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Small sampling errors can have a large effect on numerically integrated
waveforms. An example is the integration of acceleration to compute velocity and
displacement waveforms. These large integration errors complicate checking the
suitability of the acceleration waveform for reproduction on shakers. For
waveforms typically used for shaker reproduction, the errors become significant
when the frequency content of the waveform spans a large frequency range. It is
shown that these errors are essentially independent of the numerical integration
method used, and are caused by small aliasing errors from the frequency
components near the Nyquist frequency. A method to repair the integrated
waveforms is presented. The method involves using a model of the acceleration
error, and fitting this model to the acceleration, velocity, and displacement
waveforms to force the waveforms to fit the assumed initial and final values. The
correction is then subtracted from the acceleration before integration. The method
is effective where the errors are isolated to a small section of the time history. It is
shown that the common method to repair these errors using a high pass filter is
sometimes ineffective for this class of problem.

INTRODUCTION

In the development and use of a transient control program for electrodynamic shakers it was
noticed that the numerically integrated acceleration occasionally differed greatly from the
analytically determined velocity and displacement. This difference was significant because the
velocity and displacement waveforms are used to determine the suitability of the acceleration
waveform for shaker reproduction. This paper grew out of the effort to understand this
difference. The study is limited to time histories sampled at equal increments of time. The paper
is organized into four parts. The first part will demonstrate a problem exists. The second part will
show that the problem is essentially an aliasing problem, and is independent of the numerical
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integration method used. The third part presents two possible solutions for the problem, and the
fourth part illustrates the problem with corrections using two examples.

ILLUSTRATION OF THE PROBLEM

Consider an acceleration waveform composed of the sum of exponentially decaying sinusoids of
the form

a(®) = QU (t - 1) Aexp(- gay(t — 7))sin(@,(: - 7,)) )
i=1

where U(?) is the unit step function. ¢, and @ are restricted to positive numbers. This waveform
has been used with great success for synthesizing waveforms for reproduction on shakers which
match a specified shock response spectra. The waveform has the advantage of resembling many
field environments which are essentially the impulse response of a structure.

The first component is called the compensating pulse, and the values of A, 7;, @, ¢, are chosen
to force the final acceleration, velocity, and displacement to zero [Smallwood and Nord, 1974,
Smallwood, 1986]. The velocity and displacement of this waveform can be found analytically by
integrating the equation for the acceleration twice.

v(t) = ZU (s) ( 21 ){exp GO, s)[g sm(a)s)+ cos a)s + 1} )
R i i R I e

where s=1—7,

The analytical acceleration, velocity, and displacement waveforms for a two component
waveform are shown as Figure 1. The parameters for the waveform are given in Table 1.

Table 1 Parameters for waveform in Figure 1, waveform sampled at a rate of 12,000 s/sec.

Index |A; - ; G T

i (g) (Hz) | (fraction of critical) | (s)

1 -0.049505 | 100 1.0 0.0

2 1.0 4000 | 0.01 0.0015837

The acceleration waveform was also integrated with a rectangular rule using a sample rate of
12000 samples/second and the resulting velocity and displacement are also shown in Figure 2. As
can be seen, a significant error in the numerically integrated velocity and displacement waveform
exists. The displacement error is so large that it obscures the true displacement. Figure 3 shows
the results of a rectangular integration at a sample rate of 96000 samples/second. The results are
improved, but a noticeable error in the displacement still exists. This example is an extreme case,
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but as shown in the next section, the error will be present in any sampled waveform where the
correct final velocity is not equal to the sum of the acceleration samples multiplied by the sample
interval. And even if the sum of the acceleration samples is correct, the displacement can be in
error if the sum of the velocity samples multiplied by the sample interval is not equal to the
correct final displacement. The errors will also exist for other commonly used waveforms for
shaker reproduction [Smallwood, 1986].

Significant errors in the numerical integration are most evident when there are components in the
signal whose frequencies differ greatly and where the signal is sampled at not much more than
twice the highest component frequency. The lowest frequency components require long
waveforms relative to the duration of the high frequency components, and the long durations
exaggerate the sampling errors of the high frequency components. The errors in the integrated
velocity and displacement are caused by aliasing and are essentially independent of the
integration method used, as will be demonstrated in the next section.

Accurate integration of the acceleration for the velocity and displacement waveforms is
important in transient testing on shakers, because the velocity and displacement waveforms are
used to estimate the shaker capability for a particular waveform. Small errors can be tolerated,
but errors in velocity or displacement which obscure the true requirements are a problem.

One solution is to use the analytical expressions for the velocity and displacement. This is
acceptable if the analytical solution is known for the waveform. Another solution would be to
sample at a much higher rate before integration. However, sometimes these solutions are not
available and another correction method must be used. An example is the reproduction of a field
derived acceleration waveform. '

THE ERROR IN THE FINAL VALUE OF A NUMERICAL INTEGRATION IS
INDEPENDENT OF THE NUMERICAL METHOD USED

For convenience in the discussion the original function will be called acceleration, a, the first
integral the velocity, v, and the second integral the displacement, d. The acceleration waveform
will be sampled with a sample interval 7, giving the samples a;. The samples g; will be assumed
to be zero outside the interval 0 <i< N —1. The numerical integration of sampled waveforms
can usually be written in the form

ky
Vig =V; ZbkaHk 3)

k=k
This is the form of a FIR (finite impulse response) filter. To start the integration an initial value,

Vo , must be chosen. A common assumption is to assume that v, is zero. k;and k, will span all
the non-zero values of b, . For example, the rectangular rule is

Viy =V, +1a,, 4

and the trapezoidal rule is
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Vin =V, +7(05a,+0.5a,,,) S)
A common property of all these methods is that

Kk '

2b=T ©
k=k,

This assures that the zero frequency response is correct.

After N steps the value for the integral is

N &k
Vy = Z z b,a,, (N

i=1 k=k,

Leti+k = then

vy= > > ba, (8

J=1t+k k=k
Interchanging the order of summation gives, letting a; be zero for j<0 and j> N , gives

ky N+k N

vN=2bk Zaj =T2aj ®)
b=k, j=l+k = ‘

Also

Vi =Vy for j21, (10)

since the values for ay,; are assumed to be zero.

Thus the final value of the sum that approximates the integral is the same for the all the
commonly used integration formulas, and is given by the sample interval multiplied by the sum
of all the input sample values. If an error exists in the final value using a simple rectangular rule,
the same error will exist for all other commonly used integration formulas. This same error will
exist even when an ideal Fourier reconstruction is used before the integration, since a Fourier
reconstruction has the same form as Eq. 3 [Stearns, 1975, Eq. 5-44]. Since the ideal Fourier
reconstruction is exact for strictly band-limited functions the errors must be due to aliasing errors
in the signal, a, which has a finite time duration, and hence an infinite bandwidth.

All further discussion will use the rectangular rule without a loss of generality for other
integration rules.
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HIGH-PASS FILTERING OF THE DATA

A first glance it would seem that simply high pass filtering the resulting integration’s would
correct the problem. Several filters were tried. One of the best results is shown as Figure 4. The
acceleration was integrated with a rectangular rule to give the velocity. The velocity was
integrated with a rectangular rule to give the displacement. The corrected waveform is much
improved over the original rectangular integration. However a significant error in the
displacement still exists because of the slow response of the filter.

Increasing the number of poles in the filter only made the results worse, as the filter -‘ringing’
increased. The high-pass cut-off frequency was chosen at half the frequency of the lowest
component (50 Hz). Increasing the cut-off frequency will start to remove the important frequency
components. Since the high pass-filter spreads the correction over a time period close to the
period of the high-pass filter cut-off frequency, lowering the cut-off frequency spreads the
integration errors over a longer time frame.

A PROPOSED CORRECTION
In general, since the errors are aliasing errors, the waveform cannot be corrected without
additional information. It will be assumed here that the desired waveforms will have initial and
final values for the acceleration, velocity, and displacement of zero. Therefore, if a correction is
subtracted from a which has the identical values at the final sample an.1, vn.1 and dng , the
corrected waveform will have a final acceleration, velocity, and displacement of zero. First

calculate the final values (a £o V5o

the acceleration waveform of the form

d f) by numerically integrating the acceleration. A correction to

at)y=AJt-0)+A4,0¢-v)+AU(E-v) ¢8))

can be used. J(z)is the unit jerk function, 6(¢)is the unit delta function, U(z)is the unit step

function, and v is a delay. A jerk is defined as a function whose integral is a delta function. The
velocity and displacement of the correction is given by

5(1) = A8t - 0) + Ut - v)(4,)+ Ut~ v)(A4¢ - ) (12)

dty=U@-v)(A)+U(-0)(4¢-v)+U¢-v )(%ltz — A tj , (13)

The important point is that for times greater than v only A3 will determine the final acceleration.
Once As is set, A, will control the velocity for times greater than v . Similarly, once A; and A,
are set A; will control the displacement. If the acceleration, velocity, and displacement, are
known at a time greater than v the constants A;, A;, and A; can be uniquely determined. In
practice the functions will be evaluated at the sample points. A jerk can be approximated by two
unit amplitude samples one sample apart, the first one positive and the second negative. A unit
impulse can be approximated by a single unit sample.
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The location in time of the error is still unknown. An optimum delay, v, is chosen to minimize
an error function, as for example, the square error between the numerically derived displacement
waveform and the displacement correction

e=X(d-4) (14)

A similar approach was taken by Trujillo and Carter (1981) except they did not include the delay.
If the errors are small an equation of the form of Eq. 11 can be used. In practice the amplitudes of
the corrections can become unacceptably large. The correction is subtracted from the original
waveform to give a corrected waveform.

{@g}={a}-{a} (15)

Because the corrections look like impulses and steps, energy will be added at all frequencies. It
would be better if a function could be used which has the characteristics of Eq. 11, but with a
better frequency distribution. The corrections will then be confined to the low frequencies. The
subtraction of the correction from the original waveform will act like a parametrically designed
high pass filter. If a function with only steps in the acceleration is used, the contributions of the
corrections will roll off like 1/f. If the correction is continuous, but has discontinuities in slope,

the frequency content will roll off likel/ £ 2.

A useful continuous function with the desired properties is given by

a(r) = Atexp(at) for t<0and >0 (16)
a(r) = Atexp(—ait) + A(1—exp(-azt) for >0 and @ >0

This will be called the TEXP correction. A companion paper (Smallwood and Cap, 1997)
discusses other forms which could be used. A delay can be easily introduced by substituting
t—v for ¢t in Eq. 16. The waveform in Eq. 16 is sampled at ¢ =Ti, giving

4G) fori=0:N-—1 (17)

The correction for a sampled waveform {a} with a length of N samples is found as follows:

1. The samples a(i) are numerically integrated twice giving w(i) and d(i), i = 0:N-1.

2. Initial values for the decay rate, &, and delay, v, are chosen.

3. The final values (the value at the Nth sample) for the velocity and displacement are
determined by numerically integrating the acceleration. To reduce the effects of noise, the
final value for the acceleration is often set as the mean of the acceleration for the last few
values. These values will be called a £ Vs and 4 B respectively.

4. The final values for the correction with unity amplitudes are then determined.

a,; =a(N) Ay=1, Ay =0, Ay=0 4y = a(N) 4=0,4,=1,4,=0 %35 = a(N) A =0, Ay =0, A, =1
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vlf = V(N)’AFI,AFO, Ay=0 Vor = V(N)IAFQ A;=1, 4;=0 1‘;—”f = \;(N)IAFQAFO- A=l (16)

dyy = d(N)lA1=1,A2=O, 4;=0 dyy = d(N)|An=0, etz Gap = é(N)'AFOv 42=0, 43=1

- 4. The amplitudes, A;, A,, and Aj; are then found solving the equation
Vg Vap Vi A =1V , (17)

5. Values for the decay rate, ¢r, and delay, v, are then changed iteratively to minimize the error

N—-

e= ¥ (dG)-dG))

i=l

—

6. The correction is subtracted from the original waveform to give the corrected waveform.
{a}={a}-{a}

EXAMPLES

The calculations in this paper were performed in MATLAB™. The following functions were
used: butter was used to design the high pass filters, filter was used to filter the waveforms, fmin
was used to minimize a function of a single variable, fmins was used to minimize a function of
several variables.

The method discussed above was applied the example of Figure 1. The results are shown as Fig.
5. The parameters for the correction were as follows: A = [0.3996e-3  0.0055e-3  0.0055e-3]
g’s, o0 =0.0322 (1/samples) , and v = 50.7188 samples. Note that the required correction is quite
small. The correction is imperceptible on the acceleration plots. Three curves are shown for the
acceleration, velocity, and displacement. The velocity and displacement were computed with the
rectangular rule. The corrected velocity and displacement do not match the analytical result, but
are much closer to the analytical result than the original numerical integration. The magnitude of
the FFTs of the acceleration waveforms are also shown in Fig. 6. Four curves are shown: the
waveform sampled at 12000 samples/second, the waveform sampled at 96000 samples/second,
the waveform corrected with the high-pass filter, and the waveform corrected using TEXP. The
curve for the waveform sampled at 96,000 samples/sec should give a good approximation of the
shape of the Fourier transform of the analytical waveform except at the lowest frequencies. As
can be seen all the corrections are essentially high-pass filters. The Butterworth filter removes the
low frequency energy, but not as effectively as the correction given by TEXP. The horizontal tail
at about 10 Hz on the FFT of the waveform sampled at 96,000 s/sec is also a deviation from the
analytical result caused by aliasing, but is about 2 orders of magnitude less than the error in the
waveform sampled at 12,000 s/sec. The spectrum of the analytical waveform will decrease

proportional to f2.
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For a second example a 3500 Hz exponentially decaying sinusoid delayed 0.01 seconds with
respect to the 4000 Hz sinusoid (Fig. 7) is added to the waveform of the first example. This is a
long delay compared with the duration of the waveform. The two pulses at 3500 and 4000 Hz are
quite distinct as can be seen in Fig. 7. This should be a severe test for the method. The waveform
integrated with the rectangular rule is shown as Fig. 8. For this example, the best correction
would probably be a separate correction near each of the two high frequency components.
However, the method will not resolve these two times. The corrected waveform using the
Butterworth filter is shown as Fig. 9. The corrected waveform using TEXP and the parameters A
=10.0031 0.0025 0.0025] g, oo =0.1428 (1/samples) , and v = 271.5693 samples is shown
as Fig. 10. The magnitude of the FFT of the waveforms is shown as Fig. 11. In this case the
TEXP correction performed somewhat better than the high pass filter.

CONCLUSIONS

Small errors in sampled acceleration waveforms can lead to large errors in the numerically
integrated velocity and displacement waveforms. When the sampling errors in acceleration result
in aliasing, the errors in velocity and displacement are largely independent of the integration
method used. If the errors are concentrated in a narrow time window, the insertion of a correction
based on a exponential function can significantly improve the results. In some cases a well
chosen high pass filter can also result in satisfactory corrections.

The best method to avoid this problem is to integrate the waveforms analytically. The next best
method is to over-sample the waveforms before numerical integration. If neither of these
methods are available, the TEXP method works for many waveforms synthesized for shaker
reproduction, because the errors are caused by a few high frequency components which have
their peak values near the same point in time. The method should also work for other waveforms
for which the final values of the waveform and its integrals are known or can be deduced from
other data, and where the significant errors are localized in time. If the errors are not localized in
time a well chosen high pass filter can improve the results.
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100 3500 & 4000 Hz exponentially decaying sinusiod, SR=12000 Corrected using TEXP
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Butterworth high pass filter with a 50 Hz cutoff




