

CONF-89/235--1

UCRL- 101559
PREPRINT

Received by CCTI

AUG 28 1989

AN OVERVIEW OF PROJECTILE PENETRATION INTO GEOLOGICAL MATERIALS, WITH EMPHASIS ON ROCKS

François E. Heuzé

This is a keynote paper for presentation at the
ASME Symposium on Computational Techniques for
Impact, Penetration, and Perforation of Solids,
San Francisco, CA, December 1989

August, 1989

Lawrence
Livermore
National
Laboratory

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

**DO NOT MICROFILM
THIS PAGE**

INDEX

	Page
ABSTRACT	ii
1. PROJECTILE PENETRATION THEORIES	1
1.1 The Empirical Method	2
1.2 Analytical Methods	6
1.2.1 Cavity expansion theories	6
1.2.2 Differential area force law	7
1.3 Numerical Methods	7
2. SUMMARY OF THE PENETRATION MODELS	9
3. SOME EVALUATIONS AND COMPARISONS	12
3.1 Soil Targets	12
3.2 Rock Targets	15
3.2.1 Test results and analyses	15
3.2.2 Constitutive laws and material properties	17
4. CONCLUSIONS	20
5. REFERENCES	22
6. APPENDIX: Cross-Indexing of References	34
7. ACKNOWLEDGMENTS	35

ABSTRACT

An extensive study was performed of the experimental and analytical aspects of projectile penetration in rocks and soils. The experimental data base is much larger for soils than it is for rocks, in which few instrumented penetration tests have been performed.

To extrapolate experimental results, several methods of analysis and prediction have been proposed: empirical approaches, such as those of Sandia National Laboratories and the Army's Waterways Experiment Station, analytical methods, such as cavity expansion theories and the differential area force law, and numerical modeling by a variety of techniques, i.e., finite differences, finite elements, and discrete elements. This paper contains a comprehensive summary of the features of the various computer programs used for penetration modeling, in many materials and at various speeds, over the past 20 years.

Regarding rock targets, the most significant conclusions to be drawn are:

- cracks and joints are ubiquitous on most rocks, and can easily overshadow the intact rock's yield strength in influencing penetration. So, it is clear that appropriate site characterization for penetration estimates must include the geological structure at the scale of the penetration.
- for analysis, the most desirable rock strength formulation is that which describes the complete variation of shear strength with mean stress.
- at velocities of up to a few hundred metres/s, rock penetration is most dependent on shear strength, which is pressure-dependent; it is less dependent on tensile strength, and compressibility.
- it appears essential to incorporate in the models the comminution of rock and post-fracture properties of the broken material.

- the internal friction angle of the target is more important than its cohesive strength in controlling penetration.
- however, a very uncertain aspect of the penetration process is the amount of frictional force applied to the penetrator; and this is compounded by uncertainties on the values of metal/rock friction. A power law variation of friction angle with sliding velocity has been proposed and a few data have been reported for tuff, sandstone and limestone by a single investigator. For tuff, the shear stress τ is given as equal to the static coefficient of friction μ multiplied by an equivalent normal stress: $\tau = \mu \sigma_{\text{eff}}$. The σ_{eff} is equal to $\sigma \cdot e^{-c\sigma\xi}$ where σ is the actual normal stress, c is the sliding velocity, and ξ is found to be equal to 2 GPa m/s for the 3 rocks tested; interestingly, ξ is reported to be the same for a wet and a dry sandstone. Regardless of the functional form of μ , it appears advisable to recognize the velocity-dependent nature of friction and to reliably estimate the contact area between the ground and the penetrator.
- measurements of stresses and deformations in the medium are what is needed to evaluate the material models used; measuring only the penetrator deceleration and depth is not sufficient.
- the stresses induced around the penetrator diminish rapidly away from the body; an order of magnitude decay takes place over a radial distance of about 2.5 times the projectile diameter. This gives the scale of the volume of target material involved in controlling penetration.
- cavity expansion theories give higher contact stresses on the penetrator than finite element models, for example, because of artificial kinematic constraints, and lack of surface weakening.
- penetration depth for rock (and concrete) appears to scale linearly with the ratio of penetration weight over cross-sectional area.

This page intentionally blank.

1. PROJECTILE PENETRATION THEORIES

The foundations of penetration theories currently used were laid at least 10 years ago, and some of them can be traced to the 1940's [B11]*, notwithstanding the work of 18th and 19th century investigators. The materials of interest have been metals, concrete, and a wide variety of geologic media (ice, rocks, boulders, soils, permafrost, snow, ...). An outstanding state-of-the-art survey was prepared in the 1970's [T9]. As for geological penetration data, a compilation of many tests results by Sandia National Laboratories (SNL), over the past 25 years, has recently been formalized in a relational data base [C5]. Also, the proceedings of a recent Earth Penetration Phenomenology Meeting contain much updated material [U2].

Today, there are essentially 3 approaches to predicting the penetration of projectiles in geological materials:

- the empirical methods, such as those of SNL, Albuquerque, NM, and of the Army's Waterways Experiment Station (WES), Vicksburg, MS.
- analytical methods such as the Cavity Expansion Theories (CET) and the Differential Area Force Law (DAFL),
- and numerical modeling by a variety of methods: finite elements, finite differences, and discrete elements. Both Lagrangian and Eulerian approaches have been used with finite elements and finite differences.

Occasionally, mixed methods are used, such as in the recent coupling of the ABAQUS finite element code for the penetrator, with a cavity expansion theory for the ground [L4], or in the linking of the Eulerian finite difference code, HULL, to a subsequent Lagrangian finite element analysis with EPIC3, for the 3-dimensional modeling of hypervelocity perforation of a plate by a rod [M1,M2].

Other methods exist, but are not presented here since they have not been used to any large extent [A1, A3, B12, T3, T8]; most are discussed in reference [T9].

*Because of the large number of references, an indexing scheme was adopted which minimizes corrections to be made when this bibliography is updated.

1.1 The Empirical Method

There are two main schools: that of SNL and that of WES.

In the SNL formulation for rock (and concrete) [Y9, Y11], the maximum penetration depth is:

$$Z = 1.14 \cdot 10^{-6} \cdot S \cdot N (W/A) (V-100) \quad \text{SI units} \quad (1)$$

where S is the target penetrability number, a measure of the rock's resistance

N is a nose performance coefficient

W is the penetrator's weight

A is the penetrator's cross-sectional area

V is the initial impact velocity.

The S number for rocks is said to be smaller than or equal to 1, depending upon rock mass strength. Note that there is no explicit mention of σ_c or of joint density, and the rock property (S) cannot be obtained through direct testing. On the other hand, the S numbers for soils are much better defined as a function of the soil type; this is a reflection of the large slant towards soils in the data base behind equation (1). Equation (1) is embodied in the SAMPLL code [Y9] and in the MOLE code [J1]. SAMPLL also contains equations for penetration in soils, ice, and marine sediments.

Other empirical formulas which do not include natural fractures are also available [A1, K1].

Two WES formulations for rock penetration [B8] were first proposed in lieu of the SNL equation, so that the rock discontinuities would be somewhat accounted for. The first one is:

$$Z = 0.2 \frac{M}{A} \cdot \frac{V}{(\rho \alpha_c)^{1/2}} \cdot \left(\frac{100}{RQD} \right)^{0.8} \quad (2) \quad \text{SI and English units}$$

where ρ is the mass density of the rock (unit weight/gravity acceleration), and M is the mass of the projectile.

RQD is the "Rock Quality Designation" of the rock mass; it is a measure of the spacing of pre-existing fractures, at the site [D2]. Other quantities are as previously defined. A number of restrictions apply to equation (2), as discussed in [B7]; among them, the equation should not be used for RQD less than 20.

The second equation is a little bit more elaborate:

$$Z = \left[\frac{M}{A} \frac{V}{b} \cdot \frac{a}{b^2} \ln \left(1 + \frac{b}{a} V \right) \right] \quad (3), \quad \text{where}$$

$$a' = 1.6 \sigma_c (RQD/100)^{1.6} \quad (4)$$

$$b' = 3.6 (\rho \sigma_c)^{1/2} (RQD/100)^{0.8} \quad (5)$$

A comparison of equations (2) and (3)-(5) with rock penetration data is given in Figure 1 [B8]. Over the range of dimensionless parameters considered and for the various rocks penetrated, the two equations seem to be fairly close and to give credible estimates.

Shortly thereafter, an improved formula was proposed by WES [B10] as:

$$Z = \frac{M}{A} \cdot \frac{N_{rc}}{\rho} \left[\frac{V}{3} \frac{\rho^{1/2}}{\sigma_{cr1/2}} \cdot \frac{4}{9} \ln \left(1 + \frac{3}{4} V \frac{\rho^{1/2}}{\sigma_{cr1/2}} \right) \right] \quad (6)$$

with $N_{rc} = 0.863 \left[\frac{4(CRH)^2}{4CRH-1} \right]^{1/4}$ for ogives (7)

$$N_{rc} = 0.805 \cdot (\sin \eta_c)^{-1/2} \quad \text{for cones} \quad (8)$$

$$\sigma_{cr} = \sigma_c \cdot (RQD/100)^{0.2} \quad (9)$$

where N_c is the projectile nose performance coefficient

CRH is the Caliber-Radius-Head (ratio of radius of curvature of the tangent ogive to the diameter)

η_c is the cone half-angle

σ_c is the rock mass unconfined compressive strength.

This new equation was applied to concrete as well as to the rock data of Figure 1; it appeared to give a somewhat better fit, as shown on Figure 2.

The implication of equations (2), (3), or (6), is that one of either σ_c or RQD can be back-estimated from rock penetration tests, if the other one is measured or otherwise known.

SYMBOL	TARGET	RQD	AVERAGE STRENGTH BARS	AVERAGE DENSITY gm/cm ³
Δ	WELDED TUFF	100	600	1.95
□	SANDSTONE	82	234	2.08
▲	WELDED AGGLOMERATE	60	275	1.92
●	SANDSTONE	37	489	2.12
■	SANDSTONE	32	408	2.14
▼	GRANITE	32	462	2.62

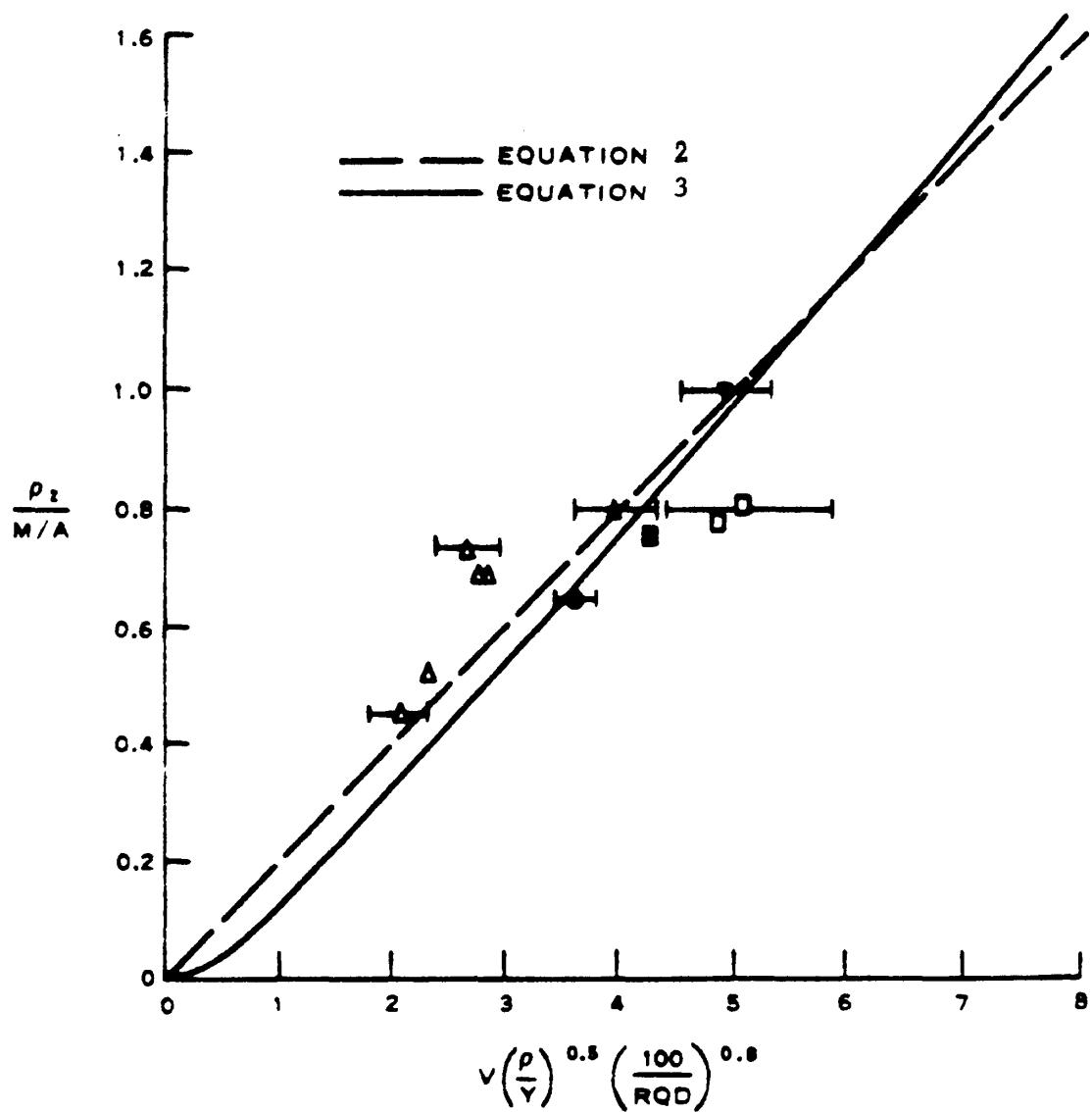


Figure 1: Comparison of Initial WES Rock Penetration Equations with Rock Penetration Data. After Bernard [B8].

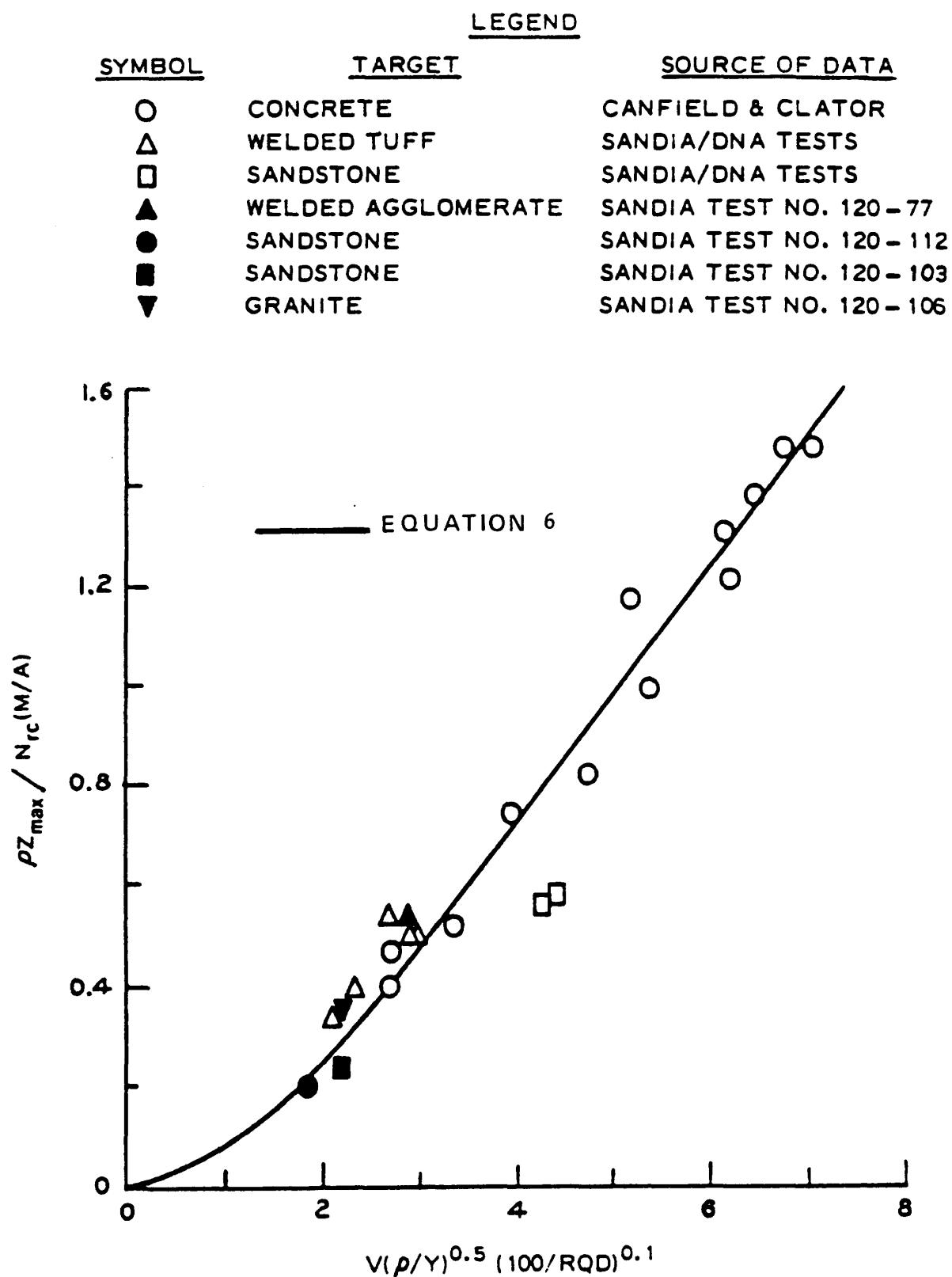


Figure 2: Comparison of Improved WES Rock Penetration Equation with Rock and Concrete Penetration Data. After Bernard and Creighton [B10].

1.2 Analytical Methods

1.2.1 Cavity expansion theories

The notion of analyzing the penetration of an object in a semi-infinite medium by simulating it as a cavity expanding in that medium was first presented over 40 years ago [B11]. Numerous developments followed, based on a spherical cavity [G3, H3, P4, R1, R4], with the material models becoming more and more representative of geological materials. The same progress was also achieved for an assumption of cylindrical cavity, which originated about 15 years ago [N3, F3 to F10, L3 to L5, Y1].

Both the Spherical Cavity Expansion Theory (SCET) and the Cylindrical Cavity Expansion Theory (CCET) assume the resistance to penetration to be the sum of the shear resistance of the target, and of the inertial effects of projectile movement in the target (also referred to as dynamic resistance). They provide closed-form solutions for the pressure on the penetrator surface. The deceleration-time history and the total depth of penetration are obtained. For example, for a locking compressible behavior of the target, in both approaches the maximum penetration depth is calculated as

$$Z = K_1 \ln (1 + K_2 V^2) \quad (10)$$

where K_1 and K_2 are somewhat lengthy expressions of penetrator characteristics, and target properties. These expressions are different for the SCET [A1, T9] and the CCET [N3]. It is noteworthy that the required target properties correspond to quantities which theoretically can be measured in tests performed on samples of the target (density, compressibility, modulus, shear strength, etc.). This may be true for snow and most soils but for rocks it certainly is subjected to the limitations of scale effects.

It is also clear that, because this type of analysis uses detailed constitutive relations for the target (failure envelope and hydrostat), it is not a practical approach for back-calculating a single quantity, such as unconfined compressive strength, from penetration tests. On the other hand, for predictive (forward) modeling of projectile penetration depth and deceleration, the CET's have been the basis for a long suite of computer programs over the years, particularly those of Sandia National Laboratories: PENAP [Y2], PENOB [Y3], RUNNOS [N6], RUNDEP [N6], FLAP [R2], FLAT

[R1], and GNOME [D1]. The succession of models reflects continued improvement in the constitutive relations adopted for the geologic targets. This is in recognition of the importance of having credible models of target shear strength.

Today, the GNOME code appears to be the most comprehensive cavity model [L4], as it includes both spherical and cylindrical theories, as well as a Mohr-Coulomb failure criterion with tension cut-off [K5].

1.2.2 Differential area force law (DAFL)

An alternate analytical method was proposed by the AVCO Corporation in the early 1970's. It provided explicit formulations for the normal stress and tangential stress at every point on the external surface of a penetrator [H1, T9]. The DAFL approach amounts to a 6-degree of freedom analysis of the rigid body motion of a penetrator. It is 3-dimensional. A limitation of the method [H1] is the fact that a total of 9 parameters is required to describe the target and the effects of the ground surface, only 2 of which (density and sonic velocity) are commonly known properties. Other parameters are empirically determined from regression and analysis of tests in the given target.

The DAFL approach was adopted and modified by the U.S. Army Waterways Experiment Station (WES), to provide a 2-dimensional theory for the analysis of oblique impacts [B10]. This theory forms the basis for WES' PENCO2D code [C7] which is in use today. PENCO has also spawned the PROOPEN code [C8] for probabilistic penetration analysis. For soils, the only target strength property required is the empirical S-number, previously defined [Y6]. For rocks, s is set to zero, and equation (6) is used, which requires σ_c and RQD. In PENCO2D, the compressive resisting stresses are assumed normal to the penetrator's surface -- i.e. friction is neglected; this is a shortcoming. On the other hand, PENCO2D provides for algorithms to simulate free-surface effects and wake-separation and reattachment effects.

1.3 Numerical Methods

The heterogeneous nature of geological formations, their complex constitutive behavior, and the presence of discontinuities, are definite impediments to the application of the above empirical and analytical approaches. But this alone has not

negated their use; they are being employed with a measure of success. However, the modeling requirements ultimately extend to the structural analysis of the penetrators. There, only numerical methods are credible. In many cases the numerical models have been used both for the target penetration and the penetrator response evaluation. The three main techniques are:

- finite differences (FD): both Lagrangian [B19] and Eulerian [C6, M1, T5, T6] models have been used. Applications include metals and hypervelocity impacts, as well.
- finite elements (FE): together with their abilities for structural analysis, their great versatility in zoning has made finite element codes very attractive for penetration modeling [B5, D3, F1, F2, G5, H9, I4, J2, R6, S1, T1]. Some of the state-of-the-art programs have particularly desirable features such as erosion algorithms (DEFEL [C4], EPIC2 [J2], EPIC3 [B5]), arbitrary Lagrange-Euler capability (DEFEL, DYNA2D [F2], EFHYD [D3], EPIC2, TRIFLE [I4]), and discrete fracturing (DEFEL, EPIC2, EPIC3).
- discrete element models (DE): however sophisticated the above FD and FE models are, they cannot represent the mechanics of discontinuous media such as hard jointed rock masses or boulder fields, which contain many discrete bodies. For penetration in such media one must call upon the only technique available today -- the discrete element approach. Codes such as DECICE [M9], DIBS [W4], and PROBS [G2] offer the dynamic capability for penetration simulations.

The complete -- penetration + structural -- calculations with the above models tend to be expensive in terms of computer time. Attempts are being made at coupling analytical penetration analyses with numerical modeling [L4].

2. SUMMARY OF THE PENETRATION MODELS

For convenience, the main attributes of the various computer programs developed in the 1970's and 1980's are summarized in Table 1. The following notes apply to the Table:

1. Acronyms of institutions:

AFATL	: U.S. Air Force Armament Laboratory, Eglin AFB, FL
AFWL	: U.S. Air Force Weapons Laboratory, Kirtland AFB, Albuquerque, NM
AVCO	: AVCO Corporation
CCC	: Computer Code Consultants, Chisholm, NM
CRT	: California Research and Technology, Chatsworth, CA
DYN	: Dyna East Corporation, Philadelphia, PA
ESI	: Engineering System International, Paris, France
GAT	: General Atomic, San Diego, CA
HCS	: Hibbitt, Karlsson, Sorensen Inc., Providence, RI
HNW	: Honeywell Corporation, Edina, MN
INT	: Intera Technologies, Denver, CO
LLNL	: Lawrence Livermore National Laboratory, Livermore, CA
NWC	: U.S. Naval Weapons Center, China Lake, CA
SCUBE	: S-CUBED, La Jolla, CA
SNLA	: Sandia National Laboratories, Albuquerque, NM
WES	: U.S. Army Waterways Experiments Station, Vicksburg, MS.

2. Other symbols:

ALE	: Arbitrary Lagrange-Euler
CCET	: Cylindrical Cavity Expansion Theory
DAFL	: Differential Area Force Law
DE	: Discrete Element code
DOF	: Degrees-of-freedom
FD	: Finite Differences
FE	: Finite Elements
SCET	: Spherical Cavity Expansion Theory.

3. In the DAFL approach, the method is analytical, but the material coefficients are empirically determined.
4. E: Denotes an Eulerian code; others are Lagrangian.
5. 2-D+: axisymmetric, with nonaxisymmetric loading.

Table 1: Summary of Computer Programs for Penetration Modeling

Origin	Reference	Theory					
		Empir	SCET	CCET	DAFL	FE	FD
ABAQUS	HCS ¹	1987	H9			X	
AUTOREZ	SNLA	1980	Y4				
CET	WES	1978	B8	X ³		X	
CSQII	SNLA	1986	T5				X(E ⁴)
CSQIII	SNLA	1988	T6				X(E ⁴)
CTH	SNLA	1987	M4				X(E ⁴)
DAFL	AVCO	1972	H1	X ³		X	
DECICE	INT	1987	M9				X
DEFEL	DYN	1986	F1			X	
DIBS	LLNL	1982	W4				X
DYNA2D	LLNL	1987	F2			X	
DYNA3D	LLNL	1985	R5			X	
EFHYD	ESI	1984	D3			X	
EPIC2	HNW	1986	J2			X	
EPIC3	HNW	1987	B5			X	
EXCALIBUR	CRT	1987	I4			X	
FLAP	SNLA	1983	R2		X		
FLAT	SNLA	1983	R1		X		
GNOME	SNLA	1983	D1	X	X		
HELP	SCUBE	1978	S2				X(E ⁴)
HEMP	LLNL	1978	W5				X
HULL	AFATL	1984	M3				X(E ⁴)
JOY	LLNL	1983	C6				X(E ⁴)
LASOIL	HNW	1986	M7				X(E ⁴)
METRIC	SCUBE	1978	S2				X(E ⁴)
MOLE	AFWL	1984	J1	X			
NORML	SNLA	1980	N4		X		X
OBLIK	SNLA	1980	N4		X		X
PENAP	SNLA	1978	Y2		X		
PENCO	WES	1976	B6		X		
PENCO2D	WES	1979	B10	X ³		X	
PENOB	SNLA	1979	Y3		X		
PROBS	CRT	1987	G2				X
PRONTO2D	SNLA	1986	T1			X	
PROOPEN	WES	1986	C8	X		X	
RUNDEP	SNLA	1982	N6		X		
RUNNOS	SNLA	1982	N6		X		
SAMPLL	SNLA	1985	Y9	X			
SCAP	SNLA	1985	R3				
SHELL SHOCK	SNLA	1984	G5			X	
TAUTQ	SNLA	1980	N4			X	
TOODY IV	SNLA	1978	S5			X	
TOOREZ	SNLA	1980	T7				
TRIDORF	CCC	1986	J4				X(E ⁴)
TRIFLE	CRT	1987	I2			X	
TRIOIL	GAT	1986	J4				X(E ⁴)
WAVE-L	CRT	1976	I1			X	
WHAP	NWC	1982	S1			X	
WONDY IV	SNLA	1971	L1				X
WONDY V	SNLA	1982	K3				X

Table 1 (cont.)

	Features							Remarks
	1-D	2-D	3-D	Struct. Analys.	Discrete Fracture	Erosion	ALE ²	
ABAQUS			X	X				Trade-Mark
AUTOREZ		X						Rezoner for TOODY
CET	X							Modification of DAFL
CSQII	X							Author: Thompson, SNLA
CSQIII	X							Author: Thompson, SNLA
CTH			X					Author: McGlaun, SNLA
DAFL	X							6-DOF rigid-body motion
DECICE	X	X		X				2D and 3D versions
DEFEL	X			X	X	X	X	Evolved from EPIC2
DIBS	X				X			Author: Walton, LLNL
DYNA2D	X			X			X	Author: Hallquist, LLNL
DYNA3D		X		X				Author: Hallquist, LLNL
EFHYD	X	X	X				X	Evolved from DYNA family
EPIC2	X				X	X	X	Author: Johnson, Honeywell
EPIC3		X	X		X	X		Author: Johnson, Honeywell
EXCALIBUR		X ⁺			X			
FLAP	X							Based on Forrestal/Longcope
FLAT	X							Based on Forrestal/Longcope
GNOME		X						Longcope's (SCET + CCET)
HELP	X							Author: Hageman, S-CUBED
HEMP	X							Author: Wilkins, LLNL
HULL			X					Output linked to EPIC3
JOY			X					Output linked to DYNA3D
LASOIL		X	X					Author: Johnson, Honeywell
METRIC			X					Author: Hageman, S-CUBED
MOLE	X							Young/SNL equations
NORML	X							Modification of WONDY IV
OBLIK		X						Extension of NORML
PENAP	X							
PENCO	X							Earliest WES code
PENCO2D		X						Evolved from DAFL
PENOB		X						Extension of PENAP
PROBS	X							Results passed to EXCALIBUR
PRONTO2D	X			X			X	Replaced DYNA2D at SNLA
PROOPEN	X							Extension of PENCO-2D
RUNDEP	X							Evolved from NORML
RUNNOS	X							Evolved from NORML
SAMPLL	X							Author: Young, SNL
SCAP	X							Author: Robinson, SNL
SHELL SHOCK	X ⁺			X				Author: Grant, SNL
TAUTQ	X							Extension of TOODY II
TOODY IV	X							Author: Swegle
TOOREZ	X							Rezoner for TOODY IV
TRIDORF		X						Author: Johnson, CCC
TRIFLE		X					X	Evolved from WAVE-L
TRIOIL		X						Author: Johnson, GAT
WAVE-L	X							Evolved from HEMP (LLNL)
WHAP			X	X				Extension of HONDO II (SNLA)
WONDY IV	X							
WONDY V	X							Evolved from WONDY IV

3. SOME EVALUATIONS AND COMPARISONS

The existence of so many models and computer codes naturally raises the question of which is the best. Let us say at the outset that there is not a single best approach for any and all analyses. Valuable insights have been gained into the respective merits of the various techniques and it appears that more than one approach can give credible estimates of penetration depth and deceleration. Some important results, concerning the influence of various target properties on penetration, also have emerged from the calculations. A few studies stand out as particularly significant.

3.1 Soil Targets

- a direct comparison was performed [H1] of several methods (SNL, SCET, CCET, DAFL) against the results of a penetration test at the Watching Hill Blast Range, Ralston, Alberta, Canada. The 400 lb, 6.5-in diameter projectile impacted at about 500 ft/sec in a glacial lacustrine deposit composed of alternating thin layers of sands, silts and clays. The results of the comparison are shown in Table 2.

Table 2. Comparison of Calculations and Test Data [H1].

Method	Maximum Depth (feet)	Maximum Rigid Body Deceleration, (g's)	Remarks
Sandia empirical formula	50	133	Best deceleration
Spherical CET (WES) (1986)	50	206	Same as Nash et al.
Cylindrical CET	47	450	
DAFL	69	65	Best displacement
Test data	67.9	136±5	

The result that the best deceleration estimate was calculated by the SNL empirical approach was also obtained recently for penetration in concrete [N1]. The quality of the DAFL depth estimate is also consistent with applications of DAFL to sites where target coefficients can be first back-

calculated through regression of several tests. However, there are some doubts as to how well the DAFL approach can predict penetration *a priori* [T9, p 39]. For further comparison, Figure 3 shows that the predictions for rate of penetration vary quite a bit from one method to the other [H1], for the above tests at Ralston.

- the same test results were also used to evaluate the capabilities of the TOODY finite difference code equipped with a rezoner [B19]. The comparison was made for predicted motions and stresses on the penetrator and in the target. The study had two shortcomings. First, an assumption was made of zero friction between target and penetrators; this does not account for friction being a controlling factor in the penetration process. Secondly, the FD model was not able to provide the final depth of trajectory as the modeling stopped far short of full penetration. This reflects a limitation of Lagrangian numerical models without automatic rezoning or ALE; such features are needed to track the complete trajectory of projectiles. Very few codes have such capabilities (Table 1).
- for sites where no hands-on material characterization is obtained, the SNL empirical equation is thought to be more appropriate than the use of a CET [R5].

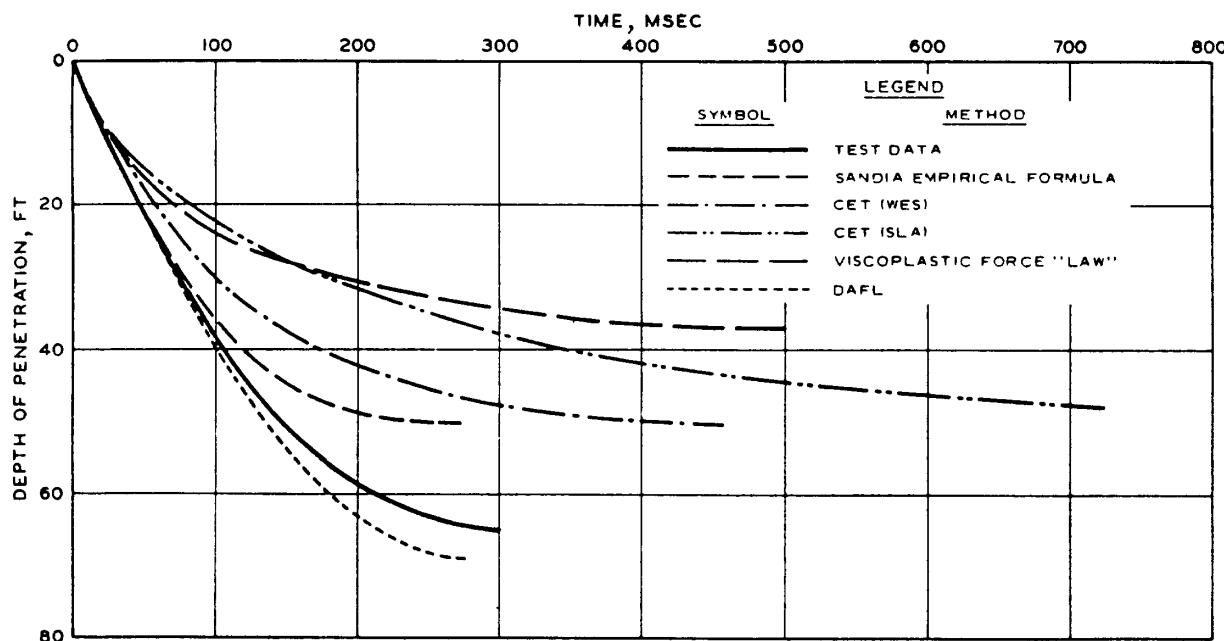


Figure 3. Comparison of Soil Penetration Calculations and Test Data, Ralston, Canada. After Hadala [H1].

as regards the effect of various properties, a series of TOODY calculations [B20] for an ogival penetration in silt showed that the effect of the soil's internal friction coefficient on deceleration increased with penetrator velocity (Figure 4). The same authors [B20], using PENAP, compared the effect on deceleration of varying several properties from a baseline case. The results are shown in Figure 5 where the baseline was: bulk modulus $k_0 = 0.23$ GPa, shear strength $\tau_0 = 4.2$ MPa, density $\rho_0 = 1.49$ Mg/m³, and friction $\mu = 0$. Friction was shown as having a strong control on deceleration, hence on penetration.

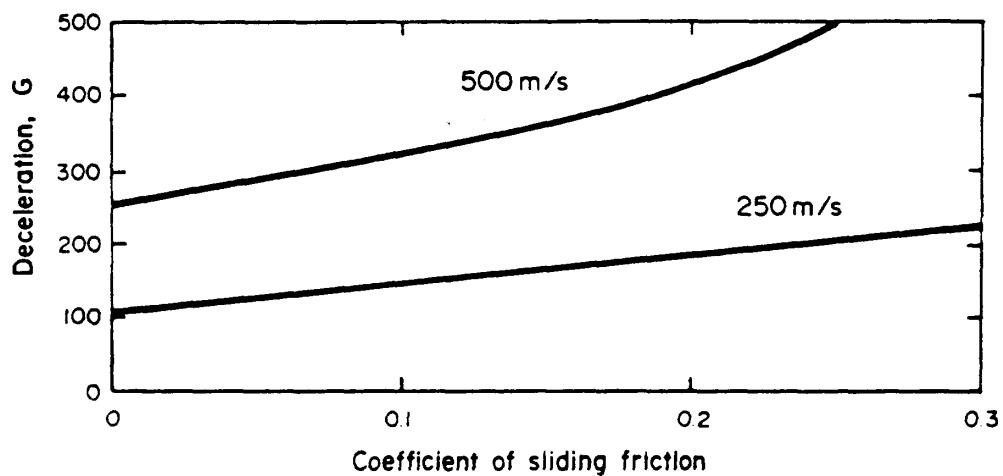


Figure 4: Effect of Internal Soil Friction on Deceleration at Different Penetration Velocities. TOODY Calculations. After Byers et al. [B20].

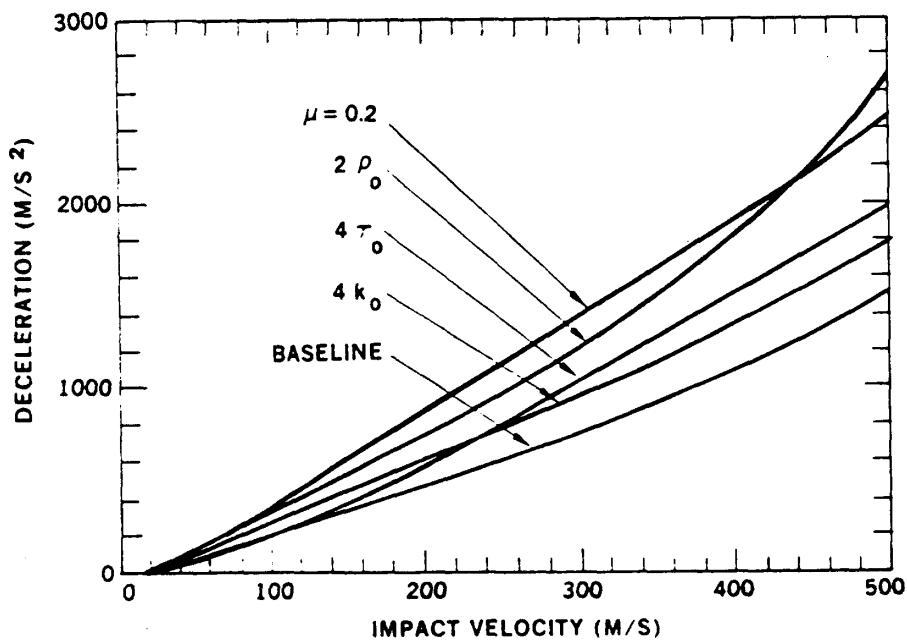


Figure 5. Comparison of Material Properties Effects on Deceleration. PENAP Calculations. After Byers et al. [B20].

3.2 Rock Targets

3.2.1 Test results and analyses

- results of 19 Sandia tests of air-delivered penetrators (20 to 25 cm in diameter and 225 to 450 kg in weight), were summarized in 1973 [P2]; 17 of them were in rocks -- i.e. welded tuff, limestone, sandstone, shale, weathered granite. The PENCO code with spherical cavity expansion theory, was used to estimate penetration depth in five of these rock targets. The calculated and measured values are compared in Figure 6 [B15, R4]. The vertical lines represent the range of estimates, given the bounds of the known or estimated geotechnical properties of the targets at the sites. It can be said that these depth estimates are reasonable. Note that most of the data shown in Figure 6 were already discussed in Figure 2 and that the empirical approach of WES [B10] seemed to give an even better fit than their SCET predictions.
- a closed-form formulation of the cylindrical cavity expansion theory was recently constructed [F10] and applied to 2 fully instrumented in-situ rock penetration tests in which both penetration-time and deceleration- time data had been acquired; both tests were in tuff from the Tonopah Test Range, Nevada. The results of the comparisons are shown in Figure 7, and the agreement is reasonably good.
- new, instrumented, rock tests were performed in the past few years by SNLA, in the context of the Pershing 2 (P2) and the Shallow Earth Penetration Weapon (SEPW) project. From these tests, deceleration and depth data in Antelope Tuff were selected as benchmark for comparison with calculations performed at SNL with several different models [H11]. The results of this comparison are summarized in Table 3. It would seem that all models give numbers reasonably close to the experimental data. It must be noted that the application of HULL at SNL is recent, and that this Eulerian code is still being adapted for penetration problems in geologic media [Y5]; for example, the inclusion of a frictional interface between the penetrator and the ground improved the calculated maximum deceleration from having an initial + 50% discrepancy with the test record, to the current + 11%.

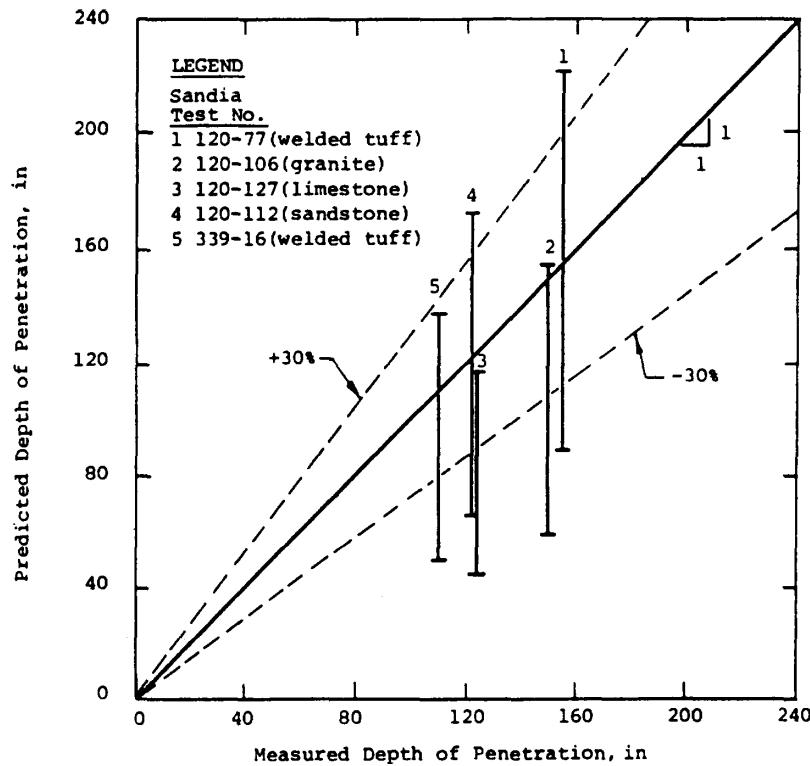


Figure 6: Penetration Depth Data vs. SCET Calculations with the WES PENCO code. After Butler [B15].

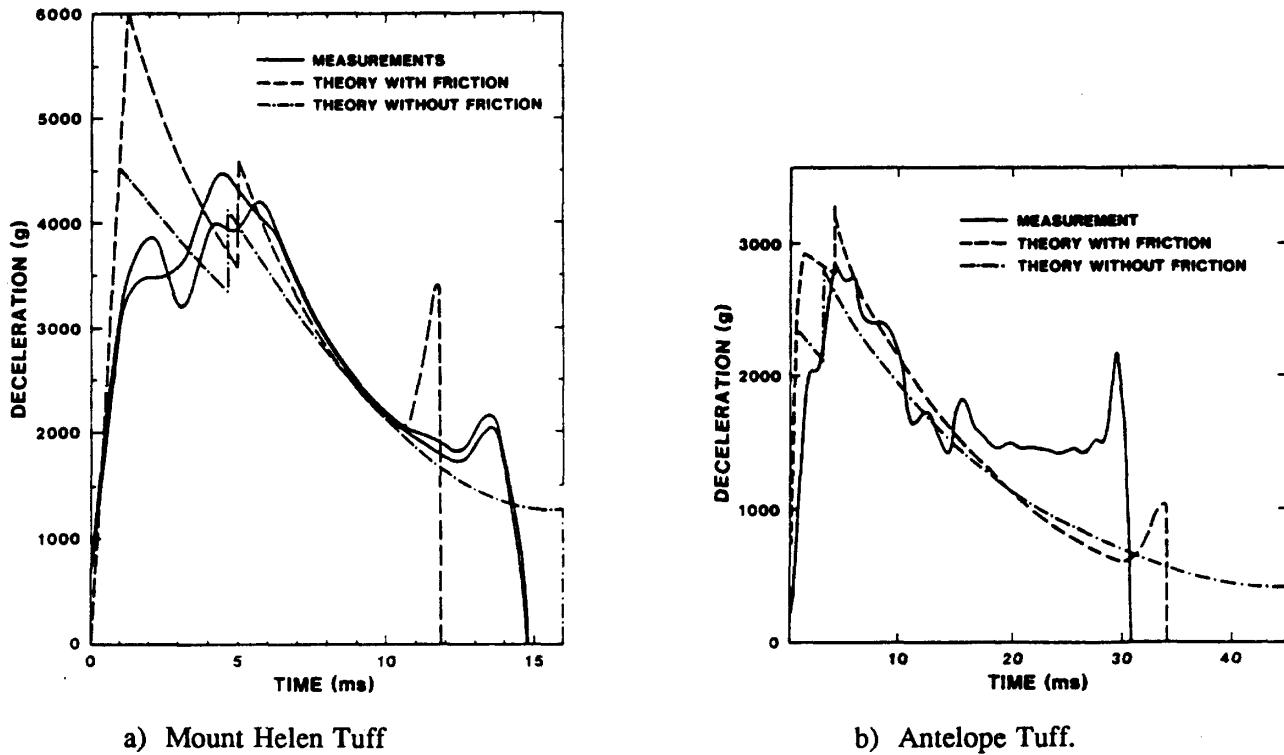
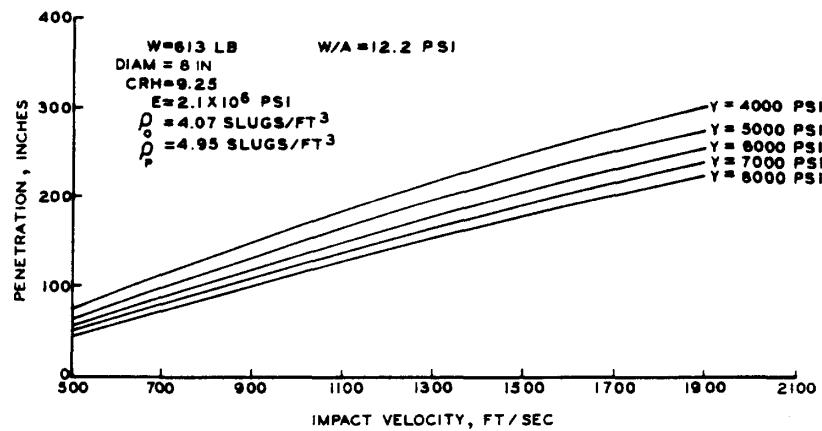
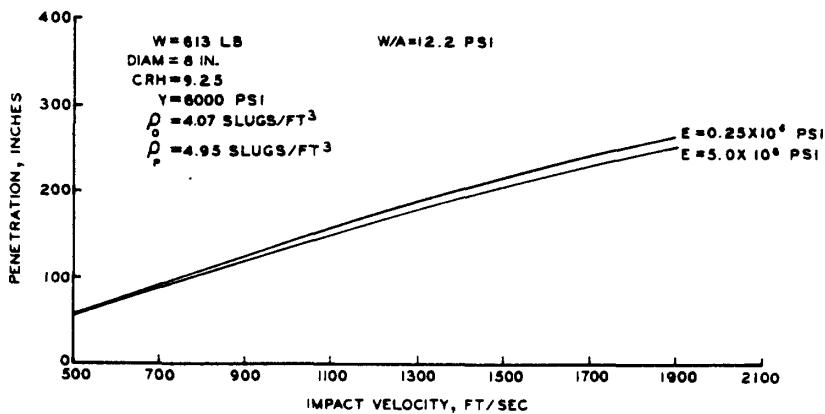


Figure 7: Comparison of CCET Calculations with Data from Two Tests in Tuff. After Forrestal [F10].

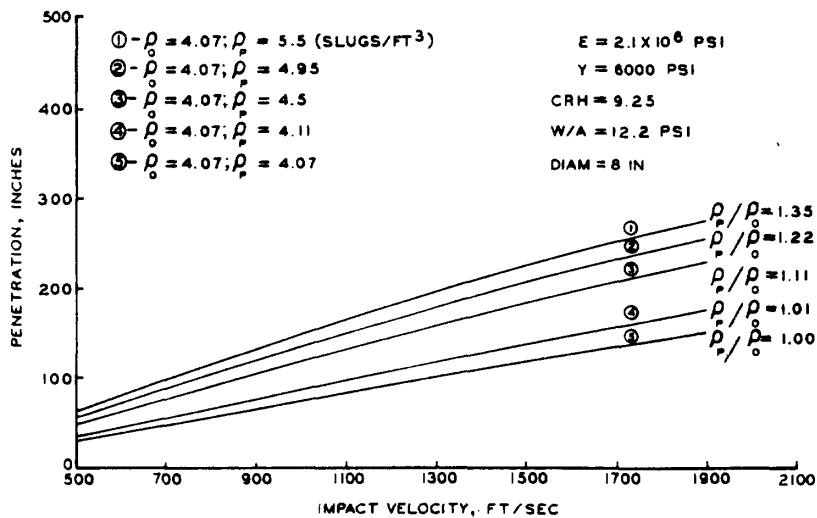
Table 3: Differences Between Experimental Penetration Data in Antelope Tuff and Calculations. After Hightower [H11].


Project	Method (Calculator)	Velocity (ft/s)	Peak Rigid Body Deceleration	Penetration Depth
P2	Empirical SNL (Christensen, Young)	1600	< 5%	+ 8%
		1650	< 5%	+ 7%
		1700	+11%	+ 5%
P2	CCET/SNL, elastic-plastic model (Kipp, Longcope)	1600	-20%	-12%
		1650	-17%	- 5%
		1700	+ 9%	-16%
P2	PRONTO 2D (Chen)	1500	< 5%	-11%
		1650	- 8%	-11%
		1700	- 9%	< 5%
		1750	< 5%	-13%
SEPW	HULL (Yarrington)	2030	+11%	*

*Calculation was not run out to full penetration, as of this writing.


- in 1986-87 WES performed pre- and post-test simulations of penetration tests at Fort Riley, Kansas [C9, C10]. The PENCO2D and PROPEL codes were used. The geology consisted of a mix of limestone and shale overlain by soil. Path length prediction errors decreased from 30% pre-test to 10% post-test.
- in the past 12 months, about two dozen penetrator tests were made in both Sidewinder tuff and Antelope tuff, under the continuing SEPW project of SNLA. About one third of these tests were instrumented for deceleration. The analysis is ongoing [H4].

3.2.2 Constitutive laws and material properties


- Figure 8 shows the results of an early sensitivity analysis with the SCET approach in the PENCO code [R4]; the model does not have fractures. The figure shows how penetration depth and impact velocity are related, for different values of rock yield strength, modulus, and density. Other constitutive studies also have been made for rock targets [N5], but systematic evaluations have yet to be performed for the effect of jointing, at rock sites.

a) Rock yield strength.

b) Rock modulus of elasticity.

c) Rock density.

Figure 8: Sensitivity of Penetration vs. Impact Velocity for Various Parameters; PENCO Results, SCET Approach. After Rohani [R4].

a very uncertain aspect of the penetration process is the amount of frictional force applied to the penetrator [W1,H11]; and this is compounded by uncertainties on the values of metal/rock friction. A power law variation of friction angle with sliding velocity has been proposed and a few data have been reported for tuff, sandstone and limestone by a single investigator [G1]. Results for tuff are shown in Figure 9, where the shear stress τ is equal to the static coefficient of friction μ multiplied by an equivalent normal stress: $\tau = \mu \sigma_{\text{eff}}$. The σ_{eff} is equal to $\sigma \cdot e^{-c\sigma/\xi}$ where σ is the actual normal stress, c is the sliding velocity, and ξ is found to be equal to 2 GPa m/s for the 3 rocks tested; interestingly, ξ is reported to be the same for a wet and a dry sandstone.

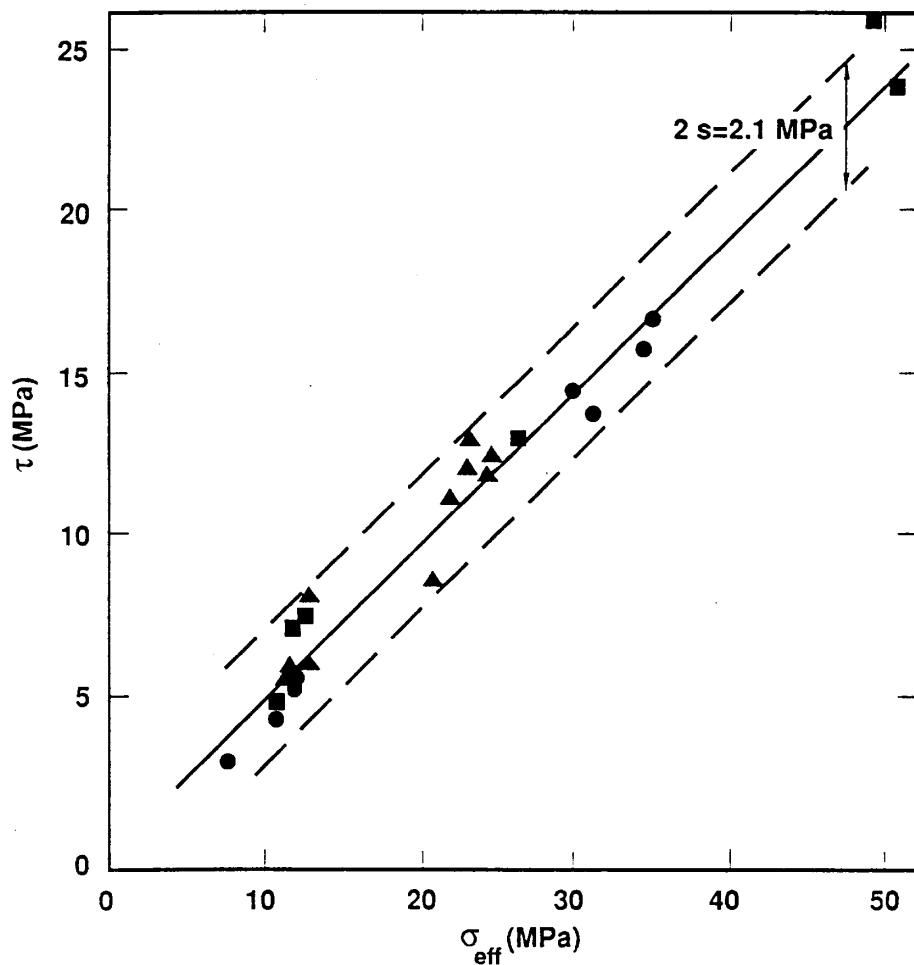


Figure 9: Frictional Data for Welded Tuff, Cast in Terms of σ_{eff} .
 Squares: 10 m/s; Circles: 20 m/s; Triangles: 30 m/s.
 After Gaffney [G1].

- recent modeling with PRONTO2D by SNL [C3], specifically addressed the effect of friction between the ground and the penetrator on the calculated penetration and velocity histories. The velocity-dependent friction coefficient was written as

$$\mu = \mu_\infty + (\mu_0 - \mu_\infty)e^{-\gamma v} \quad (11)$$

where v is the sliding velocity, γ is a decay constant, μ_0 is the static coefficient of friction, and μ_∞ is the friction value at infinite speed (usually considered to be quite low, i.e. less than 0.10). Note that equation (11) is somewhat different from the friction formulation of [G1], just discussed. The case history selected was that of an SNL steel penetrator Davis gun test in Antelope tuff (162 kg, 520 m/s). Both a constant friction and the above velocity-dependent formulation were used. Both approaches gave almost identical peak deceleration and penetration depth; but only the velocity-dependent friction could reproduce the sudden increase in deceleration which was observed in the field, prior to the projectile coming to rest.

- finally, shaped-charges also have been fired on rock, for several decades [B3,H2,H13,V1]. A recent report of tests into tuff [V1] has shown a good agreement between measured slug penetration and values predicted with the SCAP code [R3]. SCAP uses a hydrodynamic model to relate penetration to stand-off distance, for known values of jet and target densities.

4. CONCLUSIONS

The large amount of work outlined in this report has yielded a few conclusions applicable to rock penetration, upon which a consensus appears to exist.

On the subject of site characterization, it is clear that cracks and joints are dominant in jointed rocks, and can easily overshadow the intact rock's yield strength [U2].

Regarding constitutive laws and material properties:

- the most desirable strength formulation is that which describes the complete variation of shear strength with mean stress [U2].
- at velocities of up to a few hundred metres/s, rock penetration is most dependent on shear strength, which is pressure-dependent; it is less dependent on tensile strength, and compressibility [F8]. At hyper-velocities (several km/s), density dominates [F11].
- the internal friction angle of the target is more important than its cohesive strength in controlling penetration [N5]. Also, it appears to be advisable to account for the dependence of friction on contact velocity [C3].
- measurements of stresses and deformations in the medium are what is needed to evaluate the material models used [B19]; measuring only the penetrator deceleration and depth is not sufficient.
- the stresses induced around the penetrator diminish rapidly away from the body [F3]; an order of magnitude decay takes place over a radial distance of about 2.5 times the projectile diameter [B19]. This gives the scale of the volume of target material involved in controlling penetration.

As for other conclusions:

- cavity expansion theories give higher contact stresses on the penetrator than finite element models, for example, because of artificial kinematic constraints, and lack of surface weakening [K4].
- it appears essential to incorporate in the models the comminution of rock and post-fracture properties of the broken material [W1].
- penetration depth for rock (and concrete) appears to scale linearly with the ratio of the projectile weight over its cross-sectional area [N1, Y9].

5. REFERENCES

A1 Adeli, H., Amin, A. M., and Sierakowski, R. L. (1986) "Earth Penetration by Solid Impactors", Shock and Vibration Digest, v. 18, n. 9, pp 15-22, Sept.

A2 Aitken, G. W., Swinzow, G. K., and Farrell, D. R. (1976) "Projectile and Fragment Penetration in Snow and Frozen Soil", U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, Draft report.

A3 Allen, R. T. (1974) "Prediction of the Deceleration of an Earth Penetrating Vehicle", Systems, Science & Software, La Jolla, CA, report SS-IR-74-2192, April.

A4 Anderson, C. E. Jr. Ed. (1986) "Hypervelocity Impact", Proc. 1986 Symposium, San Antonio, TX, Oct. 21-24, (Pergamon Press, New York).

A5 Anderson, C. E. Jr., and Bodner, S. R. (1988) "Ballistic Impact: The Status of Analytical and Numerical Modeling", Int. J. Impact Eng., v. 7, n. 1, pp 9-35.

A6 Austin, C. F., Halsey, C. C., Durbin, W. F., and Berry, S. L. (1986) "Gun Penetration Test Into Rock and Wire Mesh Encased with Concrete", Air Force Engineering and Services Center, Tyndall AFB, FL, June, ESL-TR-86-31, (LDR*).

B1 Beard, R. M. (1982) "Supplement to TR-882: Guide to the Use of Propellant-Embedded Anchors in Coral and Rock Seafloors", Naval Civil Engineering Laboratory, Port Hueneme, CA, Technical Report R-8825, June, AD-A120025 (Nat. Tech. Inf. Service, Springfield, VA), 15 p.

B2 Beard, R. M. (1984) "Testing of a Conical Rock Fluke for the 20K Propellant Embedded Anchor -- Status Report", Naval Civil Engineering Laboratory, Port Hueneme, CA, Technical Memorandum TM 42-84-01, January.

B3 Behrmann, L.A. and Halleck, P.M. (1988) "Effect of Concrete and Berea (Sandstone, Ed.) Strengths on Perforator Performance, and Resulting Impact on the New API RP-43", SPE 18242, SPE Annual Techn. Conf., Houston, TX, Oct. 3-5 (Soc. Petr. Eng., Richardson, TX).

B4 Belytschko, T. and Lin, W. K. (1987) "Penetration Mechanics with an Arbitrary Lagrangian-Eulerian Finite Element Code", Northwestern University report to U.S. Army Research Office, April, AD-A180795, (National Technical Information Service, Springfield, VA).

B5 Belytschko, T. and Lin, J. I. (1987) "A Three-Dimensional Impact-Penetration Algorithm with Erosion", Computers and Structures, v. 25, n. 1, pp 95-104.

B6 Bernard, R. S., and Creighton, D. (1976) "Projectile Penetration in Earth Materials: Theory and Computer Analysis", U. S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report S-76-13, 150 p., Nov. (LDR).

*Limited Distribution Reports, containing material which may be subject to export control laws.

B7 Bernard, R. S. (1977) "Empirical Analysis of Projectile Penetration in Rock", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Misc. Paper S-77-16, 19 p.

B8 Bernard, R. S. (1978) "Depth and Motion Prediction for Earth Penetrators", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report S-78-4, 28 p., June.

B9 Bernard, R. S., and Creighton, D. C. (1978) "Non-Normal Impact and Penetration: Analysis for Hard Targets and Small Angles of Attack", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report S-78-14, 79 p., Sept.

B10 Bernard, R. S., and Creighton, D. (1979) "Projectile Penetration in Soil and Rock: Analysis for Non-Normal Impact", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report SL-79-15, 88 p., Dec.

B11 Bishop, R. F., Hill, R., and Mott, N. F. (1945) "The Theory of Indentation and Hardness Tests", Proc. Phys. Soc., v. 57, pt. 3, pp 147-159.

B12 Brooks, W. B., and Reis, G. E. (1963) "Soil Penetration Theory", Sandia Corporation, Albuquerque, NM, report to Atomic Energy Commission, SC-4950 (RR), 46 p., Sept.

B13 Brown, W. T. (1986) "Numerical Modeling of Oblique Hypervelocity Impact Using Two-Dimensional Plane Strain Models", Sandia National Laboratories, Albuquerque, NM, SAND 80-2865C.

B14 Bulson, P. S. Ed. (1989) "Structures Under Shock and Impact", Proc. 1st Int. Conf., Cambridge, MA, July 11-13 (Elsevier, New York, NY).

B15 Butler, D. K., (1975) "An Analytical Study of Projectile Penetration in Rock", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Tech. Rep. S-75-7, June.

B16 Butler, D. K., (1975) "Pretest Penetration Calculations for DNA Rock Penetration Experiments at a Sandstone Site Near San Ysidro, New Mexico", U.S. Army Waterways Experiment Station, Vicksburg, Miss., report to Defense Nuclear Agency, Sept.

B17 Butler, D. K. (1975) "Pretest Penetration Calculations for DNA Rock Penetration Experiments at Mt. Helen, Tonopah Test Range", U.S. Army Waterways Experiment Station, Vicksburg, Miss., report to Defense Nuclear Agency, March.

B18 Butler, D. K. (1976) "Analysis of SAP (Semi-Armor Piercing, Ed.) and GP (General Purpose, Ed.) Bomb Penetration Into Concrete and Sandstone", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Sept.

B19 Byers, R. K., and Chabai, A. J. (1977) "Penetration Calculations and Measurements for a Layered Soil Target", Int. J. Numer. Anal. Meth. in Geomech., v. 1, pp 107-138.

B20 Byers, R. K., Yarrington, P., and Chabai, A. J. (1978) "Dynamic Penetration of Soil Media by Slender Projectiles", Int. J. Eng. Sci., v. 16, pp 835-844.

C1 Caudle, W. N., Pope, A. Y., McNeill, R. L., and Margason, B. E. (1967) "The Feasibility of Rapid Soil Investigations Using High-Speed Earth Penetrating Projectiles", Proc. Int. Symp. Wave Propag. and Dyn. Prop. of Earth Materials, Albuquerque, NM, Aug. Note: the first 2 authors were with Sandia Laboratories, Albuquerque, the other authors were with Woodward-Clyde Consultants in Oakland, CA.

C2 Chen, E. P. (1987) "Finite Element Simulation of Penetration Into Geological Targets (with the PRONTO2D Code, Ed.)", Theor. and Appl. Fract. Mech., v. 8, pp 125-135. Also published as Sandia National Laboratories, Albuquerque, NM, SAND 87-0269, March, 43 p.

C3 Chen, E. P. (1988) "Penetration Into Dry Porous Rock: A Numerical Study in Sliding Friction Simulation", Sandia National Laboratories, Albuquerque, NM, SAND 88-2485, Oct., 31 p.

C4 Chou, P. C., Liang, D., Wu, L., and Flis, M. (1988) "Mesh Rezoning for a Dynamic Triangular Finite Elements Hydrocode", Finite Elements in Analysis and Design, v. 4, pp 175-192.

C5 Christensen, B. K. (1989) "Twenty Five Years of Penetration Records at Sandia National Laboratories -- PENTDB: A Relational Database", Sandia National Laboratories, Albuquerque, NM, SAND 88-1402.

C6 Couch, R., Albright, E., and Alexander, N. (1983) "The JOY Computer Code", Lawrence Livermore National Laboratory, UCID-19688, Jan., 60 p.

C7 Creighton, D. C. (1982) "Non-Normal Penetration in Soil and Rock: User's Guide for Computer Code PENCO2D", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report SL-82-7, Sept.

C8 Creighton, D. (1986) "Probabilistic Non-Normal Projectile Penetration in Soil and Rock: User's Guide for the Computer Code PROOPEN", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report SL-86-7, (LDR).

C9 Creighton, D. (1987) "Post-test Probabilistic Penetration Analysis for Earth Penetrating Weapon (EPW) Tests at Fort Riley, Kansas", U.S. Army Waterways Experiment Station, Vicksburg, Miss., April 12-13 (LDR).

C10 Creighton, D. (1988) "WES Projectile Penetration Analysis Procedures", in Proc. Earth Penetr. Phenom. Meeting, U.S. Army Waterways Experiments Station, Vicksburg, Miss., April 12-13 (LDR).

D1 Davie, N. T., and Richgels, M. A. (1983) "GNOME: An Earth Penetrator Code", Sandia National Laboratories, Albuquerque, NM, May, SAND 82-2358, 67 p.

D2 Deere, D. U., and Deere, D. W. (1989) "Rock Quality Designation (RQD) After Twenty Years", U.S. Army Waterways Experiments Station, Vicksburg, Mississippi, Report GL-89-1, Feb.

D3 deRouvray, A., Arnaudeau, F., Dubois, J., Chedmail, J-F., and Haug, E. (1984) "Numerical Techniques and Experimental Validations for Industrial Applications", Proc. Int. Conf. on Structural Impact and Crashworthiness, Imperial College, London, July, pp 193-242 (Elsevier, New York).

D4 Dockery, H. A., and Clark, J. B. Eds. (1987) "Alaskan Frozen Soil Impact Tests of the B83-C/S and Strategic Earth Penetrator", Lawrence Livermore National Laboratory, UCRL-53813, Oct., 25 p.

F1 Flis, W. J. (1986) "Advanced Algorithms for Computer Simulation of Hypervelocity Impact", Proc. 1986 Hypervelocity Impact Symposium, San Antonio, TX, (Pergamon Press, New York).

F2 Folsom, E. N. Jr. (1987) "Projectile Penetration Into Concrete with an Inline Hole", Lawrence Livermore National Laboratory, UCRL-53786, M. Sc. Thesis, June, 56 p.

F3 Forrestal, M. J., Longcope, D. B., and Norwood, F. R. (1981) "A Model to Estimate Forces on Conical Penetrators Into Dry Porous Rock", ASME J. Applied Mech., v. 48, March, pp 25-29.

F4 Forrestal, M. J., Norwood, F. R., and Longcope, D. B. (1981) "Penetration Into Targets Described by Locked Hydrostats and Shear Strength", Int. J. Solids and Structures, v. 17, pp 915-924.

F5 Forrestal, M. J., and Grady, D. E. (1982) "Penetration Experiments for Normal Impact Into Geologic Targets", Int. J. Solids Structures, v. 18, n. 3, pp 229-234.

F6 Forrestal, M. J. and Longcope, D. B. (1982) "Closed-Form Solutions for Forces on Conical-Nosed Penetrators Into Geological Targets with Constant Shear Strength", Mechanics of Materials, v. 1, pp 285-295.

F7 Forrestal, M. J. (1983a) "Assessment of Cavity Expansion Analyses for Application to Seafloor-Rock Anchors", Sandia National Laboratories, Albuquerque, NM, draft report to Naval Civil Engineering Laboratory, Port Hueneme, CA.

F8 Forrestal, M. J. (1983b) "Forces on Conical Nose Penetrators Into Targets with Constant Shear Strength", Sandia National Laboratories, Albuquerque, NM, SAND-83-0255J.

F9 Forrestal, M. J., Longcope, D. B., and Lee, L. M. (1983) "Analytical and Experimental Studies on Penetration Into Geological Targets", Sandia National Laboratories, Albuquerque, NM, AD-P001710, (National Technical Information Service, Springfield, VA).

F10 Forrestal, M. J. (1986) "Penetration Into Dry Porous Rock", Int. J. Solids and Structures, v. 22, n. 12, pp 1485-1500.

F11 Forrestal, M. J., Lee, L. M., and Jenrette, B. D. (1986) "Laboratory- Scale Penetration Experiments Into Geological Targets, To Impact Velocities of 2.1 Km/s", J. Applied Mech., v. 53, pp 317-320, June.

F12 Forrestal, M. J., Hightower, M. M., Luk, V. K., and Christensen, E. K. (1988) "Penetration and Perforation of Reinforced Concrete Targets", Sandia National Laboratory, Albuquerque, NM, SAND 88-1467C.

G1 Gaffney, E. S. (1976) "Measurements of Dynamic Friction Between Rock and Steel", S-Cubed, La Jolla, CA, Report, DNA 4161F, Oct.

G2 Gelman, M. D., Nelson, R. B., and Ito, Y. M. (1987) "Impact of AP (Armor Piercing, Ed.) Projectile Into Array of Large Caliber Boulders", California Research and Technology, Chatsworth, CA, Report to U.S. Army Corps of Engineers, Technical Report SL-87-30, U.S. Army Waterways Experiment Station, Vicksburg, Miss., Nov., 128 p., (LDR).

G3 Goodier, J. N. (1965) "On the Mechanics of Indentation and Cratering in Solid Targets of Strain-Hardening Metal, by Impact of Hard and Soft Spheres", Proc. 7th Hypervelocity Impact Symposium, v. III, Feb., (AIAA, New York). Also, Stanford Research Institute Rept. 002-64, July, 1964.

G4 Grady, D. E. and Hollenbach, R. E. (1976) "Impact Studies on a Tonopah Test Range Welded Tuff", Sandia National Laboratories, Albuquerque, NM, SAND 76-0104, June, 14 p., (LDR).

G5 Grant, J. E., and Gabrielson, V. K. (1984) "SHELL SHOCK Structural Code", Sandia National Laboratories, Albuquerque, NM, March, SAND 83-8011, 143 p.

H1 Hadala, P. F. (1975) "Evaluation of Empirical and Analytical Procedures Used for Predicting the Rigid Body Motion of an Earth Penetrator", U.S. Army Waterways Experiment Station, Vicksburg, Miss. Misc. Paper S-75-15, June, 91 p.

H2 Hallek, P. M., Saucier, R. J., Behrman, L.A., and Ahrens, T.J. (1988) "Reduction of Jet Perforator Perforation in Rock Under Stress", SPE 18245, SPE Annual Techn. Conf., Houston, TX, Oct. 3-5, (Soc. Petr. Eng., Richardson, TX).

H3 Hanagud, S., and Ross, B. (1971) "Large Deformation, Deep Penetration Theory for a Compressible, Strain-Hardening, Target Material", AIAA J., v. 9, n. 5, May, pp 905-911.

H4 Hanson, N. (1989) "Private Communication", Sandia National Laboratories, Albuquerque, NM.

H5 Hearst, J. R., and McKinnis, W. B. (1985) "A Comparison of Projectile Penetration and a Cone Penetrometer, as Methods for Measuring Tuff Strength", Lawrence Livermore National Laboratory, UCRL-92351, Aug.

H6 Hearst, J. R., Newmark, R. L., Charest, J. A., and Lynch, C. S. (1987) "Measurement of In-Situ Strength Using Projectile Penetration: Tests of a New Launching System", Lawrence Livermore National Laboratory, UCRL-96317, Oct.

H7 Hegedus, E. and Peterson, J.H. (1988) "Penetration Resistance and Shear Strength of Cohesive Soils", in Penetration Testing 1988, Proc. 1st Int. Symp. Penetr. Testing, Orlando, FL, March, v. 1, pp 347-352 (A. A. Balkema, Brookfield, VT).

H8 Heuze, F. (1988) "Indirect Estimates of Rock Mass Strength by Projectile Penetration Tests, and Other Methods - An Overview, and Discussion of Relevance to the Nuclear Test Program", Lawrence Livermore National Laboratory, UCID-21550, Sept.

H9 Hibbitt, Karlsson & Sorensen Inc. (1987) "ABAQUS User's Manual, Version 4.6", Providence, RI.

H10 Hightower, M. M., Norwood, F. R., and Young, W. (1982) "Development of an Ice Penetration Model", Sandia National Laboratories, Albuquerque, NM, Dec., SAND 82-0599, 50 p.

H11 Hightower, M. M. (1988) "Experimental Verification of Various Prediction Techniques", in Proc. Earth Penetr. Phenomen. Meeting, U.S. Army Waterways Experiment Station, Vicksburg, Miss., April 12-13 (LDR).

H12 Holian, K. S., and Burkett, M. W. (1986) "Sensitivity of Hypervelocity Impact Simulations to Equation of State", Los Alamos National Laboratory, Los Alamos, NM, LA-UR-86-2294.

H13 Hutt, J. B. (1946) "The Shaped-Charge for Cheaper Mine Blasting", Engin. Mining Journal, v. 147, pp 58-63.

I1 Ito, Y. M., Kreyenhagen, K. N., and Wagner, M. H. (1976) "Internal Response Analyses of Earth Penetrators", California Research and Technology, Chatsworth, CA, report to Defense Nuclear Agency, August, DNA-4118T (LDR).

I2 Ito, Y. M., Nelson, R. B., and Ross-Perry, F. W. (1979) "Three-Dimensional Numerical Analysis of Earth Penetration Dynamics", California Research and Technology, Woodland Hills, CA, report to Defense Nuclear Agency, DNA 5404F, Jan.

I3 Ito, Y. M., Nelson, R. B., and Burks, D. E. (1981) "Numerical Method for Rock Rubble Fortification Analysis", California Research and Technology, Chatsworth, CA, report to Defense Nuclear Agency, DNA-5869F, July, 66 p. (LDR).

I4 Ito, Y. M., Muki, Y., Gelman, M. D., and Nelson, R. B. (1987) "Numerical Analyses of Flared EPW Penetration Performance in Weathered Rock", California Research and Technology, Chatsworth, CA, report to Defense Nuclear Agency. U.S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report SL-87-3, January, (LDR).

J1 Jacobs, D. A. (1984) "Interactive Analysis of Earth Penetrating Weapons", Air Force Weapons Laboratory, Albuquerque, NM., AFWL-TR-84-33, Aug., 70 p, (LDR).

J2 Johnson, G. R., and Stryk, R. A. (1986) "User Instructions for the EPIC2 Code", Air Force Armament Laboratory, Eglin Air Force Base, FL, AFATL-TR-86-51.

J3 Johnson, G. R., Stryk, R. A., and Dodd, J. G. (1986) "Dynamic Lagrangian Computations for Solids, with Variable Nodal Connectivity for Severe Distortions", Int. J. Num. Meth. in Eng., v. 23, pp 509-522.

J4 Johnson, W. E., and Anderson, E. Jr. (1986) "History and Application of Hydrocodes in Hypervelocity Impact", Proc. 1986 Hypervelocity Impact Symposium, San Antonio, TX, (Pergamon Press, New York).

J5 Jonas, G. H., and Zukas, J. A. (1978) "Mechanics of Penetration: Analysis and Experiment", Int. J. Eng. Sci., v. 16, pp 879-903.

K1 Kar, A. K. (1978) "Projectile Penetration Into Buried Structures", ASCE J. Struct. Div., ST1, pp 125-139, Jan.

K2 Kimsey, K. D. and Zukas, J. A. (1986) "Contact Surface Erosion for Hypervelocity Problems", U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, BRL-MR-3495, AD-A165723 (National Technical Information Service, Springfield, VA).

K3 Kipp, M. E., and Lawrence, R. J. (1982) "WONDY V - A One-Dimensional Finite-Difference Wave Propagation Code", Sandia National Laboratories, Albuquerque, NM, SAND 81-0930, June, 220 p.

K4 Kipp, R. J., and Longcope, D. B. (1986) "Use and Validation of Cavity Expansion Load Models in Determining Structural Response of Penetrators Into Ice Targets", Sandia National Laboratories, Albuquerque, NM, SAND 86-1049

K5 Kipp, R. J. (1988) "Cavity Expansion Model for EPW Load Calculations", in Proc. Earth Penetr. Phenomenon. Meeting, U.S. Army Waterways Experiment Station, Vicksburg, Miss., April 12-13, (LDR).

K6 Kreyenhagen, K. (1983) "EPW Relative Effectiveness", in Minutes of the Deep Basing Conference, Norton AFB, CA, Sept. (Defense Nuclear Agency, Alexandria, VA).

K7 Kumano, A., and Goldsmith, W. (1982) "Projectile Impact on Soft, Porous Rock", Rock Mechanics, v. 15, n. 2, pp 113-132, November.

L1 Lawrence, R. J., and Mason, D. S. (1971) "WONDY IV -- A Computer Program for One-Dimensional Wave Propagation with Rezoning", Sandia National Laboratory, Albuquerque, NM, SC-RR-71-0284.

L2 Logan, D. L. (1984) "Evaluation of Projectile Impact on Earth-Covered Structures", Air Force Engineering and Services Center, Tyndall AFB, FL., June, 18 p. AD-A145087 (NTIS, Springfield, VA).

L3 Longcope, D. B., and Forrestal, M. J. (1983) "Penetration of Targets Described by a Mohr-Coulomb Failure Criterion with a Tension Cut-Off", ASME J. Appl. Mech., v. 50, pp 327-333.

L4 Longcope, D. B. (1988) Personal Communication, Sandia National Laboratories, Albuquerque, NM, September.

L5 Luk, V. K., and Forrestal, M. J. (1987) "Penetration Into Semi-Infinite Reinforced Concrete Targets with Spherical and Ogival Nose Projectiles", Int. J. Impact Eng., v. 6, n. 4, pp 291-301.

M1 Matuska, D. A., and Osborn, J. J. (1981) "HULL/EPIC4 Linked Eulerian/Lagrangian Calculation in Three-Dimensions", Orlando Techn. Inc., Shalimar, FL, report to U.S. Army Ballistic Research Lab., Aberdeen, MD, AD-A106033, Sept.

M2 Matuska, D. A., Durrett, R. E., and Osborn, J. J. (1982) "HULL User's Guide for Three-Dimensional Linking with EPIC4", Orlando Techn. Inc., Shalimar, FL, report to U.S. Army Ballistic Research Lab., Aberdeen, MD, AD-A118385, July.

M3 Matuska, D. A. (1984) "HULL User's Manual", Orlando Techn. Inc., Shalimar, FL, report to Air Force Armament Lab., Eglin AFB, FL, AD-A145000, June.

M4 McGlaun, J. M., Zeigler, F. J., and Thompson, S. L. (1987) "CTH: A Three-Dimensional, Large Deformation, Shock Wave Physics Code", Sandia National Laboratory, Albuquerque, NM, SAND 87-0726C. Presented at the Am. Phys. Soc. Conference on Shock Waves in Condensed Matter, Monterey, CA, July.

M5 McNeil, R. L. (1972) "Rapid Penetration of Terrestrial Materials -- The State of the Art", Proc. Conf. on Rap. Penet. Terr. Mat., Texas A & M Univ., Feb., pp 1-126. (LLNL Library TA 705C2, 1972A.)

M6 McNeill, R. L. (1981) "Approximate Method for Estimating the Strengths of Cohesive Materials from Penetrator Decelerations", Proc. Oceans 81 Conference, Boston, Mass., Sept. 16-18, pp 688-693, Publication IEEE 81CH1685-7 (IEEE, New York, NY).

M7 Meier, R. W. (1986) "Numerical Simulations of Small Projectiles Impacting a Multilayered Target at Hypervelocities", Los Alamos National Laboratory, LA-UR-86-2248.

M8 Muromachi, T., Sakai, Y., Tsuchiya, H. and Yamamoto, Y. (1988) "Borehole Cone Apparatus for Weak Rock", in Penetration Testing 1988, Proc. 1st Int. Symp. on Penetr. Testing, Orlando, FL, March, v. 2, pp 875-880 (A. A. Balkema, Brookfield, VT).

M9 Mustoe, G.G.W., Williams, J. R., Hocking, G., and Worgan, K. (1987) "Penetration and Fracturing of Brittle Plates Under Dynamic Impact", Proc. Int. Conf. Num. Meth. in Engineering, Swansea, U.K., July.

N1 Nash, P. T., Blaylock, N. W., Spires, S. M., and Westine, P. S. (1986) "Concrete Penetration Data Base, and Evaluation of Predictive Equations", Southwest Research Institute, San Antonio, TX, Final Report, SWRI Project 06-8691-001, to Sandia National Laboratories, Albuquerque, NM 77 p., April.

N2 Nelson, R. B., Ito, Y. M., Burks, D. E., Muri, Y., Hollowell, J. A., and Miller, C. W. (1983) "Numerical Analysis of Projectile Penetration Into Boulder Screens", Prepared by California Research Technology, Chatsworth, CA, and AVCO Systems Div., Wilmington, Mass. for U.S. Army Corps of Engineers. U.S. Army Waterways Experiment Station, Vicksburg, Miss., Misc. Paper SL-83-11, July, 192 p. (LDR).

N3 Norwood, F. R. (1974) "Cylindrical Cavity Expansion in a Locking Soil", Sandia National Laboratories, Albuquerque, NM, SLA 74-0201, July.

N4 Norwood, F. R. (1980) "A Review of Updated Sandia Wavecodes for Penetration Work", Sandia National Laboratories, Albuquerque, NM, SAND 80-0249, Feb.

N5 Norwood, F. R. (1981) "Constitutive Models in WONDY for Penetration Studies Into Rock Targets", Sandia National Laboratories, Albuquerque, NM, Sept. SAND 81-0817, 32 p.

N6 Norwood, F. R. (1982) "RUNNOS and RUNDEP: Computer Programs for Calculating Loads on Earth Penetrators", Sandia National Laboratories, Albuquerque, NM, May, SAND 82-0963.

P1 Patterson, W. J. (1972) "Penetration of In-Situ Rock by Air-Deliverable Penetrators", Proc. Conf. on Rapid Penetration of Terrestrial Materials, Texas A & M Univ., Feb., pp 453-475.

P2 Patterson, W. J. (1973) "Projectile Penetration of In-Situ Rock", Sandia National Laboratories, Albuquerque, NM, SLA 73-0831, Nov., 24 p.

P3 Patterson, W. J. (1975) "DNA/Sandia Soil Penetration Experiments at DRES: Results and Analysis", Sandia National Laboratories, Albuquerque, NM, SAND 75-0001, March, 57 p.

P4 Priddy, T. G. (1982) "Smoothly Waning, Symmetrically Expanding, Cavity Pressure Loads in Earth Materials", Sandia National Laboratories, Albuquerque, NM, SAND 82-2054, Jan., 76 p.

R1 Reis, G. E. (1983a) "FLAT - A Computer Program for Calculating Penetration Into Targets Characterized by a Linear Hydrostat, and a Constant Shear Failure - Mean Normal Stress Relation", Sandia National Laboratories, Albuquerque, NM, SAND 83-0510, April, 17 p, (LDR).

R2 Reis, G. E. (1983b) "FLAP - A Computer Code for Calculating the Stress on the Conical Nose of a Cylindrical Penetrator Fired Normally Into Targets Characterized by a Linear Hydrostat, and a Constant Shear Failure - Mean Normal Stress Relation", Sandia National Laboratories, Albuquerque, NM, SAND-83-0509, April, 15 p, (LDR).

R3 Robinson, A. C. (1985) "SCAP - A Shaped-Charge Analysis Program - User's Manual for SCAP 1.0", Sandia National Laboratories, Albuquerque, NM, SAND 85-0708, April, 82 p.

R4 Rohani, B. (1975) "Analysis of Projectile Penetration Into Concrete and Rock Targets", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Misc. Paper S-75-25, Sept., 48 p, (LDR).

R5 Rohani, B., Hadala, P. F., and Creighton, D. C. (1978) "Uncertainties in Predicting Earth Penetrator Performance in Inaccessible Geologic Targets", U.S. Army Waterways Experiment Station, Vicksburg, Miss., Technical Report S-78-13, Sept.

R6 Rosinsky, R. W. (1985) "Lagrangian Finite Element Analysis of the Penetration of Earth Penetrating Weapons", Lawrence Livermore National Laboratory, Livermore, CA, UCID-20886, Nov., 53 p.

R7 Ross, B., and Hanagud, S. (1969) "Penetration Studies of Ice With Application to Arctic and Subarctic Warfare", Stanford Research Institute Report to Office of Naval Research, NWRC-7000-452-4.

S1 Schulz, J. C. (1982) "WHAP - A Finite Element Computer Code for the Structural Analysis of Axisymmetric Warheads Impacting Targets at Obliquity", Naval Weapons Center, China Lake, CA, NWC-TR-6369, October.

S2 Sedgwick, R. T., Hageman, L. J., Herrmann, R. G., and Waddell, J. L. (1978) "Numerical Investigations in Penetration Mechanics", Int. J. Eng. Sci., v. 16, pp 859-869.

S3 Shinn, J. D. II (1987) "Site Characterization Using the Electric Cone Penetrometer", Applied Research Associates, South Royalton, VT., Report to Air Force Weapons Laboratory, AFWL-TR-86-91, June, 146 p, (LDR).

S4 Stecher, F. P., and Johnson, G. R. (1984) "Lagrangian Computations for Projectile Penetration Into Thick Plates", Computers in Engineering, v. 2, pp 292-299 (Am. Soc. Mech. Eng., New York).

S5 Swegle, J. W. (1978) "TOODY IV - A Computer Program for Two-Dimensional Wave Propagation", Sandia National Laboratories, Albuquerque, NM, SAND 78-0552, Sept., (LDR).

T1 Taylor, L. M., and Flanagan, D. P. (1987) "PRONTO 2D: A Two-Dimensional Transient Solid Dynamics Program", Sandia National Laboratories, Albuquerque, NM, March, SAND 86-0594, 235 p.

T2 Thigpen, L. (1974) "Projectile Penetration of Elastic-Plastic Earth Media", ASCE J. Geotech. Eng. Div., GT3, March, pp 279-294.

T3 Thompson, L. J. (1966) "Dynamic Penetration of Selected Projectiles into Particulate Media", Sandia Laboratories, Albuquerque, NM, SC-RR-66-376, July, 199 p.

T4 Thompson, J. B. and Mitchell, J. K. (1971) "Determination of In-Situ Soil Properties Using an Impact Penetrometer", Ch. 2, pp 2.1 to 2.78 in Lunar Surface Engineering Properties Experiment Definition, Final report vol. I of IV, University of California, Berkeley, Civil Engineering, for NASA, George Marshall Space Flight Center, July.

T5 Thompson, S.L. (1979) "CSQII: An Eulerian Finite Difference Program for Two-Dimensional Material Response", Sandia National Laboratories, Albuquerque, NM, SAND 77-1339, Jan.

T6 Thompson, S. L., and McGlaun (1988) "CSQ III: An Eulerian Finite Difference Program for Two-Dimensional Material Response: User's Manual", Sandia National Laboratories, Albuquerque, NM, SAND 87-2763, Jan., (LDR).

T7 Thorne, B. J. and Holdridge, D. B. (1974) "The TOOREZ Lagrangian Rezoning Code", Sandia National Laboratories, Albuquerque, NM, SLA-73-1057, April.

T8 Tolch, N. A. and Bushkovitch, A. V. (1947) "Penetration and Crater Volume in Various Kinds of Rocks, as Dependent on Caliber, Mass, and Striking Velocity of Projectile", Report No. 641, Ballistic Research Lab., Aberdeen Proving Ground, MD, AD-617267, (National Technical Information Service, Springfield, VA).

T9 Triandafilidis, G. E. (1976) "State-of-the-Art of Earth Penetration Technology", University of New Mexico, Report to Defense Nuclear Agency, DNA 4080E, May, 190 p, (LDR).

T10 Triandafilidis, G. E. (1980) "An Experimental Study of Projectile Penetration", University of New Mexico, Report to Defense Nuclear Agency, DNA-5417F, May, 98 p, (LDR).

U1 U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) and Naval Surface Warfare Center (NSWC), (1986) "Proceedings of the Second Workshop on Ice Penetration Technology", Monterey, CA, June, CRREL Special Report 86-30, Hanover, NH, 659 p (LDR).

U2 U.S. Army Corps of Engineers (1988) "Earth Penetration Phenomenology Meeting", Proc. of a Workshop, April 12-13, U.S. Army Waterways Experiments Station, Vicksburg, Miss., Edited by B. Rohani and M. Pelkey (LDR).

U3 U.S. Army Headquarters (1986) "Rock Penetration Characteristics", Ch. 4, Para 4-4, in Fundamentals of Protective Design for Conventional Weapons, Technical Manual No. 5-855-1 (U.S. Army Headquarters, Washington, D.).

V1 Vigil, M. G. (1988) "Explosive Shaped-Charge Penetration Into Tuff Rock", Sandia National Laboratories, Albuquerque, NM, SAND 88-2338, Oct., 85 p.

W1 Wagner, M. H., Fulton, C. C., and Kreyenhagen, K. N. (1976a) "Finite-Difference Code Analyses of Earth Penetrator Dynamics in Rock Media", California Research and Technology, Woodland Hills, CA, report to Defense Nuclear Agency, DNA-4069T, Nov., 175 p.

W2 Wagner, M. H., Fulton, C. C., and Kreyenhagen, K. N. (1976b) "Parametric Study of the Effects of Target Properties, Projectile Design, and Impact Conditions on Earth Penetration Processes", California Research and Technology, Woodland Hills, CA, report to Defense Nuclear Agency, November, DNA-4160T.

W3 Wagner, M. H. and Fulton, (1979) "Summary of Numerical Analyses of the Effect of W/A in Earth Penetration", California Research and Technology, Woodland Hills, CA, Report to U.S. Corps of Engineers, Misc. Paper S-78-15, Waterways Experiment Station, Vicksburg, Miss., Sept.

W4 Walton, O. R. (1982) "Explicit Particle Dynamics Model for Granular Materials", Proc. 4th Int. Conf. Num. Meth. Geomech., Edmonton, Alberta, Canada, pp 1261-1268, (A. A. Balkema, Brookfield, VT).

W5 Wilkins, M. L. (1978) "Mechanics of Penetration and Perforation", Int. J. Eng. Sci., v. 16, pp 793-807.

Y1 Yarrington, P. (1977) "A One-Dimensional Approximate Technique for Earth Penetration Calculations", Sandia National Laboratories, Albuquerque, NM, SAND 77-1126, 44 p.

Y2 Yarrington, P., and Ruiz, N. K. (1978) "PENAP: An Interactive Computer Program for Calculating Surface Loads on Conical- and Ogival-Nosed Earth Penetrators", Sandia National Laboratories, Albuquerque, NM, Feb., SAND 77-1359.

Y3 Yarrington, P., Norwood, F. R., and Ruiz, N. K. (1979) "PENOBI: A Modification of the PENAP Code to Treat Oblique Impact of Earth Penetrators", Sandia National Laboratories, Albuquerque, NM, SAND-78-1154, 43 p.

Y4 Yarrington, P. and Byers, R. K. (1980) "AUTOREZ: A Two-Dimensional, Lagrangian, Automatic Rezoning Wavecode (Preliminary Version)", Sandia National Laboratories, Albuquerque, NM, SAND-79-1914, 42 p.

Y5 Yarrington, P. (1988) "Earth Penetration Calculations with the HULL Hydrocode", in Proc. Earth Penetr. Phenomen. Meeting, U.S. Army Waterways Experiment Station, Vicksburg, Miss., April 12-13, (LDR).

Y6 Young, C. W. (1969) "Depth Prediction for Earth-Penetrating Projectiles", ASCE J. Soil Mech. Found. Eng., SM3, July, pp 803-817.

Y7 Young, C. W. (1972) "Empirical Equations for Predicting Penetration Performance in Layered Earth Materials for Complex Penetrator Configurations", Sandia National Laboratories, Albuquerque, NM, SC-DR-72-0523, Dec., 65 p.

Y8 Young, C. W. (1983) "Sea-Ice Penetration Technology with Arctic Applications", Sandia National Laboratories, Albuquerque, NM, SAND 83-1176C, 9 p.

Y9 Young, C. W. (1985) "Simplified Analytical Model of Penetration with Lateral Loading", Sandia National Laboratories, Albuquerque, NM, SAND 84-1635, May, 67 p, (LDR).

Y10 Young, C. W. (1986) "Kinematic Model of Ice Penetration with Lateral Loading", Sandia National Laboratories, Albuquerque, NM, SAND 86-1027C, 2 p.

Y11 Young, C. W. (1988) "Equations for Predicting Earth Penetration by Projectiles: An Update", Sandia National Laboratories, Albuquerque, NM, SAND 88-0013, July, 16 p, (LDR).

Z1 Zeigler, F. J., McGlaun, J. M., Thompson, S. L., and Trucano, T. G., (1987) "Computations of Hypervelocity Impact Using the CTH Shock Wave Physics Code", Sandia National Laboratories, Albuquerque, NM, SAND 87-0725C. Presented at the Am. Phys. Soc. Conference on Shock Waves in Condensed Matter, Monterey, CA, July.

6. APPENDIX: CROSS-INDEXING OF REFERENCES

This cross-referencing on a few selected topics was performed to further enhance the usefulness to the reader of the bibliography examined for this study.

Target Materials

boulders	:	G2, I3, N2
concrete	:	A6, B9, B14, B18, F2, F12, L2, L5, N1, R4, T10
ice	:	H10, K4, R7, U1, Y8, Y10
permafrost:	:	A2, D4
rocks	:	A6, B7, B16, B17, B18, F10, G4, H5, H6, I4, K7, M8, P1, P2, R4, T2, T8, V1
snow	:	A2, Y5, Y7
soils	:	B20, C1, H7, M6, P3, S3
underwater	:	B1, B2, F7
(rock anchors)		

Numerical Method

FD	:	B19, K3, L1, S5, T5, T6, W2, W3
FE	:	B4, B5, C2, C4, J2, J3, S4, T1
DE	:	G2, I3, M9, W4

Others

conferences	:	B14, F1, H7, K6, U1, U2
hypervelocity	:	A4, B13, D3, F1, F11, H12, K2, M1, M2, Z1
reviews	:	A5, H8, J4, J5, M5, T4, T9, U3
shaped charges	:	B3, H2, H13, R3, V1

7. ACKNOWLEDGMENTS

This work was performed under Contract W-7405-ENG-48 with the U.S. Department of Energy. The study was supported by the LLNL Nuclear Test Containment Program, under the Regional Geology Task monitored by J. Hearst.

The author is grateful to K. Eklund, M. Forrestal, N. Hanson, M. Hightower, R. Kipp, D. Longcope, P. Yarrington, SNL, Albuquerque, NM, and R. Bernard, D. Creighton, and B. Rohani, WES, Vicksburg, Miss., for useful discussions. The PENCO2D code was obtained at LLNL through the gracious cooperation of its author, D. Creighton. L. Grabowski typed this paper and is acknowledged for her fine work.