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Introduction

Nuclear power plant operation and monitoring in general is a complex task which
requires a large number of sensors, alarms and displays. At any instant in time,
the operator is required to make a judgment about the state of the plant and to
react accordingly. During abnormal situations, operators are further burdened with
time constraints. The possibility of an undetected faulty instrumentation line, adds
to the complexity of operators’ reasoning tasks.

Failure of human operators to cope with the conceptual complexity of abnormai
situations often leads to more serious malfunctions and further damages to plant
(TM1-2 as an example). During these abnormalities, operators rely on the
information provided by the plant sensors and associated alarms., Their usefulness
however , is quickly diminished by their large number and the extremely difficult
‘task of interpreting and comprehending the information provided by them. The
need for an aid to assist the operator in interpreting the available data and
diagnosis of problems is obvious.

Recent work at The Ohio State University Laboratory of Artificial Iatelligence
Research (LAIR) and the nuclear engineering program has concentrated on the
problem of diagnostic expert systems performance and their applicability to the
nuclear power plant domain. We have also been concerned about the diagnostic
expert systems performance when using potentially invalid sensor data. Because of
this research, we have developed an expert system that can perform diagmostic
problem solving despite the existence of some conflicting data in the domain. This
work has resulted in enhancement of a programming tool, CSRL[1, 2], that allows
domain experts to create a disgnostic aystem that will be to some degree, tolerant
of bad data while performing diagnosis. This expert system is described here.

Diagnosis in CSRL

The developed expert system is capable of diagnosing the coolant aystem - .
malfunctiona of a simplified General Electric Boiling Water Reactor-6 (BWR/6)
with Mark III containment. This model is developed by using Final Safety Analysis
Report (FSAR) and other related documents of the Perry Nuclear Power Plant,
near Cleveland, Ohio.

1. Currently at IntelliCorp, MountainView, CA
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Problem solving in this domain has a generic character and typically has the task
of classifying a given case into a diagnostic statement. In classification, the farm
of the required knowledge is of the form of a hierarchy of malfunction
hypotheses{3]. In this hierarchy of malfunctions, the top levela are more general
diagnostic classes, and the bottom levels correspond to mors apecifiz cases (a
type/subtype arrangement of the malfunctions). The set of the tip nodes in this
hierarchy will then be thought of as the diagnostic conclusions relevant to the
system.

Tha coolant system malfunctions are arranged in a class/subclass hierarchical
malfunction tree (Fig. 1). Each node on this tree is called a malfunction specialist
and contains domain specific knowledge (or a knowledge base). Each specialist also
containa information about how to utilize its knowledge base which is called the
cantrol knowledge.

Utilizing the above twn sources of knowledge, diagnosis is performed on this
malfuncticn hierarchy. The problem sclving strategy of this classification system is
a top-down examination of the hierarchy, termed "Establish-Refine"[4).

Establish refine can be thought of as the examination of the “appropriateness” of a
particular malfunction of the hierarchy. If that malfunction is found appropriate
(i.e. Established), then its submalfunctions are also asked to establish (i.e. Refine).
If a specialist is not established, then none of ita subnodes need be examined and
that part f the tree can bee pruned. Thus, the arrangement of the specialists on
this hierarchical tree is of importance.
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FIG 1. INERARCHY OF MALFUNCTION SPECIALISTS
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2. The second level of validation is beyond hardware redundancy and is
accomplished through expectations derived during malfunction diagnosis.
“That is, in the process of exploring the space of possible malfunctions, initial
data and intermediate conclusions set up expectations of the characteristics of
the final answer”[6]. This method of validation uses analytical redundancies
and local versus system loop condition and is aimed at more subtle failures
(such as instrumentation calibration drifts), and failures that are not
detectable through the first stage of validation (such as common cause
failures). This technique is described below.

During the design stages of this syatem, a great deal «f attention was paid to
ensure the system’s ability of reaching a diagnostic conclusion based on partially
complete data sets as well as potentislly incorrect input parameters. To reach this
goal, all relevant and useful sources of information for each malfunction hypothesis
(specialist) were identified. Next, the relationship between them are determined
&nd proper combinations of this information are utilized in eatablishing or
rejecting the malfunction hypotheses. As an example, in order to detect a large
Toss Of Coolant Accident (LOCA), the containment and the reactor pressure vessel
parameters as well as the turbine-generator, suppression pool, main steam line and
feedwater parameters are considered. In this fashion, having only a partial list of
vulid parameters, a fairly accurate diagnosia is still possible.

One of the important factors to be noted here is that some combinations of the
input data values can be murked as not capable of occurring or highly unlikely,
due to violation of "normal expectations” of malfunctions[6, 7). That is, in the
process of matching the malfunction patternsa to data, certain combinations of data
do not make sense in the given domain. As an example, turbine/generator

electrical output must be zero (or decreasing rapidly), if the Main Steam Isolation
Valves (MSIVs) are closed.

Thus, the process of faulty sensor identification involves three steps. These steps
are: .

1. The first step is to set some expectations by using local knowledge, or the
context of other nodes.

2. Thec second step is to use these expectations to flag particular data values as
questionable. And,

3. The third step is the process of validating (accepting) or rejecting the .
qu:BLionable :ensor vaﬁuea based on the relational redundancies available in
other parts of the plant.



The evaluation of malfunction appropriatenessa is based on knowledge embedded in
each malfunction node of the hierarchy. In essence, each node is capable of
performing a simple kind of problem solving that evaluates whether the
malfunction at this node exists, given ths currently available data. This is
accomplished by the knowledge groups of each node (Fig 2). Each knowledge group
containa demain expertise in the form of, "what pattern of data muat exist for this
malfuaction to be labeled appropriate? Furthermore, if the indicated pattern found,
how must the appropriateness of the malfunction be modified?”

Appropriateness measure of each node is obtained by utilization of the confidence
factors. These confidence fuctors range from -3 to +3 with significances ranging
from “DEFINITELY NOT* to “DEFINITE", rcspectively. Confidence values are
represented in the “VALUE* column of the Figure 2.

Should the confidence value of a node be determined as +2 or +3, then the
subnodes of that particular specialist are also examined. If the node’s confidence
factor is determined te be between -1 to +1, further analysis of its subnodes are
only possible if further data be available, or no other conclusive diagnostic
conclusion ia obtained. If the confidence value of a node is -2 or -3, the subnodes
of that particular specialist are ignored until later steps into the diagnostic
regsoning,

Up to this point, it has been assumed that the input data are a set of valid and
reliable data. These input data are assumed to have gone through the standard
data validation routines (Fig. 3) and are in general, reliable. However, due to
common cause failures, the input data may be faulty, and thus, some of the date
may require further analysis. The past studies have also shown that sensor data
validation and diagnosis are integral components to one another and one can not
be accomplished without the other, in an efficient manner. Thus, sensor data
validation is added to this expert system and is described next.

Sensor Data Validation

Sensor data validation can be thought of as a two stage function. Each stage is
capable of identifying a certain class of faulty sensors. The two etages are as
follows:

1. This stage of data validation which is mainly dependent on comparison of
redundant sensor signals (such as "like sensor"comparisons, fail safe
assumptions, auctioneering, and 8o on) and is aimed at identification of gross
failures of the instrumentation channela (such as shorts, open circuits,
connector or detector failures). These techniques are based on varigus kinds
of redundancy in sensor hardware and are discussed elsewhere{5].
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The expectationsa derived during diagnosis are utilized as an extra source of
redundancy, in addition to various convantional sensor hardware redundancies,
These expectations are embodied in the specialists’ knowledge groups and are
formed and encoded a priori. The knowledge groups were then modified to check
the malfunction pattern fit to the input data, and flag the parameters that lie
outside the expectations as suspicious. The suspicious data are then subjected to
further analysis. This concept is demonstrated in the last column of Figure 2.

The knowledge group rows that do not meet the expected symptoms are identified
as containing suspicious data by addition of a "** in their confidence values, as can
be seen from Figure 2. The * alarms the computer (and the user) that this row
may contain invalid data and thus, the confiderice factor of this knowledge group
may change as a result of sensor data validation.

Should a knowledge group row be identified as containing suspicious data, one of
the following two cases musat be valid:

¢ The set of expectations are not valid at that particular instant of time {eg. IF
LARGE LOCA THE RPV WATER LEVEL=LOW is no longer valid if we are on
the recovery path of a large LOCA).

¢ The set of symptoms are not valid at this particular instant of time which leads
to the conclusion "THE XYZ (GROUP OF) SENSOR(S) HAVE FAILED".

In order to determine which one of the above situstions is true, further analysis
on the suspicious sensors is necessary. This analysis utilizes the following
resources:-

* Logical conclusions drawn frora diagnosis,

o Logical conclusions drawn from available data,

¢ Analytical calculations,

Causal relationships between unlike parameters

These extra sources of information about the suspicious sensors are used to either
validate or reject suspicious data and are arranged in the order of preference for
each individual sensor. In this fashion, the routines with minimum cost, highest
reliability, or minimum effort can be executed first, depending of each individual
sensor. Note that this methodology is relying on unlike sensor data comparison and
thus, common causge failures or instrumentation channel drifts are no longer
problems.

One important factor to avoid in this routine is that validation of one sensor
should not rely on information supplied by another sensor which is also in the
suspicious sensors list. That is, one has to rely on the "potentially valid” data as
redundancy, as ooposed to "potentially faulty”.

Once the faulty sensors are identified, there are two routes that can he taken:

1. Replace that faulty data with the new (and validated) value and resume
diagnosis after informing the user, or

2. Ignore that faulty data (mark it as Unknown) and resume diagnosis after
informing the user.

These two methods must lead to the same diagnostic conciusion (because a real
plant can only have cne state at a time). However, the first method is adapted for
this project, due to ease of implementation.



An Illustrating Example

An inadvertent closure of the MSIVa (Closed MSIVs malfunction node of Fig. 1) is
considered as an example. If the MSIVs close, the Safety Relief Valves (SRVs)
should cycle, in order ta relieve and maintain pressure in the RPV. For this
scenario, it is assumed that one of the SRVs fails to reclose after opening.

TO make thia scenario more complicated for malfunction diagnosis, it is also
aszumed that the direct indications of SRV and MSIV positions have failed and
read CLOSED and OPEN, respectively. That is, the control board lights do not
change status from their pre-event indications.

During the first run of the Jiagnostic system, the LOCA node has fired with a
confidence {actor of 0* to show more evidence is required to either establish or
reject the LOCA possibility. Further up in the tree, the ClosedMSIVs and
TurbineControlValve nodes fire with confidence factors of 0°® and 3°, respectively.
This means that there is a mild indication of MSIV closure and therefore, a strong
vvidence for the wrong turbine contrnl valve position.

During the sensor signal validation step, the list of suspicious data is inspected
and validated. Backup information for the SRV position is. obtained from the local
suppression pool temperaturs profile and SRV-downcommer pressure (Perry
specific). The backup information for the MSIV position was obtained from
matching the steum flow rate, RPV pressure and turbine electrical cutput.

After validstion of the suspicious data, the new values are replaced in the database
and new diaguosis indicated the correct state of the plant [Fig 4]. The new
confidence factors indicate that no more suspicious data exists.
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FIG 4. INADVERTENT CLOSURE OF MSIVS AFTER VALIDATION



Conclurions

This expert nystem is capable of i i i
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