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CONTROL AND DIAGNOSTIC DATA STRUCTURES FOR THE MFTF* 

J, A. Wade and J. H. Choy 
Lawrence Livermore Laboratory, University of California 

Livermore, CA 94550 

A Data Base Management Syatem (DBMS) is being 
written as an integral part of the Supervisory Con­
trol and Diagnostics System (SCDS) of programs for 
control of the Mirror Fusion Test Facility (MFTF). 1 3 

The data upon which the DBMS operates consist of con­
trol values and evaluative information required for 
facilities control, along with control values and 
diagnostic data acquired as a result of each MFTF 
shot. The user interface to the DBMS essentially 
consists of two views: a computer program interface 
called the Program Level Interface (PLI) and a stand­
alone interactive program called the Query Level 
Interface to support terminal-based queries. This 
paper deals upecifieally with the data structure 
capabilities from the viewpoint of the PLI user. 

Introduction 

Not only is MFTF large in terms of physical site 
and number of subsystems, but also significantly more 
data must be acquired and archived than on previous 
fusion experiments (see Fig. 1). The question then 
is not what data to acquire, but how to present the 
data in an easily usable form* As with prior 
experiments, the difficulty lies not in acquiring 
data (in terms of both what to gather and how much), 
but rather in the tremendous volume that must be 
analyzed and reduced. From the standpoint of 
operations, the facility must be continually measured 
so that operations may progress. In addition, the 
goal of MFTF is not only continued operation, but 
understanding the plasma physics associated with the 
project. Diagnostic measurements utilizing both 
current and prior shots must be analyzed and reduced. 

A DBMS that has been specifically adapted for 
MFTF—rather than specialized data manipulation rou­
tines incapable of future expansion—is being de­
signed and implemented. Simply defined, s DBMS is a 
set of software tools that allows users to operate 
upon their dats in a manner that is "close" to the 
way the data is thought of. This frees the user from 
concern with such incidental questions as disk files, 
disk addresses, etc. The data base is thet col­
lection of data known '.o the DBMS; for MFTF, this 
includes such items aa set points for various sub­
systems; facilities measurements, such as valve set­
tings, temperatures, vacuum levels, and neutral-beam 
conditioning scat--;: control parameters required for 
operation of diagnostic instruments; and diagnostic 
data acquired as the result of a shot. In addition 
to current data (i.e. data required for continued 
operation of MFTF), the data base also contains ar­
chived data (i.e. data retained from prior shots). 

Historical Perspective 

The advantages of providing a DBMS for MFTF1* 2 

include reduced redundancy, increased consistency, 
and greater data independence. Instead of requiring 
each computer program to design, build, read, and 
write data in its own unique set of private files, 
the amount of redundant data can be reduced by cen-

*Work performed" under the auspices of the U.S. 
Department jf Energy by the Lawrence Livermore 
Laboratory under contract number W-7405-ENG-48. 

tralizing the data in a standard form. Secondly., 
with en integrated data base, inconsistencies can be 
minimized. (The possibility of an ineonsiotency 
exiats when the same data are stored in more than one 
place.) Third, a DBMS provides the capability for 
data independence. Ususlly, when a progr«m in writ­
ten that requires access to external data, the pro­
grammer builds a set of file-access mechanisms into 
the program, defining specifically how and where data 
are to be represented. Should the access methods 
need changing at a later date, the program must also 
be changed. These data-dependent problems are re­
moved by inserting an interface that differentiates 
between the way the user views the data and the way 
the data are actually stored. 

Although an available DBMS would seemingly suf­
fice for MFTF, three factors rule out this pos­
sibility. First, a reference to read in the set-
point portion of the data base taunt occur very quick­
ly—returning within 4 ms, given certain constraints. 
Secondly, the amount of returned data can vary from 
as little as one character to aa much as 32000 small 
integers (obviously, the greater the volume of data, 
the longer the data-base access). Finally, the en­
vironment within which the DBMS is to operate con­
sists of several computers and their associated peri­
pherals; data may or may not exist in the computer 
that contains the program requesting the data* These 
factors—taken individually—are not necessarily suf­
ficient to warrant building a new DBMS, however, the 
combination is sufficient, especially in view of the 
results of extensive benchmarks run on the available 
systems1^. 

A list of component parts for the DBMS currently 
under development is as follows: 

1. The Program Level Interface (PLI) which pro­
vides a method of accessing the data base from com­
puter programs that exercise control over MFTF and 
acquire and process diagnostic data resulting from a 
shot (see Fig. 2). 

2. The Query Level Interface (QLI), which pro­
vides a method of accessing the data base from inter­
active computer terminals. 

3. The specialized utility programs that per­
form such operations as saving shot data on magnetic 
tape and inserting prior shot data into the online 
data base from tape. 

Hardware Overview 

Aa Fig. 1 shows, the DBMS is implemented on nine 
Interdata computers (four 8/32'a and five 7/32'a) 
that are interconnected via a oultiport shared mem­
ory. Each computer has its own local memory'and disk 
storage; the 7/32's each have a 10-megabyte disk, and 
the 8/32's each have «n 80-megabyte disk with one 
300-megabytr> disk and an additional 10-megabyte diak 
installed on one of the 8/32's. Aa auxiliary stor­
age, two of the 8/32's each have oat 1600-SPI, 75-IPS 
tape drive. The shared memory is arranged as two 
64~kilobyte blocks. Seven of the nine computers in­
corporate MFTF operator's consoles designed for MFTF 
functions. (For a further explanation of the com­
puter hardware, <*ee the paper by Butner in these pro­
ceedings. 3 y 0r details of the MFTF operator con­
soles, see the paper by Speckert in these proceed-
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Fig. 1. MFTF control and diagnostics system. 
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Each computer supervises one of the following 
major MFTF functions: 

Overall MFTF supervision 
Injector subsystems supervision 
Startup neutral beams 
Sustaining neutral beams 
Plasma streaming 
Vessel supervision 
Facilities supervision 
Data base management 
Diagnostic data processing 

(For a further explanation of the overall MFTF 
system, see the papers by McColdrick^, WyraanS 
and Ng', in these proceedings.) 

MFTF Data Base 

Overview 

As Fig. 3 shows, the MFTF data base may be logic­
ally divided into two main categories: data neces­
sary for control of MFTF and data associated with 
plasma diagnostics. The facilities control portion 
is further divided into facility act points and 
facility evaluation. Facility set points include 
auoh data as voltages, currents, valve settings, neu­
tral-bean aiming parameters, and Liming duration. 
Facility evaluation data include current valve set­
tings, temperaturas, vacuum levels, and neutral-beam 
conditioning. Thu plasma diagnostic data may also be 
separated into two areas* instrument control param­
eters and diagnostics acquisition.8 Data in the 
instrument control portion consist of the same types 
of information found in the facility set points; how­
ever, they arc associated with the diagnostic instru­
mentation, rather than control of the facility. 
Similarly, the diagnostics acquisition includes data 
read from the diagnostics instruments during an MFTK 
shot. This specific area of data accounts for the 
requirement that the DBMS be able to handle four 
megabytes of data per five-minute shot cycle. 

In view of the available hardware, it i* im­
portant to emphasize that the MFTF data base is dis­
tributed across the entire set of computers—some 
data reside on the diak(s) of each machine, other 
data reside in the local memory of each machine, and 
still other data reside in the common shared memory. 
The reason for the distribution is that the associ­
ated MFT1? functions are themselves distributed. The 
computer responsible for startup neutral-beam pro­
cesses* for instance, need not know about that por­

tion of the data base involving cryogenics, nor need 
there be interaction between certain aspects of the 
plasma-streaming system and peraonnel interlocks. 

In addition to a division of data by subsystem, 
there are also various frequencies of access to the 
data base. For example, when the MFTF tank is being 
pumped down, moat data associated with the injection 
system need not occupy space in memory. On the other 
hand, when a shot is in progress, data associated 
with pumpdown procedures need not occupy space. As a 
general rule in the DBMS, no space is allocated in 
memory for currently unused portions of the data 
base. Since data may be conveniently divided by sub­
system, currently-in-use data associated with the 
sustaining neutral-beam system exist in the local 
memory of their respective computer. By contrast, 
overall MFTF timing data would exist in the central 
shared memory because of their more global importance. 

The data residing in the data base have the fol­
lowing characteristics: There is a distinct parallel 
between data in the facility set-points area and data 
in the instrument control parameters area, since both 
are represented by a fairly large set of scalar 
values. For example, most valves have only one state 
(open or closed); for each neutral beam, only the 
next shot value and last shot value for voltages, 
currents, and timings need be maintained for control 
purposes, etc. Secondly, although there is also an 
apparent parallel between data required for facility 
evaluation and data from diagnostics acquisition, 
most of the data required for facility evalation 
(e.g., tempurature sensor readings, valve openings, 
vacuum levels, etc.) are scalar in nature. On the 
other hand, neutral-beam conditioning cannot be ac­
complished without a history for each beam indicating 
that aimple vectora of data are required. In this 
dense, a parallel does exist (i.e., some of facility 
evaluation and some of diagnostics acquisition are of 
a vector nature). Again, diagnostics acquisition ia 
responsible for much of the data in the data base. 

Most of the examples given above have concerned 
the set of data required for current facility oper­
ation or for current (and perhaps immediately prior) 
diagnostic shots. For quick comparison of past and 
present results, a complete history of MFTF is also 
necessary; accordingly, the data base must contain a 
large volume of historical data. When a user is re­
ferencing the data base, from either the PLI or the 
QLI, both types of data may be accessed. 

Associated with the concept of archived data is 
the notion that no acquired data may be lost after 

Facilities 
control 

Plasma 
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parameters 
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Fig. 3 . The MFTF data base. 
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having been entered. Became certain parti of the 
data bate are more critical than others, we have in­
cluded a mechanism to request that data be "dupli­
cated" in another physical part of the computer net­
work. Thus, a request to write data into a critical 
part actually writes then to two distinct physical 
locations to ensure against lo3a. In order to es­
tablish a complete framework for the HFTF data base 
we turn next to a discussion of implementation con­
cepts. 

Logical View of the HTTP Data Base 

The entire data base may be thought of as a set 
of tables. Each table has a name, as does each of 
ita columns. As an example, consider the startup 
neutral-bean set-point table in Fig. 4. Ita name is 
given in the upper left corner of the description, 
and each column has a name, such as bean number (beam 
no), fire, raw aceel voltage (aecel_vr), u source 
accel voltage (accel_va), etc. Each of the columns 
may be of a scalar, vector, or complex (in the sense 
of Pascal records) structure. Associated with each 
tabic is a set of rows. (Tor further description of 
the more theoretical aspects of such a data-base 
structure, see tlift discussions on relational data­

base systems*'*'". It is sufficient here to ob­
serve that the data base consists of named tables, 
with rows and named columns, a structure in which 
each column exists for each row defined in any table. 

Alo*g with the inherent implications of table 
structures, there must also be definitions to define 
the various physicel properties of a table. A table 
may exist in the central shared memory, in local disk 
of one (only) of the computers or on the local disk 
of one (only) of the computers. 

An additional concept is that of tabl; ownership. 
The assumption here is that there is global read ac­
cess to any table in the HFTF data base, hovevar, 
tcble writing is restricted. In addition, since the 
count of rows per table may vary greatly, a variety 
of row-access methods is provided to minimise the 
time required to find a particular row. Aasociated 
with row count per table is the concept of memory-
contained vs virtual tables. Whereas the startup 
neutral-beam set-point table is small enough to fit 
entirely in the local memory o<. itie respective com­
puter (i.e. it is memory-contained), the diagnostics 
data acquired from a particular diagnostics instru­
ment may be so voluminous that they must be accessed 
in partst the entire table is too large to fit in 
memory at one time (i.e. it is virtual). Given that 

"Startup Neutral-Beam Set Point Table" 
Purpose: Table primarily contains parameters which are sent to the LCC's. 
stujspt beamjio fire accel_vr accelj/s calorlmetry 

24 
Each column (other than beam 
value sent to the beam's LCC, 
Description Size 
beam_no 1 
fire 1 x 2 
accelj/ (raw) 2 x 2 
accel_v (at source) 2 x 2 
accel_i 2x2 
arc_v 2x2 
suppressor_v 2 x 2 

fllament_v 2 x 2 

gas_state 1 x 2 

gas_percent 2x2 
beam_delay 2x2 
f1lament_gas_delay 2x2 
gas_arc_delay 2x2 
gas__accel_delay 2 x 2 

Fig. 4 

number) contains two values: ftrst , the latest 

and secondly, the next value to be sent. 

Oomain Description Size Domain 

1..24 fllament_durat1on 2x2 Integer 

yes, no gas_duration 2x2 Integer 

Integer arc_duratlon 2x2 Integer 

Integer accel_duration 2x2 Integer 

Integer auto_conditioning 1 x 2 on, off 

Integer rate 1 x 2 shot, manual 

Integer accel_lo 2 x 2 Integer 

Integer accel_vo . 2x2 Integer 

on, off alm1ng_z 2x2 Integer 

Integer beam_dump_flow 2x2 Integer 

Integer calorlmetry 1 x 2 on, off 

User access — (user definition) 
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"Startup Neutral-Beam Set Point Table" 

CONST max_stu_nbs 
max -sus _nbs 
max~nb value 

24; "Max number of startup neutral beams." 
24; "Max number of sustaining neutral beams.' 
24; "Max value of neutral beam numbers." 

TYPE gas_type RECORD 
state 
percent 
pressure 

(on. off); 
0..100; 
INTEGER; 

END; 
nb_type RECORD 

beam no 
f1re~ 
accel vr 
accervs 
accel -) 
gas ~ 

l..max nb value; 
(yes, no)7 
INTEGER; 
INTEGER; 
INTEGER; 
gos_type; 

accel In 
acceVvh 
gas h~ 

ARRAY (0..400) OF INTEGER; 
ARRAY 0..100 OF INTEGER; 
ARRAY (0..100) OF gas type; 

END; 

RLN stu_spt 
sus~spt 

ARRAY (0..max stu nbs) OF nb type AS ..(rln opts). 
ARRAY (0..isax~susj>bs) OF nb~type AS ..(rln opts). 

VAR stu sp 
sus~sp 

nb_type; 
nb_type; 

Fig. 5. User access — (Pascal, DBMS definitions). 

"Startup Neutral-Beam Set Point Table" 
la. 
lb. 
2. 
3a. 
3b. 
4. 

stu_spt(beam no = J).acce1_vr ;= T; 
T := stu_spT(J).accel vr; 
stu spt(accel_vr « T).',1re :• no; 
stu~sp '•' stu_spt(J); 
stu_sp.gas.state := stu__spt (gas.pressure - 37).gas.state; 

sum := 0; 
vec :- LOC OF stu spt(fire • yes); 
1 :- 0; 
WHILE vec (i) 0 DO BEGIN 

sum ;= sum + stu spt(vec 1 ).accel 1; 
1 := 1 + 1 
END; 

Fig. 6. Iteer access — (Pascal, DBMS usage). 
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certain data are more important than other data (i.e. 
more difficult to reconatruct), duplicate tables ^ay 
be declared such that whenever the primary table is 
written into, its duplicate is also updated without 
intervention from the user. 

Data Baae Management System 

Overview 

As noted above, the DBMS is a set of software 
tools that allow the uaer to operate upon data in a 
manner that ia "cloaer" to the way in which the data 
U thought of. This implies the existence of certain 
concepta *» elements of the DBMS, which are outlined 
here. First, for the data bese to exist, it must 
h*.vc a structural definition, both frcm the experi­
menter's point of view, and from ••fc'* physical com­
puter hardware viewpoint. Secondly, once we are able 
to define structures, the corresponding space (on 
disk and in memory) must be allocated, along with 
necessary supporting information. Finally, given 
that the data baae is ready for .ic<-<?ss, a aet of rou­
tines must exist to facilitate reading, writing, etc. 
This implies throughput requirements, in t^rma of 
both speed and volume of data. For example, How long 
does it take to obtain the nccel current for sustain­
ing neutral beam 20, or How long docs it take to 
chnnge the accel current? On the other hand, How 
does the DBMS respond to being required to Btoro many 
megabytes of plasma diagnostics data? 

In addition to certain minimal throughput re­
quirements, we must be concerned with what uaers type 
on the console keyboards in order to access the data 
base, usually referred to as the user interface. 
This interface must at least have read, write, and 
search capabilities, in addition to whatever support 
ia necessary. Again, the act'.el current ijr sustain­
ing beam 20 must be obtained for a calculation in a 
computer program, it must be changed as a result of 
perhaps user input, or the beam numbers must be ob­
tained for all beams that have an accel current 
greater than a apecified value. 

Theae capabilitiea must be available i-jm appli­
cations programs (i.e. programs concerned with con­
trol of MFTF or programs concerned with plasma diag­
nostics data reduction fallowing a shot) and inter­
actively from terminals where physicists are search­
ing through prior shot data, performing correlation 
studies, etc. Given that the capability to change 
data exists and that the data are considered valuable 
in some sense, there must also be a way of both 
selectively recording these changes (i.e., who 
initiated the change, when, and to what new value) 
and preventing unauthorized changes. (For a more 
detailed explanation of the MFTF DBMS, see the paper 
by Chc-y and Wade in theae proceedings.^) 

User Interface 

Noting that the data base ia referenced both by 
prepackaged programs and by users from a terminal, 
the user interface consists of the TL1 w d the QLI. 
The FLZ is meant for interaction upon the data base 
from computer pro grains that must perform fairly ex­
tensive analysis; the DBMS is quite simply the read 
a*d write mechanism. By contrast, the QLI is a term­
inal-based interactive program, built using PLI 
facilities, that provides a user at a terminal the 
capability to examine and modify the data base. Suf­
ficient computational resources exist within the QLI 
Co permit reasonably aimple analysis to be performed 
without requiring that a full program be written. We 
assumed that the types of users interacting with the 
QLI have some—but limited programming experience— 
usually in conjunction with other disciplines such as 
plasma physics and various types of engineering; 

hence, the QLI is oriented as an abbreviated program­
ming language. 

Program Level Jfoter tacê  

The PLI consists of two parts; a precompiler, and 
a runtime subroutine library. Since the computer 
programs running on SCDS for controlling HFTF are 
being written using the Pascal programming lan­
guage!1, t n e precompiler has as primary input a 
Pascal source program and produces a resultant source 
program as output. The primary function of the pre­
compiler is to change occurrences of data base refer­
ences from a syntax that is more easily understood by 
the person creating the source program into a syntax 
intelligible to the Pascal compiler.^ 

An additional aspect of the precompiler function 
is indicated in Fig. 2i both the source program con­
taining DBMS syntax and a set of DBMS data defini­
tions are supplied to the precompiler. The pre­
compiler then uses the data definitions (which de­
scribe the data br.se) to transform requests to 
create, open, close, read, and write the data base 
into procedural referencen. The result is a source 
program with DBMS runtime calls that is then compiled 
by Paaeal. The output from the compiler ia combined 
with the DBMS runtime library to create the computer 
program. Whenever the program is subsequently run, 
the runtime routi.nen are called when access to the 
data baoe is required, and thus perform the request­
ing operations. 

Tata Structure Capabilitiea 

In view of the above discussion regarding the 
PLI, what data structure capabilities arc available 
in the DBMS? First, the data structures available In 
the Pascal programming language /»re also available 
from the PLI. The precompiler parses declarative 
syntax to an internal form, storing it in a runtime 
symbol table maintained on disk. Upon the occurrence 
of an open command to the DBMS (indicating the pro­
gram is intending to access a table in the data 
baae), the associated declarative structures are read 
from disk into memory. Figure 4 uses the startup 
neutral-beam aet-point table as an example. The 
initial work done to establish a new table in the 
data baae ia to generate a user definition—essen­
tially how the data looks to the user. Here the 
user, in conjunction with the Data Base administra­
tor, defines the table name, column names, the data 
atructure of each column (including size, data type, 
domain, etc.), and other pertinent information. 

Thereafter, it ia transformed into a syntax ac­
ceptable by the precompiler for inclusion in the data 
baae (see Fig. 5). By using Pascal syntax, along 
with a few minimal extensions, the sizes of various 
entities are defined with the Pascal CONST construct, 
and the actual definition of a given row of the table 
is specified with the Pascal TYPE construct. Note 
here that the data atructure for all rows of a table 
have the same shape; the TYPE statement is used to 
establish the structure of any given row of the 
table. Following all size and atructure definitions 
via CONST and TYPE constructs, the RLN construct is 
used to declare the table itself. This construct is 
not part of the Pascal syntax; it is parsed by the 
precompiler and removed so that the compiler does not 
see it. Upon recognition of the RLN construct, the 
runtime symbol table entry is created for later use. 
In more specific terma, the table name ia "bound" to 
a specific data structure at thia time, along with 
other information about the table, auch as its over­
all size (i.e. the number of rows in the table), 
where it exists (in memory, on disk, etc.), on what 
computer within the SCDS network, row access methods 
to use upon the occurrence of read and write commands 
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to the table, etc. Again, since the Pascal TYPR; con­
struct is being used to deeUre the structure of a 
typical row, the data structures available in Pascal 
are available in the data base. 

Program Level Interface - Usage Constructs 

After the set of tables has been declared within 
some program, the user may access the tables. This 
is done by first opening a given table (causing en­
tries to be made in the DBMS runtime symbol table and 
data to be read from disk)) then requesting rends 
and/or writes to the table* This is accomplished 
with a special syntax that is not a part of the 
Pascal syntax. As before, the precompiler parses 
these constructs, replacing them thtn time with con­
structs acceptable to Pascal. Figure 6 shows exam­
ples of how reads and writes are performed. In exam­
ple la, the startup neutral-beam set-point table's 
acccl raw voltage is being changed for a specific 
beam (the beam whos*> number is contained in the vari­
able J) to the valve contained in variable T. Exam-
pin Lb causes the data base to he vcod; nceel rnw 
voltage for beam number J LB read and stored in the 
variable T. Example 2 shows a write to the data base 
(as did example la), However, in this case, the col­
umn name libelled "fire" receives the value of "no" 
wherever tht aceel raw voltage has the value con­
tained in T. Given that the variable stu op is bound 
to the TYPE struetuie used to define individual rows 
oF the table stu_spt (note the VARs in Figure 5), 
then example 3a "causes the entire row (i.e., all col­
umn values) for beam J to be read from the data base 
and stored in the variable. This in of value when 
numerous operationo with the same row of a table must 
be performed so that data base accesses arc mini­
mized. Example Jb shows a similar data base read, 
except that a subset of the row is read. There are 
times where one wishes to access a subset of the rows 
of a table*, example 4 shows the generation of a sum. 
The first data-base access (the LOC OF construct) 
returns the locations of all. rows in the table whose 
beams are intended to be fired (where fire • yes). 
Then, within the WHILE iteration, subsequent data 
base accesses are made, one for each row (and there­
fore beam) in the table, generating the sum of all 
accel currents whose beams are intended to be fired. 

Summary 

After an introductory discussion of the histori­
cal perspective of reasons for generating a new DBMS, 
what the MFTF data base looks like, and an overview 
of the Datn Base Management System, the user view of 
the system is discussed. In particular, the Program 
Level Interface is explained together with its pre­
compiler and associated runtime routine library. 
Examples of both declarative capability nnd usage 
capability are then given to demonstrate the use of 
the system. 

Referencea 

1. Clarke, T. 0., J. E. Crapuchettes, and P. D. 
Siemens, MFTF Data Base Management Study for 
University oE California, Lawrence Livermore 
Laboratory, Livermore, California, September, 
1977. 

2. Date t C. J., An Introduction to Database System, 
Second Edition, 1976, pp. 3 - 9 . 

3. Butner, D., "MFTF Supervisory Control and Diag­
nostics Syatem Hardware," proceedings Engineering 
Problems of Fusion Research (IEEE), 1979. 

4. Speekert, G. C., "The Man Machine Interface for 
MFTF," Proceedings Engineering Problems of Fusion 
Research (IEEE), 1979. 

5. McGoldrick, P. R., "SCDS Distributed System," 
Proceedings Engineering Problems of Fusion Re­
search (IEEE), 1979. 

6. Wyman, R. H., "Results of Studies Performed on 
the Model of the MFTF Supervisory Controls and 
Diagnostics Syatem (SCDS)»" Proceedings Engineer­
ing Problems of Fusion Research (IEEE) ( 1979. 

7. Ng, H. C , "An Overview of MFTF Computer Control 
and Diagnostics System," Proceedings Engineering 
Problems of Fusion KcBearch (IEEE), 1979. 

8. Coffield, V. E. and G. E. Davis, "MFTF Plasma 
Diagnostics Data Acquisition System/' Proceedings 
Engineering Problems of Fusion Research (IEEE), 
1979. 

9. Cotld, E. F., A Relational Model of Data for Large 
Shared Datn Dnnks, CACH 13, June 1970, pp 377-387. 

10. Choy, J. H. and J. A. Wade, "A Data Base Manage­
ment System for the MFTF," Proceedings Engineer­
ing Problems of Fusion Research (IEEE), 1979. 

11. Jensen, Kathleen and Wirth, Niklaus, PASCAL User 
Manual and tteportf Second Edition, Springer-
Verlay, New York, 1974. 

12. Young, Robert, PASCAL/32 Language Definition, 
Department of Computer Science, Kansas stnte 
University, 1978. 

13. Lindqulst, U. B., R. Eckard, T. Holdsworth, L. 
Mooney, D. Moyer, R. Peterson, D. Shinier, R. 
Wyman, and H. Van NesB, "Overview of the MFTF 
Electrical Systems," Proceedings Engineering 
ProblemB of Fusion Research (IEEE), 1979. 

14. Choy, Joseph H., MFTF Total Benchmark, June, 
1979, LLL, Livermore, California, UCID 18209. 

15. Kitn, Won, Relational Database Systems, Computing 
Surveys, Vol. 11, No. 3, September, 1979. 

NOTICE 
"This rep or I was prepared is an account or work 
sponsured by the United Sulci Government. 
Neither (he United Si ties nor the United Sutes 
Department or Energy, not any of their employees, 
nor any or their contractors, subcontractors, oi 
their employee*, makes any warranty, express or 
implied, or assumes any legal liability or respon­
sibility for the accuracy, completeness or 
usefulness of any Information, apparatus, pruduct 
or process disclosed, or represents that its use 
would not infringe privately-owned rights." 

Reference to a company or product 
names does not imply approval or 
recommendation of the product by 
the University of California or (he 
U.S. Department of Energy to the 
exclusion of others that may be 
suitable. 


