RECENTI 27 000 JUL 25 1988
ANL~-HEP-CP-85-64

ConF-F500 15 8~

MASTER

ANL/HEP-CP--85-64
DE85 014988

THE ANL/STAR PROJECT: A NEW ARCHITECTURE FUR LARGE SCALE
THEORETICAL PHYSICS COMPUTATIONS

A. M, Rushton
Argonne National Laboratory
Argonne, llinois

INTRODUCTION

Research in many aress nf theoretical physics, such as lattice gauge theory,
is increasingly limited by the cost and availabflity of computing power.
Existing machines approach speeds on the order of 1 Gigaflop at a cost of tens
of millions of dollars; hence many research groups lack the resources to
acquire such a machine, or the problem cannot be run in a sufficiently short
time (on the order of six months)}. Also, the rate of increase in uniprocessor
speed has been slowing as we approach the limits of scaling down silicon chip
technology. These factors have led our group at Argonne National Laboratory
to explore a dtfferent approsch to supplying increased computational speed and
cost-effectiveness for such problems ~ one which uses tightly coupled multiple
processors with shared memory and a sophisticated array processor as the node

element,

OVERVIEW

Our project consists of two phases, each of which has goals of substantial
physics content on its own. 1In Phase I, we have selected Star Technologies’
ST-100 as the array processor for the prototype coupled system and have
installed one on a Vax 11/750 host. Qur goals with this system are to
institute a substantial prograa in computational physics at Argonne based on
the power provided by this system and thereby to gain experience with both the
hardware and software architecture of the ST-100. In Phase 11, we propose to
btuild a prototype consisting of two coupled array processors with shared
menory to prove that this design can achieve high speed and efficieacy in a
readily extenaible and cost-effective manner. This will implement all of the
hardware and software modifications necessary to extend _his design to as many
as 64 (or more} nodes. In our design, ve seek to minimize the changes made in
the standard system hardware and software; this drastically reduces the effort
required by our group to implement such a design and enables us to more
readily incorporate the companies' upgrades to the array processor. It should
be emphasized that our design is intended as a special purpose system for

' theoretical calculations; however it can be efficiently applied to a
surprisingly broad class of problems. 1 shall discuss first the architecture
of the ST-100 and then the physics program being currently implemeated on a
single system. Finally I will present the proposed design of the coupled

system,
ST-100 ARCHITECTURE

The architecture of the ST-100 is shown in Fig. 1. The array processor
actually contains three separate computer subsystems: the Control Processor
(AP), the Storage Move Processor (SMP), and the Arithmetic Control Processor
(ACP). Data is transferred between the host computer memory and the arrsy
processor main memory. The SMP controls data movement between main memory and
the data cache; 1t 1s also used for integer and logic operztions, such as
random number generation. All floating point arithmetic operations are
controlled by the ACP and the data flow is from cache to the Arithmetic Logic
Unit and back to cache, The ALU contains two adders, two multipliers, and a
divide/square root section. The adders and multipliers are three stage
pipelines requiring three clock cycles; however the divide/square root section

The submitted manuscriot hes been suthored
by & contrctor of the U.S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. 5. Government retains »

nonexclusive, royaity-free licanse to publish

or reproduce the published farm of this w,"“ m mj-m .-IH
contribution, or allow others to do g0, for | ! LAl L

U. S. Government purposes. :

is nou-pipelined and requires 13 cycles. So the old lesson from other
machfnes also applies here - multiplication is fine, but division really slows
you dawn! The Star uses a 32 bit word size and a 40 neec cycle time. Main
memory can he extended to 8 Mepavords, although cache memory eize is ffixed at
48 Kwords. Our machine presently has 2 Megawords of main memory.

Writing software for the ST-100 requires a significant logical reorientation
by the programmer. The Star itself 1s programmed in a subset of Fortran-77
called APCL; the program is termed a "process™. However, most of the
computation is performed by "macros” called by the process, which are
essentially assembly language subroutines written for either the ACP or the
SMP. Star Technologies' supplies libraries of standard macros for both
processors; however in s typical physics problem, the user must write macros
to efficiently fmplement his own algorithm. 1n effect, one must write much of
the program in assembler, although this works out in practice much better than
one might think. The processes are called from a host progras running on the
host computer and computations which are performed only a few times in a
program are normally done in the host program. Only the computationally
intensive portions of the program are done on the array processor. Also, the
macros encourage a modularization of the program structure which facilitates
the reuse of code in similar problems. In practice, support for running
processes on the ST-100 requires only -2 per cent of a host Vax 11/750.

= axRAY DATA FLOW
— — — CONIROL FLOW

22
NPYT s OUTPUT
SUBSYSTEM

] £XTLRNEL
§ 0472 FLOW INTERNAL
|

CONTROL
-_— PROCESSOR - —
1CPY

ARITAMETIC
ATA_PROCESSING

ARITHMETIC
CONTROL
'l?C[SS L]

ACP

ST~100 Architecture and Major Data Flows.

o

Figure 1.

The most serious obstacle to production use of an ST-100 is the difficulty of
writing programs in microcode. The optimal choice of algorithm is changing
sufficiently rapidly in some areas such as lattice gauge theory with fermions
that it consumes significant manpower to keep programs current. Hence the
user groups have expended considerable effort on developing software tools to
aid 1n code development. Star has also contracted for the development of a
Fortran compiler for the ST-100, and this may change the situvation markedly.

PHYSICS PROGRAM FGR THE SINGLE ST-100

Our array processor has been operational since approximately last March 22.
Since then, our initial computational program has consisted of problems in the

lattice gauge theory, condensed matter physics, and molecular
modelling. (As you sce, we are not confined strictly to high energy physics
problems, although the driving force behind the project has been the
computational needs of lattice gauge theory.) We are also working with a
collaboration hased mainly at the University of California at the Santa
Barbara and San Diego campuses. They also has an ST-100 and we share software
tools and utility programs; some of their projects are also run on our

system. Our host computer is connected to s Decnet with approximately 120
nodes, so most users are able to work conveniently while 2,000 miles fram the

areas ot

array processor!

Our principal lattice gauge theory projects deal with both pure gauge fields
and with fields with coupled fermions. The largest effort-is being undertaken
by Don Sinclair in collaboration with John Kogut. They are studying two
problems: the calculation of the low lying hadron mass spectrum by calculating
the long distance behavior of gauge invariant propagators in channels with the
desired spin and flavor, and secondly, the thermodynamics of lattice QCD
fermions present. In the conjugate gradient routines for matrix inversion
(which are central to the computation), Sinclair estimgtes that he achieves a
speed of slightly greater than 50 Mflops; he expects comparable results in the

rest of the program.

The Caiifornia contingent (D. Touissant, R. Sugar, S. Gottlieb, and oiners)
work on both condensed matter and lattice gauge theory probleas, which
emphasizes the similarities of the formalisa in the two areas. In the lattice
gauge area, they have studied the phase behavior of both a pure U(1) gauge
field (for electromagnetisa) and also an SU(3) gauge field at finite
temperature. Using the Metropolis method with a pure SU(3) field, they can
perform 10 updating hits on a link in 100 mfcroseconds, with additional hits
requiring 4 microseconds each. This speed is comparable to a Cray-l
programmed in Fortran. Due to our relatively small (2 Megawvord) memory, they
use our machine to test algorithms on small lattices and do production runs on

their 4 Megaword machine.

They have also studied the behavior of a superconductor in an electro—
magnetic field (using a modification of an Abelian Higgs model program) and
are currently studving a model of a polymer, in which which fermions are free
to move along a chain in one diwmension, and the chains are coupled by Coulomb

interaction with the neighboring chains.

In a completely different area, Clausing, Hagstrom, and McConnell have been
developing software for molecular modelling on the ST-100. The problem i{s to
determine the equilibrium configuration of a large molecule (on the order of
100 to 10,000 atoms) by calcularing the internal forces starting from an
arbitrary initial configuration and numerically approximating the motion of
the atoms until the molecule reaches & minimum energy configuration. They
consider the forces between non-bonded atomic pairs up to an arbitrary cutoff
distance using a2 Lennard-Jones potential and the forces due to bending of
chemical bond angles (between triplets of atoms) and torsionsl forces. They
have obtained the timings shown in Table 1 for the indicated standard
calculations using programs written in microcode.

The problem of comparing relative speeds of machines with very difficult
architectures is a well known one; one reasonable method is to compare
computational times for standard problems, and by that standard, these values
are several times faster than similar calculations reported on a Cray-

TASK

TIMING

Non-bonded pajr interaction

0.97 sec/random pafr**

1.98 sec/random triplet* Bonded three-body [nteractfon

5.14 sec/random four* Proper dihedral four-hody interaction
5.26 sec/random four* Improper dihedral four-body interaction
0.23 sec/atom** Verlet integration time step

3.20 sec/random pair (est.) Bonded pair length correction

0.16 sec/pair (est.) Create naon-bonded interacting pair list

*24.3 Mhz clock; *%25.8 Mhz clock

i. PROPOSED MULT1PROCESSOR SYSTEM

The preceeding gives you the sense of what can be done with a single array
processor; however, we propose to build a far more powerful system composed of
an ensemble of array processors, each of which communicates via shared memory
with 1ts eight nearest neighbors in a three dimensional array. As we sew
earlier, the arithmetic unit of the ST-100 works on data transferred to local
ceche memeory, so the shared memory modules are used only for sharable data
and program storage. We propose to use modified Dataram 32 Mbyte memory
modules for these units to reduce costs. The architecture is shown
schematically in Fig. 2, which 1s drawn for the two~dimensional analogue of
our architecture; the reader should extend this to three dimensions.

SCHEMATIC OF PROCESSOR AND MEMORY

CONNECTIONS FOR 2-DIMENSIONAL MACHINE

(:) ONE PROCESSOR uwiT

UNIFORM ADDRESS SPaCE
OF PROCESSOR

Figure 2. Schematic of Proposed Multiprocessor Systea.

This architecture Incorporates a number of unique and/or noteworthy features
to deal with the major problems of multiprocessor systems:

a) The shared memory modules form a unffors address space aver the 8 nearest
nefphbors. Hence access to data belonging: ta an adjacent node 1s as fast
as relerences to the local node.

b) This architecture 1s a true multiple fnstructfon stream, miltiple data
stream (MIMD) system. Each node is capable of executing fndependent pro-—
frams and each has a separate connection to the host computer for down-—
loading and synchronfzation.

c) Each processor can block access by other prucessors to an adjacent
memory module; hence read modify—write cycles can be indivisible.
prevents the “"read before writing” problem which can occur in many
systems, where one processor may read values from memory before they have
been up-dated by another processor. Access requests to a locked module
are queued by the hardware and serviced when the module 15 released.

d) A unique and potentially powerful aspect of our system is the
reconfigurability of the mapping of the node processors' unifora address
space into the physical addresses of the eight adjacent memory modules.
Three bits are selected by the user as “key bits™; they will determine
the mapping between the address space of one processor and the entire
address space of 8 adjacent memory modules. This gives the capability of
accessing regular patterns of non-adjacent memory locations as fast as

adjacent locations.

This

We propose initiaslly to build a 2 node prototype with this architecture and
are presently negotiating a joint venture agreement with Star Technologies® to
do this. This will demonstrate all of the hardware and software changes
necessary for a multiple node system and could he easily extended with minimal
changes to as many as 64 nodes. (This is actually a rather soft limit.) Our
experience with this will be used as a basis for larger systems.

At this point, you may well wonder what efficiency we anticipate from the
additional processors. Let's consider the specific case of lattice gauge
theory, which is of particular interest. Here, we have a link variable,
typically an SU(3) matrix, associated with each site in a 4 dimensional
lattice. For the 3 dimensional geometry of our system, we can divide the data
space for N processors by dividing the set of (x,y,z) poilnts into N subsets.
With each such point 1s then assoclated all of the t axis sites. In
calculating the properties of pure gauge fields, one needs for a given
lattice site, only data for that site and sites one unit awvay in any
dimensfion; if all processors execute the same patterns of memory reference,
the efficiency of additional processors is essentially 100Z, and this will
also apply to the broad class of problems where such local data can be read
from one array, processed by the CPU, and written to an adjacent array.
However, when we add fermions to the lattice, the prnblem'becomes much wmore
difficult. It is possible to integrate out the fermion fields by hand,
leaving an integrand which involves the inverse and determinant of a large
matrix for the bosonic integrals. The dimensionality of this matrix is at
least as large as the number of spacetime points in the lattice. The
techniques for solving such large sparse matrices efficiently on ensemble
systems are an area of active study, but, unfortunately 1 can't yet quote

results for our architecture.

In summary, we have obtained effective speeds from a single ST-100 array
proceasor comparable to a Cray-l on problems of substantial physics interest
and plan to continue the use of this machine as a production facility. We
will also be developing software tools to make coding for it eacier. We
further propose to build an easily extensible 2 processor prototype of the
ensemble system to demonstrate the potential of this architecture for
achieving cost-effective computlng for large problems.

