pb~? with nitrogen. The indices

of refraction and corresponding minjimum momenta to produce Gerenkov radiation
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Figure 2.8. A cross section of the Cerenkov counter showing the optics
involved. The mask restricts the Cerenkov solid angle to be the same as
that of the PDC’s.
are given in Table 2.3. This counter system suffers from a single photoelectron
background in hadronic events. This is believed to be due to photons from very low
momentum electrons which can be reflected repeatedly between the mirrors of the

counter before finally entering a phototube. 23

2.3 THE TIME OF FLIGHT COUNTERS

Additional particle identification is provided in the DELCO detector by a time
of flight system. This system consists of 52 plastic scintillators each approximately
3.2 m long, 2.5 cm thick, and 20 cm wide. They are located outaide of the PDC’s and
run parallel to the beam line. They are read out by 2 inch diameter phototubes on
each end. Both timing and pulse height information is digitized for each phototube.
( The pulse height information is used to perform slewing corrections. ) A time

zesidual distribution for theae counters is shown in Fig. 2.10. These counters are
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Figure 2.9. Pulse height in the Cerenkov counter versus momentum for
isolated tracks from hadronic events. This data was taken with isobutane
as a radiator. The pulse heights shown have been corrected ( see the text ).

Table 2.3. Characteristics of gases used as radiators in the Cerenkov.
counter. The index of refraction ( n ) and the minimum momentum to
produce Cerenkov radiation for pions ( px ) and kaons ( py ) are given for
the two gases.

GAS n Pr PK

1.00144 2.7 94
1.000295 | 5.6 | 20.0

isobutane

nitrogen

not directly used in this analysis.

2.4 THE SHOWER COUNTERS
The DELCO detector contains three sets of lead/plastic-acintillator shower
counters. These shower counters obtain anly a modest resolution in both energy

and angle and are used primarily for tagging or to confirm particle identification
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Figure 2.10. Residual distribution for the T.O.F. system. The tracks are
electrons in two-gamma events. Quantity plotted is the difference between
the counter time and the time expected for a § = 1 particle,

already made in the Cerenkov counter.

24.1 The barrel shower counters

The largest system of shower counters is the barrel shower counter which is
located just behind the TOF aystem. The counters are made up of three layers of
lead and plastic scintillator. Each layer of lead or scintillator is 3.25 c¢m thick iur
a tctal of 6 radiation lengths. These counters are used in the clectron analysis
to provide confirmation of the particle identification provided by the Cerenkov
counter. In solid angle they cover approximately 30.62 in cosé and most of 27
in ¢, There are small gaps in ¢ at the corners of each sextant. This system is
broken into 48 segments in ¢. Position resolution in the z-directian is obtained by
timing information on the first layer and by segmentation (0 to +0.62 and O to
-0.62 in cosd ) in the other two layers.

2.4.2 The pole tip shower counters

The magnet. pole tips are covered with a system of showe: counters which

provides tagging for events in which some number of particles strike the pole tips.
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These counters cover fromn 0.79 to 0.95 and from -0.79 to ~0.98 in cos # and essentially
2% in ¢. They are segmented in ¢ with each section covering 20° and have a total
thickness of 5 radiation lengths. The scintillator is read out by BBQ bars which run
radially along each section. They are used ounly indirectly in the electron analysis
to tag ( and remove ) hadronic events in which a large part of the energy missed

the tracking volume of the detector,

2.4,3 The luminosity monitors

These counters provide tagging at very smalf angles relative to the beam. They
cover from 0.025 to 0.068 and from -0.025 to -0.068 in coa# and essentially 2x in
¢. Each segment covers an interval of 60° in ¢ and hax a thickness of 16 radiation

lengths. They are used for luminosity measurements and to tag two-photon cveats.

2.5 THE BEAM POSITION MONITOR

The position of the interaction point is determined on an event by event
basis by the beamn position monitors { BPM's ). Thef consist of two sets of four
“beam buttons” lacated 3.7 meters on &ither alde of the interaction point, The
“buttons,” which are small electrical probes which intrude into the beam pipe,
are shown in Fig. 2.11. The passing beam bunch induces a signal in them which
depends on the current in the ring and on the position of the beam relative to the
buttons. The signals from these probes are first processed in a “stretcher” where
the signal is rectified and broadened, and then the total integrated charge is
measured in a Lecroy 2249A ADC. The raw signals for one set of buttons are

given by v; (i = 1,4) and gain and pedestal corrections are applied by
ag = ¢ (v,- - p.')‘ (2.1)

These quantities are proportional to the current in the storage ring. Due to the
symmetry of the buttons, for small displacements about the center, the changee in

:‘” .
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Figure 2.11. Cross section of a beam position monitor. Only the upper
left hand assembly is shown complete. The other three are similar. The
probe extends 0.5 mm beyond the inner circumference of the beam pipe.

the signals induced in the buttons will cancel each other so that

(22)

is independent of the position of the beam and proportional to the current in the
ring. Dividing by A removes the current dependence so that the quantities

a3 +a3 -6y —
z=c, BTN

(2.3)

and

v=e¢ ‘a1+az—a3-—a4
=gy ————

(24)
give the position of the beam at the BPM. The constants c; and ¢y are determined

prior to installation for each set of buttons by pulsing a probe placed between the

buttons and observing the change in the signals induced as the probe in moved.

The ¢’s are all approximately 5 ¢m. The position of the beam at the interaction
point is interpolated from the position of the beam at the two BPM’s. The location
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Figure 2.12. The y-coordinate of the beam position as a function of time

as determined by the beam position monitor. The particular data shown

here is from early 1983.
of the BPM system relative to the detector is determined using tracks from Bhabha
events.

This measurement is sensitive to pedestal errors. For instance, if ¢; is the
pedestal error for the i'th channel, then ( assuming g; = 1) the error in x is

eatez—e;—ey

Ax=c¢; Y

(2:8)

As a result, if a; is typically 500 ADC counts, then a one-vount pedestal error
produces a position error of 25 pm. The average value of this error is taken out
in the process of surveying the BPM’s relative to the detector; however, since 4 is
proportional to the current in the ring, part of the error will remain. Fig. 2.12 shows
the y-coordinate of the beam position as a function of time for a particular run block.
Prior to correct pedestal subtractions, this distribution had a pronounced saw-tooth

shape due to an interaction between the pedestals and the changing current in the

storage ring during a run,

2.8 THE TRIGGER
The DELCO detector employs a collection of triggers which will be described
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below. Because the lifetime analysis does not j.nvolve measuring cross sections,
questions of trigger efficiency are not important and therefore only a brief discussion
of the trigger will be given. Because hadronic events have many tracks and because
they generally deposit a fair amount of energy in the shower counters, there is a
high probability that they will satisfy more than one of the triggere.

The high rate at which beam crossings occur at the PEP storage ring (417 khz )
requires the use of a two stage trigger. The first stage employs only information from
the various shower counters and the Cerenkov counter. If these counters indicate
that an event has occurred, then a second stage is employed which uses information
from the tracking chambers ( the IDC and the CDC only ). The hardware tracker
involved has been described previously.?4 It uses the drift chamber information
( hits only without regard to time ) to detect the presence of a “track™ pointing
to a latched shower counter, If such a “track” is present, then the event is read
aut. More specifically, the followitig collection of counters is sufficient to produce a
trigger if the hardware tracker finds a track:

e Two barrel shower counters latched in two different sextants of the detector.
o A latched Cerenkov counter and a latched barrel shower counter in the same
sextant.
¢ A latched barrel shower counter plus a poletip counter with’ a minimum
energy.
s A laiched barre] shower counter plus a luminosity monitor with a minimum
energy.
In addition to these triggers which require the presence of a charged track in the
detector, there ate several neutral triggers which do not require & charged irack,
These are;
o Two barrel shower counters latched in two different sextants plus a minicmum
total energy deposited in the barrel shower counter.
+ Four barre! shower counters latched in four different sextants.

» A latched barrel shower counter and a Jatched Cerenkov counter in the same
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sextant. This trigger is scaled by 128.

Two pole tip counters opposite each other with sufficient energy. ( This
trigger is intended to catch Bhabha events where the tracks go into the
poletips. )

Two luminosity monitors opposite each other with sufficient energy. { This
trigger is intended to catch Bhsbha events where the tracks go into the
luminosity monitors. ) This trigger is prescaled by 128.
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3. THE ELECTRON ANALYSIS

It is clear from the proceeding chapter that the DELCO detector was designed
with an eye toward the analysis which will be described in this chapter. This chapter
logically breaks into two halves. The first describes the filters whizh are used to
separate out events which contain an “electron.” Because not all tracks identified as
“electrons” are in fact really electrons and because there are various sources of real
electrons in the data, it is necessary to fit the data to a model in order to extract
the physics from it. This fit is described in the second half of this chapter. The
results of this fit are used in the subsequent chapters which deal specifically with

the lifetime measurements.

3.1 THE Passl FILTER

The PASS] filter described here is the first step in the off-line analysis. Its
purpose is 1o separate the triggers caused by rea) physics events from those caused
by various sorts of noise in the detector. These “noise events” make up the majority
of the triggers. This separation is not Aifficult for hadronic events because of the
large number of charged tracks they typically com.‘a.in and because they produce a
total visible energy which is of the order of the beam energy. For this reason and
because questions of overall efficiency are irrelevant for the bottom lifetime analysis,
this filter will not be described in great detail. There are two principal paths by
which a hadronic event can pass this filter.?5 The first requires only that the event
produce a sufficient response in the barrel shower counter. Specifically, there must
exist at least two clusters of energy in the shower counters. Each cluster must have
an energy of at least 40 gep crossings.25 The second requires that there be at least
two charged tracks in the event. At least one of these tracks must have produced a

consistent response in either a time of flight counter or in a barrel shower counter. In

either case a hadronic event in which the jet axis points into the detector acceptance
will almost certainly pass.
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3.2 THE HADRON FILTER

The first step in the electron analysis is to melect a hadronic data set from
the output of the first pass. Hadronic events produced in e*e~ annihilation at
29 GeV are distinguished by large multiplicities and large visible energies. The
filter described below cuts on these quantities to separate the hadronic events

present at the output of the PASS] from the obvious non-hadronic events ( i.e.

ete~ — ete,ptu, 11, and low multiplicity two-gamma events). These cuts
are followed by other cuts which remove the more hadron-like backgrounds which
remain. To minimize the use of computer time, the filter is divided into two steps.
These two steps correspond to the two stages of track reconstruction. At the first
stage various comhinations of drift chamber hits are compared to a particle path
which is based on a simple parameterization in order to “recognize” the tracks. The
cuts applied to each event after this stage are:

¢ The total number of tracks found must be at Jeass 5.

o The sum of the momenta of all the tracks must be at least 2.5 GeV. For this
cut and all cuts involving track momentum ( p }, tracks with p > 14.5 GeV
( the beam energy ) are assumed to be mismeasured. Such tracks are given
a momentum of p = 14.5 GeV.

o The tota! energy { E¢ ) in the event must be greater than 5.0 GeV. The total
energy is defined as the sum of: (1} the sum of all track momenta, (2) the
sum of all the energy in the barrel shower counter and, {3) the sum of all the
energy in the pole tip counters. { For the last two the energies are corrected
to minimize douhle counting of charged energy. This is done by subtracting
the expected counter response assuming minimum ionizing pasticles. )

s At least three of the tracks in the event rust have at least two hits from
PDC wires wkich run paralle} to the beam line. This cut helps remove “noise
events." In such events the drift chambers in the center of the detector
will have a great many hits which are erroneously identided ms tracks. Such
“tracks” will seldom contain hits in the PDC’s because the PDC’s, which
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are located outside the Cerenkov counters, are distant from the other drift

chambers and not usually affected by the noise.
These cuts are followed by two more which remove events which originate in the
interaction of an electron from the beam with a residual gas molecule in the
beam pipe. Such events are characterized by a large asymmetry because the total
momentum of the beam-gas system is equal to the beam momentum ( as opposed
to zero for beam-beam interactions ), and by initial z-coordinates which have a flat
distribution. { The beams are paraliel to the z-axis. ) The cuts which remove such
events are:

e The energy asymmetry { Egsym ) of the event must be

Easym < 0.224 - \/E; - 5.0, (3.1)

where energy is measured in GeV. The asymmetry is defined as Eggym =
(BEe+ P:)/Ei whete E. = ¥ E;-cos6; . The sum is over shower counters aad
8, is the polar angle. The quantity P is defined similarly for charged tracks.
e The difference between the average z-coordinate of the origin of all the tracks
and the z-coordinate of the beam center must be less than 4.5 cm.
The second stage of track reconstruction consists of another fit of tha track to
the drift chamber hits. At this stage a full “swim™ of the particle through the
nonuniform magnetic field is employed. Drift chamber hits may also be added or
deleted, based on the improved information from this “swim”™. In the following a
“good” track is one which: (1) has at least twelve drift chamber hits, (2) has a
distance of closest approach to the beam of less than 2 cm and, {3) had a good x?2,
etc. during this second stage of track reconstruction. The following cuts are just
tighter versions of the previous cuts:
s There must be at least five “good™ tracks.
e The sum of the momenta of the “good” tracks must be at least 6 GeV.
s The average 2-coordinate of the origins of the “good” tracks must be within
4.5 cm of the z-coordinate of the beam.
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The last two cuts in the hadron filter are used to ensure that most of the event went
into the part of the detector which is well instrumented. Hadronic events which clip
the edge of the tracking chambers can produce events which are asymmetric and/or
deposit a lot of energy into the poletip counters.
e There must be at least two tracks in each event hemisphere. The event is
divided into two hemispheres by a plane perpendicular to the sphericity axis.
This cut also removes certain two-gamma backgrounds.
e The total energy in the pole tip counters must be less than 200

GeV ( corrected for charged energy as above ).

3.3 THE ELECTRON FILTER

The PASS1 filter ( which separates real events from “junk” events ) and the
hadron filter { which separates hadronic events from all other events ) are followed
by one more filter which identifies events which contain electrons. The particle
identification in this filter is provided by the Cerenkov counters in conjunction with
the shovver counters. These systems were described in the previous chapter. The
electron filter logically breaks into four parts. The firat part attempts to define
a “good” Cerenkov cell; the second remcves identifiable backgrounds; the third
decides which of the tracks in the cell could have produced the Cerenkov and barrel
shower counter responses associated with it; and the last ( which is used only in
the case where thers are multiple tracks in the cell, all of which are consistent
with the barrel shower and Cerenkov responses ) applies a minimum x? selection
criterion to the tracks in a cell in order to select the one which is most likely to be
an electron. The first part of the filter, which defines a good Cerenkov cell, consists
of the following cuts:

> The time for the cell must be within &1 nsec { £1.5 nsec if nitrogen was
used as the radiator ) of the expected time. Early times are often the
result of particles striking the phototube. Such particles may be produced by

beam-beam interactions and travel directly from the interaction point to the
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phototube or they may be degraded beam particles which strike the detector
from the outside.

e The number of charged tracks which pass through the cell must be less than
six. The probability of correctly identifying the electron in & group of six or
more particles is very small. Most events only have one or two tracks in a
cell.

» The momentum of all the tracks in the cell must be less than 2.5 GeV ( 5.5
GeV for nitrogen ). These numbers are slightly below the threshold for
the production of Cerenkov radiation by pions in isobutane and nitrogen
respectively.

¢ The raw pulse height recorded for the phototube in this cell of the Cerenkov
counter must correspond to more than 1.75 photoelectrons. This removes
the 1 photoelectron background merntioned in the previous chapter.

These cuts are followed by another set which is aimed at removing backgrounds.
Since a pion with momentum less than pion threshold never turns on a Cerenkov
counter, backgrounds are always caused by electrons. Tilese backgrounds either
take the form of an electron from & gamma conversion { or from a #° Dalitz decay )
appearing directly, or of an electron from a background source which is missed by
the tracking program, but which turns on a Cerenkov cell which is occupied by a
pion. The following cuts are aimed at eliminating events in which the electron was
not tracked in the central tracking chambers { the IDC and the CDGC ):

¢ There must not be any track stubs found in the drift chambers behind the
Cerenkov cell ( the PDC’s ). This cut remaves events in which a gamma
converted in the outer parts of the drift chambers or in the Cerenkov counters
80 that no recognizable tracks were left in the IDC or CDC, Electrons from
such gamma conversions may produce track stubs in the PDC's.

e There must not be any adjacent empty Cerenkov cells fired. Such cells can’

be produced by gamma conversions in which the produced electron cresses

more than one cell.
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The following cuts are aimed at picking up gamma conversions which occurred
early enough in the detector for all or part of the products to have been successfully
reconstructed by the track-finding programs:

e Every track in the cell must have a hit on the first or second layer of the
IDC. This cut removes events in which a gamma converted inside the central
drift chambers. Likely places for such a conversion are the walls separating
the IDC and the CDC.

e Every track in the cell must have a distance of closest approach to the beam
of less than 0.3 cm. Electrons from gammas which convert in the beam
pipe will appear to nave originated away from the beam because of their
curvature in the magnetic field. The 0.3 em cut is as tight as can be used
without introducing a significant bias into the lifetime measurement.

» Every track in the cell is paired with other tracks in the event %o look for
pairs consistent ( on the basis of kinematic cuts ) with their having come from
a gamma conversion. Any cell which contains a track identified as coming
from a gamma conversion is dropped.

« Each event is visually scanned for the presence of gamma conversions. In
a certain fraction of the gamma conversions, one of the electrons receives
most of the momentum from: the original garama. This results in a soft
track which curls up inside the central tracking chambera, Such tracks are
difficult to find using the tracking programs, but easy to see on the single
event display. Events with such tracks, where the soft track could be paired
up wi*l 17 2 electron, are dropped.

After these cuts a further set of cuts is applied to the individual tracks in the
Cerenkov cell. It is not necessary for all the tracks in the cell to pass the following
cuts, but in order to be considered as an electron, the track in question must pass
them:

e The track must use at least 16 drift chamber hits. Of these at least two must

be from wires thet are paralle] to the beam and in the drift chambers which
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are located outside the Cerenkov counters { the PDC's ). These two cuts
ensure that the track is well measured in the drift chambers.

® The track must strike a barrel shower counter module and the emergy
measured in that module must be large enough to be consistent with the
track having been produced by an electron. No upper limit is placed on
the shower counter response becsuse of the possibility of mote energy being
deposited in that counter by other particles,

o The number of photosiectrons in the Cerenkov counter must be consistent
with their having been produced by the track in question. ( Because of the
small number of photoelectrons produced in the nitrogen data, this cut is
not used there. )

In about 25% of the cases, there is more than one track in the Gerenkov cell which
passes all of these cuts. In this situation the “electren™ is selected based on the
barrel shower and Cerenkov responses. For each possible assignment of particle
types the expected counter responses are calculated along with their errors and
a x? is calculated based on the difference between the measured and calculated
response. The combination with the lowest x2 is accepted. These situations, which
typically involve just two tracks, occur mostly at low p and py and therefore have
only a small influence on the b-lifetime measurement. A scatter plot of the resulting

distribution in p and p; in shown in Fig. 3.1,

3.4 THE FIT TO THE ELECTRON SPECTRUM

The “electrons” identified by this filter are produced by several different
processes. The ones of interest to this analysis are from the semileptonic decay
of heavy ( bottom and charm ) hadrons. In addition to these “direct electrons”
there are background contributions to the signal from misidentified pions and from
electrons produced by gamma conversions and 7° and n Dalitz decays. These
sources of electrons are summarized here:

¢ The semileptonic decay of hadrons containing bottom quarks ( b — e ). The
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Figure 3.1. The distribution of the electrons in p and p. This figure

combines both the nittogen and the isobutane data.

number of electrons from this source is clearly proportional to the branching
ratio for B — eX. The distribution of electron transverse momentum (m}
is determined qualitatively by the mass of the hadron { 5.2 GeV )- The
distribution of electron momentum ( p) is determined by the hadron’s
mass and its momentum after the fragmentatjon process. The latter is
parameterized in a simple form ( the fragmentation funct.on ) and is included
in the fit.

The semileptonic decay of hadrons containing charmed quarks produced in
the decay of hadrons containing bottom quarks (b — ¢ — e}. The numberof
electrons from this source is proportional to the branching ratio for C — eX.
The distribution in p and p; of electrons from this source is 30ft because of the
two sequential decays involved, These distributions are clearly affected by
both my and m, as well as by the B-hadron momentum after fragmentation.
The semileptonic decay of hadrons containing charmed quarks produced
directly ( € — e ). This is very similar to the first source (bme)
considered above. The smaller masses involved here (= 1.9 GeV ) result
in a different p; distribution for electrons from this decay. ''his difference in

the p; distribution makes it possible to separate ( in = statistical sense ) the

R
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electrons from the decay of the two heavy hadrons.

¢ Pions which are misidentified as electrons. These are eaused by pions which
share a Cerenkov counter cell with an electron from a gamma conversion (or
possibly from a heavy quark decay, a Dalitz decay, or an envrgetic 6-ray ).
Since the momentum spectrum of pions in hadronic events peaks at low
momentum, this background will also peak at low momentum.

e Electrons from gamma conversions or from x° and 5 Dalitz decays. Since
most of the gammas come from #° decay and since most pions in hadronic
events are quite soft, the gamma conversion part of this background is
strongly peaked at low momentum.

¢ Electrons from the decays of 75 which were produced by the decay of
B-hadrons. Because of the similar decay chain and because the 7 mass
is similar to that of the charmed hadrons, the distribution in p and p; of
electrons from this source is very similar to that from b —+ ¢ — e. Because
the b — 7 branching ratio is expected to be small compared to b — ¢, this

source of electrons makes & small contribution relativetob — ¢ — e.

3.4.1 The method

The electron spectrum in p and pt obtained above is fit to obtain parameters
which will be used in the lifetime ar.3!veis. The quantities determined by the fit
are;

®  z,), which describes the average momentum of the hadrons containing bottom
quarks.

¢ 2, which describes the average momentum of the hadrons containing
charmed quarks.

® BR(b — ¢), the average semileptonic branching ratio for particles containing

bottom quarks.

e BR(e - ¢ ), the average semileptonic branching ratio for particles containing

charmed quarks.
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o sy, which scales the pion background. This parameter is introduced
to account for the uncertainty in the normalization of this background.
It is constrained to its nominal value by a Gaussien with a width
of 10% ( ox = 0.10 )

» s, which scales the gamma conversion background. This parameter is
introduced to account for the uncertainty in the normalization of this
background. It is constrained to its nominal value by a Gaussian with &
width of 10% (04 =0.10).

The likelihood function for the fit is

1 (1- a,)’) 1 (1—a,)?
L= Plziioni) ) - exp | — . exp{ —
1:_[ I;I ( 13 u) T P ( 202 ,—2“_0’ p ‘253’ s
(3.2)
where the first product runs over the 4 run blocks ( ’82, *83 iscbutane; '83 nitrogen;

'84 nitrogen; 84 isobutane ) and the second product runs over the various bins in

p and pr. The P(z;;,n;;) are just Poisson distributions:

e~ %zh

P(z,n) = .

: (33)

where the n;; are the number of events meacured in a particular bin for a particular

run block, and ;5 is the number expected. The z;; are calculated as follows:

. 4
Ty =205 [N,"’b -BR(b—¢)- Z axlas) - Pl (34)
k=1

B 4
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In the above N,'?5 is the number of b events expected in the j'th run block and
NJ‘.a is the number of ¢ events. The factor of 2 accounts for the fact that two
B-hedrons are produced in each bb event, etc. The factor of 1,167 is an estimate of
the average number of charmed hadrons produced in the decay of B-hadrons. It is
slightly greater than one because a c8 quark pair can be produced in the decay in
addition to the c-quark from .he b — ¢ transition.

The ¢;; term is a correction which accounts for deficiencies of the full detector
simulation Monte Carlo. The corrections are calculated in the following manner.
The cuts in the electron filter which depend on the Cerenkov tounter response or on
the barrel shower counter response are turned off. The efficiency of the remaining
cuts is measured versus p and p;. The ratio of the efficiency for the data to the
efficiency for the Monte Carlo is ¢;;. These numbers are of the order of 0.8 and are
tabulated in Appendix E. The final b-lifetime is insensitive to this correction.??

The backgrounds for the i’'th bin in the j'th run block are N‘-’; ' N;’j and
N‘T,- for pions identified as electrons, electrons from gamma conversions and Dalitz
decays, and electrons from [ e*e™ — 8B, b — 7X, 7 — eX ) respectively. The
backgrounds have been caleulated by two different methods. The gamma conversion
background is obtained from a full detector simulation Monte Carlo calculation as
is the { entirely negligible } tau background. The background due to misidentified
pions is obtained directly frorm the data by a “track flipping” algorithm. Because 2
pion below threshold never turns on a erenkov counter,28 the pion background can
be understood as a sort of “convolution” of the distrihution of vions in an event and
the distribution of turned on Cerenkov cells. This “convolution™ can be determined
from the data in the following manner. Bach track in each hadronic event is flipped
( one track at a time } across che sphericity axis for that event. The fipping process
consists of adding new drift chamber information to the event record for a track
with the same momentum but the opposite direction. The event record is also
modified to include a simulated response in the barrel shower counter. This new

event is then analyzed, and if the flipped track is identified as an “electron,” it is

€2

Table 3.1- Intervals used to calculate o and f; ( see equations 3.5 and
3.4 ). The intervals used do not extend all the way to zero because the
fragmentation function makes a negligible contribution in thoee regions.

interval number - k range - &y range - O3
1 0.35-0.50 0.10 - 0,30
2 0.50 - 0.65 0.30 - 0.55
3 0.65 - 1.80 0.55 - 0.80
4 0.80 - 1.00 0.80 . 1.00

counted as one background event.

The terms in equation 3.4 involvirg summations account for the dependence of
the electron spectrum on the fragmentation parameters z,, and z,.. The term
ay(z0p) is the probability that a B-zadron will have a momentum in the k'th
momentum interval given a particula: value of £y, and Bj(z.p) is the analogous
probability for C-hadrons. The a;’s depend on the shape of the fragmentation
function usel to fit the data. The shape used here is that suggested by Peterson

et. al.?° and has the form:

N

Dy(2) = —m—— 3.5
G( zqf:_;}s__(l_:q._q)_)z ( )

where ¢ = b or ¢ and N is a normalzation constant. The a’s and fp's are the
integral of this function over the intervals given in Table 3.1. The fit is done in

terms of the parameter Z,g which is rc'ated to ¢ by

1
=ig4 ——2, 3.6
=t {3.:6)

This results in more symmetric errar tars. This parameter can, in turn, be related

0z = %;‘il:.n by integrating [g(z) over the appropriate interval, i.¢.

7= [ 2 Dqla). )
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Pibjk is the probability that a B-hadron in the j'th run block, produced in the k'th
momentum interval, will produce an electron which is detected in the i'th p,p; Lin.
P}’fk is the analogous probability for the process ( ete~ — bb, b— ¢, ¢ = ¢ ) and
P‘ij for the process { e¥e™ — &, ¢ — ¢ ). These probability tables are calculated

using a full detector simulation Monte Carlo.

3.4.2 The results of the fit

Fig. 3.2 and Fig. 3.3 show the results of projecting the fit onto the momentum
and the transverse momentum axes. The first figure is for the isobutane data
and the second is for the nitrogen. ( Both data sets are fit simultaneously, The
projections are separated because the 2.5 GeV upper limit on p produced by the
pion threshald in the Cerenkov counters for the isobutane data produces as artificial
“step” in the momentum distribution. } From the figures it is clear that the
electrons from the b — ¢ process make the dominant contribution at pr > 1 GeV.
The beckgrounds are heavily peaked at low p and low ps. The agreement between
the fit and the data for the lowest two bins in p for the nitrogen data set is poor.
Whether this is a small error in the analysis or a statistical Buctuation is not known.
If tracks with p < 1 GeV are not used, the fit yields similar values for ail the
parameters.?0 The results of the fit are tabulated in Appendix E along with the
probability that a track in a given p and pt bin came from any of the various sources.
These probabilities are used in the maximum likelihood fit to obtain the b-lifetime.
From this appendix it is clear that there are almost no electrons from gamma
conversions and very few misidentified pions with p; > 1 GeV., The parameters from
the fit are summarized in Table 3.2 and in Table 3.3. The parameters which describe
the momentum spectrum of the parent hadron ( 2oc and 255 ) are also used in the
lifetime analysis. As will be demonstrated later, the momentum distribution of the
parent hadrons affects the distribution of the impact parameters of the hadrons’

decay products.

The statistical errors from the electron analysis introduce an uncertainty in the
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Figure 3.2. Projections of the fit to the isobutane data. Part (a} shows the result of
projecting the fit ta the electron spectrum onto the p-axis. The contributiors to the
£it are labelled on the figure. Part (¢) shows the contributions to the backgtound
in part (a). Part (b} shows the resuit of projecting the fit onto the py-axis and the
points and lines in this figure have the same meaning as in part {a). Part (d) shows
the contribution to the background in part (b).
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Figure 3.3. Projections of the fit to the nitrogen data. Part (a) shows the result of
projecting the Bt to the electron spectrum onto the p-axis. The contributions to the
Bt are labelled on the figure. Part (c) shows the contributions to the background
in part (a). Part (b) shows the result of projecting the fit onto the ps-axis and the

points and lines in this figure have the same meaning as in part (&). Part (d} shows
the contribution to the background in part (b).
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Table 3.2. Parameters estimated from the electron apectrum. Thia table
gives the estimated values of the fit parameters and the statistical errors.

parameter fitted value errors
Zob 0.83 +0.048 -0.060
Zoe 0.68 +0.050 -0.054
BR(b — ¢) 0.5 +0.019 0.018
BR{c — ¢) 0.12 +0.0066 -0.0065
L2 0.97 +0.090 -0.000
sy 1.07 +0.000 -0.090

Table 3.3. Correlation coefficients from the fit to the electron spectrum,

Z0p 2z, |BR(b—e) |BR(c—e) ax “l
Zoc -0.52 -
BR(b —¢) | 0.49 |-0.11
BR{c —¢) | 0.26 | 019 -0.53
- 0.05 | 0.09 0.21 -0.54
8y 001 |015 0.08 -0.13 -0.13

measurement of the b-lifetime. Because of the significant correlations between the
various parameters in the fit, it is not entirely straightforward to propagate these
errors through to the end of the lifetime analysis. The procedure used here is to
find another set of uncorrelated fitting variables which are linearly related to the
“physical” ones given above. Having done this, it is possible to propagate the errors
simply by changing each of the new variables by +1 sigma and observing the change
in 75. The resulting changes can then be added in quadrature. (This jast atep is
not justified in the presence of correlations. ) The uncorrelated variables are linear
combinations of the parameters given above. The coefficients are the elements of
the eigenvectors obtained by diagonalizing the inverse error matrix from the fit.

The errors on the new parameters are given by the square roots of the reciprocals
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Table 3.4. Uncorrelated parameters from the fit. The old parameters are
linear combinations of the new parameters. The coefficients are given in
this table ( Le., 2,5 = 0.02-p1+... ). The errors indicated are the statistical

errors on the new parameters.

parameter | errar Zoh, Zge IBR({b — e} I|BR{c —e) T-&ﬁ s-,j
1 £0.0043 | 0.02 0.04 -0.17 -0.98 -0.04 |-0.01
P2 +0.0152 | -0.21 -0.07 0.96 -0.17 -0.04 [-0.02
P3 +0.0362 | 0.63 0.74 0.19 0.01 -0.09 [-0.10
P +0.0652 | -0.74 | 0.65 012 0.03 004 [-0.11
Ps +0.0957 | -0.03 0.04 -0.02 0.02 -0.69 |0.73
P& +0.0850 | 0.00 -0.17 -0.05 0.04 -0.72 |-0.67

of the eigenvalues. The results of this procedure are shown in Table 3.4.
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4. THE IMPACT PARAMETER TECHNIQUE

The b-lifetime measurement repcrted on here is based on the impact parameter
technique. This method has been used previously by several different groups31,32,33
to measure the average lifetime of hadrons containing bottom quarks. The impact
parameter ( 6 ) is the distance of closest approach in the x,y plane of a track
to the nominal beam center. This is shown in Fig. 4.1. The sign of the impact
parameter is determined by the direction of the track relative to the assumed
direction of the parent hadron. This is done in a manner o that a positive §
corresponds to the parent hadron traveling a positive distance along its assumed

direction before decaying. The parent hadron direction is approximated by the

beam ellipse in the x,y plane

primary vertex

Figure 4.1. Definition of the impact parameter. A B-hadron is produced
at the point marked primary vertex. In this figure the B-hadron is shown
decaying into 3 charged tracks. Tracks 1 and 3 intersect the event axis at
spots which correspond to the B-hadron having traveled a positive distance
from the center of the beam ellipse before decaying, and they therefore have
§ > 0. Track 2 has § < 0. In this figure this arises because the primary
vertex is not coincident with the center of the beam ellipse. Impact
parameters less than zero are also produced by tracking resclution errors,
and by errors in finding the events axis. In this analysis the sphericity
axis, as determined from all charged tracks, is used as the event axis.
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Figure 4.2. A Monte Carlo calculation of ¢ ( the angle between the

sphericity axis and the B-hadron direction ).
sphericity axis for events in this analysis. Fig. 4.2 shows a Monte Carlo calculation
of the angle between the sphericity axis and the parent hadron. Typical errors in
the direction are about 15°. These errors are caused by the presence of charged
particles from the fragmentation process, by neutral particles produced in the decay
of .ie bottom hadrons, and by gluon radiation. As can be appreciated from Fig.
4.1, for events in which the angle between the parent hadron directisn and the decay
particle direction is not = 0° or ~ 90°, a small error on the parent direction has no
effect on 6. The systematic error associated with this will be discussed in the next
chapter.

This method of putting the sign on the impact parameter has important
implications. Since the sources of error in the measurement of § generally are
unrelated to the sphericity axis, this method w*!! flip the sign on & in a random
manner, Therefore, in the absence of particles with finite lifetimes, the average
value of 6§ (& ) will be zero. Because of this, any deviation of & from zero is
evidence for 2 non-zero lifetime. The contribution to § made by the finite lifetime
of the parent particle depends both on the parent’s path length and on the geometry
of the decay. From Fig. 4.1 it is clear that the decay products which make a small

angle with the parent direction produce small impact parameters and vice versa.
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p, ( GeV)
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Figure 4.3. Average impact parameter as a function of p and py for
electrons from the decay of B-hadrons, This figure is the result of & Monte

Carlo calculation with 73 = 1.0 psec. The dashed line showa the p = p;
limit.

This gives rise to substantial acceptance effects. Fig. 4.3 is a contour plot of a
Monte Carlo calculation of the average impact parameter ( & } for electrons from
the decay of B-hadrons. It shows a large variation of 8 over the range of interest. The
DELCO detector's ability to identify low momentum electrons gives it a substantial
advantage over other experiments because of these acceptance effects, While this
advantage is partially oflset by the detector’s modest resolution, the measurement

remains competitive.

4.1 THE TRACK QUALITY CUTS FOR THE LIFETIME ANALYSIS
Stringent track quality cuts are placed on the tracks from the electron analysis
to ensure that the impact parameters are well measured and to try to eliminate any
possibility of confusion due to the presence of nearby or overlapping tracks. The
cuts which are applied to the tracks are:
o There must be at least 4 wires in the IDC associated with the track.
e There must be at least 7 wires in the CDC associated with the track.

e There must be at least 4 wires in the PDC associated with the track.
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Table 4.1. The fractions of tracks from various sources for the b-region
and the c-region defined in the text. These numbers are obtained as part
of the fit to the eleciron spectrum which is described in Chapter 3.

region b—e b—oc—e c—e bckg
b 0.70 0.08 0.17 0.04
c 15 0.15 0.56 0.14

o There must be at least 17 wires in the sum of the IDC, CDC, and PDC
associated with the track.

o The x? of the track after fitting must be less than 40, ( x? = the sum of the
squares of the normalized residuals. )

+ The greatest residual in the IDC must be less than 800 pm.

e The greatest residual in the CDC must be less than 900 um.

e The RMS residual in the IDC must be less than 400 pm.

¢ The RMS residual in the CDC must be less than 450 um.

» The distance between the z-coordinate of the track origin ( 2o ) and the z-
coordinate of the event vertex must be less than 2.5 times the error on zp
calculated during fitting. The z-coordinate of the event is calculated using
all the tracks in the event.

o There must be no other tracks in the event within 50 mr in & { where ¢ is

the azimuthal angle ).

4.2 THE ELECTRON DaATA

In order to exhibit the signal, it is useful to divide the data into two subsets.
‘The p, pt plane can be divided into a b-region {p:>1GeV)and acregion (p>1
GeV, pt < 1 GeV ), such that mc:t tracks in the b-region will be electrons from
B-hadron decay and most tracks in the c-region will be electrons from charmed
hadron decay. Table 4.1 shows the result of breaking the plane up in this manner.
The fractions of tracks from various sources are calculated from the results of the

fit to the electron spectrum in p and pt.
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Figure 4.4. Impact parameter distributions before track quality cuts. Part

(a) is for the b-region and part (b) is for the c-region.

Fig. 4.4a shows the distribution of impact parameters for tracks in the b-region
and Fig.4.4b shows the same distribution for tracks in the c-region. Both of these
distributions were made before the track quality cuts. The result of these cuts
is to reduce the number of tracks in the b-region from 164 to 113 and in the
c-region from 783 to 449. The impact parameter distributions for the two regions
after these tuts are shown in Fig. 4.5. Applying the track quality cuts results in
a substantial narrowing of these distributions. The widths of these distributions
before the cuts were 619 + 34 (stat.) pm and 727 £ 18 (stat.) um for the b-region
and the c-region respectively. After the cuts the widths are 529 + 35 (stat.) um
and 594 & 20 (stat.) pm. From the figures it is clear that a substantial portion of
the tracks eliminated by the cuts were in the tails of the distributions. The mean
immpact parameters after the track quality cuts are § = 259 + 49 {stat.) pm for the
b-region and § = 146 + 28 (stat.) um for the c-region. In both cases these numbers
are significantly greater than zero and suggest the existence of long lived particles,
As was stated previously, tracks with impact parameters greater than 0.3 ¢m are
not used. It is reasonably clear from the distributions of § that this produces only

a small bias. This cut will be explicitly accounted for in the fit.
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Figure 4.5, Impact parameter distributions after track quality cuts. Part
(2) is for the b-region and part (b} is for the c-region.
4.3 THE ERRORS AFFECTING THE MEASUREMENT OF &

There are three obvious ¢ontributions to the error on § ( 05 ). The largest
comes from the finite beam size, The beam is expected to be Gerussian in x and
y with the height quite small ( less than 100 pm) and the width somewhat larger
( several hundreds of um’s ). This ¢ dependence in o5 is clearly present in the
distribution of § for tracks from Bhabha events. Fig. 4.6 shows the distribution of §
for tracks which are nearly vertical (a) and for tracks which are nearly horizontal (b).
The difference in the widths of these distributions is clear, For tracks which ate
nearly horizontal, the beam size makes a small contribution. For these tracks o
is dominated by the drift chamber resolution ( op ¢ ) which typically contributes
about 230 um, In addition to the beam size and the drift chamber resolution,
multiple Coulomb scattering in the beam pipe and the inner wall of the IDC

contributes to tha resolution obtained in measuring 6.

4.3.1 The errors due to the beam size and the drift chambers
The errors from the finite beam size and the drift chamber resolution are
assumed to be Gaussianly distributed with a width that can be written as
2 2

ol =ol-cin’¢ + 03 - cos? g, (4.1)
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Figure 4.6. lmpact parameters for vertical and horizontal tracks from

Bhabha events. In part (a} the tracks are within £45° of the verticsl and

in part (b) they are within +45° of the horizontal. Both distributions have

means consistent with zero. The width of the first is 393 &+ 3um (stat.)

and the width of the sccond is 273 & lum (stat.).
where ¢ = 0 corresponds to a track pointing along the x-axis. The constants o
and oy describe the sum in quadrature of the drift chamber resolution and the
horizontal and vertical beam size respectively. These numbers are measured using
tracks from Bhabha events. Because of their large momenta, these tracks should
not be affected by multiple scattering. A maximum likelihood fit is done to get oz
and oy, The probability density function used is

82
exp —E;:r—g .

Tracks with impact parameters greater than 2 o5 are not used in this fit so that

P(&) = \/%ﬂo (4.2)

the tails of the distribution will not pull the §t.3% This causes a bias on the fitted
values of 0z and oy of order 14 %. A correction is made for this bias.3% Table 4.2
sumMmarizes the results of these fits for various run blocks.

Although it is not essential to the analysis, it is interesting to determine how
much of the error on 6 comes from the beam size and how much comes from the drift

chamber resolution. It is possible to measure the error due to the drift chamber

cl——




55

Table 4.2. A summary of the resolutions obtained in measuring & for
various data sets. The exact definitions of ox, oy, op.c,, and A are given
in the text. Briefly, oz and oy are the sum in quadrature of the drift
chamber resolution and the horizontal or vertical beam sizes respectively,
op.c. is the drift chamber resolution, and A describes the contribution of
the multiple scattering to the resolution.

data 0z (um) oy (pm) op.c. (¢m) A {um - GeV)
'82 506 212 212 246
'83 439 242 nAy 263
‘84 388 227 220 198

resolution by using the two nearly paraliel tracks produced in Bhabha events. Since
these two tracks are produced at the same point, their separation near the beam
center ( &3, ) is just the sum of their respective drift chamber errors. More
specifically, if 4; is a unit vector in the direction of track i, angd if Z; is the point of
ciosest approach of track i to the beam center, then &g, = | (Z) — £3) x d| where d
is a unit vector in the direction of d, — d;. This procedure is necessary because the
two tracks are generally not exactly parallel. The drift chamber resolution is given
by 715 times the standard deviation of the &3, ’s. Events with 6y, > 2v/20p.c, are
not used. This causes a bias similar to that mentioned above and is corrected in
the same manner. The results are shown in Table 4.2.

This prescription for calculating o5 can be tested by ma¥ing a histogram of the
quantity % This distribution will be referred to as the resolution function. If the
calculation of gy is correct, and if the assumption that 6 is Gaussianly distributed is
correct, then the resolution function will be a Gaussian centered on zero with unit
width. The result of this check for tracks from Bhabha events is shown in Fig. 4.7.
The two curves agree well inside of £2.5 ¢, but there is a substantial excess of events

in the data outside this region. The effect of this deviation from a Gaussian shape

will be investigated in the next chapter.
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Figure 4.7. The distribution of aé— for tracks from Bhabha events. The
histogram is the data and the smooth curve is a Gaussian centered on
zero with unit width. Part (a) is plotted with a linear scale and part (b)
is plotted with a logarithmic scale. The distributions are normalized to
unity.

4.3.2 The errors due to multiple scattering

Multiple scattering in the beam pipe and the inner wali of the IDC contributes
to the errors on 6. This contribution can be calculated according to the Gaussian

approximation from the Particle Properties Data Booklet 38 a5 follows:

R 0.0141 [ X, 1 X ))
= - —— -3
om.s. siné pf sind (1 + 9 log10 ( ing//’ (43)

where 8 is the polar angle, p is the momentum of the particle in GeV, 3 is the
velocity in units of the speed of light, and X, is the thickness of the material in
radiation lengths. Table 4.3 summarizes the amount of matetial and its location for
the various run blocks. This exp:ession only provides a description of the Gaussian

core of the multiple scattering distribution. It is well known3® that the tails of the

. multiple scattering distribution are much larger than those of a Ganssian, ( In the

projected angle distribution they fall only as ¢~°. ) In order to check the accuracy
of this calculation, as well'as the size of the tails on the resolution function, a source

of low momentum tracks is needed. These tracks are obtained from the two-photon
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Table 4.3. The material between the beamn and the drift chambers at
normal incidence. Numbers separated by a slash indicate a change in
the detector. The original thick beam pipe was replaced with a thinner
one between '83 and '84.

What radins (em ) # radiation lengths
beam pipe 879 / 765 0.0225 / 0.0050
IDC entrance 10.0 0.0070

process e*e~—+ ete—ete~. Events are required to pass the following cuts:
¢ One and only one of the luminosity monitors must have a large pulse height.
¢ Each event must have exactly two “good” tracks after fitting. ( See the
description of the hadron filter in Chapter 3 for the definition of a “good™
track. )
e Each track must be associated with a latched shower counter. A shower

counter should latch in resp to a minimum ionizing particle.

o Each track must have produced either eight ( isobutane ) or one ( nitrogen )
corrected photo-electrons in the Cerenkov counter.

For this data set the “sphericity axis” is taken to point in the direction of the
vector sum of the two particles’ momenta. The impact parameter distribution
for tracks which pass the track quality cuts and which have p > 1 GeV
is shown in Fig. 4.8. The mean of this distribution, §= —0.8 + 6.7 (stat.)
um, is consistent with zero as expected. This provides some confidence
that there are no subtle instrumental effects which can produce an average
impact parameter greater than zero. The accuracy of the calculation of
o5 described above is checked by making a histogram of % for this data.
The histogram is shown in Fig. 4.9. The non-Gaussian tails are clearly larger
than those in the Bhabha events. The core of the distribution is also wider than
expected. It is clear that equation 4.3 does not provide an adequate description
of the degradation of the impact parameter resolution for low momentum tracks.

Because of this it was necessary to measure this degradation. For these tracks the
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Figure 4.8. The distribution of & for electrons from ete —
ete~ete~. This distribution serves as a check that there are mo
spurious sources of average impact parameters greater than rero.
error on & can be written as
A 2
og =a?.5in%¢ +o;5 cos* + ( ) . (4.4)
psing [}

The constant A is determined from a maximum iikelihood fit similar to the fit used
to obtain 0. and ay. The factor of % arises fram the % dependence of multiple
scattering. The factor of sin'% 6 is produced by the dependence of the path length
and the material thickness on 8. Since the material in question has a cylindrical
geometry, the path length produces a factor of sin™1 § and the material thickness
a factor of sin~ % 8 ( by way of the /X5 term in equation 4.3 ). In this fit oz and
oy were held constant at the values determined from the fit to the Bhabhas. The
results of these fits are also shown in Table 4.2 for the various run blocks. The
value expected, based on the known material between the interaction point and the
first layer of the IDC, is 176 um - Gev for '82 and '83 and 108 um « Gev for '84.
This degradation may be due to the material in the drift chambers which is not
accounted for in the simple analysis given above. This material ( the outer wall
of the IDC, the inner wall of the CDC, and the gas and wires of bath chambers )

amounts to 0.0128 of a radiation length and is therefore comparable to the material
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Figure 4.9. The distribution of 0_65 for tracks from two-gamma events.

In this case the multiple scattering contribution to o5 is calculated using

equation 4.3. The histogram is the data and the smooth curve is a Gaussian

centered on zero with unit width. Part (a} is plotted with a linear scale

and part (b) is plotted with a logarithmic scale. The distributions are

normalized to unity.
between the interaction point and the first layer of the IDC. The resolution function
obtained from tracks in the two-gamma data set, when oy is calculated using
equation 4.4, is shown in Fig. 4.10. As was the case with the tracks from Bhabha
events, the distribution of (-,% appears Gaussian in the central region, but there are
substantial non-Gaussian tails outside of about £2.5 ¢. A similar study has been
carried out using a mixture of pions and muons from the two.gamma processes

+ -

ete~ — ete rtr~ and ete™ — eteutu~. The results obtained are very similar

and suggest that the resolution is independent of the particle type.?’

4.3.3 Additional errors in hadronic events

A third data set which can be used to determine the resolution consists of
all the tracks in hadronic events. Impact parameter distributions from tracks in
hadroni¢ events have been examined to verify that there are rot any sources of
error which give rise to positive average impact parameters which are particular to
hadronic events. An example of such a source would be confusion between tracks

during track reconstruction. Errors from this source wonld clearly depend on the
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Figure 4.10. The distribution of ,i for tracks from two-gamma events. In
this case oy is calculated using the fitted value of A. The histogram is
the data and the smooth curve is a Gaussian centered on zero with unit
width. Part (a) is plotted with a linear scale and part (b) is plotted with

a logarithmic scale. The distributions are normalized to unity.
number and distribution of tracks in the event and could, therefore, be very different
for different types of events,

The cuts used to select these tracks were identical to those used to select
the electron tracks for the lifetime analysis, except that no Cerenkov connter was
required. The data was divided into a b-region and a c-region in the same manner as
was done for the electrons. In both cases the average impact parameter is expected
to be small and positive because a fraction of the tracks will be from the decay
of hadrons containing heavy quarks. The distribution for the b-region is shown in
Fig. 4.11a and the distribution for the c-region is shown in Fig. 4.11b. The means
of these distributions are §= 46 %5 (stat.) um for the b-region and 8= 422 (stat.)
um for the c-region. These means are calculated using only tracks with {6] < 0.3
cm to prevent them from being pulled by the tails of the distribution. ( Picns
from the decays of K,'s, for instance, can have enormous impact parameters. )
This is the same maximum impact parameter used in the lifetime analysis. A full
detectar simulation Monte Catlo caleulation of these quantities gives 5= 38 + 11
(stat.) pm for the b-region and §= 43 £ 4 (stat.) wm for the c-region. In both
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Figure 4.11. Impact parameter distribution for all tracks in hadronic
events. Part (a) is for tracks in the b-region defined in the text and part
(b) is for tracks in the c-region.

cases these numbers are consistent with the data. A histogram of % for the tracks
from hadronic events is shown in Fig. 4.12. This resolution function is skewed in
the positive direction and contains large tails. Both of these effects are due to
the presence of long-lived particles in this data. The tails are due to the inclusion
of pions and protons from the decay of K,’s and A’s, and the shift of the central
portion of the distribution is due to the inclusion of particles from the decay of
bottom and charmed hadrons. Because of the contamination by long-lived particles,
this distribution can not be directly compared with a Gaussian,

An involved “unfolding” process has been used to obtain the resolution function
from this data.3¥ The distribution of % obtained from the hadronic events is
assumed to result from the convolution of a known lifetime distribution with an
unknown rosolution function. If the distribution of 3% in the data is given by

P”‘(b—i—) and the resolution function is given by P'f(é) then one expects

P™(z) = f_ : P (y)C(y, z)dy, (4.5)

where C{y,z) is a known function which describes the smearing due to particles
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Figure 4.12. The distribution of ,i for tracks from hadronic events. The

histograrn is the data and the smooth curve is a Gaussian centered on

zero with unit width. Part (a) is plotted with a linear scale and part (b)

is plotted with a logarithmic scale. The distributions are normalized to

unity.

with finite lifetimes. Breaking this up into a discrete form gives
oo
= [ priwe, “s)
)

where P/ is now the expected contents of the i'th { i=1,n ) bin of the histogram

of ;7%; ie.,
PP = / P™(2)dz. 7
V'th bin
If the resolution function is written as a linear combination of m other functions,
then

PI(g) =3 ;- py)- (48)

=1

Plugging this into equaticn 4.6 gives

Pr= / Z'S 6 pi6) - Cilu)a, (4.9)
X
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and interchanging the order of summation and integration gives
m o0
Pr=Y o [ ale) cilo)iy (4.10)
F=1 —co

Since the p;(y)'s as well as the C;(y)’s are known functions, it is convenient to write

the integral in the above equation as

[
Cij = /_mp,(v)c.»(y)dy {4.11)

Therefore, C;; represents the contribution of the function p,(y) to the i'th bin of
the distribution of % obtained from tracks in hadronic events. Plugging this back

into equation 4.10 gives
m
PM=3"C,-a,. (4.12)
=1

If the real content of the i'th bin of the data is Dy, then the likelihood of having

observed the D,'s is

(4.13)

where the product is over bins. It is then straightforward to estimate the values of
the a, by maximizing the above expression.

The functions p;{y) were chosen to be cubic b-splines. These functions are
defined and graphed in Appendix B. The values of the Ci;'s are obtained by a
Monte Carlo calculation. Each event consists of generating a value of 8, uniformly
distributed on the range |-10,10] and then smearing it by an amount 562-. In this
expression § is the contribution to the impact parameter from a particle with finite
lifetime, and oz is the calculated error on the impact parameter for that particle.

For each event the values of the Cyj’s are incremented according to

Cij = Cl'j + p,-(&,.), (4.]4)
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Figure 4.13. The resolution function froin hadronic events. The histogram

is the unfolded data and the smooth curve is a Gaussian centered on zero

with unit width. Part (a) is plotted with a linear scale and part (b)

is plotted with a logarithmic scale. The distributions are normalized to

unity.
where j runs from 1 to m and 1 labels the appropriate bin for 6, + %. The result
of this unfolding is shown in Fig. 4.13. This distribution has non-Gaussian tails
which are comparable to the tails in the resolution function for the tracks from
cte~— e*e cte™. Unfortunately it is also somewhat wider than the resalution
function obtained from the electron tracks from the two-gamma process and it is still
somewhat asymmetric. Both of these characteristics lead to systematic errors in the
b-lifetime. Since there is no obvious mechanism which can produce the asymmetry
observed in the tails of the resolution function and which would not be associated
with long-fived particles, the tesolution function bas been symmetrized “ by hand .”
This is shown in Fig. 4.14. The difference in the b-lifetime obtained with the two

resolution functions will be included as a systematic error.3®

4.4 THE TAU DATA SET

As a final test of the impact parameter method, 2 measurement of the lifetime
of the tau lepton has been made. The tau lifetime has been measured with

high precision by other experiments$0:4142:43.44 anq is found to have a value of
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Figure 4.14. The resolution function from hadronic events after
symmetrization. The histogram is the unfolded data and the smooth
curve is a Gaussian centered on zero with unit width. Part (a) is plotted
with a linear scale and part (b) is plotted with a logarithmic scale. The
distributions are normalized to unity.
rr = 0.286 + 0.016 (stat.) & 0.025 (s5ys.) psec.®> Comparing this “known” value
of 7; with 2 measurement made using the impact parameter technique provides
confidence that the b-lifetime is measured correctly. A measurement of the tau
lifetime is particularly useful as a check since the three track side of the 1:3 track
tau decays 1 used in this measurement will suffer some of the same tracking confusion
problems that the electron tracks in the b-lifetime analysis suffer. The 1:3 track tau
decays were picked for this analysis because they are easily identified by topological
cuts only, without the need for particle identification. The large velocity of the
tau before decay (y & 8) results in its decay products typically all being thrown
forward to produce the characteristic signature of a single high momentum track
back-to-back with three other high momentum tracks. The cuts used to select the

tau data set were:

o The thrust and the thrust axis are calculated for each event. Each event

1 That is, of the two initially produced taus, one decays to produce one charged

track and the other decays to produce three charged tracks.
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must have a thrust greater than 0.97.

o The event is divided into hemispheres using the thrust axis, The event must
have exactiy one good track on one side and three good tracks on the opposite
side.

o The total charged energy of the event must be at least 6.0 GeV and no greater
than 24.0 GeV.

e The 2-coordinate of the origin of each track must be within & 3.5 ¢m of the
nominal beam center.

e The momentum of each track in the event must be greate: than 0.2 GeV.

o Each track in the event must have at least one hit each in the IDC, the CDC,
and the PDC.

o The invariant mass of the three track system must be greater than 0.1 GeV
and less than 1.8 GeV, assuming the particles have electron musses.

o The invariant mass of the three track system must be greater then 0.5 GeV
and less than 2.0 GeV, assuming the particles have pion masses.

o Theenergy of the three track system must be greater than 3.0 GeV, assuming
the particles have pion masses.

s The total charge of the event must be zero.

The result of these cuts is a data set of 1357 events. Monte Carlo calculations
estimate that there are backgrounds of 1 hadronic events and 12 Bhabha events.
This last background comes from radiative Bhabha events in which the photon
converts in the beam pipe or the inner wall of the IDC. Both of these backgrounds
will produce only very small errors in the Jifetime and are neglected in the
following. The tau lifetime can be estimated from the mean of the impact parameter
distribution. After applying the track quality cuts listed earlier in this chapter and
requiring each track to have p > 1 GeV, there are 2177 tracks left with impact
parameters less than 0.3 cm. This is the same maximum § cut used in the b-lifetime
analysis. In this case it keeps the lifetime measurement from being pulled by tracks

from K, decay. The tracks in this data set have a mean impact parameter of
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Figure 4.15. Impact parameters from tracks from tau decays. The points
are the data and the smooth curve is a Monte Car .o calculation of the
expected distribution based on a tau lifetime of 0.3 psec.

§ = 56.8 + 9.3 (stat.)um. The distribution of these impact parameters is shown in
Fig. 4.15.

The tau lifetime is obtained by a Monte Carlo calculation of 3 for various values
of 7r. The result of this calculation is shown in Fig. 4.16. As one would expect,
there is a simple Jinear relationship between the lifetime and the average impact
pacameter. The lifetime inferred from these figures is r- = 0.263£0.046 (stat.) psec

which is consistent with previous measurements.
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Figure 4.16. Average impact parameter as a function of 7. This figure is
the result of a full detector simulation Monte Carlo calculation.
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5. THE FIT TO THE IMPACT PARAMETERS

A maximum likelihood ( M.L. ) fit has been done to estimate the B-hadron
lifetime from the impact parameters in a manner similar to previous analyses 32
This method was picked because it makes it possible to account for the variation in
resolution and in the distribution of § which one expects for tracks with different p,
pt, directions, etc. M.L. fits are also desirable because in some sense they make the
best use of the data.6 They also do not depend heavily on the data in calculating
the error on the lifetime. This is in contrast, for instance, to comparing the mean
impact parameter, 8, with that expected from a M.C. calculation.?? In this case the
error on & ( which is calculated from the width of the data ) is used to deterrine
the error on ;. Given the limited statistics of this experiment, the uncertainty of
the error on & could be large, making it difficult to dqtermine the significance of the
final result. A M.L. fit a'so makes it possible to test .for certain systematic errors
in a simple way. For example, it is easy to change the ratio of b — e and ¢ — e in

the fit and observe the effect this has on the measured value of 7.

5.1 THE PROBABILITY DENSITY FUNCTION

In order to perform a M.L. fit, it is necessary to calculate the probability of
observing the i’th event ( P¥ ). This probability is a function of the parameters
we wish to estimate; ie. P’ = P‘(f,,,f,). It is also a function of the variables
which describe each event; i.e. the impact parameter ( 4 ), the error on the impact
parameter ( g5 ), the momentum of the track { p ), the momentum transverse to
the sphericity axis ( p; ), the sphericity of the event, etc. This fit explicitly accounts
for those variables which are most directly affected by the lifetimes ( clearly this
means § ), and also for some of the other event characteristics which affect §. The
most important of these is o5, while p and p; are of secondary importance.

The probability of observing the i'th event can be expressed as

P = (P + fi.PL + 1SPE + [y Pl (51)
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where the sum over four terms accounts for the four sources of “electrons” in
the analysis. These are: the decay of a hadron containing s b-quark to produce
an electron (b — e), the decay of & hadron containing a b-quark to a hadron
containing a c-quark followed by the decay of that hadron to produce an electron
{b— ¢ —e),the decay of & hadron conteining a c-quark to produce an electron
{c—e) ,and the various backgrounds. The fi’s ( z = b,b¢,c,bkg ) are functions
of p and p; only and are the probabilities that an “electron” with a given p and
pi came from the indicated source. They are obtained from the electron analysis
described previously. The P,'"e are functions of é, o5, p, &nd pr. They are the
probabilities that an “electron® from & given source, with given p, pi, and oy,

would have an impact parameter §.

5.1.2  The fractions

The fi’s, which are found as part of the electron analysis, are tabulated in
Appendix E. These numbers are calculated in 0.5 GeV square bins in p and p;.
They havesystematic uncertainties as a result of the limited statistics of the electron
analysis. It is important to note that not all of the errors in the published electron
analysis apply in this case.478 For instance the uncertainty in the luminosity
produces an uncertainty in the branching ratios, but this error exactly cancels in

the f’s and so is not considered here.

5.1.2 The impact parameter distributions

The Pi’s are calculated on the assumption that the distribution of 6 can be
understood as the convolution of two simpler distributions, one due to the finite
lifetimes an' the other due to the limited resolution in the measurement of §. The

first of these is referred to as P&**°% and the second as PL™e0®, P} then has the
form:

Pi(6) = /_ * Piezact(gfy phmeas (s _ g4 g1, (5.2)
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The measurcment errors are described bs the resolution function P'/(6)

discussed in the previous chapter and are d to be independent of the source

of the “e!  iron.” In terms of this function:

pimeas(gy = L prf (i) . (53)
o} o}

where o} is the error on 6 for the i’th event. This definition of 7™44%() is just the
inverse of the procedure used in the previous chapter to obtaia P/ (5). The factor of
5‘—5 in front of P"/(6) is needed to maintain the normatization. Because P/ (6) is in
effect sealed by ug on an event-by-event basis, the differences in resolution from one
track to the next, due to the beam size and the multiple scattering, are accounted
for in the fit. Plugging the resolution function into the previous expression for PJ(6)
makes it possible to display explicitly the o; dependence and gives

Pi(6) = -‘- / ® Pphezact () prf (“—5') ds'. (5.4)
05 J—o "3

The exact impact parameter distributions P§*ac(5; p, py) are determined by a
Monte Carlo calculation. This calculation requires the generation of a large number
of Monte Carlo events { = 10% ). To generate this many events using a full detector
simulation Monte Carlo would require a prohibitively large amount of computer
time. Because of this it was necessary to develop a simple *non-simulation” Monte
Carlo which would reproduce the full simulation Monte Ce:lo in its groes features
and which would use a minimal amount of computer time. The non-simulation
Monte Carlo consists of applying the following cuts to the events generated by the

Lund Monte Carlo code which is described in Appendix C:
o Only stable charged tracks inside of |cos8] < 0.8 are considered ( 8 i8 the

polar angle ).

e Tracks with g < 0.20 GeV are kept ar dropped with an efficiency of 16 %.
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Table 5.1. Tracking efficiency in ¢. This table is used in the non-simulation
Monte Carlo to simulate the tracking confusion which aeeurs in jots.

¢ interval ( radians ) efficiency
0.00 - 0.05 0.47
0.05-0.10 0.64
0.10- 015 0.68
0.15.0.20 0.76
0.20-0.2% 0.84
0.25 - 0.30 0.86
0.30 - 0.35 0.88
0.35 - 0.40 0.90
0.40 - 0.45 0.92
0.45- 0.50 0.94
0.50 - 0.55 0.96
0.55 - 0.60 0.98
0.60 - 3.14 1.00

e The momenta of tracks which pass the above cuts are smeared according to
p - p/(1+ A) where A is drawn from a Gpussian distribution with width
equal to the known detector resolution for a track with momentum p.

e Tracks are kept or dropped at random deper*ing on how close they are to
other tracks in ¢ ( ¢ is the azimuthal ans’ : “.: = probability of keeping a

track is given in Table 5.1. This procec = is appiic  twice.

At this point two “event cuts” are applied. Ever, ! fail either of these cuts

are dropped:

e The total number of charged tracks left must be at least 5.
e The total energy of all of the charged tracks ( assuming pion masses ) must
be at least 6 GeV,

If the event passes these cuts and if it atill has an electron in it, then the following

cuts are applied:

s The electron must be inside of |cos 8} £ 0.8.
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Figure 5.1. Comparison of the non-sim. and full sim. M.C. The histogram
is the result of the non-detector simulation Monte Carlo and the points
are the result of the full detector simulation Monte Carlo. Part (a) shows
a comparison of the sphericity ( s ) and part (b) shows a comparison of
the sphericity axis { 3 ) dotted into the direction of the B-hadron ( $ ).

» If there is another track in the same Cerenkov cel) as the electron, then the
efficiency for keeping the electron is 30 %.

The p; of the electron is calculated relative to the sphericity axis determined
from all of the charged tracks remaining in the event. The following distributions
demonstrate the ability of this procedure to reproduce the effects of the full detector
simulation Monte Carlo. Fig. 5.1a compares the distribution of the sphericity and
Fig. 5.1b compares the distribution of the dot product of the parent hadron { the
hadron containing the b- or c-quark } and the sphericity axis. In both cases
the agreement is good and demonstrates that the non-simulation Monte Carlo
reproduces the sphericity axis properly. Fig. 5.2 is a comparison of the impact
parameter distributions of electrons from the decay of heavy quarks as calculated
by the two Monte Carlos. The distributions are clearly consistent with each othex
and show that the non-simulation Monte Carlo correctly accounts for the acceptance

effects in the full detector simulation. Similar agreement is obtained for electrons
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Figure 5.2. Comparison of the calculated impact parameter distributions
for electrons from the decay of bottom quarks. The histograms are fram
the non-simulation Monte Catlo and the points are from the full detector
simulation. The electrons were required to have momentum in the range
1< p <25 GeV. Part (a) is for the b-region defined in the text and part
(b} is for the c-region.

Table 5.2. Summary of the average impact parameters for electrons
from the decay of b-quarks and c-quarks calculated using a full detector

simulation { top number ) and a non-simulation ( bottom number) Monte
Carlo.

all b-region | c-region

175x6um 2323+10um 1814+8um
b-guetk |360%6um | 216474m | 18356um
16025um | 32£10pm | 117+6um
c-quark 154dpm | 370um 119¢4Em

from c-quark decay. The means of these distributions are summarized in Table 5.2.
The average impact parameters calculated using both the full detector simulation
and the non-simulation Monte Carlos are consistent for all regions in p and py and
for both b-quark and c-quark decay.

There exists a substantial systematic uncertainty associated with the
calculation of the exact impact parameter distributions. Since the parent hadron
is part of a jet produced in the fragmentation process, it does not have a

unique momentum. This uncertainty in the momentum produces a corresponding

74

uncertainty in 6. This is not, in and of itself, a major problem. There are
many other details about each event which are known only in an aver:ge sense.
Because there is no clear theoretical understanding of the fragmentation process,
the momentum distribution of the parent hadrons must be measured from the data.
This was done in Chapter 3. The limited statistics in this measurement produce a
substantial uncertainty in the final b-lifetime measurement. As has been pointed
out previously,*? it could be worse, A particle with lifetime r will travel a distance
{ = fryer (where # is the velocity in units of the speed of light, v = (1 — ﬁ2)§, and ¢
is the speed of light ) before it decays. The angle between the track and the parent
direction tends to close up as %, so that as 8 — 1 the impact parameter becomes
independent of the momentum of the parent hadron. In the present situation
8 = 0.87, g0 that the limiting case has not been reached and some sensitivity to the
parent hadron momentum remains. There is also a contribution to this systematic
error due to changes in the number of electrons which come from backward decays
of the parent hadron. Fig. 5.3 shows the result of a Monte Carlo calculation of the
average impact parameter for different values of Z;. ( The variable ¥ describes the
B-hadron momentum distribution. See Appendix C for a definition. } The details
of how this systematic error is propagated through the analysis are covered later in
this chapter.

For a given source of electrons, the P2**%%s depend on p and ps. If the
“electron” in the i’th event has momentum equal to p* and transverse momentum

equal to p}, then

P;"z“d(ﬂ) = P;!ﬂd(ﬁ;p"‘p{)' (5.5)

The p and p; dependence is accounted for by binning the P,‘“d’s in Q.5 GeV
intervals in p and p:. Fig. 5.4 shows typical results of such a Monte Carlo caleslation.
Impact parameters less than zere result from backward decays in which the electron
ends up in the “wrong” jet and from events in which the sphericity axis does not

accurately describe the direction of the parent hadron. The lifetime contribution
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Figure 5.3. Average impact parameter as a function of %;. This figure is

the result of a Monte Carlo calculation done with 75 = 1.0 psec. Only

tracks with 1.0 € p € 5.5 GeV and p; 2 1.0 GeV were used.
to the impact parameter for a given event can be thought of as being produced in
a two step process: first an exponential decay characterized by a length ), followed
by a projection to give §. This projection is necessary since the impact parameter
iz defined to be the distance of closest approach of the track, as projected onto
the z-y plane, to the z-axis. The probability of observing a decay of length { is
proportional to

1 {
LAY = = -}
P(;3) = § exp(- ). (s6)
This distribution in { has the following property:
P;A) = —‘\; P(——'\;l; Ao). 6.7

Since the projection is a purely geometrical operation and is independent of I, it

follows that § « ! and therefore

PEe(5;0) = P45 w), (5.8)
T

»
2
-

that, for the cages where the impact parameter ix due to » single decay ( ie.

b — eand ¢ — e ), it is possible to generate the exact distribution once for a given
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Figure 5.4. Exacl impact parameter distributions. Part {2) is for the

b — € process and part (b) is for the ¢ — e process. The lifetimes used

for this calculation are 7, = 1.00 psec and 7, = 0.64 psec.
lifetime, and then scale it as a function of 7 or 7. to do the fit, The distribution for
the cascade process ( b — ¢ — e } does not possess any obvious scaling properties.
It is put in as a fixed distributiozi, independent of 7, and r.. After the fit the
distribution is recalculated with the new 7y and 7. and the fit is repeated. Since the
cascade process contributes little in the p and p range of interest, this procedure
converges quickly,

The exact impact paramater distribution for the backgrounds does not depend
on either 7, or 7, 1t is put in as a §-function for the part of the background which
is due to misidentified pions, and as A Gaussian whose width depends on p for the
part due to gamma conversions. This width arises from the apparent curvature
of the electrons from 4+ — ete™ in the 3.2 kG magnetic field. The widths are
summarized in Table 5.3. They are obtained by a full detector simulation Monte
Carlo calculation in which photoas are converted in the beam pipe and the resulting
electrors are “swum” through the magnetic field in the detector. In this case the
resolution of the drift chambers has been set to zero ( no measurement error } so
that only the effects of the magnetic field and the geometry will be present. Tracks

are it to the simulated drifi chamber hiis in the vsual manner. The widths of these
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Table 5.3. Widths of the distributions of 6 for 4 — e*e™ in the beam
pipe. These numbers are obtained from a full detector simulation Monte
Carlo calculation in which the drift chamber resolution is set to zero. The
correction to the final b-lifetime due to these effects is very emall because
there are very fev high p; tracks from gamma conversions.

momentum ( GeV ) width (um )
1.0-15 520
1.5-2.0 370
2.0-25 286
25-30 234
3.0-35 200
3.5-40 173
4.0-45 153
4.5-5.0 137
5.0-55 124

distributions have only a very small effect on the final lifctime because of the small
number of gamma conversion electrons present in the b-region.
The expression above for scaling P£2% can be plugged into the convolution

integral:
15 = l il T0 pi,exact {1051, f §—8 '
RO = [ TH (2é70) P ) (59)

By defining a scaling variable s such that 7 = s- 7 and by changing the variable of

integration one obtains
. 1 oo - - 86!
Pi(6) = = / Ppgrodt (5’; P p:) pr! "_"’—6 as'. (5.10)
0} Jeco o}
( Since 7g is & constant, the dependence of P£%%¢ op it is not explicitly shown. )

Because the exact distributions in & are calculated by Monte Carlo methods, it is

nat passible te do the canvalution of P™e%* with PTf analytically. Hence, the above
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Figure 5.5. Contour plot of the likelihood function versus 7 and 7. for all
tracks with p > 1 GeV. The curves shown are at the one, two, and three
sigma levels,

integral becomes a summation. The P#z2¢l’s are binned in & 80 that the value of §
at the middle of the j'th bin is

8 =8 + 7 A8, {5.11)

where j runs from 1 to m, and A6 is the width of a bin in 6. Then for
5,'—%—A6<6<5j+%b5:

PeEet (8 0%, pf) = PR (2%, p}), {s.12)
and the previous integral becomes
: A <2 2 (6
Pis) = A0S prmest (b ) P (. (_ - 5,) . (5.13)
% =1 % \8

5.2 THE RESULTS OF FITTING THE ELECTRON DATA SET

Fig. 5.5 is a contour plot of the likelihood function versus 7, and .. The
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Figure 5.6. The likelihood function versus 7,. The minimum is at 7, =

1.15 psec and the 1 sigma error bars are +0.25 psec and —0.21 psec.
resolution function used was obtained from tracks in hadronic events by the
unfolding described previously, The one, two, and three sigma contours are shown.
The minimum at 7, = 1101322 (stat.) psec and 7, = 0.79f82§; (stat.) psec is
consistent with the known value of the average charmed particle lifetime of 7. =
0.64 igzég psec. ( See Appendix C for the origin of ; and its uncertainty, ) This
measurement of 1, suffers from systematic uncertainties due to the uncertainty in
the relative fraction of b — e and ¢ — & in the data and due to the uncertainty in
7e. This effect is driven by tracks in the low p; region ( pr < 1 GeV ) where thete
is a reasonable chance that the track came from the decay of either a ¢harmed or
bottom quark. The effect of this systematic error can be reduced by only using
tracks with py > 1 GeV. As was stated previously, the probability that a track in
this region came from the decay of a8 B-hadron in 70 %. The result of fitting just
the tracks in the b-region ( with 7. fixed to 0.64 psec } is 5 = 1.1579:2% (stat))
psec, A plot of —2 (log L — log Lynip) is shown in Fig. 5.6.

5.8 GOODNESS OF FIT TESTS
It is implicit in the work above that a M.L. estimate assumes an understanding
of the distribution from which the data was drawn. It is desirable that some check

be made that the data is consistent with the distributions to which it is fitted. This
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is important because errors made in the assumed shape of the P;’s will manifest
themselves as systematic errors on the lifetime. In particular if the width of the
resolution function is underestimated, then the lifetime will be overestimated. This
can be understood heuristically as follows. If the resoluticn function is too narrow,
then for the correct lifetime the probability of observing an event in the tails will be
underestimated leading to a small value of the likelihood function. This smal) value
of L can be improved on in the fit by an increase in the lifetime. This is because long
lifetimes produce tails in both the positive and the negative directions, The result of
this will be a poor fit because the tails on the resolution function are ( presumably )
symipetric while the tails due to )ifetimes are asymmetric. In this section severa)
tests of the consistency of the data with the distributions are considered. The
first consists of binning the data in § and then doing a Monte Carlo calculation
of the number of expected events in each bin. The second uses the value of the
likelihood function at its maximum as a test of the fit, and the third considers
various parameterizations of the resolution function which can be used as tests.
In later sections a comparison will be made with a full detector simulation Monte
Carlo calculation of the first moments of the impact parameter distribution and the

effect of cutting off the events in the tails of the distribution will be considered.

5.3.1 The histogram test

It would be convenient if a full detector simulation Monte Carlo calculation
could be used to obtain the expected & distributions, however, the computer time
needed to do this would be prohibitive. The calculations in this section are based
on the probability tables and exact impact parameter distributions used in the M,L.
fit. The procedure for generating these distributions is:

o For each real electron in the data, pick at random a type (b — e, etc. )
depending on the fractions { jz's ) for an electron with that p and p; bin.
«  Using the chosen type, p, and py, pick an exact impact parameter using the

exact impact parameter distributions PS*2¢(5;p, pt).
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e Smear the exact impact parameter to account for the measurement error.
This is done by generating a random number distributed according to the
resolution function and multiplying it by o‘é. This number is then added to 6.

Applying this procedure to each track in the data set produces a single Monte
Carlo “experiment.® By repeating this “experiment” many times, it is possible to
obtain the desired distributions. The result of this exercise is shown for the b-region
in Fig. 5.7a and for the e-region in Fig. 5.7b. These distributions are calculated
with 7. = 0.64 psec and 7y = 1.17 psec. For the b-region 8550 = 222 3 6 (stat.)
pn, Sgag0 = 257 £ 49 (stat.) ym, and for the c-region Jpr.c. = 101 % 3 (stat.) um,
Bgata = 133125 {stat) pm. A guantitative estimate of the agreement between the
data and the Monte Carlo calculation can be had by calculating the x? of the fit,

The contribution of one bin to the x? is

) 5.14
Nu.e. (5.14)

where Nggqq is the number of tracks in that bin and Ny ¢, is the number of tracks
expected based on the Monte Carlo calculation. The sum is taken only over bins
occupied by data, and the number of degrees of freedom is equal to the number of
bins summed ( c-region ) or the number of bins summed minus one ( b-region ).
The results of this are x2 = 7.1 for 7 D.F. for the b-region and x? = 6.6 for 10 D.F.
for th. c-region. These numbers correspond to confidence levels of approximately
40 % and 90 % respectively.50 In both the b-region and the c-region, the number
of events in the tails of the data is consistent with the number expected from the
Monte Carlo caleulation.

5.3.2 The likelihood test

Appendix A contains the motivation for the statistic which is used as a goodness
of fit test in this section. For the case of the Gaussian distributions considered in the
appendix, the distribution of x? can be calculated analytically and is well known.

For the probability density function used in the lifetime fit, this is hardly the case.
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Figure 5.7. A comparison of the measured and the expected impact
parameters. Part (a) is for the b-region and part (b) is for the c-region.
The smooth curve is the Monte Carlo calculation. The lifetimes used in
this calculation were 7, = 0.64 psec and 7, = 1.17 peec. ( See the next

section. )
In fact, since the exact impact parameter distributions are obtained from a Monte
Carlo calculation, no analytic calculation of the distribution of “ y2 » is possible. It
is possible, however, to obtain this distribution by another Monte Carlo calculation.
The procedure for generating one value of * x2 ” is:
s  Generate a fake experiment as outlined in the previous section.

o Fit the data set and save the value of “ x2 ™:

“x®" = 2log L — f: log(2ra?). (5.15)
=1

This procedure is then repeated many times in order to obtain the distribution of
“ x% ”. The results are shown in Fig. 5.8a for the entire data set ( 2-d fit ), and
in Fig. 5.8b for just the b-region ( 1-d fit ). The confidence levels given in the
figures are the probabilities that the “ x2 * will exceed the * x2 ™ obtained in this
experiment. In ali cases the data is consisieni with the disiribution to which it was
fitted. As a by-product of this test, one can check for bias in the fitting procedure
( see Appendix A ). The result of such a test is that the bias ia less than 5%.
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Figure 5.8. Distribution of ¢ x% ™ expected for the data. Part (a) is for all
tracks with p > 1 GeV and part (b} is for just the b-region. The small
arrows mark the value of “ x2 ™ for the data.

5.3.3 Changes in the shape of the resolution function

It is possible to use the data being fitted to test the assumptions that were
made about the distributions from which the data was drawn. The general form
for doing this is as follows. If the original P.D.F. was P(r), then an additional
parameter { € }, which affects the shape of the distributions, is introduced so that

P(r) = P(7,¢€). For some nominal value of € the two distributions coincide; i.e.
P(r) = P(r,ep). (5.16)

Then the data being fit can be used to estimate the value of e. If the estimated value
of € is not consistent with €p, then it is clear tha! the fit is not being done correctly.
The converse does not hold, however. Since changing ¢ only sweeps oul a particular
family of distributions, it is not possible to know whether there is a more correct
one which has not been considered. In what follows two different parameterizations
will be considered. By showing that it is possible to rule out a couple of obvious
deviations from the assumed resolution, some confidence is gained that the data
agrees with the distribution to which it was fitted. The first parameter ( ¢; ) scales

the calculated errors; ie., 65 — ¢; - 05. This provides a measure of the accuracy

€4
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Figure 5.9. Contour plots of L in the (7,¢;) and (7,,€2) planes, The

contours are drawn at the one, two, and three sigma levels. These plots

use only the data in the b-region.
with which the width of the central part of the distribution is calculated. A contour
plot of the likelthood function in the (rj,€;) plane for the b-region is shown in
Fig. 5.9. The values from the fit { 7, = 1.27 psec and ¢; = 0.81 } are consistent with
the measured value of the b-lifetime and with a correct calculation of the detector
tesolution.

The second additional parameter { ¢z ) allows a flat background in the fit { flat
in the sense that it does not depend on the impact parameter ). In this case if P; is
the probability of observing the i'th event, then P; — €3 ++ (1 ~ €2)  F;. A contour
plot of the likelthood function in the {ry,¢2) plane for the b-region is shown in Fig.
5.9b. The values from the fit { 7, = 1.14 psec and ¢ = 0.001 ) are consistent with
the measured value of the b-lifetime and consistent with & correct caleulation of the

detector resolution.
5.4 A FIRST MOMENT COMPARISON WITH A FULL SIMULATION MONTE
CARLO

As an additional check on the maximum likelihood fit, a comparison has been
made between the first moments of the data and the first moments as calculated

by a full detector simulation Monte Carlo using the measured value of 7. The
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Table 5.4. A first moment comparison of the average impact parameters
in the data and the Monte Carlo. The Monte Carlo calculation uses a full
detector simulation with 7 = 0.64 and 7, = 1.17 ( see the next section for
the reason for using this value of 7 ).

Data Monte Carlo

b-region 259 + 49 (stat.) pm 102 + 14 (stat.) um

¢~region 146 % 28 (stat.) pm

116 + 8 {stat.) pm

results of this comparison are shown in Table 5.4. The errors on the Monte Carlo
calculations are statistical only. The data and the Monte Carlo agree within the

statistics.

5.5 THE EFFECT OF TRUNCATION ON THE FIT

It was stated above that tracks with impact parameters greater than 0.3 ¢cm
have not been used in this analysis. The impact parameter distributions calculated
in the previous section suggest that this should have a negligible effect on the fit
since the tails outside of + 0.3 cm are very small. It s possible to account explicitly
for this “truncation” in the course of the maximum likelihood fit. The details of
this procedure are described below. The general idea is as follows. If the fit is to be
done only over a certain window, then events outside this window are ( obviously )
dropped from the fit. The shape of the P.D.F. inside this window is the same
as before, but because the tails have been cut off, the normalization is no longer
correct. Fixing this requires integrating the tails of the distribution and multiplying
the P.D.F. by the appropriate correction factor. Specifically, if dmaqz is the greatest

impact parameter allowed in the analysis, then the P.D.F. ia modified to:

P'(new) « {:I(ow)‘ 18] < bmas (5.17)

) (61> 6maz,

80 that the shape of the PV is unchanged for |6] < &myq;, but the normalization is
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different. Thus for [6] < émazx
, 1 ;
Pt =— - _.pi .
(new) yr—m P(old), (5.18)
where
0 ,
b= j Pi(6)ds, (5.19)
smnz
and
~fmazr
= / P(5)d6. (5.20)
-0

If this holds for the complete P.D.F., then clearly it also holds for the Pi(5)%.

Therefore they can be written as

ny
¢ 1 Ab i 3 ]
Pi§) = 1__;1___”2 = Pz',zj“‘ (p-!,,:) Pl (:,3 . (; —6,-)) . (521)

(=
where
= jw aé ib: Pzt (o, 5f) P (i. . (f - s)) ds, {5.22)
Smez %8 jo3 ) H af \e& 7 '
and similarly for t;. Moving the integration inside the summation gives
628 i P (g, / = p (-“-. . (i - 6)) ds. (5.23)
= C I T
A change of variable gives
| il " I o0
i= Aaf\;_‘{ pezad (p‘.p:) /;lg“"‘“""‘j] P (z)dz. (5:24)

This integral can be performed numerically and the result expressed as a cubic

spline. By defining the new function:

clie)= [ * P ()dz, (5.25)
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Figure 5.10. Contour plot of the likelihood function versus ry and ¢ for
the full data set, this time accounting for the +0.3 ¢cm maximum impact
parameter cut.

#§ can be expressed as

Rh
8= a8 ZP;;.“‘ (p", p;') c’ (all (bmaz —» -6,)) . (5.26)
j=1 []

Similarly for 31

ny

; P 1

th=As Zl Pgzact (p-, p;) c/ (E (s-6 - 6,..,.,)) . (s.27)
=

The result of this modification for the 2-D fit is 7 = 1.12i8:§§ (stat.) psec and

Te = 0.81fg:§: (stat.) psec, and for the 1.D fitism = 1.17fg:%; (stat.) psec. These

changes are small as expected. Fig. 5.10 shows the contour plot for the 2-D fit

including truncation effects.

This procedure can al8o be used to check that the fit is not being pulled by the

tails of the data. If the data contains more events in the tails of the distribution
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Figure 5.11. Lifetimes as a function of the largest impact parameter

( 6max ) vsed in the fit. Part (a) shows the values of 7, ( top ) and

7e { bottom ) obtained using all the data with a 2.D fit, and part

(b) shows the value of 7, obtained from a 1-D fit to just the b-region.
than is expected based on the events in the core of the distribution, then there
could be a systematic shift in the measured lifetime as the tails are dropped from
the fit. This check consists of plotting the lifetimes as a function of the cut and
looking for any net drift as the cut is changed. Fig. 5.11a shows the result for the
2-D fit and Fig. 5.11b shows the result for the 1-D fit. While the sensitivity of
this test is clearly limited by the available atatistics, the values of r, and 7, for all
values of the cut are consistent with the lifetime obtained from the £0.3 cm cut
used for the final analysis. The “sawtosth” shape can be understood as follows. As
Smax is made smaller, the size of the correction to the lifetime becomes larger. This
gives rise to the slope of the curves. At distinct values of émax individual tracks are
dropped from the fit. This gives rise to discontinuous jumps in the lifetime. From
the figure it is clear that the gradual changes offset the jumps so that the lifetime
remains constant within the statistics for different values of Spax. A5 Spax is made
very small ( = 0.1 cm ), the statistical uncertainty becomes comparatively large.

For the case of Fig. 5.11b, the error bars on 7y are 2379 cm when fnax = 0.1 ¢m
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and igg? when émax = 0.2 cmn. A similar increase in the error bars occurs for the

two parameter fit.

5.6 THE SYSTEMATIC ERRORS

Most of the aystematic errors affecting 6 have been discussed in previous
sections as each one arose. In addition to these there is clearly a dependence of
7, on the average charmed particle lifetime. Since . is a parameter in the fit, it
is trivial to display this error. The particular charmed particles, their lifetimes,
and relative produ:tion ratios are listed in Appendix €. The overall systematic
uncertainty on 7. is taken to be fg:&g psec. This gives rise to an uncertainty on
T of less than 0.01 psec and is neglected. The remaining systematic errors can be
broken into three groups. The first group occurs as a result of the uncertainty in the
experimental resolution; the sccond graup occurs as a result of the limited statistics
in the electron analysis, and the third comes from the uncertainty in the modeling
of the sphericity axis.

The uncertainty in the modrling ¢. the sphericity axis is parameterized in the
non-simulation Monte Carlo in the following way. If § is & unit vector in the direction
of the sphericity axis and p is a unit vector in the direction of the parent hadron,

then one can define a new vector: 51
€={(1~p)-8+pp (5.28)

The new “sphericity axis” is taken to point in the direction of & Thus for p = 0
there is no change; for p = 1 the parent direction is used, and for p = —1 the
error is overestimated by 100 %. The effect of these changes on the b-lifetime is
determined by generating new sets of P*°%(x)’% for different values of g. Letting
»p vary over the range of 0.5 to -0.5 changes the fitted lifetime by fg_'gg psec.This
range of p was picked rather arbitrarily. It corresponds to a +50 % error on the
determination of the error introduced by using the sphericity axis to approximate

the parent direction, and is hopefully a conservative guess.
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Figure 5.12. Various resolution functions. Curve (a) shows a Gaussian

with unit width. Histogram (b) shows the resolution function for tracks

from Bhabha events; (¢} shows the resolution function for tracks from two-
gamma events, and (d) shows the resojution function obtained from the
unfolding procedure ( after symmetrizing ). The curve and the histograms

are normalized to unity.

The various resolution functions obtained from different data sets were shown
individually in the previous chapter. Here they are overplotted for purposes of
comparison in Fig. 5.12. The symmetrized resolution function obtained from
the unfolding procedure has been used in the b-lifetime analysis. It is possible
to test the others using some of the procedures outlined previously. A sensitive test
¢an be made by doing a 2-D fit to the tracks in both the b-region and the c-region.
The result of this for the four resolution functions is shown in Table 5.5. From this
table it is clear that the Gaussian and Bhabha resolution functions can be excluded
based on the values of 7. measared. The two remaining resolution functions are both

consistent with the data. The one obtained by the unfolding method has been used

-
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Table 5.5. Tests of the resolution functions. Resuits of 2-D fits to all
tracks with p > 1 GeV using various resolution functions. The “known”
value of the charmed particle lifetime ( 7. = 0.64 Ig:ég psec ) can be used
to exclude certain resolution functions. In the table “unfolded hadrons™
refers to the resolution function obtained from the unfolding procedure
after symmetrizing.

resolution function 7y { psec ) 7¢ ( psec )
Gaussian 1243028 | 1.40702%
Bhabha 1_23tg:§3 1.19i?,;§§
two-gamma 1217098 | 107253
unfolded hadrons 1.12 tg%} 0.81 tgg:

in this analysis for the obvious reason that the electrons come from hadronic events.
The small possibility that the degradation in resolution observed for tracks in
hadroni¢ events might not affect electrons is discounted because ( as was stated
previously ) the resolution obtained from pions and muons produced in two-gamma
events is very similar to that obtained from electrons, and because the resolution
function from the hadronic events gives a reasonable fit to the tau data ( see
below ). This suggests that the degradation observed in the hadrons is independent
of the particle type. The cause of this degradation is not known, The systematic
uncertainty astociated with this problem is taken to be the difference in 74 obtained
using the two consistent resolution functions. Using the two-gamma resolution
function to fit the tracks in the b-region gives a lifetime of 7, = 1.24 psec, which is
0.07 psec greater than that obtained using the unfolded symmetrized resolution
function. Fitting the impact parameters with the unsymmetrized resolution
function obtained from the unfolding process gives 7, = 1.13 psec, which is 0.04
psec lowet than the value obtained from the symmetric resolution function. This
difference is also included as a systematic error.

The problem of propagating the errors from the electron analysis has been

discussed in Chapter 3. At that time it was pointed out that the correlations
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Figure 5.13. The b-lifetime versus z for b-quark fragmentation, Thic fgure

is made by generating new P**¢!(z)'s and redoing the 1-D fit. The arrow

marks the nominal value.
between the “physical”® variables make them unsuited for propagating the errors,
and another set of uncorrelated variables was introduced. At this point it is
necessary to calculate 7, as a function of each of the new variables. This is
complicated by the fact that each of these new variables affects both the fractions
{ fz's ) and the exact impact parameter distributions { P***<*(z)'s ). The later are
affected by way of the momentum spectrum of the parent hadron as was discussed
previously. The first is easily accounted for by generating a new set of fz’s. The
second is somewhat more difficult because the P*23¢(z)’s are produced by a Monte
Carlo calculation. The dependence of 7, on 2, is shown in Fig. 5.13. The points
are produced by varying the value of 2, recalculating the P#=%¢(z)’s, and refitting
the lifetime. The dependence of 7y on 2 is extremely small. The final result
of propagating the electron analysis errors is shown in Table 5.8. The sum in
quadrature of the entties in the last column is ig:?gg pasec. From the table it
is clear that the uncertainty on the f;’s makes a negligible contribution to the
systematic error on ;. Most of the uncertainty comes from the P*2°%(z)’s whick
are influenced by the fragmentation parameter. The most probable value of %, is
0.73. The statistjcal uncertainty from the electron analysis lets %, vary between 0,70
and 0.81. This is consistent with many recent measurements and a recent world

average.52 Table 5.7 summarizes the systematic errors affecting the b-lifetime. The



83

Table 5.6, The systematic errors due to the electron analysis. The column
labeled “total” is the linear sum of the column labeled “f*” and the
column labeled “P*3%%(z)’s,” The sum in quadrature of the entries in the
last column is _"_'g:ggg.

parameter Ji's | PeRact(z)'s | total
4 —0.0027 —0.0027
L2} £0.0022 &0 +0.0022
—0.0005 —0.0085
P2 3.0.0100 50 +0.0109
—0.0077 —0.0200 —0.0277
P3 +0.0076 +0.0300 +0.0376
—0.0050 +0.0600 +0.0550
Ps 300038 —0.1200 —0.1161

ps &0 =0 ~0
—0.0080 —0.0060
Ps +0.0062 =0 +0.0062

Table 5.7. A summary of the systematic errors affecting the b-lifetime.
The result of adding these errors linearly is T3¢ psec.

source + error {psec) | - error (psec)
electron analysis + 0.07 -0.12
resolution functions + 0.07 -0.04
sphericity axis + 0.03 - 0.00

largest error is due to the statistics in the electron analysis and results primarily
from the uncertainty in the fragmentation function. The total systematic error on

74 is obtained by adding the errors linearly ang is tg'}; psec.

5.7 THE RESULT OF FITTING THE TAU DaTA SET

One additional check can be had by fitting the tracks from the tau data set
described in the previous section. This data set provides an additional opportunity
to check the understanding of the resolution function since it combines high statistics
with the possibility of tracking confusion as in the hadronic events. In this case many
of the previous details of the fit can be ignored. The unique 1-3 topology of the tau

decays makes it possible to skim a very high purity sample. The backgrounds are of

04
T T T
8 .
%
S el E
g4t -
5
2k 3
4. ) 3
=0.1 =0.05 Q 0.05 0.1
8(em)

Figure 5.14. Exact impact parameter distribution for tracks from tau

decay as determined by a full detector simulation Monte Carlo calculation

with 7+ = 0.30 psec.
the order of a couple of percent and are neglected in this fit. This means that there is
only one source of tracks ( z = tau ) and f* = 1 independent of p and p;. The exact
impact parameter distributions remain somewhat problematic. The non-simulation
Monte Cario described above was “tuned” to produce agreement on hadronic events
run through the electron analysis and would not necessarily work on taus. In order
to simplify this check, the following compromise was made. Only one Peroct(z),
which averaged over all of p and py, was used. Since this greatly reduces the number
of events needed, it is possible to find P*727 (z) by a full simulation Monte Carlo
caleulation. The resulting distribution is shown in Fig. 5.14. It has a mean of & =
66.7 £ 0.6 um angd is consistent with what one would expect from Fig. 4.16.

The maximum likelihood fit Las been done as a function of the tau lifetime
(7r ) and ¢; ( which expands the errors on 6 ). The results of this fit are shown
in Fig. 5.15 for two different resolution functions. It is clear from this figure that
neither resolution function provides an entirely adequate description of the data.
The resolution function abtained from the two-gamma data set results in best fit
values of 7, = 0.208 psec and €; = 1.09. From the contour plot in Fig. 5.15b it
is clear that this resolution function can be excluded with high probability. The
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Figure 5.15. Contour plots from fits to taus. Part (a) shows the result

of the fit when the resolution function unfolded from hadronic tracks is

used, and part (b) shows the result when the resolution function from the

two-gamma data set is used. Contours are drawn at the one, two, and

three sigma levels.
resolution function obtainea from the unfolding process described previously results
in best fit values of r, = 0.301 psec and ¢; = 0.96. The contour plot in Fig. 5.15a
is obtained using this resolution function. The nominal value of ¢; lies just outside
of the two sigma contour. The probability of ¢; being this small if the detector
resolution is described correctly is only a couple of percent. It is not possible to
reject definitively this resolution function, but it is also difficult to accept it. For
this reason € is left as a free parameter in this fit. This provides a certain amount
of robustness and makes the fit much less sensitive to the details of the reso :tion
function. ( The two resolution functions tried here produce the same tau lifetime to
within 0.003 psec if ¢ is left to float. ) The cost of this procedure is an increase in
the statistical error on 7. The result of this fitis rp = 0.30'_"3:8E (stat.) psec. If ¢ is
fixed to 1 the resultis 7 = 0.2573 0% (stat.) psec. In either case the measured value
is consistent with the value obtained in the previous chapter ( r, = 0.263 + 0.046
{stat.) psec ) and with the “known value” (7 = 0.286£0.016( stat. ) £:0.025( sys. )

psec ). This situation is consistent with the degradation of the resolution observed

26

in hadronic events coming from the large number of tracks in » typical event, In
the case of the taus, the average number of tracks is intermediate between the
two-gamma events and the hadronic events and this gives rise to an intermediate

degradation in the resolution.
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8. CONCLUSIONS
6.1 A SUMMARY OF THE B-LIFETIME MEASUREMENT
The b-lifetime measurement reported on here is obtained from & maximum
likelihood fit to the impact parametess of 113 “electron” tracks with p; > 1 GeV.
The result of this fit is

+0.17

=117 +0. 0.16

27
o2z &t2t)

(sys.) psec. (6.1)

This fit accounts for the various non-b-decay sources of tracis in the data sample,
the non-Ganussian tails on the detector resolution, and the +0.3 ¢cm maximum impact
parameter cut. This measurement has been checked by ( among other things ) doing
a two-parameter fit to 7, and 7, with all 562 tracks which have p > 1 GeV. Values
are found which are consistent with the measurement of 7, obtained using just the
high p; tracks and with the known value of 1. The distribution of & for the b-region
is shown in Fig. 6.1 and the distribution of 6 for the c-region is shown in Fig. 6.2.
The curves plotted on these figures are Monte Carlo calculations of the expected

distributions based on the fitted value of r, and r. = 0.64 psec.

6.2 CONSTRAINTS ON THE STANDARD MODEL

As was explained in the first chapter, r, can be used to constrain the elements
of the K-M mixing matrix. In that chapter it was shown that 7, is related to |V,
and lvub‘ by

1 1
5T Fmisy [0.53 Va2 +1.18- [v...,[z] +10Msec ), {6.2)

The semileptonic branching ratio for B-mesons has been measured by many
collaborations.52 The most precise single measurement com>s from CLEO and is
BR(b — eX) = 0.124 0.007 (stat.) & 0.005 (sys.).5® This gives

-1
n= 18 Va2 +0s8. Val?] " 10" Mgec. {6.3)
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B-REGION
(pe>1GeV)
# of tracks = 113
§ = 259 + 49 (stat.) pm

; 17
75 = 1171027 (stat) 1017 (sys.) peec

Sources of Tracks in the B-Region
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Figure 6.1. A summary of the b-region. The top box shows the number of tracks
in this region, the average impact parameter, and th. b-lifetime obtained from the
maximum likelihood fit. The second box summarizes the sources of the tracks in
the b-region. The figure shows the distribution of impact parameters in this region.
The points are the data ( the error bars are statistical only ). The smooth curve is
a Monte Carlo calculation of the expected distribution based on 7y = 1.17 psec and
7 = 0.64 psec.
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C-REGION
(p>1GeV, pt <1GeV)
# of tracks = 449
& =146 + 28 (stat.) pm

Sources of Tracks in the C-Region

b—e 0.15
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Figure 6.2, A summary of the c-region. The top box shows the number of tracks
in this region and the average impact parameter. The second box summarizes the
sources of the tracks in the c-region. The figure shows the distribution of impact
parameters in this region. The points are the data ( the error bars are statistical
only }. The smooth curve is a Monte Carlo calculation of the expected distribution
based on 7, = 1.17 psec and 7, = 0.64 psec.
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Because the mass of the charmed quark shifts the endpoint of the lepton spectrum
for the decay b — ceD, relative to the endpoint for & — ueb,, it is possible to
determine the relative strengths of these two transitions. Fits to this spectrum
were discussed in the first chapter in the context of determining the quark masses,
CLEO has reported %\’;:%:3 < 4% and CUSB!S has reported % <
5.5%, both of which are at the 80% confidence level, Since that time E. Thorndike52
has reported that when certain models are used for the decay b — wueb,, the limit
obtained from the CLEO data deteriorates to 9%. In any case the contribution ta
the total decay rate from b — uep, is small cou'zpa.red to the errors on the lifetime,
i he constraint trom %E%} < 9% along with the constraint from the lifetime

are shown in Fig. 6.3. If the b -+ uep, transition is ignored, then
2_1 -14
Vel = = 0,21 - 107 Mgec, (6.4)
b

Using the value of 7 from equation 6.1 produces

+0.005
-0.004

+0.004

V.| = 0.042
Werl ~0.002

(stat.) (sys.),? (6.5)
where the systematic error reflects only the systematic uncertajnty associated with

75 and not the uncertainty associated with equation 6.4.

6.3 A COMPARISON WITH OTHER RESULTS

Since the first null result on the lifetime of bottom hadrons by the JADE
collaboration3! in 1982, there has been a succession of improving measurements.
The first non-zero result was by the MAC collaboration®? in the summer of 1983,
followed closely by the MARKII collaboration. Fig. 6.4 is a ( not necessarily
complete } chronology of bottom lifetime measurements. The entries in this
figure are not all indep}zndem. Some [ater measurements contain the data
from earlier measurements. Table 6.1 contains a summary of the latest bottom

lifetime measurements from most groups.52 The first MARKII measurement uses
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Figure 6.3. Constraints on |Vy3| and [Vi5]. The solid curved line comes
from 7, = 1.17 psec. The dashed lines near it are the limits due to
the statistical errors. The dotted lines are the limits due to adding the
statistical and systematic erross linearly. The solid straight Jine is the 90%

. o T{b—suep,
confidence limit from the ratio Fib_—m% < 9%.

a maxiinum likelihood fit to the impact parametess of leptons from B-decay which
is very similar to the fit used in this analysis. The MAC analysis also uses high p,
leptons from B-decay; however, they estimate the bottom lifetime by comparing the
average impact parameter with a Monte Carlo calculation. The JADE measurement
is an average over two methods of analysis. They obtain a set of events tagged as
B-dezay by the presence of high p; leptons. In the first method they relate the
average impact parameter to the lifetime using a Monte Carlo caleylation. In
the second method they make additional use of the aplanarity of the event to
provide more information on whether the event is really due to b8 production.
The TASS0 result js obtained by & comparison of a measured impact parameter
with Monte Carlo calculations. The tracks used in this analysis are not leptons
however. TASSO obtains their b-enriched data by making cuts on event shape
and then uses all tracks in the events with p > 1 GeV. The second MARKII

measurement is Made by reconstructing the vertices in events which have been
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Figure 6.4. A chronology of bottom lifetime measurements. Most of

the b-lifetime measurements which have been reported in the literature

appear here. The inner error bar is the statistical error only and the

outer error is the linear sum of the statistical and the systematic errors.
identified as B-decay by the presence of high p leptons, The average value of these
measurements ( obtained by adding the statistical and the systematic errors linearly

and then weighting them by the reciprocal squared error ) is

r:oxld RVEIME® — 1.10 £ 0.21 psec.
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Table 6.1. A summary of bottom lifetime measurements to dzte. This
table contains the latest numbers from various collaborations.

7 { psec } Source

1174027 (stat.) #3131 (sys) | this measurement
0.851017 (stat ) 132} (sys.) | MARKII- ref. 44
0.817328 (stat.) 7317 (svs) | MAC-ref. 57
1.80f8:§8 (stat.) 1‘8::8 (sys.) JADE - ref. 58
1.837538 (stat ) 237 (sys) | TASSO - ref. 50
1257528 (stat.)*235 (sys) | MARKII- ref, 60

Since some of the above measurements are made using very similar methods, the
systemalic errors are probably not all independent and the error on the above value

of 7, probably understates the real uncertainty.
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Appendix A. The Maximum Likelibood Method

This appendix is a brief review of the maximum likelihood { M.L. ) method.
For a thorough discussion of the subject, see the literature. 466! Given:
¢ a collection of N events, each of which is described by n parameters ( for the
i’th event one has (ryy,ry2, ...7in) ) and,
e a known probability density function ( P.D.F. }, from which the events were

drawn, which is a function of m parameters (21, 22,...2m); L€,
P{r1,72,.Tni 21,22, ...Zm), (A1)
then the “likelihood” of observing the i’th event iz defined to be
Py = P(ry1,7i2s 0 ¥ini 21,22, . Zm). (4.2)

The likelihood of observing all N events is the product of the individual likelihoods:
N B
L{z1,zz,7m) = ] P (A.3)
=1
The M.L. estimates of the parameters (z3,z,..xn) are the values of these
parameters which maximize L. Aiternately, one can minimize the quantity

—2log L{z1, 22, ..-zm)- (A4)

The reason for choosing this particular function will became clear latter on. As a
concrete example, consider the case of N events drawn from a Gaussian distribution
with mean g and width 0. Then the P.D.F. is

mela )] w

P(riu,0) =
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and the log of the likelihood function is
N 2
= o Bl od 2
—2log L(p) = 'E-l ( - ) +log (210 )] \ (A.6)

5o that the motivation for choosing —2log L is clear. For the case where sigma is

known, the second term is constant and it is sufficient to minimize

NEDN (47

=1

which is exactly chi-squared. This of course yields

=

1 N
g= Z;,—. (A-8)
=1

If 4 is known then an estimate of the width of the distribution is

N
1
Y Y .

o= Nz(zl I‘) . (A.Q)

i=1
If 4 and o are unknown, then both can be estimated by minimizing —2log L . This
produces the same equations as obtained above, except that in the equation for o,
the value of it used is the estimated value. This illustrates an important point. Since

it is well known?® that an unbiased estimate of the width of a Gaussian distribution

with an unknown mean is
2 1 N
= c— )2
o= 5y IE_I (z¢ — n)*, (A.10)

it is clear that the M.L. estimate has a bias of order ]‘v 1t is generally known*®

that M.L. estimators are only asymptotically (N — oo} unbiased.
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A goodness of fit test can be motivated by the following example. If N data
points {z;;¢ = 1,N) are drawn from Gaussian distributions with s common mean

(1) and independent widths (0;;¢ = 1, N), then the log of the likelihood function is

log L(p) = —%f {(f'a:—")z +Iog (2:0.?)] . {A.11)

=1

The chi-square term in this expression is clear, so if we define

1S~ (zi-u\?
¥t = z (—;‘—-—) . (A4.12)
i=1
then
N
x® = -2logL ~ Zloz (Z’ra?) . (A.13)
=1

This auggests & statistic to use as a goodness of fit test. For the lack of a better
name, this quantity s called “ x? ™ in this work.

This example also suggests the method of determining the confidence intervals
from the fit. If the likelihood function has & minimum at (zJ*,zJ,...z7), then
there should exist a ( not necessarily linear ) transformation such that —2log L will
be gquadratic in terms of a new set of‘puunetere (1,425 +:¥m). In that case the

confidence intervals ate just given by the surface in m-space such that

~2log L(Vl-ﬂh wym) = —2108 Lynin + Xfup' (4-14)

where
—210g Lnin = —2l0g L{yT", 45" ¥ )+ (4.15)

and XZtep =1, 4 and 9 for the 1, 2 and 3 sigma error ellipses. It foliows immediately

that the confidence interval for the z;'s is given by

~2log L(z1,Z21...m) = ~2log Lyin + x?,,,, (A.16)
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where

~2log Lyyyn = —2log L(z], 2T, ...270) (A.17)

also, and that it is not actually necessary to find the transformation between the

z,'s and the y;’s.
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Appendix B, Cubic B-Splines

The functions described in this appendix are a type of cubic spline function.62
A cubic spline is defined by a set of cubic polynomials with one polynomial for each
of a finite number of intervals. The points separating intervals are called knots. The
polynomials are required to be continuous and to have continuous first and second
derivatives at the knots. The particular splines ( B-splines ) used in this analysis

are shown in Fig. B.1 and defined by

w

= }= z=(z—~t;)/d G <T< iy
= 314301 +201~2))2) z=(z—tin)/d i) <z <ty
bifr) = O +30+20-2)0-2) r=(z-tj42)/d iz <2<ty
= g(1-2p z=(r-tjza)/d  tia<z Sty
= 0 otherwise,
(B.1)

where j goes from 1 to 24. The knots are given by t; = %g(j — 4) — 10, There are
a total of 20 B-splines. Each spline has the form of a bump extending over four

intervals. The B-splines have the property that for -10 <z < 10: ??__1 bi(z) =1.
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Figure B.1. The B-splines used to fit the resoluticn function. The twenty
splines shown in this figure are defined by equation B.1.
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Appendix C. The Lund Monte Carlo

The Monte Carlo generator used in this analysis ( JETSET 4.3E ) was
developed at the University of Lund in Sweden.6%%4 It provides a phenomenological
description of the hadronization process. It is motivated by the idea of a color Rux
Lube connecting the original q§ pair. The energy density in the tube is consiant,
which gives rise 1o a linear potential between the gg pair. ‘This is consistent
with what is expected from, for instance, charmonium epectroscopy. Transverse
tnomentum is introduced by way of & tunneling approximation and gluons appear
as “kinks" in the color flux tube.

The Monte Carlo has also been modified to use a different decay scheme for
B-hadrons. In the case of the aemileptonic decays, the existing code is satisfactory.
‘The momentaof the D, |, and &; {§ = lepton ) are determined by the standard V-A
matrix element. The “D" is a charmed hadron made from the c-quark produced
in the decay of the b-quark and from the spectator quark ( or quarks } in the
original B-hadron, The momentum distribution obtained is shown in Fig. C.1. The
distribution in this figure agrees with the stiff distributions measured by CLEO

and CUSB.'S In e case of non-lepionic decays, the existing code is not satisfactory.
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Figure C.1. The electron spectrum from the decays B — Dep, and
B — D*®eD. produced in the Monte Carlo. This figure shows the expected
stiff momentum distribution from the V-A decay.
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It uses n-body phase space to determine the momenta of the decay products, where
n is a random number whose mean and width have been picked to reproduce the
observed multiplicity distributions. This results in & very woft spectrum for the
D*’s and D°’s produced in the decay. Such a spectrum is not consistent with the
ohservations of the CLEO collaboration.59.%8 Because of this an alternate decay
scheme is used in this analysis. In this scheme the B-hadron is broken into three
pieces: a “D” composed of the charmed quark and the spectator quark(s), plus
two other quarks from the decay of the virtua] W. These three particles are given
momenta according to the standard V-A matrix element ( just as was done in the
leptonic decays ). The two quarks are then fragmented aceording to the standard
LUND fragmentation procedure. If the invariant mass of the two quark system is
tao smal}, then the quarks are assumed to fuse into a single meson and the momenta
are adjusted accordingly. This procedure produces the momentum distribution for
D°'s and D*’s shown in Fig. C.2.

This Monte Carlo has also been modified to use a different fragmentation
function for the production of heavy ( bottom and charm ) hadrona.?®

Dy(z) = (c.1)

N
1 2 C
%0 - & - =g
One must not confuse the zg (¢ = b,¢) which appears in this expression with the z;
which appears in the fit to the electron spectrum. The present z is internal to the

Lund Monte Carlo and is defined to be

= Erad ¥ Praad

' C.2
Equork + Pyguark ©2

where p, is a momentum along the quark direction. In equation C1 N is a
normalization constant and ¢; is & parameter which describes the momentum
spectrum of the heavy hadrons. This parameter can be related to the 2; measured

in the electron analysic by running the Lund Monte Carlo with various values of ¢;
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Figure C.2. The momentum distribution of D’s from B-decay. Part (a}
shows the momentum distribution of D%'s from the decay of B-mesons
( including D®'s from D*’ ). The histogram is produced by the Monte
Carlo and the data paints are from CLEO.%5 Part (b) is the analogous
distribution for D*'s from the decay of B-mesans. The poinis in (b)
are also from CLEO.%% In both (a) and (b) structure is evident in the
momentum distribution produced by the Monte Carlo. This is the result
of two particle final states (i.e., B® — D**p~, ete. ). Such decays have
been observed.57%®

and finding the average value of z5 = Eﬁ;‘f—:‘l in the events generated. The result
of this exercise is shawn in Fig. C.3. A similar exercise has been dane for charmed
particle events, In the text of this thesis when it is stated that the Monte Carlo
was run with a particular value of 2, it is understood that Z; has been related to
the appropriate value of ¢; and that this parameter is set in the Monte Carlo.
The Monte Carlo has also been modified to include the effects of the
finite lifetimes of the heavy hadrons. The lifetimes of the bottormn hadrons
{ B° Bt Bs, Ap, ete. ) are nll set equal to each other. The particular value
used is given in the text where it is relevant. The charmed particle lifetimes,
semileptonic branching ratios and relative fractions produced are summarized in
Table C.1. This data is taken from ref. 36, A recent measurement of the D¢
fifetime®® js somewhat fanger than the value in ref. 36. In addition the data reported

on in ref. 69 contains &n event with a proper lifetime r > 5.5 psec. The authors

* E\\
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Figure C.3. Average value of 2 as a function of ¢ for events generated by
the Lund Monte Carlo using a modified fragmentation function.

Table C.1. A list of the charmed particles in the Monte Carlo. The column
labeled “BR( €X )" is the branching ratio for that particular hadron into
€ + anything. The column labeled *Fraction” gives the probability that a
charmed quark will hadronize into the indicated particle,

Particle Lifetime Fraction BR(eX)
D° 044317 psec 53 % 5%
D+ 092ig}; psec 27T% 16 %
F+ 0.19+513 peec 13% 10%

¢ - baryons 0.23799% psec 7% 5%

10

0.
T = 0.64+ psec.

—0.08

estimate that the probability of observing such an event in their data sample is
610~ if the value of rpo in ref. 36 is correct. Because of this the errors on
7po have been expanded to +0.17 psec. The average value of the charmed particle
lifetime based on this table is
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Appendix D. The Bottom Quark Lifetime in the Spectator Model
In the absence of strong interaction effects, the decay of a hadron containing
a bottom quark can be understood as the decay of just the bottom quark. In this
picture the semileptonic part of this decay is given by the diagrams in Fig. D.1.
The first diagram makes a contribution to the total rate which is proportional to
|Vp|? and the second makes a contribution proportional to [Vis|?. For the sake
of definiteness only the first diagram is calculated here and the factor of |V,y|?
is suppressed. The relation between the two is clear, Since the mass of the
intermediate vector boson My, = 80 GeV is large compared to any other masses or
energies appearing in the problem, the effact of the W= can be ignored. The problem
then reduces to calculating the diagram in Fig. D.2.797! The matrix element for
this diagram has the form:t

M= % (£0%8) (:04ve), (0.1)

where Oq is the standard V-A interaction:

Oq = vall + 75), (D.2)

G is the Fermi coupling constant ( G = 1.166:10~% GeV 2 ) and the four component

spinors « = (b, ¢, ¢, v,) satisfy the Dirac equation:
(F—my)u=0 and (D.3)
F-md =0, (a=uM). (D.4)

t In the following the letters generally denote d-vectors ( p = (Ep, pz,Py,P:) );
letters with arrows on top denote 3-vectors ( P’ = (pz,py,P:) ); and the meaning
of dot product depends on the type of vector ( p-g = EpEq ~ p2gz — Dygy —
Pzg: Ot P =proz+ PyQy + Prgr ). The usual Feynman dagger notation is used
(B=pu¥).

[ PRV
e Eaas 1 s
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Figure D.1. Feynman diagrams for the semileptonic decay of a bottom
quark.

e(sqy.k)

/ V.(!‘.l)

b(sy.p)

c(sz.q)

Figure D.2. Feynman diagram for the semileptonic decay of & bottom
quark where the W= has been ignored. The first variable in the parenthesis
labels the spin and the second labels the 4-momenta.

The expression for M given in equation D.1 can be transformed by applying the

following Fierz identities:

(87°8)(Ead) = (ad)(2) - (2% d)(Evab) (3)

- 3 (@77 8)(e5708) + @W5)(Er68), 20

(@vsv*6) (E¥svad} = —(adj(zb) — %(ﬁ‘v"d) (208} (D€)

--;-(ﬁ‘m"d)(hs-hb) - (@ved) (2vs).

Since the first and last terms in D.5 and D.6 cancel, the matrix element can be


http://Z7.fi
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written as
M= —% (€0%w,) (£0ab). D7)
The complex conjugate of this is
t = _C wrotshy (wtoatet
Ml =~ = (lolat) (lostet). (D§)
Since ut = 449 and &' = 4Ou:
t G 1.05t.0 8oat.0
M = -E 5y 047 ) (Bey O 7). (D.9)
Since 1°0}L1° = Ou:
M= —% (50ae) (5e0O%c). (D.10)

Then combining equation D.10 and equation D.l1 the squared magnitude of the

matrix element is
2
[MP? = MM = -%(aonb)(sope)(aoau,)(p,o’c). (D.11)

This is calculated between states of known momentumn and spin. Since the
polarizations are not measured, one must take the appropriate sums and averages.

This gives

7 = -5 3 e(s2)0%8(s1) Be1)Ope(sa) 2lea)Oave(sa) Fe(se)0Pelso).

.6
.37“
{D.12)
At this point it is useful to recall the expression for the density matrix:
3 ulps)alp,s) = B+ mu, (D.13)
a
50 that
—_— GZ
IME = -1 {0°( + my) Op(k + me) Oa(NOP (A +me)} . (D14)

PTEA  rE
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Here the trace is over the indices on the gamma matrices. Since m, is very small

compared to typical energies in this decay it can be neglected to give:
— G2 2
M ~ ——=Tr {O°( + mp)Op(K10a(NOP (g + me) }, or (D.15)
—_ 2
ME = - GT'rr {oﬂp«o, ¥0u ;o’,q} (D.16)
GZ
~ 5T {o"o,xoaxoﬁq}
2
- %—chr {owo, KOa zoﬁ}

2
-%—-mbm:’l‘r {o"'o,9 ¥Oq JOF } ;

The first term in this express can be written as
Ts {7"‘(1 +98)Bya(3 + 1) Kra (1 + 1) P (1 + '75)#} . (D7)
Since (1 + 75)7a = Tall = 75) and (1 + ~y5)2 = 2(1 + ~ys) this is equal to
8- Tr {1°(L +w)Fp kv’ 4} - (D.18)
Using the identities v #P¢ya = —2¢P¥ ¥ and then 4*gBv, = 4a - b reduces this to
—6d k-gTe{(1 + vs)B0}. (D.19)
The identities Tr {#Bys} = 0 and Tr {£B} = 4a - b allow this to be reduced to
-256 (k-¢) (p-1). (D.20)
The three remaining terms all contain factors of the form:

0%0p = 1*(1 +5)1p(1 + 75) ‘ (D.21)
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= 4%g{1~5)(1 + 75)
=71 -%) =0
since 52 = 1. Thus
(M2 =64G? (k- q) (p- ). (D.22)

This is the end of the dynamical part of the calculation. The phase space and

kinematica] factors are accounted for by”!

|M|2 d3k 43 fcd
T N
0= ] m; 2E,,(27r)32E,(27r)32E,(21r)3(27r)6 p-k-1-g  (D2)

where E is the electron energy, etc. Since the neutrino is massless and the electron

mass can be neglected E; = |T| =1, Eq = |§'| = q. For the charmed quark
Ey=(mZ+ ]k[z)} = E. This gives

T3k d31 dbg
o= mm,(zn)S/ “—""‘"5‘(1’ k—1-q). (D.24)
Plugging in [M|2 produces
d kd a4
To= 27r)5 ](” k) 5 qﬁ‘( ~k-1-gq). (D.25)

If T'g is evaluated in the rest frame of the bottom quark, then p = {m,0,0,0) so
that

k-q
To = (ms / =—d% d*1 &3 E4p— k1 —q). (D.26)

The k - ¢ term can be written out explicitly to give

4G? %7
To= (z_,r)’s“/ (1— s a3k Pl g 8ip -k ~1—g). (D.27)
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The momentum conservation part of the delta function can be used to eliminate

the integration over the neutrino momentum:

T =ii/ 1_7‘.'7 Sk dgsmy-E—-q~ |k +7) (D.28)
" Zm)s Eq b ' '

1
— z
where |k + 77| = 1’:7' +q%+ 2% T)’] . The integral over one direction ( say ¥ }

and one azimuthal coordinate ( say for ¢’ ) can both be done trivially and give

factors of 47 and 27 respectively. The decay rate can then be written as

8G? kgcos8Y 2, o T+7T
Io = W/(1_~ﬁ)k dk g°dg dcos8 §(my— B ~q— |k + T}, (D.29)

where § is the angle between T and g . Letting z = ¢0s 6 this can be written as
8G2 kz\ o 2 JT—T—%
To = G ] (1 - ‘E) k?dk g*dg dz 6(my ~ E — g — V'k2 + ¢% + 2kgz). (D.30)

The energy conservation delta function can now be used to eliminate the integration

over r. Setting the argument of the delta function to zero one finds for =

_2mE+2myg+2Eq—mf - m?

D.31
2k (p.31)
Recalling that |
J(zo
z)6 (g(z))dz = ' D.32
[ ree otz = T2, @
where 2o is the only solution to g(z) = 0, one must solve for g'(zo). This produces
a factor of
my—-E—gq
%, (D.33)
Plugging this in gives
- 4G* 2 _ 2
To = Gy / (2myE + 2myq - m m?) (my - E - q) dEdg. (D.34)




119

2 2
mj+m
This can be put into a simpler form by defining a new constant A = ——&;b—‘ so that

8G2m,

R / (E +g- ) (E +q—my)dEdq. (D.35)

Up to this point the limits of integration have been oo for each companent of
the momentum. Since z is limited to being a real number on the interval [—1, 1],
equation D.31 can not be solved for completely arbitrary values of E and g, Setting
z = %1 one can obtain ( after some algebra ) the following contours in the E,q

plane:
g = fale=my) +mpd
my —2q
E=Ax (D.37)

\ (D.36)

L. m2—m2 . . -
They coincide at ¢ = 0 and ¢ = _ZT"—A—C The region of integration is bounded by
these two contours. At this point it is straightforward to integrate with respect to
E in equation D.35 and to plug in the appropriate limits. After some algebra this
reduces to

2m 6 208 _ g)2
o= 22 [ LT [oms - 20(m = 6)+ ala &) o, (D30

here 6 = m2-m? . . mf-m?
where § = —57"—5— It is convenient to define a new constant zm = —h’;r and a
new variable of integration z = ,%Igb-. In terms of these 72

o= ._szls' /:m z%zm — )
0

Gars - (1 - zm)(8—z) + (22 ~ 3)(= — 1)}d=z. (D.39)

This integral is also straightforward to evaluate. The result of this is

G?*m}
1— 822 6 _ 8 _oad y
192”3( R Inz), {D.40)

I‘°=

whete 2 = % This is identical to the expression for the muon li‘etime when the

electron mass is taken into account.”™ This is not immediately obvious since it is

120

the charmed quark and not the electron which has a finite mass in this problem.
From equation D.22 it is clear that the matrix element is not changed by k + g so0

that equation D.40 is as expected.
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Appendix E. Results from the Electron Analysis

This appendix contains the detailed results of the fit to the electron spectrum.
Each section corresponds to one run block, Each entry in each table corresponds to
a single 0.5 GeV square bin in the fit. The labels on the tables indicate the lawer
edge of the bin. For the two isobutane run blocks, bins corresponding to p > 2.5
GeV are zero and left blank because of the 2.5 GeV pion threshold.

In each section the first table { labeled “Data” ) is just the number of tracks
identified as electrons in that run block. The second table { labeled “Efficiency
Corrections” ) contains the ratios of the efficiencies of the kinetic and the topological
cuts in the electron analysis as applied to the data and the Monte Carlo ( i.e., ¢;;
n Equation 3.4 ). After this the tables come in pairs, the first for the number of
tracks from a given source and the second for the fraction of the total signal in each
bin which comes from this source. The tables labeled “Total background” are the

sum of the backgrounds due to pions, garama conversions, and taus,
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E.1  FIRST RUN BLOCK » *82 + 83 ISOBUTANE
Data a0 2.0
(number of tracks) 5.00 :00 . LS
20,00 20.00 10.00 1.0
52.00 $1.00 28.00 26.00 0.5
216.00 192.00 86.00 50.00 32.00 0019
p— 00 05 10 15 20
Efficiency Corrections 0.91 20
039 0.87 1.5
0.85 085 0386 1.0
087 048G 085 085 0.5
0.88 083 082 079 0.77 Q.01 p
p—~ 00 05 10 15 20
Electrons from b — e 0.69 2.0
{number of tracks) 458 ‘:57 1.5
13.25 1171 8.38 1.0
19.66 1243 847 B.28 0.5
494 455 265 276 364 0071 pe
(fraction of total) 0.69 2.0
072 073 1.5
G 07 053 1.0
032 023 021 030 0.8
0.02 002 003 006 o011 0.01p:
p— 00 05 10 L5 20
Electrons fromb — ¢ — ¢
{number of tracks) .56 gg; ::
L7 167 077 1.0
17.50 16.26 ©.33 3.85 0.5
3554 33.16 13.3¢ 596 300 001 pe
(fraction of tatal) 0.05 2.0
009 005 1.5
009 010 0.05 1.0
028 0630 016 0.14 0.5
0.15 016 0.15 014 0.09 0otp
p— 00 05 16 15 20
Electrone from ¢ — e
017 2.0
(number of tracks) 120 139 L6
208 270 371 1.0
15.60 24.48 22.44 1332 0.5
50.49 80.81 4728 26.49 20.84 001t p
(fraction of total) 0.17 20
019 022 1.5
011 016 023 1.0
025 045 0.55 048 0.8
024 044 052 060 0865 0.0t p
P 0D 05 1p 15 20

o
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Total Background

2.0
(namber of tracks) 0.00 ggg 1.5
1.81 0% 299 1.a
950 170 3831 258 0.5
14502 75.58 27.10 8.60 448 0.01p,
(fraction of total) 0.00 2.0
0.00 0.00 15
010 004 0.19 1.0
0.15 003 008 009 0.5
059 037 030 020 014 0.0 1 pe
p— 0.0 0.5 1.0 1.5 2.0
Background Due to Pions 0.00 2.0
(number of tracks) 0.00  0.00 1.5
149 075 298 1.0
448 D075 298 224 0.5
67.87 58.92 2387 746 448 0.01% p
(fraction of total) 0.00 2.0
0.00 0.00 15
0.08 0.0¢ 0.19 1.0
007 ©0.01 007 0.08 0s
028 0290 026 017 0.4 001 p
p— 0.0 0.5 1.0 15 2.0
Background Due to 7 — ete~ 0.00 2.0
(pumber of tracks) 000 0.00 15
030 000 000 1.0
498 092 030 0.%0 0.5
77.12 16.63 323 113 0.00 001 p;
{frastion of total) 0.00 2.0
0.00 0.00 15
002 0.00 0.00 1.0
0.08 002 0.0: 001 05
0.31 008 0.04 0.03 0.00 001 p,
P 00 05§ 1.0 15 20
Background Due to Taus
(number of tracks) 0.00 gg ig
0.01 000 0.00 Lo
bb4 003 002 o001 0.5
0.08 003 001 001 001 0.01 pt
(fraction of total) 0.00 2.0
0.00 000 1.5
0.00 0.00 0.00 1.0
000 000 0.00 000 0.5
000 000 000 000 0.00 001 p
p— 00 05 10 15 20
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E.2 SeconD Run BLOCK - '83 NJTROGEN
Data  teack 100 000 100 000 000 100 000 20
{number of tracks) 000 100 000 100 000 100 000 000 15
8.00 4.00 4.00 0.00 1.00 3.00 0.00 1.00 0.00 1.0
13.00 14.00 1100 11.00 8.00 6.00 2.00 1.00 1.00 1.00 0.5
8400 4R00 2200 1400 500 600 700 500 400 €00 300 001p
p— 00 05 10 15 20 25 80 S5 40 45 50
Efficiency Corrections 088 088 088 085 088 0.88 068 2.0
088 088 087 088 088 085 DAS 084 1.5
087 0.86 085 084 084 083 083 082 082 10
087 084 084 085 081 080 079 079 078 079 0.5
08 08 079 077 078 077 079 079 079 078 078 00%1p
p—s 00 05 10 15 20 25 380 85 40 45 KO
Electrons from b — e 015 031 014 0.08 004 013 000 20
{mumber of tracks) 089 127 105 064 022 031 018 005 L5
246 278 210 137 108 066 056 022 050 1.0
5.06 3.15 2.25 1.68 1.54 1.87 119 1.08 1.02 0.37 0.5
167 125 07 055 100 115 056 103 100 111 081 G.0Tp
{fraction of total} 019 031 0.4 008 o004 013 000 20
071 080 075 058 022 031 016 005 13
071 070 065 077 073 0.66 056 022 050 10
025 028 024 017 020 034 048 041 069 037 05
003 002 004 003 0O 018 010 027 031 033 040 D.OTp
p— 00 05 10 15 20 25 380 35 40 45 80
Electrons from b — ¢ —~ e 0.00 000 002 000 000 000 000 20
{mumber of tracks) 007 017 008 008 000 000 005 000 LS
036 053 045 018 007 000 009 000 000 10
508 268 172 087 067 007 013 005 000 009 05
730 785 340 176 066 055 041 021 GI5 000 009 007p
(fraction of total) 000 000 0.2 000 000 000 000 20
005 D11 008 005 000 OO0 00 00O 13
0.0 013 014 010 005 000 008 000 000 1.0
025 023 019 010 012 002 005 002 000 009 0.5
014 015 017 011 008 009 008 005 005 000 004 0.07p
p—~ 00 05 10 15 20 25 80 35 40 45 80
Flectrons from ¢ ~» ¢ 012 010 017 000 000 000 000 20
{pumber of tracks) 020 0 027 035 023 000 022 000 L5
055 064 070 014 032 021 022 016 010 1.0
410 B5.07 448 650 516 244 116 148 D46 031 05
1566 22.23 1331 1026 599 460 364 187 204 226 111 00fp
(fraction of total) 012 010 047 000 000 000 0.00 20
023 009 020 030 023 000 032 000 15
006 016 021 008 022 021 022 016 010 1.0
021 045 049 085 0590 061 047 057 031 031 05
029 042 066 064 053 072 068 049 004 087 055 00fp
p— 00 05 10 15 20 25 30 S35 40 45 5O

i
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Total Background 000 000 000 000 000 000 000 20
{pumbser of tracks) 000 000 000 0I0 000 000 000 000 Ly
011 001 001 009 000 000 000 000 000 1.0
570 030 078 085 000 010 001 000 000 000 05
2032 21.80 266 852 879 000 075 075 000 000 000 00Tp
(fraction of total) 000 000 000 000 000 000 000 20
000 000 000 003 000 000 000 000 1.5
003 000 Q00 €05 000 000 000 000 000 1O
020 004 O0.08 002 000 002 000 000 000 000 05
05¢ 041 013 022 033 001 o014 019 000 000 000 0OTm
p— 0O 05 10 15 20 25 80 35 40 45 30
Background Due to Piona 000 000 000 000 000 000 000 2.0
(number of tracks) 000 000 000 000 000 000 000 000 15
D00 000 000 000 000 000 000 000 000 10
448 000 075 075 000 000 000 0.00 000 000 05
1044 1715 149 298 873 000 075 075 DO 000 000 0.07Tp
(fraction of total] 000 000 000 000 000 000 000 20
000 000 000 000 000 000 000 000 15
000 000 000 000 000 000 000 OO0 000 10
022 000 008 007 000 000 000 000 000 000 05
D19 032 007 019 033 000 014 019 000 000 0.0 D0Tp
p— 00 N5 10 15 20 25 30 S5 40 45 50
Background Dus to v — e*e™ 000 000 000 000 000 000 000 20
(number of tracke) 0.00 000 000 010 000 000 000 000 15
010 000 000 009 000 000 000 000 000 1.0
218 047 000 009 000 009 000 000 000 000 05
1836 463 116 052 000 049 0K 000 00 000 0K 00p
{fraction of total) 000 000 000 0.00 000 000 0.00 2.0
000 000 000 008 000 000 000 000 15
003 000 000 005 000 000 000 000 000 10
006 004 000 001 000 002 000 000 000 000 05
0.35 009 006 0.03 000 001 000 000 000 000 000 001p
p— 00 05 10 15 20 25 SO0 35 40 45 50
Ef;ﬁ“:;"?a‘;:)" Taus 000 000 000 000 000 000 000 20
0600 000 000 000 D0 000 000 000 L5
001 0Ol 001 000 000 000 000 000 0.00 1.0
D65 VO3 001 001 000 000 001 000 000 000 05
002 001 001 001 000 000 000 000 000 000 0N 001
(fraction of total) 000 000 000 000 000 000 000 20
000 000 000 000 000 000 000 000 15
000 000 000 ©00 000 000 000 000 000 L0
000 000 000 000 000 000 000 000 000 0.00 05
000 000 000 000 000 000 000 9.0 0C0 000 000 0.01%p
p~ 00 05 10 15 =20
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E.3 Tamro Run Buock - '84 NITRAGEN
Data 000 1.00 100 100 000 000 000 20
(pumber of tracks) 300 100 100 000 100 100 000 000 1§
000 €00 400 400 300 400 100 100 100 10
23.00 25.00 2100 900 600 1400 400 600 300 3.00 05
112.00 76.00 29.00 3500 1900 12.00 7.00 600 200 500 3.00 0.0fp
p—~ 00 05 10 15 20 25 30 35 40 45 5O
Efficiency Corrections 088 0% 088 085 088 088 0.88 2.0
082 088 087 0.6 085 085 085 084 1.5
087 066 085 084 084 083 083 082 082 10
037 084 084 083 081 020 079 070 Q70 079 0F
08 082 079 077 076 077 079 079 079 078 078 0.07p
p—~ 0D 05 10 15 20 25 30 35 40 45 5O
Electrons from b — e 632 021 024 012 009 003 000 20
{number of tracks) 199 294 093 073 075 039 015 0.12 15
593 529 333 233 220 19 110 088 028 L0
890 580 424 210 244 217 186 166 165 1.42 05
282 260 103 114 143 183 136 145 176 187 127 0O1p,
{fraction of total) 032 021 024 Q12 009 003 0.00 20
085 086 077 073 075 039 015 012 L§
076 070 067 D62 079 D78 088 079 D028 L0
032 023 023 016 024 031 037 044 063 0056 0.5
003 003 003 005 008 016 GI1z 026 035 025 034 0.0fp
p— 00 05 10 15 20 25 30 S5 40 45 KO
Electrons from b —v ¢ ~ ¢ 000 000 007 000 000 000 0.06 2.0
(number of tracks) 007 007 020 000 ©00 000 000 000 L5
056 073 056 05¢ 044 008 000 006 000 10
7.4 700 802 147 079 Q27 032 012 006 000 05
1634 1638 645 309 132 074 046 006 000 011 012 00tp:
{fraction of total) 000 000 007 000 000 0.00 0.08 20
008 003 037 0500 000 D00 D000 0.00 L5
009 010 011 012 016 0038 000 006 000 1.0
026 028 016 G611 Q08 004 000 003 002 000 05
016 017 016 013 008 006 004 DOl 000 DO2 0.08 00Tp:
p—~ 00 05 10 15 20 25 80 35 40 485 50
Elertrons from ¢ — e 024 018 018 DO 087 000 000 2.0
{number of tracks) 027 032 008 000 008 015 €08 000 L5
116 155 104 123 015 050 017 017 000 LC
742 1120 1046 894 €320 203 284 1986 080 114 05
3047 4374 2238 15083 917 T4 TST 407 332 448 233 001
{fraction of total) 024 018 018 000 037 000 0.00 20
011 012 007 000 008 0I5 008 0.00 L&
015 020 021 027 005 020 014 035 0.00 1.0
0.27 045 0S6 070 08D 042 057 052 034 044 05
030 046 056 .068 052 070 065 078 065 OI3 063 00(p
p~ 00 05 10 15 20 25 50 35 40 48 80

y
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Total Background

00 006 003 008 603 000 000 20
{number of tracke) 0.00 000 000 000 000 €00 000 V00 1§
001 001 000 000 000 000 000 000 000 10
432 D95 093 0I5 0D 166 DOD D00 0.00 0.00 D5
51.79 3289 .88 4.82 555 091 224 000 000 017 000 001p
(fraction of total) 000 000 000 000 000 000 000 20
000 000 000 000 000 000 0.00 000 15
000 000 000 000 000 000 000 000 000 10
016 004 005 003 009 024 000 000 000 000 05
051 034 025 020 032 008 019 060 000 003 0.00 001p
p— 00 05 10 15 20 25 80 35 40 45 50
Background Due to Pions 000 000 000 000 000 000 000 20
(pumber of tracks) 000 000 000 000 000 000 000 000 15
000 000 600 000 000 000 ©000 000 000 10
373 075 075 000 075 149 000 000 000 000 05
33.56 2834 970 448 522 075 224 000 000 000 000 00fp
(fraction of total} 000 000 000 000 000 0.0 000 20
0.00 000 000 000 000 000 000 000 15
000 000 000 000 000 000 0O 000 000 10
013 003 004 000 007 021 000 000 0.00 0.00 05
033 030 024 018 030 007 019 000 000 000 000 001p
p—~ 00 05 10 15 29 25 38 35 4D 45 50
Background Dus to 7 — e*e” 000 000 000 000 000 0.00 000 20
{number of tracks) 006 000 003 000 GO0 000 000 000 15
000 000 000 006 000 000 000 000 000 10
055 018 018 035 017 017 000 000 000 000 05
1820 451 047 033 03z 016 000 000 000 0147 000 007 g
(fraction of total) 000 000 0060 000 000 000 0.00 20
000 000 000 000 000 000 000 000 15
LO0 000 000 000 000 000 000 000 000 10
002 0.01 001 003 002 002 000 000 0.00 000 05
018 005 000 001 002 001 GO0 000 000 003 000 001p
p~ ©8 05 10 15 20 25 30 35 40 45 50O
{i‘:ﬁ:’:ﬁtﬂ'ﬁs‘)" Taus 000 000 000 000 000 000 000 20
000 000 000 000 000 000 0.00 000 L5
001 001 000 000 000 000 000 000 000 10
004 002 001 600 000 000 OG0 000 000 000 05
003 003 001 001 001 000 000 000 000 000 000 001p
(fraction of tota) 000 000 000 000 000 000 000 20
000 000 000 000 000 000 000 000 L§
000 000 000 O0p 000 000 000 0.00 0.00 10
000 000 000 000 000 000 000 008 000 000 05
000 000 000 000 000 000 000 000 000 000 000 001p
p— 00 05 10 15 20 25 30 35 40 45 60
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E.4 FoURTE RUN BLOCK - '84 ISOBUTANE
Data
(number of tracks) 2.00 ;gg 212
700 11.00 7.00 1.0
52.00 38.00 21.00 13.00 0.5
163.00 122.00 47.00 28.00 80.00 001 p
p—= 00 Q05 18 15 20
Efficiency Corrections 0.01 20
0.80 Q.87 1.5
0.85 0.85 0.86 1.0
0.87 086 0.85 0.5 0.5
0.88 083 032 079 oM 00tp
p— 00 05 10 15 20
Electrons from b — ¢ 0.42 2.0
{number of tracks) 214 2.54 15
811 B5.57 574 1.0
11.05 ®09 583 393 0.5
4.48 3.1 131 177 181 0019 pe
(fraction of total) 0.42 0
0.78 0.77 1.5
079 064 076 1.0
033 027 03% 923 0.5
0.03 003 003 006 9008 001 p
P~ 0.0 0.5 1.0 1.5 2.0
Y
i 0.36 026 1.5
Q.76 0606 091 1.0
11.12 B.68 3.66 1,36 0.5
2177 2233 913 2.70 236 001
(fraction of total) 0.08 20
0.13  0.08 1.5
007 008 Q.12 1.0
033 029 0.16 008 0.6
0.16 020 ¢.21 0.10 0.11 00t p
P 0.0 0.5 1.0 1.5 2.0
Electrons from ¢ — ¢ 0.4 20
{number of tracks) 0.2¢ .50 15
143 171 087 1.0
8.86 11.68 12.03 10.38 0.5
38.50 351.64 2529 16.82 14.87 00t p
(fraction of total) 0.14 20
0.09 Q1S 1.5
014 020 012 1.0
026 038 052 060 0.5
028 047 058 059 085 0.01p
p= 00 05 1.0 15 20
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Total Background 0.00 2.0
{zumber of tracks) 000 000 15
001 076 0.00 1.0
280 193 172 1860 0.5
7222 3266 767 111 378 001 pe
{fraction of total) 0.00 20
0.00 0.00 1.5
000 0.09 0.00 1.0
008 008 007 000 0.5
0.53 030 018 025 017 0.0t pe
p—= 0.0 0.5 1.0 1.5 2.0
Background Due to Pions 0.00 2.0
{number of tracks) 000 0.00 15
000 075 000 1.0
149 149 149 149 0.5
3804 2760 748 671 378 0015
(fraction of total) 0.00 2.0
000 0.00 1.5
000 009 DOO 1.0
0.04 005 006 009 05
028 025 017 024 017 001p
p— 0.0 0.5 1.0 1.5 2.0
Background Due to 7 — ete™ 0.00 2.0
(number of tracks) 000 .00 15
000 000 000 1.0
108 D42 021 000 0.5
3413 503 020 038 0.00 001
(fraction of total) 0.00 2.0
o.00  0.00 15
000 0.00 0.00 1.0
0.03 001 001 000 [12.1
025 005 000 001 0.00 0.01p
r— 0.0 0.5 1.0 1.5 2.0
Background Due to Taus 0.00 20
(number of tracks} 000 000 LS
0.01 001 0.00 1.0
005 0.0z 002 000 Q.5
0.05 003 0.01 001 000 007 p
{fraction of total) 0.00 2.0
0.00 0.00 15
0.00 000 0.00 1.0
000 0.00 000 000 0.5
000 0.00 000 000 000 0.01p
p— 0.0 0.5 1.0 2.0

L5
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