JLAB-ACC-96-24

307@@ fo150-- /20|

Evaluation of a Server-Client Architecture for
Accelerator Modeling and Simulation*

B. A. Bowling, W. Akers, H. Shoaee, W. Watson, J. Van Zeijts,
S. Witherspoon

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 USA
RECEIVED

Abstract. Traditional approaches to computational modeling and simulation often utilf{{)}} | ? 1997
a batch method for code execution using file-formatted input/output. This method of code
implementation was generally chosen for several factors, including CPU throughput and 0 Sq I
availability, complexity of the required modeling problem, and presentation of computa-

tion results. With the advent of faster computer hardware and the advances in networking

and software techniques, other program architectures for accelerator modeling have recent-

ly been employed. Jefferson Laboratory has implemented a client/server solution for accel-

erator beam transport modeling utilizing a query-based I/O. The goal of this code is to

provide modeling information for control system applications and to serve as a computa-

tion engine for general modeling tasks, such as machine studies. This paper performs a

comparison between the batch execution and server/client architectures, focusing on design

and implementation issues, performance, and general utility towards accelerator modeling

demands. :

INTRODUCTION

Traditional approaches to computational modeling and simulation often utilize
a batch method for code execution using file-formatted input/output. This method
of code implementation was generally chosen for several factors, including CPU
throughput and availability, complexity of the required modeling problem, and pre-
sentation of computation results. With the advent of faster computer hardware and
the advances in networking and software techniques, other program architectures
for accelerator modeling have recently been employed. Jefferson Laboratory has
implemented a client/server solution for accelerator beam transport modeling uti-
lizing a query-based I/O. The goal of this code is to provide modeling information
for control system applications and to serve as a computation engine for general
modeling tasks, such as machine studies. This paper performs a comparison be-
tween the batch execution and server/client architectures, focusing on design and
implementation issues, performance, and general utility towards accelerator model-
ing demands.

B - o
PRSI IR PPIANA S pueE N

*work supported by US DOE contract# DE-AC05-84ER40150

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

II. TRADITIONAL ARCHITECTURES

In the last thirty years of simulation and modeling work, a few primary imple-
mentation architectures were employed for many codes. The simplest architecture
form, viewed from implementation and execution standpoints, are the codes in
which the configuration and lattice information are integrated and compiled inter-
nally with the algorithm. This implementation form is easy to execute, since the
program contains all information required to perform the calculations. However,
this approach is highly application-specific, with any changes in configuration re-
quiring direct editing of the source code.

A natural extension to the above is the segregation of the configuration from the
actual algorithm. This method is generally implemented using data files which con-
tain configuration, lattice, and operation commands, and is often referred to as
decks. Most of the simulations and models which are in use today employ this ar-
chitecture, and there have been standards developed within the modeling commu-
nity which describe the format of the data decks, for example the MAD and
ZCEDEX formats[1]. The separation of the configuration/operation parameters
from the actual executed code allows for the development of generic modeling and
simulation applications which can be used at many accelerator sites.

Results of calculations are usually produced in a tabulated output format, often
maintained as disk files. This form is convenient in that results for a particular input
configuration can be maintained for future review and/or analysis. However, if it is
required that computed results be available for other programs, such as machine
control processes, then interface codes which operate on computed model/simula-
tion files must be developed.

III. CLIENT/SERVER ARCHITECTURE

In the client/server approach, the application is distributed between at least two
processes, the server and the client. The server is the unified source of information
or algorithmic calculations, and the client is the process or processes which perform
requests to the server in order to obtain the information. In the case of modeling or
simulation, the server contains the calculation engine and configuration/lattice in-
formation. The client, which is part of an application process, performs queries to-
wards a server, requesting information or calculation results. Both the server and
the client require a communication functionality and protocol to be established.

Client/server architectures naturally lead to extensions which enhance perfor-
mance and functionality. At the simplest level, a single server can service a single
client. Adding the capability of multi-user access to the server allows for the simul-
taneous servicing of multiple clients from one server. Multiple servers can also be
implemented, each handling its own set of clients. The use of local area and wide
area networks allows distribution of clients and servers on different hardware plat-
forms. Callback mechanisms can be implemented on the server which can provide

automatic update mechanisms to attached clients.

A server for modeling and simulation purposes is basically a batch model archi-
tecture with the addition of a high-level event/callback processing manager, com-
munications interface for client transaction, and command message decoding and
encoding. Multi-user servers must keep track of requests from multiple clients and
prevent inadvertent interactions between clients, as well as preserving the state and
integrity of the model or simulation. It is sometimes advantageous to structure the
model or simulation code such that static information, like lattice construction and
static calculations, be generated at server start-up. Hence, client requests to the serv-
er require the minimum of computational processing, thus improving server re-
sponse.

IV. EXAMPLE CLIENT/SERVER MODEL

An illustration of a client/server architecture is the ARTEMIS (Accelerator Real
TimE Modeling Information Server) modeling environment, currently in use at Jef-
ferson Lab for accelerator controls and analysis. ARTEMIS provides various model
information (twiss parameters, transfer matrices, etc.) and supporting computations
(e.g. quad strength calculation for matching) for all model-driven facilities, includ-
ing automated beam steering, beam position and energy feedback, and beam diag-
nostic and optimization procedures [Fig. 1]. Implementation of ARTEMIS as a
server allowed for the centralization of the model calculations, which provided a
uniform and consistent data source for these and other applications, while eliminat-
ing the need for redundant calculations by different application software.

LEVEL
APPLICATIONS

Figure 1: Modeling Environment Overview

ARTEMIS is based on standard second-order transfer matrix calculations, and
provides the following functionality:

* Generation of first and second-order transfer functions.
* Provisions for inclusion of higher order models as needs dictate.

» Correct treatment of the acceleration process in the linac cavities, including
effects of adiabatic damping and cavity focusing effects.

* Providing lattice and input settings to clients, which has the functionality of
an on-line database. This includes hardware information (e.g. list of
quardrupoles, BPMs, etc. in a given region, with the ability of providing wild-
card input) and element operational settings.

* Model update mechanisms which include user-initiated, periodic, and input
event triggered.

* Model updates triggered by an external event.
* User initiated model calculations (on-demand modeling).

ARTEMIS provides the capability for one to instantiate four distinct machine
model servers:

* Golden model: includes a set of machine parameters and settings which have
been verified and deemed reasonable by an authorized expert.

* Design model: this is a machine model based on the paper design and initial
setpoints of the accelerator.

* Current real-time model: this is a machine model representing the current ac-
celerator setpoints; the update mechanism may be event-driven or user initi-
ated.

* Simulation model: used to determine the outcome of what-if scenarios as ap-
plied to the accelerator lattice.

The implementation of the server section of ARTEMIS is illustrated in figure 2.

It consists of several subassemblies: a lattice database, which performs the input-
output lattice management for the server, a client communications section, the mod-
el engine controller process (GENX), and CAUListener which provides the inter-
face to machine settings. The static lattice information is maintained in a common
shared-memory region, which includes all of the element setpoints and pre-comput-
ed local transfer matrices. Individual requests from clients invoke the server to ap-
ply the appropriate algorithm against the information contained in the common
classes.

' SmemiID

i Shared Lattice Objects
Swior | SnomD P«m
MEM - MULTX
MEM . TWISS
ooDB ART Server
s (e mesronse
(ACE ok)
To DevAPI Clients MEM - HARDWARE

Figure 2: ARTEMIS Server Architecture

The communications and server/event management for ARTEMIS is provided
by cdev (control device or common device), which is a C++ library toolkit initially
developed at Jefferson Lab. Cdev provides a standard application programming in-
terface (API) to one or more underlying packages, typically control system interfac-
es. It consists of two layers: the uppermost layer is used directly by applications,
and provides an abstraction of the underlying package, and the second layer (service
layer) provides the interface to one or more underlying packages, and is implement-
ed as optional loadable libraries.

A server engine and client interface has been integrated into the cdev interface.
Based on the ACE C++ wrapper classes for communication of cdev data pack-
ets(employing TCP/IP), the interface greatly simplifies the construction of servers
and clients. The cdev server interface includes input/output messaging queues,
built-in event and monitor mechanisms, and multi-user processing. The client inter-
face contains the server connect/disconnect functions and callback mechanisms
which are available to application programs.

The format of a cdev transaction consists of a device name, message, and at-
tribute. The device name represents any logical or virtual device, for instance a
name of a magnet or monitor. The message string indicates which operation is de-
sired, and the attribute allows for specification of indentifiers. Cdev also allows the
message string to specify application operational parameters, such as which model
server to use. The cdev string “model "get element" "device=Quadrupole"" is inter-
preted as a command to the default model server to retrieve the logical element
names for every quadrupole in the server’s lattice. Another example is: "IPM1LO1
"get betax" "model=DESIGN"", which returns the machine horizontal beta function
for the element names IPM1L01, retrieved from the model server DESIGN.

V. EVALUATION

It is evident that implementing a client/server model or simulation requires
more code development than the traditional batch architecture. New factors, such
as communications and model coherency, must be addressed for the client/server.
Additionally, the server must always be available to the end user, thus requiring ro-
bust code. Corrupted message commands, run-away calculations, arithmetic errors,
etc. must be identified and trapped by the server. In our experience, this has been
one of the important factors to deal with, and identifying such problems can be dif-
ficult at times. The server also has to operate orthogonally between clients, so the
design phase of the server must address this. The ARTEMIS server handles this by
performing the computation/access for every message received. .

The advantages of the client/server model are apparent on the client end. Once
the communications and messaging interface is established, the client application
can immediately take advantage of the server. Therefore, the client application is
not burdened with the implementation details of the model or simulation. This fact
allows for rapid application development.

The client/server architecture also allows existing toolkit applications to use
server results. An client application interface to TCL/TK and MATLAB has been
developed for use with ARTEMIS, and is extensively used for control and analysis.
Applications which require modeling information can be realistically implemented
and under test in a matter of hours.

An interface which allows server access using the World-Wide Web has also
been implemented. Cdev provides a gateway process which is easily interfaced to
CGI applications, which allow for the creation of HTML documents from user-ini-
tiated requests. The web-based applications allows the user to retrieve parameters
such as transfer matrices and Twiss parameters from any of the executing model
servers. The pages are easy to use, and have proven beneficial in many situations.

V1. REFERENCES

{11 G. Morpurgo et al, "Super-ZCEDEX User’s Guide", CERN Internal Document, 1986.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

