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MAXIMUM ENTROPY AND EQUATIONS OF STATE FOR RANDOM
CELLULAR STRUCTURES

N. RIVIER*

Materials Science Division
Argonne National Laboratory
Argonne, IL 60439, USA

ABSTRACT. Random, space-filling cellular structures (biological tissues, metallurgical grain aggregates,
foams, etc) are investigated. Maximum entropy inference under a few constraints yields structural equations
of state, relating the size of cells to their topological shape. These relations are known empirically as
Lewis’s law in Botany, or Desch’s relation in Metallurgy. Here, the functional form of the constraints is
not known a priori, and one takes advantage of this arbitrariness to increase the entropy further. The
resulting structural equations of state are independent of priors, they are measurable experimentally and
constitute therefore a direct test for the applicability of MaxEnt inference (given that the structure is in
statistical equilibrium, a fact which can be tested by another simple relation (Aboav’s law)).

1. Introduction

We shall discuss the structure of soap froth, tissues, metallurgical grain mosaics, in short,
of random space-filling cellular networks. These structures are at first glance all indistin-
guishable (apple, feather tissues look like soap froth, as do metallurgical ceramics), even
though the local forces responsible for their architecture are very different (Weaire and
Rivier 1984). These forces are therefore less relevant in molding the cellular structure than
the inescapable, mathematical constraints of filling a topological space. This “universality”,
and the irrelevance of local, specific forces, are only possible if the structure is random.
Why is it random? We shall see that randomness and space-filing imply remarkable (and
observable) correlations in the cells. The main correlations are expressed in the structural
equations of states (1) and (2), which are the focus of our discussion.

Maximum Entropy inference is the tool used. The present application of MaxEnt relies
entirely on information expressible as constraints. It is independent of prior probabilities
(which are here non-trivial measures as befits a continuous, geometrical problem) and
constitutes therefore a direct test of the predicting power of MaxEnt methods.

Specifically, we will exploit the ability of MaxEnt to detect bias (in the colloquial sense).
Bias manifests itself here through unexpected correlations between the size of cells and
their topological shape (the number of sides). Roughly, larger cells have more sides. But
a precise relation was discovered by Lewis (1928) in two-dimensional botanical tissues,

Aq = o(n-no) (1)

and - a different correlation - by Desch (1919) in metallurgical grain mosaics,
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II, = o’(n-ng’) 2)

Here A, and I, denote the average area and perimeter (or radius) of n-sided cells.

Correlations (1) and (2) can only appear as constraints in MaxEnt formalism, since
metallurgical and botanical mosaics, similar looking random space-filling cellular networks,
should have the same a priori measures for the size and the shape of their cells. Then, the
correlations are physical laws or unavoidable mathematical restrictions. Our aims are to
understand their origin, and why grains differ from tissues.

Most of the results of this paper have already appeared in print. The guiding principle in
explaining and establishing significant correlations in random cellular structure, especially
their equation of state, has been Maximum Entropy. It is a privilege, in this forum, to
return the compliment and use empirical structural correlations to illustrate the power and
versatility of MaxEnt inference, as “a method of reasoning which ensures that no uncon-
scious arbitrary assumptions have been introduced”. (Jaynes 1957, p.16).

2. Elementary Topological Transformations and Detailed Balance

Tissues, froths, etc. are cellular graphs with interfaces (edges, and faces in 3D) meeting at
vertices and forming polygons in 2D, polyhedra in 3D. Randomness has two, complemen-
tary manifestations: Interfaces do not have fixed length, but fluctuate, and the cells’
number of sides n is a random variable. The second manifestation is a consequence of the
first, as we shall see.

Fluctuations of its interfaces cause glementary, local topological transformations of the
cellular network. In two dimensions (2D), there are only two types of transformations,
neighbor exchange (T1) or cell disappearance (T2) (and its inverse). (Fig. 1). Cellular
division or mitosis, the essential topological transformation in the growth of biological
tissues, is an inverse T2, usually combined with a few T1.

These elementary topological transformations have two direct consequences. i) Only
vertices of coordination 3 (4 in 3D) are structurally stable. A “Four Comner Boundary”, the
critical point of T1 transformation, is tipped either way by infinitesimal fluctuation. It
occurs with negligible probability in random cellular structures. 1i)

<n>=6, 3)

for a 2D froth containing a very large number of cells. (A weaker relation holds in 3D)
[Eq. (3) follows from Euler’s relation, C-E+V = 1, between numbers of cells (C), edges
(E) and vertices (V) of any large 2D (Euclidean) network, a topological conservation law
(its left-hand side is conserved under elementary transformations), and from vertex coor-
dination 3.]

e

Figure 1. Elementary topological transformations in 2D cellular networks. a) Neighbor
exchange (T1). b) Cell disappearance (T2).



Elementary topological transformations play the same role as collisions in kinetic theory
of gases. They establish statistical equilibrium of the structure. [Indeed, concentrate on

topological correlations m(n), where m .is the average number of sides of any cell . .

neighboring a n-sided cell. Unlike the constant <n>, m(n) is controlled by elementary
topological transformations, which impose recursion relation between m(n) and m(nt1).
Correlation m(n) is the solution of the same recursion relation for T1, T2, and their
inverses. Elementary topological transformations can therefore occur independently,
anywhere in the structure, and establish the observable correlation m(n), an empirical law
due to Aboav (1971) which is universally obeyed by all known random cellular structures
(cf. Weaire and Rivier (1984), Mombach ez al. (1989))]. Aboav’s relation indicates that the
structure is in detailed balance under elementary topological transformations, a prerequisite
for statistical equilibrium, whose characterization is our next step.

3. Statistical Equilibrium

Statistical crystallography (the description of cellular structures in statistical equilibrium) is
based on the proposition that an assembly of an enormous number of cells will take up one
of the most probable configurations subject to a few constraints like space-filling. The
most probable configurations in the ensemble share the same equation of state, a relation
between measurable, macroscopic parameters of the structure, and the same probability
distribution function for the microscopic parameters. In kinetic theory of gases (Table 1),
the equation of state is the ideal gas law (pV=NkT), and the distribution function Boltz-
mann’s or Maxwell’s distribution, with pressure p, temperature T and volume V as macro-
scopic parameters, and an atom’s velocity or energy, its microscopic parameters {i}. The
gas is in microscopic equilibrium as it satisfies detailed balance under collisions which are
local, elementary transformations of the microscopic parameters. In liquids where atoms
interact, a non-ideal equation of state like van der Waals’s, reflecting their interaction,
replaces the ideal gas law. Both equation of state and distribution function are obtained by
maximizing the entropy, which takes the Gibbs form,

S =Zipilnpi. )

The first triumph of MaxEnt formalism was to reformulate these physical results in
information terms, ridding them of the their unnecessary overcoat of mechanical hypo-
theses like ergodicity (Jaynes 1957). Gibbs’s entropy is identical to Shannon’s measure of
information, and MaxEnt yields the least biased or maximally non-committal distribution
subject to available knowledge encoded in the constraints. But, if the distribution has been
analyzed extensively in MaxEnt literature, the equation of state between macroscopic para-
meters has always been relegated as a somewhat trivial consequence, of interest to experi-
mental physicists only. This is, emphatically, an oversight. While the distribution contains
detailed information on the system, it also depends on the “priors” - the measure in phase
(or event) space - information which cannot be encoded in constraints, and which is there-
fore not controllable by physical means. (Statistical mechanics, for which quantum mecha-
nics (Nernst theorem) imposes that all cells in phase space are equally probable a priori is
an exception.) By contrast, the equation of state gives a rougher account of the system (it
relates macroscopic or average parameters), but it is independent of the priors, as we shall
show, and only indicates how many, and which physical (chemical, mathematical or biolo-
gical) constraints are relevant, a very desirable tool for the scientist: “If it can be shown
that the class of phenomena predictable by maximum entropy inference differs in any way



from the class of experimentally reproducible phenomena, that fact would demonstrate the
existence of new law of physics, not presently known” (Jaynes 1957, p.20). For “class of

phenomena”, read “equations of state”, and you have the message and the content of this

paper. -

We shall see that froths, tissues, etc., are the least biased partitions of space, subject to a
few, inevitable mathematical constraints pertaining to filling a topological space, and pos-
sibly, to an energy constraint. The surprise is that there is a particular way of filling topo-
logical space which increases the entropy, and therefore decreases the bias further, and this
purely mathematical interplay between constraints is indeed reflected in botanical tissues:
This 1s the content of their equation of state, Lewis’s law (1). Additional constraints modi-
fy the structural equation of state (for example, from (1) into (2), see § 6), which becomes
the simplest diagnostic tool for structural pathology.

4. Equation of State for Ideal Tissues. Lewis’s Law

A cell in 2 dimensions is described by two microscopic parameters, its area A and the
number n of its sides. We can marginalize the metric parameter A in the distribution
function P (n,A), and concentrate on the shape distribution pp

P = | dA P(n,A) (5)

The topological parameter n=3,4,...,N is an integer, so {pp} can be regarded as a vector in
a N-2-dimensional space.

We want to find the most probable, or least biased distribution {p,}, without going
through the effort of computing the entropy (see Rivier (1985) for a complete solution).
{pn} 1s subject to the inescapable constraints,

Znpn=1, normalization
Znnpy=6, topology 6)
ZnAnpn=Aw/C, spacefilling.

Here, Ay is the average area of n-sided cells, pp Ap =/ dA A P(n,A) = py [ dA A P(Aln),

Atot is the total area available and C is the number of cells. The topological constraint is

familiar (3). The constraints are linear in {py}, and occupy a space of dimension d (< 3).
The solution {p,} lives in a space of dimension

D=N-2-4d, ¢

the dimension of {pp} less that of constraint space. The larger the dimension D of the solu-
tion space, the more probable that solution, so that the most probable solution is obtained
when the dimension d of the space of constraints is lowest. (Calculation of the entropy
fully confines this argument of linear algebra (Rivier (1985), see also § 7).

Now, d will be minimal (=2) if one constraint can be made redundant, that is if the
constraints (6) are linearly dependant. Using arbitrary coefficients A;, 0 =1 - Ajn - AMpAy =
1- 216 - 22(A/C), one obtains,

An = (A/C) A [0-(6-1/A)] , . 1)



a relation between average sizes and shapes of cells, discovered empirically by Lewis
(1928). It has slope <A> A and intercept no,

(A/O) A = <A> 4, ®
ny =6-1/A, ®

and implies that the average cell area <A> is equal to that of hexagons,
<A> = Ap/C = Ag. (10)

Lewis’s relation (1) was found originally in cucumber epidermis, human amnion (with
an interesting comment (Lewis 1931) on the history of the sample in relation with its mor-
phology) and pigmented epithelium of the retina; later in the epidermis of iris, begonia, and
peas (Smoljaninov 1980, Fig 18-19), in iris stomata, axial fibroblasts and sections of the
cerebellum of a mouse, cat and man (ibid, Fig. 26-27); also in onion, garlic, agave and
anthurium (Mombach et al. 1989), and in the Voronoi cells of Poisson-distributed seeds
((Crain (1978); Two columns of his table are interchanged (Boots 1987)). All these tissues
have intercept ngy = 1-2, except for the Voronoi, the onion and the stomata ng = 0, and for
the cerebella ng = -2. The intercept ng and slope of Lewis’s law are given in term of the in-
determinate multiplier A (which serves indeed as a Lagrange multiplier in maximizing the
entropy). We shall see in § S that A is the time - it measures the ageing of the structure, at
least for soap froth where a complete physical description of growth (von Neumann’s law)
is available. Thus, the larger the intercept no, the coarser and older (riper) is the structure.
Fig. 2 reproduces Lewis’s data (1931) on cucumber epidermis, and human amnion. If the
average area Ap is linear in n, the range in areas of individual cells is large (= 0.6-1 Ap).

Lewis’s law is a structural equation of state, obtained because the tissue is free to adjust
the arbitrary functional dependence of the constraint Ay, in order to increase the entropy.
The derivation is due to Rivier and Lissovski (1983). It raises several questions: 1) What
is the parameter A ? (Lagrange multipliers in physics are physical quantities, temperature,
chemical potential, force of constraint, etc.). 2) Is Lewis’s law universal 7 Soap froths will
be discussed presently, and I feel that they do obey Lewis’s law despite their high ng (and
A). Metallurgical grain mosaics do not. They follow Desch’s law (2) instead. Why ?
(Note that Ap and IT,, are both averages, so that A # ITp2 in general.)

In soap froths (Glazier et al. 1989) as in the one photographic emulsion studied by
Lewis (1931), the intercept ny>3, so that the occurrence of a few three-sided cells badly
spoils the linearity of Lewis’s plot. However, these few cells are not statistically signi-
ficant and the large, systematic departure from the linearity of Lewis’s law for n = 3 is only
a reflection of the impossibility of negative areas. Nevertheless, a definite conclusion on
Lewis’s law in soap froths must await statistical analysis of the data, which has yet to be
made. In the froths, the average cell area Ao/C equals from that of the hexagon, Ag, in
agreement with Lewis’s law (10). This is not the case in the emulsion.

5. Evolution, von Neumann’s law and the meaning of A

Soap froths, metallurgical grain mosaics and biological tissues evolve in time, through
topological transformations induced by the fact that air diffuses out of small bubbles into
the large ones, larger botanical cells are more likely to divide, and larger grains grow at the
expense of smaller ones. The time scale for evolution is long enough for the froth to
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remain in statistical equilibrium and to satisfy its equation of state at all times. In thermo-
dynamics, the evolution is then called quasistatic.
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5.1 Coarsening. For an ideal tissue or froth, Lewis’s law is obeyed at all times. The
simplest case is a soap froth, where Ay and C remain constant for a while (at least for

young froths without triangular bubbles, so that no T2 transformations occur). Then, dif- =

ferentiation of Lewis’s law (1) yields

(d/dt)Aq = (d/dt) [(Aoy/C) A (n-6) + (Aro/O)] =¥ (n-6) , 1n

a relation obtained by von Neumann (1952) for 2D soap froths. Eq. (11) implies that the
froth coarsens, a fact obvious to anyone washing the dishes. Von Neumann’s derivation is
a gem: A few, simple, physical laws conspire to produce a purely topological (and almost
dimensionless) result (11). Any (not the average) pentagonal cell loses area at the same rate
as any heptagon grows, at half the rate of any octogon, etc. The present derivation (Rivier
1983a) is slightly weaker because it involves averages, but like Lewis’s or Desch’s law, it
can be generalized to 3 dimensions, and to all space-filling random structures in statistical
equilibrium. [Von Neumann’s independent derivation also shows that a froth need not
obey Lewis’s law to evolve according to (11) (as is the case for metallurgical aggregates)].

Von Neumann obtains y= 2rcs8/3 > 0, where o is the surface tension and § the gas
diffusivity across the interfaces. Here,

Y= (Aw/C) (N/dt) >0, ) (12)

hence,

A= (C/AwD) Yt + Cst (13)

so the indeterminate multiplier A is simply the time. It measures the ageing of the structure.
The intercept of Lewis’s law ng = 6 - 1/ (9) is therefore larger for older froths, which are
also coarser and less uniform (the slope of Lewis’s law, proportional to A, is larger), a
phenomenon known in metallurgical circles as Ostwald ripening.

If C does not remain constant (bubbles or grains disappear (T2)),

dAp/dt =7 (n-ny) - (14)
n1 =6 - [(d/dt) (Awy/C)] /¥<6 (15)
Y= (d/dt) AA/C) >0, A= (ClAw) [ydt (16)

and the coarsening is qualitatively similar.

Why should metallurgical grains (whose evolution is driven by surface (grain boundary)
tension) evolve like soap froths (which coarsen by diffusion of gas across interfaces from
the smaller cells with high pressure into the larger ones) ? This is because the resultant of
the surface tensions of three interfaces concurrent at a vertex is directed towards the cell
with inner angle < 2n/3. Accordingly, hexagons with 6 angles equal to 2r/3 are stationary,
pentagons tend to shrink and heptagons grow. Recent simulation and modelisation of grain
growth by Telley (1989) has made this result quantitative.

5.2 Botanical tissues. Steady state growth. In constrast, to froths or grains, biological tis-
sues evolve by combination of growth [(d/dt) Ao > 0] and cellular division [(d/dt) C > 0],
while remaining structurally in a steady state. Cellular division (mitosis) is a combination
of elementary topological transformations (inverse T2, together with one or several T1).



The steady state of vitally active botanical tissues has constant A (which does not
measure time any longer), thus constant intercept of Lewis’s law, but increasing Aot
(continuous growth) and number of cells C (cell division). Strict steady state (topological
invariance of the structure) corresponds to constant Ay/C over times longer than the period
of the mitotic cycle, and is achieved through interplay between continuous cellular growth
and discrete mitoses. It is not quite realized in cucumber epidermis, in which Ayo/C = Ag

and Lewis’s slope both increase with age, while the intercept ng = 2, thus A, remains
constant. (Fig.2). Cucumber epithelia coarsen a little.

Topological steady state has been discussed elsewhere (Rivier 1988). It is interesting
because it yields the average shape of cells just about to divide (n=7) and that of their two
daughters (5.5), as well as the period of the mitotic cycle. An importance consequence of
Lewis’s law (already hinted at in the original paper of Lewis (1931)) is that if detailed
balance holds for the topological variable n (and it does, as shown by Aboav’s law), it
automatically holds for the metric variable A, since

<Ap>=Acx> . a7

Notably, the average growth rate of a cell is given by

d<A>/dt =3, pn (dAp/dt), (18)

since

2n An (dpp/dt) =0 (19)

follows from topological and normalization constraints (6) and Lewis’s law (1). Note that
Eq. (19) does not imply topological steady state (dpgy/dt = 0).

The conclusion of the last two sections is a quotation lifted from Lewis (1931) paper:
“Diese scheinbare Regellosigkeit sehr wohl geregelt ist“ (Strasburger, 1866).

6. Metallurgical Aggregates, Desch’s Law

In metallurgical aggregates, it is not the cell’s area, but its perimeter IT, (or radius) which is
proportional to n, a relation (2) discovered also empirically and even earlier on by Desch
(1919), and confirmed by computer simulations (Srolovitz et al. 1984).

MaxEnt inference, and the inevitability of all the constraints (6) used in deriving Lewis’s
law, immediately provide the explanation for this non-ideal behavior, namely the presence
of an additional physical constraint. Clearly, there is energy concentrated in the interfaces
or grain boundaries between cells, known as surface tension o. Accordingly, the cell has
an additional parameter, its perimeter I1, and the mosaic has an additional constraint,

Yn pnIlp =20E/C energy , (20)

besides the inevitable ones (6). Here py=/dAdIl P(A,I1,n) and pplin=/dAdII 11 P(A,I1,n).
Maximization of entropy proceeds as in § 4. (The Lagrange multiplier enforcing the energy
constraint (20) is the inverse temperature 1/kT, and we are on the solid grounds of classical
thermodynamics.)



The functional dependence of Iy, like that of Ay, is not imposed a priori. It can be
adjusted to decrease the dimension of the space of constraints, and increase further the
entropy. It turns out that there are only two alternatives (Rivier 1985), either A, and n, or
I, and n are linearly dependent, but not both. Moreover, the latter alternative has a slightly
higher entropy SMg than the former, but this fact does not rule out Lewis’s law even in the
presence of surface tension, because the two alternatives are disjoint in events space. At
any rate, the presence of surface tension, in addition to the inevitable constraints (6), offers
Desch’s law,

II, = (26E/C) A [n-(6-1/A)] <> =1, ")

as an alternative to Lewis’s (1°,10), as is indeed observed in metallurgical aggregates.
Note that the slope, intercept and the average perimeter of Desch’s law duplicate exactly the
corresponding parameters of Lewis’s law (8-10). The evolution of metallurgical mosaics
(Ostwald ripening) is therefore expected to follow a von Neumann’s type of law (11), but
involving the cell’s perimeter instead of its area. Again, A is the time, and the mosaic
coarsens,

(d/dt) (A20E/C)>0 21

but there is no simple expression for this positive rate in terms of physical parameters, as
we had in soap froths. Von Neumann’s evolution for mosaics driven by surface tension
has already been justified in § 5. Trigonometry shows that a hexagon in a mosaic, with 6
interfaces incident at 2n/3 on its vertices, can swell or shrink freely without changing the
interfacial length, i.e., at no cost in energy. The extent of this free breathing is only limited
by topological transformations T1 and T2.

Von Neumann’s proof of his law (11) refers to each cell individually, for which Ae<IT2.
Thus, (d/dt)IT,, like (d/dt)Ap, is proportional to (n-6) if C remains constant, in agreemernt
with evolution of Desch’s law (2”). But the coefficient of proportionality (1/2I1,) depends
on n.

Jaynes’s scenario quoted in §3, has been performed in this section by metallurgical
grains. The fact that the “new law of physics” (2) was actually known by a few metallur-
gists since 1919 should not detract from this demonstration of the predictive and diagnostic
power of MaxEnt, and of the role in understanding and clarifying physical phenomena by
identifying the relevant constraints. It also shows that there is fundamental physics besides
Einstein’s (at least in Germany in the late 1910’s).

7. Maximum Entropy and the Number of Constraints

In deriving Lewis’s (1) or Desch’s (2) laws, we have adjusted the unknown functional
form of the space-filling or energy constraint to increase the entropy. This absence of
information on, or arbitrariness in the form of the energy or space-filling law, represented
as an additional degree of freedom in the system, is measured by an increase of the
entropy, as we shall now demonstrate.

Specifically, two constraints were made linearly dependent. Equivalently, the dimen-
sion of the space of constraints was decreased by one, or one constraint was made redun-
dant. Let us see how this increases the entropy (Rivier 1983b).

Consider s constraints, labelled by a = 1...s,



<Co>=XnPnCna=Xq=-(0/0A)InZ, (22)

imposed by the Lagrange multipliers Ay, with

Z=3nqnexp (- Za Ao Cna) =Z ({Aa)) - (23)

(The priors qy, introduced for generality, are unimportant in our argument). The most
probable, or maximum entropy Smg subject to the constraints, and the distribution py, are
obtained by extremising the functional -Xp, py In pn + 2g 2o (Cn Pn Sno)s

SME =InZ + Zg Ao Xo = SME((Xa}) , (24)

which is a function of {X} only, since

OSME/IAq =0 (25)

is none other than the constraint equation (22). Syme({Xq)}) is therefore the Legendre
transform of In Z({Aq}), with

aSN[E/aXa = XQ , (26)

and

02SME/(0X 0)2 = 00X g = (0X /oA e) ] = -[<(cq-<co>)2>]1 < 0. 7

The last equality comes from (22), and the mathematically obvious inequality, the positivity
of specific heats, constitutes one of the earliest postulates of thermodynamics (Truesdell
(1980), p. 16). The entropy is a convex function of its coordinates {Xq}.

Consider now constraint §, say. The entropy SMg is largest as a function of X¢ when
Xk is such that

At = ISME/OXg = 0 (28)

because of inequality (27). But the vanishing Lagrange multiplier Az = 0 makes the corres-
ponding constraint ¢ inoperative or redundant. This demonstration illustrates the discus-

sion by Jaynes (1979) and Fougere (1988) of what counts as a degree of freedom in Chi2
analysis.

8. Conclusions

The principles governing the structure of random cellular networks and their evolution
(statistical crystallography) are those of statistical mechanics. Accordingly, the develop-
ment of statistical crystallography is parallel to that of classical statistical thermodynamics
(Table 1). Its centerpiece is the equation of state, obtained by maximizing the entropy.
Here, the cellular network is free to use the unspecified form of the constraints to increase
its entropy, and does so, yielding equations of states (1) and (2) which were already



known empirically. The ill-definition in the constraints is therefore a matter of physical
indifference, a symmetry, rather than ignorance. A different equation of state would reveal
the action of a new constraint, hitherto unidentified.

Slow evolution of the structure gives a physical meaning to the undetermined parameter
in the equation of state. It is governed by an equation which is obtained almost automa-
tically from the equation of state, but had been derived by von Neumann under specific
physical assumptions. We are reminded of Jaynes’ (1979, pp. 227, 232, and 236) com-
ments as to how dynamics and ergodicity enter statistical mechanics: “Very efficiently”.

TABLE 1. Methodology and equations of statistical thermodynamics and

crystallography.
Statistical
Thermodynamics Crystallography
Random variabl
(position), velocity cell shape n, size A
ApAx =h priors (geometrical measure)
Detailed balance under:
collisions elementary transformations
-> Aboav law
(shape correlations)
Statistical equilibrium —_
(Maximum Entropy)
- equation of state (ideal)
ideal gas law Lewis law
- equation of state (non-ideal)
van der Waals, etc. Desch law, etc.
-most probable distributions
Maxwell-Boltzmann P(A,n)
universality of cellular structures
Slow evolution
(quasistatic transformations)
irreversible thermodynamics von Neumann law (coarsening)

or steady state (growth, mitosis)
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