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Rayleigh-Taylor Instability under

High Atwood Numbers

C. K. Choi*, N. M. Hoffman, M. R. Clover, and W. J. Powers
*Purdue University, West. Lafayette, IN 47907
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract. Inertial confinement fusion (ICF) implosions, whether real or ideal,
are subject to a variety of hydrodynamic instabilities that amplify small depar-
tures from spherical symmetry. Asymmetric implosions departing from spherical
symmetry can lead to the breakup of the imploding shell or the creation of hydro-
dynamic turbulence. In an effort to understand the evolution of the asymmetries,
perturbation “seeds” with both velocity and surface displacements have been in-
troduced at the boundary of two different density media to model analytical
Rayleigh-Taylor instability growth. Growth of perturbed amplitudes has been
studied in linear and late-time nonlinear regimes. Simulated linear growth rates
and nonlinear bubble velocities are in good agreement with theoretical values for
Atwood numbers that are close to unity (relevant to ICF applications).

I INTRODUCTION

Hydrodynamic instabilities [1,2] and the Rayleigh-Taylor (RT) instability, in
particular, impose an upper limit on the value of the shell in-flight aspect ratio
(IFAR), which results in a minimum pressure or absorbed driver irradiance.
The IFAR is defined as the ratio of the shell radius, R, as it implodes to its
compressed thickness, AR. Asymmetric implosions departing from spherical
symmetry can lead to the breakup of the imploding shell or the creation
of hydrodynamic turbulence. Hence, the control of RT-induced mix of hot
and cold fuel is crucial to the successful formation of the central hot spot
for efficient thermonuclear burn with the proposed National Ignition Facility
(NIF) targets [3].

The major objective of the current study is to understand the evolution of
the asymmetries by following in time the perturbation “seeds” that are sim-
ulated by velocity and/or surface displacements introduced at the boundary
of two different density media. As a first step towards validating numerical




simulations of ICF ablative RT instability growth, we look at our ability to
model pure RT instabilities in incompressible fluids.

The simulated linear growth rates of the “seeded” perturbed amplitudes
are studied first with separate velocity and surface displacements and then
with combined velocity and surface displacements. The simulated growth
rates are compared with the theoretical values of v, where v = y/kgA with
k, g, and A being the wave number, gravitational acceleration, and the At-

Wood number, respectively. The Atwood number is defined as A = %%3,

where p; and p, are mass densities in the two different media. Furthermore,
the bubble velocities (vs) that develop in the late-time nonlinear regime are
also analyzed by comparison with the theoretical values of the bubble veloc-
ities, v, = « (1 = .4) ==£-g)\, where a is a coefficient balancing a bubble drag and

buoyancy with 0.2 < a < 0.3 [4,5], and A is the wavelength. In the present
simulation, both the gravitational acceleration (g) and the wavelength () are

defined to be unity. Thus, the unit of distance is A, the unit of time is {/A/g,

and the unit of velocity is /gA.

In an effort to simulate the RT instability that is pertinent to the actual
inertial confinement fusion environment, high density ratios between the two
different media, typically 1:10, are simulated, i.e., high Atwood numbers (A)
approaching to unity.

The numerical simulations employ the 2-D Langragian hydrodynamics code
LASNEX - with a new prescription for the “artificial” viscosity tensor, Q. It
was essential to use this more correct hydro method in validating the RT
simulations, because a pure quadratic @ could not even run the problem, let
alone get the correct growth rates. The Q used is:

Q= (%vaw)(V a5,

where
,_ AT
= [aap
v=0C,+ #(Au)
(Au)< | min(V "l:’:ud, 0/,
(V-2 )ltd (V.-@)-[1- max(O,min(wﬂRLﬂRR, 1))l
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(V ) ﬁ)z—l (V ) ﬁ)z"'l
Rp = —+—5— =LA
LT Wwa), fn (V).
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FIGURE 1. Initial problem set up with the velocity displacement introduced at the
boundary.

Here the notations, v and v, indicate fluid velocity and Hugoniot velocity,
respectively; C, referes to the speed of sound (C, = 4/ EPE), and I is the specific

heat ratio (I' = £ = 3). When the limiters 2R1, 2Rg) do not turn on,
Co 3

(V - )" is a higher order (centered, therefore second order) approximation
to the velocity jump in a zone. z % 1 refers to the zones to the top/bottom or
left /right of the face in question. Effects of both high Atwood numbers and
perturbation amplitude on RT instability will also be discussed.

II DESCRIPTION OF PROBLEM SET UP

The problem was set up in r-z planar geometry with two different density
media in an incompressible fluid regime as illustrated in Fig. 1. The mesh
was moved far from the symmetry axis (r = 0), in order to approximate z-y
geometry in an r-z code. Density ratios varied from ; to % to 51—0, resulting
in Atwood numbers —31-, %, and g% Perturbation displacement and velocity
amplitudes of ~ 10™* were introduced along the half-wavelength interface
boundary.

The number of zones per wavelength along the r-axis was varied from 20 to
100; i.e., 10 to 50 along the r-axis per half wavelength (I,). The number of
zones along the z-axis was also made variable, in order to investigate mass-
matching as well as equi-spacing across the density jump.

In order to ensure incompressibility, high temperatures were introduced such
that the sound speeds were >> 1. This pressure gradient then exactly balanced
the force of gravity (which acts in the negative-z direction) in the unperturbed
case. All conduction was turned off.

Three types of problems were set up: an initial interface velocity (vo) but
no interface displacement, an initial interface displacement (z,) but no inter-
face velocities, and a combined set of both perturbations, where zy = vo/7.

Furthermore, all nodal velocities (and/or displacements) in the mesh were set




proportional to an eigenmode (~ exp(+kz)) consistent with initial conditions
at the interface.

IIT THE LINEAR RT INSTABILITY AND
EFFECTS OF HIGH ATWOOD NUMBERS

Both square zones and mass-matched geometry were studied with various
number of zones per wavelength for varying Atwood numbers. Velocity vs.
time values were converted into linear growth rates [y = %ln(:—i)] and the

growth rates were analyzed as functions of number of zones and mesh sizes. In
general, ¥ was obtained by a least-squares regression fit to a selected “straight”
section of the data. The code that did the fits searched over all possible com-
binations of a delimited range of points to find the best solution (correlation
coefficient closest to unity), which was used as the final result.

Solutions of the linear Rayleigh-Taylor problem are linear combinations of
exp(—~t) and exp(qt), or equivalently, of cosh(yt) and sinh(+t). For initial
velocity perturbations alone, the solution with the correct initial condition is
u(t) = vocosh(7t), 2(t) = % sinh(yt) at the interface. For initial interface
perturbations alone, the solution with the correct initial condition is v(t) =
vzg sinh(4t),2(t) = 2o cosh(vt) at the interface. If both the interface and its
velocity are perturbed consistently (with vy = <2,), the solution is v(t) =
vo exp(7t), 2(t) = z0exp(yt) at the interface. Solutions, v(t), for these three
cases are shown in Fig. 2. The calculated vs. theoretical growth rates are
compared and plotted in Fig. 3 for Atwood number % with square and mass-
matched zones, as are growth rates for Atwood numbers { and 2.

It is apparent from Fig. 3 that square zones converge more quickly to the
correct theoretical value, though at higher number of zones (or smaller mesh
sizes) the linear growth rates with high Atwood number, A = %%7 encounter
numerical noise. For A = % and A = %, square mesh zones behave remarkably
well, approaching the theoretical value quickly. We take this to indicate that
with equal spacing, we are solving the equations accurately to order (Az)?;
mass-matched zoning is only accurate to order Az. For A = g?—, regardless
of zoning method, there is a smallest zone size below which the simulations
no longer appear to converge. We presume that roundoff errors begin to
dominate the imposed perturbations at that point. (We are only plotting
the interface velocity at the lower boundary, not the amplitude of the lowest
Fourier component of the velocity profile along the whole interface. Thus when
roundoff seeds higher modes, they will grow faster and dominate sooner.)
More efforts were exerted on the sensitivity to perturbation amplitudes for
both linear and late-time nonlinear analyses of RT instabilities, which will be
described in the next section.
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FIGURE 2. Interface velocity versus time for Atwood number % for velocity perturba-

tion amplitudes(solid), surface perturbation amplitudes (dotted) and combined velocity and
surface perturbation amplitudes(dot-dashed).
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FIGURE 3. Ratio of calculated to theoretical growth rates vs. mesh size for various
Atwood numbers

IV EFFECTS OF PERTURBATIONS ON
LINEAR AND BUBBLE GROWTH RATES -

A Linear Growth Rates

In order to quantify the dependence of linear growth rates on perturbation
amplitudes, the perturbation amplitude (vo) has been varied from 107* to
1073 for the low Atwood number A = ;. The linear growth rates have been
computed for half-wavelength radial zonings [, = 28,22, and 8 as well as
for I, = 10,20, and 40 that were studied earlier. As illustrated in Fig. 4,
for a small number of zones like I, = 8, the growth rates between 10~ and
107* are remarkably different; as mesh sizes get smaller {or large number of
zones like [, = 40), the difference in growth rates for both initial perturbation
amplitudes converge to a common value predicted by theory. It would be
interesting but not necessary at this point to show that the same trend may
hold with yet smaller perturbation amplitude, v = 10~° (if round-off errors
do not dominate). The convergence to a common value of theoretical growth
rates indicates that the true value of the linear growth rates does not depend
on the magnitude of perturbation amplitudes, as one would expect from linear
perturbation theory.
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FIGURE 4. Linear growth rates vs. mesh size for different perturbation amplitudes.

TABLE 1. Linear growth rates (y) and bubble velocities (vs). Note: a = 0.25
(0.2 < @ € 0.3) was used to evaluate vy (theory).

Density | Atwood | v(theory), ¥ vp(theory), v
p1 | p2 | Number VAkg (calculated) | ay / 779X | (calculated)
1 5/7 1/6 1.0233 1.0233 (100%) 0.1336 0.130 (97.3%)
1112 | 1/3 14472 | 1.4375(99.3%) | 0.1767 | 0.170 (96.2%)
1 [1/11| 5/6 3.0882 | 2.2830 (99.8%) | 0.2383 | 0.220 (92.3%)
1 [1/50 | 49/51 | 2.4569 | 2.4378 (99.2%) | 0.2474 | 0.225 (90.9%)

B Nonlinear Bubble Growth Rates

It is interesting to note though that unlike the linear growth rates in Fig.
3 there was no functional dependence of the bubble velocities on mesh sizes.
Late-time nonlinear bubble velocities are difficult to analyze as a function of
mesh size due to the fact that there appears to be no clear bubble satura-
tion value; nevertheless, the ranges where bubble velocities are most likely to
appear were well indicated as summarized in Table 1.

Bubble velocities for Atwood numbers other than 1 have also been analyzed
and the values have been tabulated in Table 1 which also includes the calcu-

lated linear growth rates (y) for Atwood numbers %, 3, 2, and £ in good

agreement with the theoretical values as shown in Table 1.




V. SUMMARY AND CONCLUSIONS

The major objective of this work was to validate numerical simulations of
Raleigh-Taylor instability growth by comparison with theoretical values, as
a first step in understanding ablative Rayleigh-Taylor in ICF implosions. In
particular, the main effort was to develop a simulation tool for hydrodynamic
instability analysis for planar geometry with two different density media and
with high Atwood numbers (e.g., A > g) The inherently compressible 2-D
Lagrangian LASNEX was utilized to simulate incompressible fluids with high
speeds of sound in a low density medium.

Consistent with physical intuition for incompressible fluids, square zones
provided faster convergence than mass-matched rectangular mesh geometries.
However, extremely fine mesh resolution led to undesirable numerical noise
and mode mixing (round-off error growth) which are to be further explored
with, for example, an automatic rezoner. It should be noted that higher
order and limited artificial viscosities were essential in improving the overall
simulation capabilities.

Different perturbation amplitudes (vo) with 1073 and 10~* affected time
evolution of bubble and spike velocities but did not alter physical results of
linear growth rates as illustrated in Fig. 4.

As illustrated in Fig. 3 and Fig. 4 and as summarized in Table 1, it is
apparent that linear RT growth rates () and late-time nonlinear bubble ve-
locities (vp) can be simulated, and good agreement with the theoretical values
can be achieved. In conclusion, the method of the present LASNEX simula-
tions provide a tool for hydrodynamics instability analysis for ICF relevant
high Atwood number cases.
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