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Summary

Two dimensional cartesian and axially-symmetric
problems in electrostatics or magnetostatics frequently are
solved numerically by means of relaxation techniques --
employing, for example, the program POISSON. In many
such problems the “sources” (charges ot cqrrgnts. _apd
regions of permeable material) lie exclusively within a flmt.e
closed boundary curve and the relaxation process in
principle then could be confined to the region interior to
such a boundary -- provided a suitable boundary condition is
imposed onto the solution at the boundary. This paper
discusses and illustrates the use of a boundary condition of
such a nature in order thereby to avoid the inaccuracies and
more extensive meshes present when alternatively a simple
Dirichlet or Neumann boundary condition is specified on a
somewhat more remote outer boundary.

Introduction

The proposed boundary condition may be most simply
illustrated by specific use of plane-polar coordinates. Thus,
with a circular boundary so located that no external sources
are present, the potential function external to that boundary
is expressible in the form

-m .
co + mZ_] r (Cm cos m9 + Sm sin ne),

in which no positive powers of r occur. Such 3 relation will
permit one to extend the potential to a surrounding
concentric circle of somewhat larger radius. If, in practice,
values of potential are known at only 2 finite number of
points on the inner circle, then of course only a finite
number of harmonic coefficients (CmSm) could be
evaluated for such trigonometric representation of the
potential function -- such a trigonometric series may,
however, be adopted to provide adequate estimates of the
corresponding values of potential at various points on a
near -by surrounding "outer -boundary curve®.

wosw.en

In performing a relaxation computation on a mesh
bounded by such a pair of curves {external te all "sources"),
any full relaxation pass through the mesh may be followed
by a step wherein the values of potential at points on the
outer boundary are revised (up-dated) on the basis of a
harmonic description of the potential function on the inner
curve. Such revised values would then be employed, as
boundary values, in proceeding with the next relaxation pass
through the mesh. [An analogous procedure of course would
be followed if one were to adopt an elliptical coordinate
system {u,v), for which harmonic terms would be of the
form e~MU times circular functions of argument mv].

In the work summarized here, we have made a practical
application of the techniques just described, with particular
application to the use of the relaxation program POISSON as
applied to the design of superconducting magnets for
advanced particle accelerators. It is evident that in such
work one takes advantage of such intrinsic symmetries as
may be present in the geometrical configuration and current
distribution for the problem of interest. One realizes also
that, in practice, there may be 3 large number of mesh
points along the inner (circular) curve whereon one
constructs a harmonic representation of the potential and
(especially for circular boundaries) such points may have a
quite unequal spacing. Under such circumstances it may
well be expediert, as we indicate, to base the analysis on a
restricted number of trigonometric coefficients and to
compute these coefficients by a weighted least-squares
evaluation of the data.

The following note includes a description of the
equations introduced into our operating POISSON pragram,
and this material is followed by some illustrative examples.

Analysis

Consider the case where a circular arc of radius
r =R - H divides space into two regions, an inner one which
includes all current sources and magnetic iron, and an outer
one which is in free space (hereafter referred to as the
"universe”). Since the free space region is infinite we shall
arbitrarily limit it by a secondary circuiar arc of radius
r =R. Both circular arcs are an assembly of connecting
mesh points such as the one generated by the program
LATTICE. If we know the vector potential for each mesh
point on ¢ =R - H {e.g. calculated by PDISSON), we would
like to find the vector potential at each mesh point onr = R,
so that such values may be employed as provisional boundary
values in a subsequent relaxation pass through the entire
mesh. This is expressed as:

N .
outer _ inner
A = Bt m
n=1
A is the vector potential and E is a working matrix, and
the summation is over the entire mesh points of the inner
arc.
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in the free space region the vector potential can be
expressed as a sum of harmonic terms, each emplaying
powers of 1/r.

Bl % %
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The vector potential A of mesh point i on the clrcular
arc r is expressed In terms of a series of functions Fy (e),
their coefficients Dl and the problem type symmetry o,

Summing over the N boundary points on the radius r,
the difference between the calculated vector patential
values and the relaxed ones is minjmized with respect to Dy,
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The number of harmonic terms has been reduced to m and
the weight factors Wj have been introduced to teke care of
an uneven distribution of mesh points along the boundary.

Following the minimization pracess we arrive at:
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Solving for Dj on the inner arct = R - H we get
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Using Eq. {2) on the outer arc r = R and substituting the
expressions for Dj and Vi we arrive at (Eq. 1)
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We put an arbitrary upper limit on the number of
harmonica m £ SO.

Two Dimensional Case with Plane-Polar Coordinates

The harmonic functions Fj (8) are a combination of the
trigonometric functlons SIN "and COS. It is, however,
convenlent to express them in the following way

Fo(@) = cos (ule -8 %)

I
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Two_ Dimensional Problems with Elliptical Cylindrical
Coordinates

We replace the two circular arcs with two confocal
ellipses and employ elliptic cylindrical coordinates.

R-H\% (a «b); 7%
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2 and b are the semi-axes 3o v = tan~ Y{y/x)/b/a)).

Axis-Symmetry Problems with Poiar Coordinates

Here we consider cases which posses symmetry with
resgect to revolution around the Z axis. In a cylindrical
geometry the flux lines are represented by the product  Ag,
whare p = rsin @ The program PQISSON is written in such a
way that this product is the one which is being relaxed.

sin 8 Pa1 {cos 8)
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P,], (u} are the associated Legendre functions.

Axisymmetrical  Problems with__ Prolate _ Spheroidal
Coordinates

We replace the circular arcs with two confocal
ellipsolds. It then becomes permissible to introduce terms
in a development of Ay that involve

1
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Haos (n) is 3 normalized Eunctiol‘ derived from the
associatlad Leglendre function Qf (n), n is the eccentricity,
and c = (a? - b)1/2.

Supetposition

If an externally imposed field or 2 known external
circulation is present, the vector potential representing such
contributions can be subtracted from the potential on the
inner circular curve prior to applying the boundary relations
presented here. Corresponding potential values for the
external field or circulation then are added Lo the vatues so
transferred to the outer curve.



POISSON relaxation of two dimensional cartesian problem of various symmetries (a), and no symmetry (b}, using both circular
and elliptical boundaries, Case {b) was checked and found to be in good agreement with analytical calculation.

(c) G}

Relaxed flux lines -- in a S5C dipole (c) and quadrupole (d) -- are magnified along the boundary by choosing only lines which
eak out fram the iran (Reference Design A).

(e} U]

PDISSON retaxation of axisymmetrical problems -- including iron and possible symmetries. Selected flux along the boundary

Is plotted in case {e). Case {f}, for both circular and elliptical boundaries, was checked and found to be in good agreement with
analytical calculation.
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