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MODELING ENERGY DISSIPATION INDUCED BY
QUASI-STATIC COMPACTION OF GRANULAR HMX *

K. A. Gonthier! R. Menikoff, S. F. Son, and B. W Asay
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

A simple extension of a conventional two-phase (inert gas and reactive solid) continuum model of
Deflagration-to-Detonation Transition (DDT) in energetic granular material is given to account for
energy dissipation induced by quasi-static compaction. To this end, the conventional model equa-
tions, valid in the limit of negligible gas phase effects, are supplemented by a relaxation equation
governing irreversible changes in solid volume fraction due to intergranular friction, plastic defor-
mation of granules, and granule fracture. The proposed model constitutes a non-strictly hyperbolic
system of equations, and is consistent with the Second Law of Thermodynamics for a two-phase
mixture. The model predicts stress relaxation and substantial dissipation induced by quasi-static
compaction; such phenomena are commonly observed in quasi-static compaction experiments for
granular HMX. Predicted intergranular stress histories compare well with experimental data.

INTRODUCTION

There has been considerable research during
the last thirty years addressing Deflagration-to-
Detonation Transition (DDT) in granular ener-
getic materials; much of this work has been mo-
tivated by concerns over the accidental detona-
tion of damaged high explosives due to mechan-
ical stimuli. Here, a damaged explosive refers
to a cast explosive containing local granulated
regions. It is widely accepted that various dissi-
pative mechanisms induced by compaction of the
granulated material give rise to local regions of
thermal energy concentration termed hot-spots;
such dissipative mechanisms include intergranu-
lar friction, plastic deformation of granules, and
granule fracture. If the energy dissipation rate
is sufficiently high, chemical reaction is initiated,
and transition to detonation is possible. As such,
models used to analyze DDT in these systems
should accurately account for energy dissipation
induced by material compaction.

*T'his research is funded by the Department of Energy
under Contract Number W-7405-ENG-36.
tCorresponding author. E-mail: gonthier@lanl.gov

To this end, we extend the two-phase DDT
model of Baer and Nunziato (BN model) [1] to
account for energy dissipation induced by quasi-
static compaction of granular HMX. Though the
BN model adequately accounts for compaction
dynamics, Bdzil et al. [2] have recently shown
that it improperly accounts for compaction en-
ergetics. In particular, the BN model predicts
no energy dissipation due to quasi-static com-
paction, contrary to experimental data for gran-
ular HMX which indicate substantial dissipation
[4]. A minimum requirement of any model is
that it predict results commensurate with exper-
iments in appropriate limits.

In this paper, we first give a brief descrip-
tion of the proposed model, valid in the limit of
negligible gas phase effects (i.e., when the gas
density is much smaller than the solid density).
Though we only counsider a granular solid, the
model is equally applicable when gas phase ef-
fects are included. Next, we show that the model
satisfies the Second Law of Thermodynamics for
a two-phase mixture. Lastly, we demonstrate
the model by applying it to the quasi-static com-
paction of granular HMX, and give comparisons
of model predictions with experimental data.




MATHEMATICAL MODEL

The dimensional model equations, valid in
the limit of negligible gas phase effects, are given
by the following:
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Here, subscript “s” denotes solid phase quanti-

ties. Independent variables are time, ¢, and po-
sition, 2. Dependent variables are density, ps;
volume fraction, ¢;; particle velocity, us; pres-
sure, P,; specific internal energy, e;; no-load
volume fraction, q~53; equilibrium no-load volume
fraction, f; and intergranular stress, ;.

Equations (1-3) are conservation equations
for the mass, momentum, and energy of the solid.
Equation (4) is a relaxation equation for mechan-
ical stresses, and Eq. (5) is a relaxation equation
for the no-load volume fraction; the constant
parameters p, and fi determine the relaxation
rates. The inclusion of ¢, as an additional in-
ternal variable in the theory is not standard, but
enables rate-independent dissipation induced by
material compaction to be modeled. Equation
(5) is not included in the BN model. Consti-
tutive relations needed to mathematically close
Eqs. (1-5) are constructed based on both rational
thermodynamics and experimental data.

Using a rational thermodynamics develop-
ment [3], we assume the granular system is 1)
in local thermodynamic equilibrium, and 2) can
be described in terms of a Helmholtz free energy

potential, 95, having the following functional de-
pendency:

Ys = Vs(ps, Ts, s — 033)7 (6)

where T is the solid temperature. Here, p,, T,
@5, and ¢ are independent thermodynamic vari-
ables from which all dependent thermodynamic
variables are determined. Given 1),, the depen-
dent thermodynamic variables are defined by
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where 17, is the specific solid entropy. A func-
tional form of i, which is consistent with Eqgs.
(6-10), and can reasonably model the material
response to both low and high pressure loading,
is given by

s = "psp(Ps’ TS) + d((lss Q’Bs)v (11)

a¢s

where
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PsPs

Here, 1)5p is the Helmholtz free energy of the
pure solid, assumed known, and A is an arbitrary
function of ps; and the difference ¢; — ¢5.

Based on the quasi-static compaction data of
Coyne et al. [4] for granular HMX, and the con-
straint of Eq. (12), we take

= (ps, b5 — Bs)- (12)
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and

f= ¢so (1=K —ds0) bs + Kdso],  (14)




where 7 = 2.3 M Pa, k£ = 0.03, and ¢,, is the
initial solid volume fraction of the granular ma-
terial. Equations (7-9), (11), (13), and (14) are
sufficient to mathematically close Egs. (1-5).

Second Law of Thermodynamics

The Second Law of Thermodynamics for a
thermally isolated two-phase (gas and solid) mix-
ture reduces to the following mathematical ex-
pression in the limit of negligible gas phase ef-
fects [2]:

. ] 0
g = ot [psPsns] + Bz [os¢susns] >0, (15)

where i]n is the volumetric entropy production
rate. Using Eqgs. (1), (3), and (11), we obtain the
following (here, we omit details of the derivation
for brevity):

d¢s
dés |’

. 1 d
Es=i[(Ps_,Bs) df:‘l'Ps

(16)

where the Lagrangian differential operator is de-

fined as i 0 . 5
dt, ot bz

It is seen from Egs. (4) and (5) that S,, is non-
negative provided that P, > 0; this condition
holds for granular materials as they cannot sup-
port tensile stresses. As discussed in the follow-
ing section, P; = (3, in the quasi-static com-
paction limit, and Eq. (16) reduces to

_ Bedds.
T, dt,’

thus, the model is dissipative in this limit.
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QUASI-STATIC COMPACTION

To demonstrate the model, we simulate a
quasi-static compaction experiment performed
by Coyne et al. [4] on a 15 g sample of Class
D granular HMX. The sample, strongly con-
fined by a movable piston-fixed cylinder appa-
ratus (ID = 2.54 e¢m), has an initial solid vol-
ume fraction of ¢s;, = 0.655 (based on a crys-
tal density of p, = 1.903 g/em?), and an initial

length of L, = 2.36 cm. The sample undergoes a
(Dloading-(IT)unloading- (IIT)reloading cycle at
a constant extension rate of u, = 18.8 em/min
during loading, where u,, is the piston velocity.

To this end, we assume 1) the solid is incom-
pressible; 2) pou,/L, < 1; and 3) all variables
depend only on time. The second assumption
implies that the time scale associated with equi-
libration of mechanical stresses is much smaller
than that associated with volume changes due
to piston motion; consequently, it can be shown
from Eq. (4) that P; = (3, in this limit. With
these assumptions, Eq. (1) reduces to a homoge-
neous ordinary differential equation which can be
directly integrated, and the resulting algebraic
equation solved for ¢, to get

6.0 = (125 ) deo (18)

where
L(t) = Lto) —up (t—15) - (19)
Here, t, is the time at which the loading or
unloading process is initiated, and L(0) = L,.
Knowing ¢,(t), then f(t) is given by Eq. (14).
Equation (5) can then be solved directly:
_t—t, t—¢

3s(t) = Bslto)e B +% “ftve B oat,
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(20)
where ¢5(0) = @5, and fi = 0.5 5. With both
¢s(t) and ¢s(t) known, Eq. (13) gives B4(t).

Shown in Fig. 1 are comparisons of the pre-
dicted and experimental histories for ¢; and 8s;
good agreement exist. It is noted that the model
predicts experimentally observed stress relax-
ation, indicated by the small decrease in 3, with
time immediately following cessation of loading.

Figure 2 gives a plot of the predicted result
in the B;,—In ¢, phase plane. The entire area
under the loading curve is directly proportional
to the total work per unit mass, wr, required
to compact the sample from the initial unloaded
state to the final loaded state. Using Egs. (1)
and (3), and assuming an incompressible solid,
it can be shown that wr is given by:

1 1n¢5
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Ps Jing,,

Bsd (In ¢fq)




---------- Experiment (Coyne et al.}
Model Prediction

L L ] Il I I i1 1 L I 1 L 1 L
10 15
t [s]

(a)

0.65

0.6 it

B, [MPaj

E e Experiment (Coyne et al.}
-20 Model Prediction
0l [ P TV B
10 15
t [s]
(b)

FIGURE 1. Predicted and experimental histories
for (a) solid volume fraction and (b) intergranular
stress.
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Here, the total work consists of elastic and dis-
sipative energy components, given by the first
and second terms in the latter expression of Eq.
(21), respectively. Only the elastic energy is re-
covered upon unloading of the sample; conse-
quently, the sample does not uncompact to its
initial solid volume fraction due to dissipated me-
chanical energy. In this figure, the shaded area is
proportional to the dissipated energy associated
with the initial loading cycle. Most conventional
two-phase DDT models do not properly account
for this dissipated energy, and thus do not accu-
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FIGURE 2. Predicted compaction work.

rately model compaction energetics.

FUTURE WORK

This paper has outlined the modification of
a two-phase DDT model to account for energy
dissipation induced by quasi-static compaction.
Future work will address 1) energy dissipation
induced by dynamic compaction, and 2) localiza-
tion of the dissipated energy to form hot-spots.
The long term goal of this work is to increase
the predictability of compaction-initiated com-
bustion in damaged energetic materials.
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