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Abstract

A new method for analyzing absorption edges in K-Edge Densitometry (KED) spectra is introduced.
This technique features a nonlinear function that specifies the empirical form of a broadened K-
absorption edge. Nonlinear fitting of the absorption edge can be used to remove broadening effects
from the KED spectrum. This allows more data near the edge to be included in the conventional KED
fitting procedure. One possible benefit is enhanced precision of measured uranium and plutonium
concentrations. Because no additional hardware is required, several facilities that use KED may
eventually benefit from this approach. Applications of nonlinear KED fitting in the development of the
Los Alamos National Laboratory (LANL) hybrid K-edge/x-ray fluorescence (XRF) densitometer
system are described.

Introduction

In the K-edge densitometer subsystem of the LANL hybrid K-edge/x-ray fluorescence instrument, a
continuous-energy x-ray beam is shone through a glass vial containing a liquid sample. If the sample
contains more than a few grams per liter of uranium, a uranium K-edge can be observed in the
transmitted portion of the x-ray beam. The KED analytical software determines the transmission above
and below the edge by linear fitting, from which the uranium concentration can be calculated.'

Data points in the vicinity of the measured K-edge must be excluded from conventional KED analysis,
which relies on linear fitting above and below the edge. Observed data near the edge have a
complicated structure because of broadening effects within the detector. In this study, a nonlinear
function that describes the empirical form of the broadened K-edge is derived. Edge shape parameters
are determined by a nonlinear fitting routine that includes all data points near the edge. Nonlinear fitting
of measured transmission data near the K-edge has two useful applications. First, a realistic edge shape
can be incorporated in simulated KED spectra. Second, measured edges can be “sharpened” to allow
more data points near the edge to be used in conventional KED fitting.

K-Absorption Edge

The K-absorption edge of uranium is found at an energy of 115.606 keV.? A photon with energy
greater than E, can interact photoelectrically with a uranium K electron. This causes a sharp increase
in the mass attenuation coefficient of uranium at the K-edge energy. This edge can be observed in the
measured KED spectrum as a steep decline in measured count rate with increasing energy in the 115
to 116 keV range (Fig. 1). The measured count rate is lower above E, because the mass attenuation
coefficient of uranium is higher above the edge.

*This work is supported by the US Department of Energy, Office of Nonproliferation and National Security, Office of
Safeguards and Security.
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A graph of the theoretical mass attenuation coefficient (Mu) of uranium between 100 and 150 keV
resembles a sharp sawtooth shape when plotted in In(Mu) vs In(Energy) space (Fig. 2). The empirical
In(Mu) decreases linearly in the region below In(Ey). At In(Ey) there is a sharp increase in In(Mu).
Above In(E), In(Mu) also decreases linearly, with a shallower slope than that observed below the
edge. In this study, the theoretical form of the uranium K-edge was assumed to be that of a perfectly
sharp sa;avt?oth. Also, any fine structure effects near the absorption edge were assumed to be
negligible.
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Fig. 2. Theoretical In(Mu) and Measured In(In(1/Transmission)) plotted vs In(Energy). The solid
line shows the logarithm of the theoretical mass attenuation coefficient of uranium. Black ovals
illustrate measured In(In(1/Transmission)) values. Gray trapezoids indicate linear fitting regions for
conventional KED analysis.




Traditional single-element K-edge densitometry analysis involves linear fitting of measured KED data
in In(In(1/Transmission)) vs In(Energy) space. In the remainder of this paper, T will be used as the
mathematical notation for transmission, and E represents energy. Fitting is performed in In(In(1/T))
vs In(E) space because In(In(1/T)) is the same as In(Mu) plus a constant. Therefore, the measured
In(In(1/T)) values exhibit a sawtooth shape similar to that described above for the theoretical In(Mu)
values. However, the measured absorption edge is not perfectly sharp (see Fig. 2). The observed
edge is curved because of finite resolution, and tailing effects, within the KED detector.

Unbroadened Transmission

In nonlinear KED fitting, it is advantageous to define transmission functions in terms of “channel
position” instead of energy. The rationale for adopting this convention is as follows. The nonlinear
KED fitting technigue calculates the exact position of the K-edge in the measured data. The K-edge
will probably not be observed at the exact channel position that the energy calibration would predict.
It would be misleading to state that the edge (with known energy E,) was observed at an energy other
than E;. It is more straightforward to state that the edge was observed at channel Ch,. The channel
position of the edge can be used to fine-tune the energy calibration. The new energy calibration is
used to recalculate the mass attenuation coefficient of uranium for each channel.

The shape of the unbroadened K-edge in In(In(1/T)) vs In(Channel) space can be characterized with
five parameters. They are described as follows:

Chy = Position of the K-edge (in channels),

Ay = In(Chy)-intercept of data on left side of edge,
4 = In(Chy)-intercept on right side of edge,

B; = Slope of data on left side of edge, and

Bp = Slope of data on right side of edge.

These five parameters are also used to characterize the more complicated shape of the unbroadened K-
edge in Transmission vs Channel space.

The unbroadened transmission T, is obtained by mapping the linear functions for [In(In(1/T)) vs
In(Ch)] above and below the K-edge into Transmission vs Channel space:

T,.» Ch<Ch
' "} , 1)

WSk

vighs Ch>Chy

1
exp(expld; + B, LIn(Ch)—In(Che)])

where T chn)=

1
explexp (A + Bz [In(Ch)-In(Chy )

and TRight(Ch)E

T, describes the functional form of measured transmission values in the absence of broadening
- effects. T, (Ch) is proportional to the predicted rate at which x-rays of energy E(Ch) interact with

the KED detector.




It is worthwhile to note that T, and Ty, are not linear in Transmission vs Channel space.
However, the following expresswn isa very good approximation for unbroadened transmission near
the absorption edge:

T, +k, (Ch—Ch,) Ch SChK} .

TunrCh )= {TR +k (Ch—Ch,) Ch>Ch,
where

T, = Tuﬁ(ChK ),

b =| P
L= »
oCh |,
Tr = Trign (Chy), and
k = az;iighl
Bl oCh

Ch

This linear approximation for T, near the edge will be used later in calculating the broadened
transmission.

Broadening Function

In order to determine the form of the broadened edge, a broadening function must be applied to the
unbroadened edge. The broadening function specifies the shape of the detector's response to a
monoenergetic source. The broadening function used in this study is a composite that includes two
significant components of peak shape. .

The response of a high-resolution germclmum detector to a monoenergetic source can be sufficiently
characterized as the sum of three functions.* The most prominent of these is the Gaussian
distribution of counts, with centroid at channel Ch, and width parameter s. Next in significance is the
empirical short-term tailing component, which is manifested only in channels below the centroid. The
short-term tail reaches its maximum height just below Ch, and tapers off steeply on the low energy
side.

A third component is the background continuum, which can be approximated as a uniform step in
channels below Ch,. The height of the step background is a scalar multiple of the height of the
Gaussian peak. The ratio of peak height to step background height depends upon the energy of the
peak. In KED analysis, the background continuum is subtracted from both the measured and
reference spectra before transmission values are calculated. Fitting is performed on background-
subtracted transmission values, so there is no need to include a term for background continuum in the
broadening function.

Because the fitting region is only a few keV wide, all broadening parameters are evaluated near the
K-edge and are assumed to be constant. For ease in calculation, it was useful for the area underneath
the broadening basis functions to be normalized to unity. Calculations were simplified by using
dimensionless varlables, so that extensive use could be made of the normal probability density
function and its integral.® All channel positions were expressed relative to the K-edge in terms of a
dimensionless parameter z:




ZE(Ch—ChK] , )
o
where Ch = Channel position of interest,

Ch, = Channel position of K-edge, and

c = Gaussian width parameter (in channels).

All basis functions for detector response shown below, and their integrals, are defined in terms of this
parameter z.

The basis function for the Gaussian broadening component is simply the normal probability density
function:

G(z)= J;?exp[—-ziz-J , 4)

The basis function for the short-term tail component is as follows:

1 2
SG)= -;-L-exp(bzﬁ-expecz )] ,2<0 ’ )
0 ,220

where A is the normalization factor for the short-term tail, b is the tailing slope, and c is the width
parameter of the tail. The short-term tail basis function is normalized to unity in order to simplify
intermediate calculations. Because S(z) is normalized to unity, similar notation can be applied to all
mathematical quantities involving the Gaussian and short-term tail components.

The cumulative broadening function B(z) is simply the sum of weighted Gaussian and short-term tail
basis functions:

Blz)=(-7)5()}y-5C) . (©)

where Y is the weight of the short-term tail component. The value of ¥ can be determined
experimentally using a monoenergetic source. Gamma is the ratio of short-term tail area to the
combined area of the Gaussian peak and short-term tail. It is worth noting that the cumulative
broadening function B(z) is itself normalized to unity. The cumulative broadening function is
illustrated in Fig. 3, along with its weighted Gaussian and short-term tail components.

Broadened Transmission

Now that the cumulative broadening function is defined, it can be applied to the unbroadened
transmission to obtain the functional form of the broadened transmission. This will be determined as
a function of channel position Ch. The broadened transmission at any channel position Ch is
proportional to the background subtracted count rate observed at that channel.
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Fig. 3. Cumulative broadening function, shown with weighted Gaussian and short-term tail components.
In this plot, b=1.02, c=0.2, and v=0.032. The cumulative broadening function was multiplied by a factor of
10 for illustrative purposes.

The rate at which incident x-rays of energy E(Ch') are fully absorbed by the detector is proportional
to the unbroadened transmission T, at channel Ch'. In the absence of broadening effects, every
event that deposits energy E(Ch') would be counted in channel Ch'. With a perfect detector, we
would measure a sharp edge with transmission profile that matched T, .

Because of broadening effects, a fraction of the events that would otherwise have been observed in
channel Ch' are actually counted in channel Ch. Suppose that the width of each channel is
infinitesimal. The count rate observed at channel Ch is the integral of the count rate contributions to
Ch from all neighboring channels:

J Enb,(Ch?ge(ﬂ"C”'}dCh’ - ™

o

’
=—c0

I, br'(Ch )=
G
The resulting broadened transmission function is
TB,(Ch)={ T, +k,0(z~ 4, )+ [0k, —k, )+

IB [(TR - TL )+ ﬁz(kR _kL)] } » (8)




where I(z)= jB(z')Jz

Z'=—o0

1,,(z)= jfz'B(z Yz

Z=—co

28 =§_I}1[173 (z)]

This function T, is derived from basic principles of edge structure and detector response and
describes the predicted form of broadened transmission near the absorption edge.

Nonlinear Fitting

The goal in nonlinear absorption edge fitting is to determine the vector X that minimizes the
following chi-squared function:

Ch,,..
2&x Y Lenx)r,.(cnl ©

Ch=Ch,,,,
where
(Chy )
AL
AR
B

\BR)

Dl
1]

b

is a vector that contains shaping parameters for the edge, Ch,,, is the lowest channel in the fitting
region, and Ch,,, is the highest channel in the fitting region. The Gaussian width parameter s and
short-term tail parameters b, ¢, and 7y are calculated experimentally and provided as input to the solver.

In this technique, the parameters of a perfectly sharp edge are deduced from measured transmission
values. In effect, inverse broadening is performed. The solution describes the unbroadened edge that
is consistent with both the measured edge and the known broadening function.

A prototype FORTRAN code named EDGE_FIT was written to perform computations related to
nonlinear fitting of the uranium K-edge. The nonlinear least-squares solver routine SNLS1 from the
MINPACK library was used to solve the above minimization problem.® This routine incorporates the
Levenberg-Marquardt algonthm, which performs unconstrained nonlinear least-squares minimization
of the chi-squared function.” The EDGE_FIT program features two modes of operation. In the first
mode, a sharp edge is broadened. In the other mode, a broad edge is sharpened.

Broadening Mode

The first application of the EDGE_FIT program involves KED spectrum simulation. In KED
simulation, the goal is to construct a realistic spectrum that corresponds to a given uranium
concentration. A previously reported technique for KED spectrum simulation involved the use of
tabulated mass attenuation coefficients to calculate transmission values. Because tabulated values




were used, this simulation technique resulted in a sharp edge.® This was not a problem for the
conventional KED analysis code, which does not use data near the edge in fitting. However, the
sharp edges did not meet the goal of realism in simulated spectra. The simulated edges needed to be
broadened in an authentic manner.

Operated in broadening mode, the EDGE_FIT program inputs an array of transmission values T,,

that contains a sharp edge. The edge position Chy is located. Linear fitting is performed above and
below the sharp edge to determine A, Ag, B, and B;. Broadening parameters o, b, c, and y are read
from a parameter file. The data in each channel is broadened according to the following function:

oupul(Ch) mpul(Ch) + Tbr(Ch) unbr(Ch )] * (10)

The EDGE_FIT program outputs this array of broadened transmission values to the KED simulation
program. These values are scaled, Compton continuum is added, and statistical fluctuations are
incorporated. The result is a simulated KED spectrum that appears decidedly real (see Fig. 4).
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Fig. 4. Comparison of simulated and measured KED spectra. Solid circles show near-edge
data obtained by measuring a 200-g/L uranium solution. Hollow circles show simulated
spectrum for same solution using the new edge-broadening technique.

Sharpening Mode

The other feature of the EDGE_FIT program is K-edge sharpening. In this mode, the program
removes broadening effects from an array of measured transmission values. Nonlinear KED fitting is
performed on the measured transmission values. The solution vector describes the empirical
broadened transmission function that best fits the measured data.

The difference between the empirical broadened and unbroadened transmission functions indicates the
deviation of measured data from the shape of a perfectly sharp edge. The data is sharpened by adding




the difference between the empirical functions for broadened and unbroadened edges to each
measured transmission value near the edge. The sharpening adjustment is performed as follows:

T ardCH)=T e CB I IT,,.,, (CH)-T,,(CR)] , (11)

where T, is the array of sharpened transmission data.

The sharpened edge contains the statistical fluctuations that were present in the measured transmission
data (fig. 5). The unbroadened transmission function T, is the empirical form of the sharpened data.
The EDGE_FIT program outputs an array of sharpened transmission values, along with the observed
channel position of the uranium K-edge.
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Fig. 5. Tlustration of KED sharpening. Solid dots indicate measured transmission values. The thin
line shows the broadened transmission function that was fitted to measured data using the nonlinear
solver. The bold line illustrates the unbroadened transmission function. Hollow circles indicate
sharpened transmission data.

The ability to sharpen absorption edges makes a new analytical technique possible for KED spectra.
This technique would use KED sharpening in an effort to include more data near the edge in linear
KED fitting. Measured transmission values are sharpened via the above-mentioned edge-sharpening
procedure. Traditional single-element KED fitting is performed on the sharpened transmission data.
Howeyver, the upper energy boundary of the lower fitting window is defined at an energy that is
closer to the K-edge. The lower energy boundary of the upper fitting window is also moved closer to
the edge. The wider fit windows result in the utilization of more data in KED fitting.

The inclusion of more data points near the edge enhances the theoretical precision of measured
concentration values. With conventional KED ﬁtting, the precision of the measured uranium
concentration (for a 200-g/L uranium solution) is about 0.20%. With the inclusion of edge
sharpening, the predicted precision for the same solution is 0.15%. Once the edge sharpening
capability is incorporated into the hybrid KED/XRF analytical software, this prediction will be tested.



Conclusions

A closed-form expression was derived for the empirical form of a broadened K-absorption edge. The
broadened transmission function provides insight into the detailed structure of a measured absorption
edge. A nonlinear least-squares technique for fitting measured data to the broadened transmission
function was presented. A FORTRAN program was written to perform two important tasks: edge
broadening and edge sharpening. A new technique for analyzing single-element KED spectra was
proposed.

The next step in the study of nonlinear KED fitting is to add the option of edge sharpening to the
hybrid K-edge/XRF densitometer analytical software. This will allow the effect of edge sharpening
on precision to be measured. The optimal boundaries of linear and nonlinear fitting windows will
need to be determined. KED sharpening will also be applied to spectra containing multiple absorption
edges.
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