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AEROELASTIC STABILITY OF WIND TURBINE ROTOR BLADES

ABSTRACT

‘The nonlinear equations of motion of a general wind
turbine rotor blade are derived from first principles.
The twisted, tapered blade may be preconed out of the plane
of rotation, and its root may be offset from the axis of
rotation by a small amount. The aerodynamic center, center
of mass, shear center, and area centroid are distinct in
this derivation. The equations are applicable to studies
of forced response or of aercelastic flutter, however, ,
neither gravity forcing, nor wind shear and gust forcing are

included.

The equations derived are applied to study the aero-

elastic stability of the NASA-ERDA
.solved using the Galerkin method.

100 kw wind turbine, and
The numerical results

are used in conjunction with a mathematical comparison to
prove the validity of an equivalent hinge model developed
by the Wind Energy Conversion Project at the Massachusetts

Institute of Technology.
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elastic axis

NOMENCLATURE

Rotation coordinates with unit vectors IJX
Blade coordinates with unit vectors ijk

Airfoil coordinates with unit vectors i2j2k2

Cross section coordinates with unit vectors

E

Airfoil ;iftcurve slope
Absolute acceleration

Blade chord.

Distributed aerodynamlc drag

Aerodynamlc center offset forward of the
elastic axis

Center of mass offset forward of the
elastic axis . .

Area centroid offset forward of the

Blade root offset alohg X

Blade roét offset along Y

Airfoil perpendicular oscillation

Radius of gyration of cros$-éection area
Radius_of gyration bf cross-section mass
Distributed aerodynamié lift

Distributed aerodynamlc moment about the
elastic axis. .

Blade mass per unit length

Normal unit vector
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NOMENCLATURE Continued

. Airstream - pulsation

Distributed forces
Distzib&ted moments
Generalized coordiaétes

Root offset vector

Deformed blade radius vector .

Cross—section radius vector

Time -

Tangent unit vector

Induced inflow velocity of the air through .
the rotor disk : P.

Deformation along x
Deformation along y

Deformation along z

Airfoil profile drag coefficient

" Lift deficiency function

bémping“matrix

!ounq*s mbdulus

Blade cross-section integrals

Torsianal stiffness

Mass mmmenf of inertia of blade about root
Stiffness matrix

Pitch control system stiffness
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NOMENCLATURE Continued

Blade length

Mass matrix

Moment stress resultant

Non-linear stiffness matrix

Steady loads matrix

Torque stress resultant

Radius vector from axis of rotation
Blade tip radius

Tension stress resultant

Transverse shear

Airfoil steady angle of attack
Precone angle

Equivalent hinge coordinates
Locke number, modified

Mode shapes, first natural mode
First natural frequencies ' |
Blade built in twist

Airfoil incidence angle
Twisting deformation about x
Blade fiber strain

Blade fiber stress

Induced inflow angle

Blade rotation speed
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NOMENCLATURE Continued

Bladé angular velocity
Azimuth angle of blade about z
Air density

Blade material density

N

Special Notation:

in Part a4, 3 in Part B

3% '

Non-dimensional quantity
Perturbation quantityv
Statié quantity

Matrix

Inertial

Aerodynamic

Vector components
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Chapter I |

INTRODUCTION o ~

Wind turbines have enjoyed increased interest in
recent years as a source of untaéped ener'gy.l"4 'This current
resurgence has been fuelled mostly by the so called enerqgy -
‘crisis, but:wind power 1is by'no meaas a neﬁ idea:; the wind
is‘am”ancient source of power for ships, pumping water,
grinding grain. 'Large wind tﬁrbines as sources of power
became a popular idea in the early 1900's, especially in
Europe» only to be quickly forgotten in the shadow of cheaper
fossil.fuel sources.2 ‘ ‘

In the United States, one early effort was the Putnam
wind.tnrbine,3 whlch operated on Grandpa's Knob in Vermont
from I941 tu 1945, supplying electric power to the Central_
Vermant'Publlc Service Corporatlon.. More‘recenrly, NASA
and ERDA have erected large wind turbines in Sandusky, Ohio.

4-6 Unlike the privately

and Claytdn,.New‘Hexico-
financed Eutnam-turbine, these are government sponsored
experiﬁental,wind turbines. ‘

Mpdern wind turbines are characterized by high rota-
tional eéeeda and have attendant problema of material ‘
fatiguevof'the'blades due to‘aerodynamie and gravity forcing,
as well as aerocelastic flutter.  The %act:that the Putnam :

wind turbine program ended after a fatlgue falluxe of a
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' blade illustrates the importance of understanding blade
dynamics. Large amplitude forced response of the blades
may reduce their expected iife, driving the cost of the
system up; aeroélastic flutter might result in catastropic
failare..

Part A of this thesis concerns the derivation of thé
basic equations of motion of a general wind turbine blade
using a Newtonian approach. From the 6utsét, it must ge
réalized that the behavior of this system is highly non-
linear. Throughout the derivation, only the most important
non-linear terms ére retained. This process is implicit at
each step.. | | |

Many publishgd works in the area of rotary-wing dyna-
mics derive similar equations, but sometimes steps are left
out. Since the derivation is importanf to the understanding
of the aercelastic phenémenon and of the limitations of the
finaI.eQuations, it is included here, step by step, beginning
from hasic principles. Nonetheless, the uninterested reade:.
may want to skip the very algebraic Chapters IV, V, and VI.

These equations of motion are the jump-off point for
the study-of‘foréed response and aerocelastic flutter of wind
turbine blades. Part B of this work is an Aeroelastic
Stability Study of the NASA-ERDA 100 kw wind turbine (MOD-0),
demonstrating a simple assumed-mode solution technique.

An important facet of the method employed is the
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linearization of the‘non-linear equations about a static
deflected blade position, as opposed to linearization about
the blade iniﬁial position. This is very important due to
the dominance of inertia loads, which are very sensitive to
blade displacement.

Anather driving force for this work has been the need
to verify calculations made using an "equivalent hinge" .
model developed for the Wind Energy Conversion Project at
the Massachusetts Institute of Technology.l This model was
used to generate aercelastic stability plots for an exten—
sive parametric variation.

Ta keep tﬁe text clear and concise, coordinate transfor-

mation, as well as all numerical data and calculations, have

been relegated to the Appendices.
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PART A

_ BERIVATION OF EQUATIONS OF MOTION
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Chapter II

Coordinate Systems and Transformations

The choice of coordinate axes is very important tc
the derivation of the equations of motion, both for under-

standing and for convenience. This will be evident later.

2.1 General Coordinétes

Figure 2.1 shows the coordinate 'systems to be used.
The blade axis system (cartesian, xyz) has its origin at
the hlade root, which may be hinged or cantilevered. The x
axis is the locus of the cross-section shear centers, which
is assumed to be straight. The y axis is in the plane of
rotation'defined byAX and Y, and parallel to Y, howéver the
‘X axis may-be.coned out of thé plane of rofétion by the.
angle Bp. The root of the blade is offset from the XYZ
origin by the amounts ey and ey as shown. z defineé the
axis of rotatian, and‘bdth xyz and XYZ rotate together about
Z with anqular velocity Q. Unit vectors in the xyz and XYZ

”~ A AAAN

systems: are ijk and IJK, respectively.
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Fig. 2.1 N

2.2 Cross-section Coordinates and Deformations

Coordinates &, n, and ¢ locate points within the blade
cross section as shown by Fig. 2.2, n is parallél to the .
wing section chord and z is perpendicular.to:it( Wiﬁh the
origin at the section shear cénter. £ is an auxiliary '
coordinate along x. n and ¢ are rotated an anéle 0 (x) from \

y and z.“

N
1

P
o Y
| (r// EA | Y
~ ¥ NomrmaL 70 PAGE

Figc 2.2
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Nor in PLANE

Fig. 2.3
The blade deforms away from the kyz coordinate system
as shown by Fig. 2.3. 1In the'x direction, a point of the
biade moves an amount u; in the y direction, an amounf v;
and in the z direction, an amount w. Further, éhe blade
rotates about x an angle ¢ so that the total angle from y
and z to n and £ is now 6 + ¢. The unit vectors in the &,

A A A

n and ¢ directions are ig' in, i;.

2.3 Coordinate Transformations

The XYZ, xyz, and &nt systems can be related by trans-

formation matrices as follows:

17

[ cos/BP 0 ‘5'V,3,,

t |
5 1 0 ) j ! (2.1)
k

=y G4y >
I

L sing o cosf, I
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- Ay [ I3 ’ 7 {
&) (1-37=4v%) W' ¢
~ “» ]
1O = [eostorprew'siutios) coscose) sinre) |1/
| , | A (2.2)
d by 1 (TWers(8+8) ~V'siv(or#)) -5in (0ve) CoS(O+4)] R
. Y
where: ¢ =4

2.4 Radius Vector

The radius vector to any poiht on the deformed blade
may be conveniently broken up into three parts (Fig. 2.4):

-,

R= fa +7 + 7 (2.3)
where:

e -~ leg o ol

' A

Y

o b A a4

P = Lexewy v w

?i: ::»t O f? I’J (7 -
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- ' ‘ " ’ x

Fig. 2.4

Thelcomponents.of these vectors are now transformed into

the xyz system and the vectors added to yield:

CNT
X +& cosf +u -7(y'cas(e+¢),.u'sm(e+¢))

_ =g (w'cos(ord)-v'siN(o+¢))
eY +y 4+ 77fz:o.s<(e+¢) ~% SIN (0+ )

-f-ex SINﬁP *W+p SINCO+$) +3L0§ (_9+¢)J

v
A
A

(2.4)
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Chapter III

Ordering Scheme

In the fbllcwing derivations, many higher order terms
will be generated. Onlf the largest and most important onés
will Be kept, to keep the equations as simple as possible.

To: facilitate this sorting of terms, an drdéring
scheme is established here which assigns approximate rela-
tive arders of magnitude to all the variables and parameters
involved..

El] of the orders of magnitude are refered to the mag-
nitude of the bending slopes, v' and w', which are given
a vaInezga, Table 3.1 lists the variables and parameters
and assumed magnitudes. Some of these have not been uséd
as yet but are defined briefly in the ﬂonmenclature list.

.. Ca ,
aeh: 3, f u

P N\ o ! 4 V. w ]
deey: ', w,¢,+,2,6', «

Olei): A, B,

act):. -E,) o - a—b- =),

Table 3.1
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This ordering scheme may be compared to that used by

7,8

Hodges and Dowell or Friedmann,9 for similar equations

intended primarily for rotorcraft blades. Note that three
pargmeters often regardéa as small are not assumed so in
this work:

lf Induced inflow angle, A

2) Coning angle, Bp ‘

3) Built-in pitch angle, 8
The small angle assumption is not used for these angles,
because they may be'considerablj'larger for wind turbines,
as seen in Part B. |

The ordering scheme is applied as follows: If an ex-
pression or grouping contains terms of 3 or more orders,
for example 0(1 + €9 + eg + eg) or 0(83 +_eg +-eg), only
the largest'two terms are kept. These examples then become
0(1 +'eo) and.O(eg + eg), respectively. This scheme is
applied at each intermediate step to manage the size of the.
equations but retain the importanf terms. In some special
cases the rule is relaxed,Aas noted léter. |

Finally, in any application of the equations derived,
care must’be faken to compare these assumed orders of magni-

tude to reality. The maximum values of all parameters, and

the tip deflections indicated by the solution should be-

checked.
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Chapter IV

Structurél"Equations

This chaptér explains the derivation of the structural
equations in some detail. The non-linear derivation follows

closely the classic linear treatment of Houbolt and Brooks.lo

4.1 Strain-Displacement Relations

The blade is assumed to be a slender beaﬁ, so that the
6nly important strain acts along\lohgitudinal fibers of the
blade. Normal and shear strains are ignored, ‘except that
St. Venant torsion is superimposed in these equations at
the proper juncture. The fiber strain ¢ is related to the
arc length, ds in undeformed space, énd dS in deformed

space, by the simple quotieht:

€ : JS- a's : - (4.1)
ds '

The radius vector to any point on the deformed blade

was given in Chapter II as:

[ X « €y CDSP; *uU-7 (V'cos(a+ )+ w'sin(o+d) )
‘ - =B (WCoS(0+9)- Vs IN(S+e)

(4.2)

O}
[

CY +V+Rcos(e+¢) -Fs,N(6+¢) "

> > >

["€x SINB, +w +pSiv(0+$) +5C0S(O+P) | | R |
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Differentiating with respect to x yields:

1+ u'-plvirwicorsy) Cas‘(uwf(w".w(awy)sw(a,,p)f [ 'L\
d P - $LOw™- vie+#)) COSCO+ ) =(v rwilarpy)Sintes)]| | A | (4:3)
— = | ™ F
dx v - 77{s+¢)'.s:~(a-r¢) -5 (erP) cos(o+¢) "l

W'+ n (0+ ) COS (+4) - 5 (9+$)'SIN (6 +#) J Lh

- The magnitude of this vector is %{-, which is calculated
using the approximation /l + €, =1+ 172 €g° Discarding:

higher order terms gives:

ds __ 3 ’ 4 | |
c—l_; = J+u +'2LV2*%W 2*%{72*?22(9’+¢')2 (4.4)

— P V"CoS (0+9) +W'SINCO+3))
~ B (W cos (o+$)- V 51N(S+#))
The original arc length is formed by setting

u=v=w=¢ =20, so that u' = v' = w' =¢' =v" = w" = 0:
ds / ;2
dx =1tz (7*+37 @ (4.5)
S N
€ = ds -
ax
2 .
'+ ‘2" v’ +§L w'2+ (77z+ '5;)(9'45'-/-% ¢:z) (4.6)

- V{V‘"cos(e+¢)+w"51~(9+¢” -5 (wios(o+p)- V"'sw[e-;-qb)) N

where:

1/4d =
/92 f
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4,2 Stress-Strain Relationrand Blade Tension

The stress-strain relation is simplyi

4c¥ = Fe o ' (4.7)

The blade tension is given by:

/o’d;;df /[Eécb;a’;‘  (4.8)

cross-Section

Integration yields:

T= EA[“ +3v' ”'zW "'/! (9'4’*:,4’ ) - er(V'Cos(9+¢)+w$IN(9*¢))]

(e apas

crvoss-sect.

e = [[Endpdr

erow-58at.

k- = [[er s dydy

(4.9)

[f&}' J7a'f = 0 ASSUME SYMMETRIC CROSS-SECTION.

- This expression is used to eliminate the terms

u' + %’-(v')2

+ zw")? from Eq. (4.6):




25

T 2 2 i,
€=t (7+1’f/eA}fe¢+2L¢")

~(7-e. ) v cos (0+3)+ Ww'SIN(6+#))

=% (wicos(o+p)-v s nlE+$)) (4.10)
Also: .
T
8= Eg FEP# L hINEp w4

| 4.11
—E(y-&)(vicos(org)+w sIN(o+$) -

-E % (W cos(e+¢)—V "sin (8+¢))

4.3 Stress Resultants
The stresses in the blade are integrated over the:
cross-section to give the resultant moments (Fig. 4.1).

A consistent right hand rule is used to calculate the

moments about n and z:

M, = [/o"g A7g'§ (.12

Crogs-sect.

M’g - -[[‘{74’7‘/ (4.13)

crogs-sect. .




Fig. 4.1
The torque about & must bé formulated with some care.
Here, nofé the importance of the choice of x axis. The fact
that it ié the shéar center means that the bending shears

have no net moment about £. There is, however, a St. Venant

torsion term &hich is added in.10

'3
}

Fig. 4.2 A,

Figure 4.2 shows the stress at an arbitrary point

(n,g) in the cross-<section. The stress vector makes a

A
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sliéht.éngle to the £ direction due to the finite twist
rate of the blade, (8 + ¢)°'. Thus, a small moment results
from the éompcnent of stress pé:aliel'to the cross—;ection.
The distance from the stress vector to the shear center is g

//nz + cz; the angle can be shcvn to be approximately
(6 + @Y“//n + z“. Finally the torque is given by this

small component, integrated over the c:oss-éection, added

to the classic St. Venant term:

@ = GI¢ + /6' (9_+é>'(7724'3’/") d»dy U (4.19)
Ccross-sect.

Bpplying Eq. (4.11) to Eq. (4.12), (4.13) and (4.14),

and integrating:’

Moo= EI, [wecos(o+e)-v"smca+rd)]
M= EI;[V'cas(e+¢>+-w"suv/6+¢)] o - (4.15)

- Te,. - EB, (6'¢'+ £ 4'%)

Q@ = (GI+EB o' +Th, )¢’ + TR 6’

- EB, (6'+ ¢) [y"gos (6+8)+ w"s)u(e+qb>‘]
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where:
EL = [[E‘.de*?a’f
EL = [/57 (7-epdy j}

GI = |l G (3% 3™ d~7d5.

EE,= ﬁE P +3°N7'+ 37 ky) dydy

552=ﬁ5(7‘+53)-(7- &r) a’ya’g
cress-sect. ’

4.4. Moment-Curvature Relations

Using the transformation from £nZ to xyz and applying
the oxdering'scheme, one arrives at the final moment-

. curvature relations:
M, = (CI+tB6 Z+77zf )&’ + Th, @ + Tey (w'cos(e+d)-v'sincors)
=E8, (6'+¢")(v cos(a+$>+ W SIN(o+4#))
+(EI,_ SJME(ef-¢) + EI, cos 2(9 +¢)) viw”
—(EI, cos®lorg>+ EI, sin?(ore)) V'w '

+(EI, ~EL) s (8+¢) cos (o+¢> L vV -w'w"]
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My = (GT+Thk) ¢'v' + TeRosw (o+¢) +EB, (89'+4 ¢'*) sivlorp)
- £8, (vV'"cos (e+#>+ V'wisin(o+d))
= (E1, siu?lo+¢) + EI, cos®(o+a)) w”

- (EI,-€1) sw(o-_r4>> COS (8+P) v

Mz = (6T+Th) #'w' = Tex cos(ora + £8, (28" +4 ' cos (ore)
—E8, (W cos(a+p) +WWw siN(a+add)
t(ET, cos?(a+g) +EI, sin*(o+)) V"

4.16
+(EI, - €1,) siv(o+d)cos(o+d) W' ( !

4.5 Equilibrium Equations

Figure 4.3 shows the resultant and applied forces and

moments on an element of the blade. Force equilibrium gives:

T'+ p,

o

Vi Py

[
o

Ny
-+

O
"
Q
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Moment equilibrium gives:

My +Vov' -Yw + 9,

!
X =0
I
My -V, v Tw *q, =0 (4.18)
!
M, +Vy -Tv' +9, =0
FoRCES MomMeNTS

T*T'Jx
Fig. 4.3

Equations (4.17) and (4.18) may be combined to eliminate

the shears Vg and V.. Then the equilibrium equations are:




T.c - p‘ = 0 31

(4.19)
! ro, !,
- M +M v +M W f‘zx*iyvl*?,z”' =0
no_r ! 1
v, + J = 0
M, (Tw')' + ‘Z,"" Pz
The applied moments, e qy, and q,r and forces, Py py,

and P,- arise from inertia, aerodynamic and perhaps other

sources. They will be derived later, in Chapters V and VI. .

' 4.6 Final Structural Equations

Combining the moment-curvature (Egs. (4.19)) gives the

final structural equations:

- ¥ , ;
T +p =0 | o (4.20)

{ (EI, cos®6 +£T,siv’0) v" + (EI,-E], Y[ sw 6 cose w*+
-2Zsiv6caos8® ¢v'+(cos’e-sinie) ¢w”]- Ter (cos 0 -ds51vO)

i . A
—EB, 8'cos @ ¢',} - {TV’} + qz’ -p, =0
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{(EIQ; siv'e + El cos®a)w"+ (EI,-E1,) [SM/ 6 cose V"' +

-2 SING cos @ & w'+ (cose-sivie)ev']-Tey ($cosersive)

~EB,6'sm 6 $' }" — {Tw'} i @' -p, =

5\
-{(CJ; +Thy) &'+ Thy 6'- EB,0'(v'coso+w'siv e)} (4.21)
— Ter W'coso-v'sive) + (E1, -E1)(cos’- sve)v'w”

. — (ET,-EL,) sivecose (v''-w"?y - 9.7 4, v'- ,clzw'z 0

where: . |
GJ;: GJ*EB, 6'2
EA-""HE dnd3 o Cr = EA(( 70/7"’5
COrosh-sect. .
. - | | : ! : 2 .
EL = ff &3 "’7“3 b=z ( ECr+4 )dydy s

EL = ﬁﬁ 7(7 4)37:/5
EB= E(7+;‘)(7+; hddndg
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These equations may be compared to those of Houboult

and Broqks,lo and those of Friedmann9 or Hodges and Dowell.

Note the use of the standard approximations:

CosS(8+$)= COS6 - ¢ SIN O
(4.22)

SIN (B+¢)= Pcos O+ SIN B
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Chapter V

Inertia Loads

The distributed inertia forces and the associated

moments arising from the motion of the blade must be care-

fully derived to include all of the important effects.

The ordering sqheme becomes quite valuable here, to sort

out the many terms.

5.1

Acceleration of a Point

A .

The absolute acceleration of a point on the deformed,

rotating blade is given by kinematics:

where;

a = 5x(wxf?)+25x,$+f‘§.
Y= 2

From Chapter 1I,

Xt
|

x+e cosf, + U - (Vecos (e+d) +W snv(e+¢))
~3(w'cos (e+e)-V'sin (a+¢))

Cy *V+ycos(e+e)-% N (a+¢)

"ex SINF, W+ 7 siN(e+$) + T 205 (O+¢)

(5.1)

(5.2)




&=QOR I .

(5.3)

t
= Lns'“ﬁr o Qcos'gphj\ o

To simplify writing, the acceleration is broken into
its three components. Carrying out the vector multiplica-

tion and addition:
ey A A N
Q = a,L+ayJ+aZh (5.4)

wheres

a, = -aF {(){-H,{) cos B +rex-wWsINE -7 [tr'cos 6+wsinddcosh,+
+(Poso+ 58D swﬁ,,]-')' [(w'cose-vfsma)'w.sfp-t—
+(cos @-pswé) SIUF?] } cos ﬁ,
-ZQ[ V- psive - Tcos 6} cos B,

*-{L’E-')[ (F'cos 6 +Wsine)- 5 (Wcos@-V'sin e)}

a, = -.CZ?‘"{ ey + V+ M (coso-95m0) ~F(Pcosé+siV a)}(
.Z-Qj{ W SIN B+7 [(V'cose+w'sme)cosp, + $ coss sm,@]
~& cos B, +3 [0k cos o-'sine) cos g - ¢ s swﬁ,I}

+ { V7—7$Swe -*5<}Sjcase}
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Q= -0° {'(X+u) cos B -e; +wsivg

+77[(V'cosa+wlslué) COSﬁ, +(¢(.osé+swe)5u~lﬁ’,]

+7 [tw'cosa-v'sined cosﬁ, + (wse-?s:ue)s;ué]}s)n/g |
-2Q {—\'I+74’5w6+54.>‘°59}.51~ﬁ, |
+ {ﬁ +N$cose-% 4 sme}




5.2 Distributed Forces

Each particle of the blade cross-section undergoes the
acceleration given by Eq. (5.4). D'Alembert's Principle
may be used to find the infinitesimal force of inertia on

a particle as:

dpl= -adm = 45.,4: a’pa’j_ (5.5)

where:
Ipb = BLADE MATERIAL DENSITY

Integrating over the cross-section, and again dividing into

three components gives the distributed forces due to inertia:
I 2 __'3 '.
R = mQ [ A7) x +e,+2v/a]

r 4
P,t= m( [Cy +&81Cos8 + V-6 SING$ , (5.6)

+(-20 + 2B, W +2e;cos & V'+ 28 smo W)/
+{(-V + e an ) $)/0? ]
Ff: m® [- Br (xre - 28, Vi - (W +e,cos8 /]
where: |

m= (7 dpds

cross-sect,
SYMMETRY :

Cx.= ?nLﬁﬁ, 79745 [[ﬁ $dpdy =0

Cvo4s -sect. . CYosy- Cect.
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5.3 Distributed Maoments

Given the raaius to a point on the blade cross-‘sectién’
and the infinitesimal force there, the moment due to. that
force is: |

dj'= Vi xdp’ = (xR dydg (5.7)

Recall from Chapter II that the radius within the cross-

section is given as:

T

p.-._)[(v’cos (Brd) +w!SIN(B+)) -G (W 'Cos(ore) - V'SINCo+4)) f
Fc" 1 77--6'05(94'4.5) -1 sIN(e+¢) z

L Y siN (e+¢) +7 Cos (o+d) R

| (5.8)

Perfarming the vector multiplication, integrating over the

cross-section, and separating components gives the distri-

buted moments due to rotation:

: 2 R
9_: = ma”® [‘ﬁ, erxcose—ere, SIne-(k,, -k, )swecose

=€y SIN v - (le,.z,z - lg:")(cosze-s:w le) &

_ e (5.9)
+(esiNo V-e;cosow (ki + k:,,)‘#)/ﬂz 1

i‘ = mﬂ.z: [e:xsm _9+e,ex SING +€;XC058 ¢ +._ZcI SINE \7/.().]

;0
!

- mQ” f:elx COS O-C1ey CoSO+E XSIN O ¢-28; CoSOV/Y ]
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R

ekpandbd‘here.
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L flayidndy

crogs-sect.

1 {[p n'dyds

Cvets~ 5“* .

As in Chapter IV, coé(e + ¢) and sin(8 + ¢) have been
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Chapter VI

Aerodynamic Loads

Rerodynamic forces and moments on the blades arise due
to the airflow relative to the blade. The airflow results

from klade rotation and flexure, and from the inflow of

11

air through the wind turbine. As Friedmann~— has pointed

out, the rotor blade has three important degrees of freedom,

12

u, w, and ¢, so that Theodorsen's unsteady aerodynamics

are nat strictly applicable. Rather, the modified results

13

of Greegberg are used.

Far the purpose of this work, quasisteady aerodynamics
(C(k} = 1) were deemed adequate. Indeed, Miller and Ellist?
have shown that results are conservative when this simplifi-

~catiom is emplayed.

6.1 Blade Relative Velocity

It is conwvenient to introduce a fourth coordinate
system, cartesian X, ¥y 2y (Fig. 6.1), which is parallel to
Xyz, but moves with the deformed blade. Unit vectors are

iz, jz, k2 and the incidence angle between_y2 and n is ei.

To second order:
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The corresponding transformation is:

A 3 10 A
Tz | v w L (6.2)
A
.r=1-v o [V
z A
A
kz -w' o] i | h
Z
i
Yz
/"‘—/‘ o
//, /’/ —7
s’ -
VP

' Fig. 6.1
The blade velocity relative to the air is .given by

kinematics:

4

U = OxR +R - Uy, (6.3)
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The velocity of the air is:

-y A
Uintow = AQR, K 2 (6.4)
= LAQ R, swwh © AQL R,cosﬁp_l i
where: A
. A = uu\\ﬂa\o k
QR,
Rs= Tip Raows
Recall Egs. (2.4) and (5.3): ,
% +e, cos B +u-»%$ (v'::os(e+¢)+w'sw(a}«#)ﬂ‘r' ’L‘ ]
R -5 (w'cos(e+p)-v'sin(a+d)) | | , (6.5)
o 4 i
R €y + V7 COS(9+P) -TSIN(O+ &) '1J o
) R : A
:@x Swﬁ,+w+ )751N(9+¢)+5C03(9+¢) j LkJ
- a A A _ (6.6)
W s QsivB, i +Qcosp k
Then, carrying out the vector multiplication and
addition, and transforming to the Xy ¥y éz coordinate
aystem gives:
11 = Llyz Jz + llZg-hz . (6.7)

where

=V +0XxcosP +Qey

= W+ )\QRT cos ?P-rQ (ﬁp*W’)(V‘*cy)

U,
u,,
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Note that the cross flow parallel to the deformed blade is

ignored. The magnitude of the velocity U is calculated

using the approximation v1 + €9 =1+ 1/2 €g°

| | z
- . S . RT. .
Ul = U= QxcosB, +2 e,‘-r-z’-fa-x& cos B, + V + AZW (6.8)

The blade relative velocity is now manipulated into a

form compatible with Greenberg's13 theory. First, the velo-

city is separated into a steady part; Vo, and a time varying
part, V (Fig. 6.2):

o

U=V,+vety (6.9

where:
V = [QxcosB,+Qell, +[AQR cosp rp e ]k,
o V] vk, | -

e

Fig. 6.2
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Further, the time varying part of the velocity is 's,eparé.ted
into a component perpendicular to Vo, h, and a component

parallel to‘VO, {J. This is‘accomplished by defining a unJ.t
vector tangent to Vo, ‘E, and a unit vector normal to VO’ A.

Using the expansion 1//1 + =1 - 1/2 €5

—_L-;_’__{,-_s_x__:ue:‘
A Qxeosf, Xesf, 2 x* } . (6.10)
Then:
A By 3 4 | -
t- 7 [1-3X 15 +1[) f.’%;%,]kz (6.11)
And, by inspection:
R, Ly A
- -DE-2EBU L L-RRL e
Now, h and 5.: are simply:
© A &' . ,
h:-n-u:—(j--é’-}.z—l;)w-rl-%v (6.13)
. A - / ZETz). X 5 .
p= t-v = (I-7) JZIV+AZW (6.14)

Finally, the steady velocity and the pulsatioh_ (f:) are added

to give the total velocity:

P

Vi

"

\7° + p 1 | (6.15)
Vy
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where:

an T QxcosP, +Qey +V + ) %
V;Z = AQR, cos_ﬁl’ +Q (ﬁp+w’)(v+ey) +A§I v

The magnitude of V and its inverse are:

-hi . 2 '

V=V = Q. xcosh +Qe,x+z’-,\2}_jll’c‘,sigp+\’, | (6.16)
I ~ _1 { e 2 p? Y
- = - == _ L Ry ~_V __
4 Qxcosf, ! Xcosp, 2 A T .Qxc.asﬁ,}

' The time derivative of V is simply:

. " ‘ z
V.-‘-"-g'?:(l"zlAl% V*A%‘; A (6.17)
Alsax | |
P

-(z- Al

\ﬂ/*" A-’f—(I _ {(6.18)

=7t
!
wlo/
o |
"

6.2 BAngle of Attack

The velocity vector V -and the blade chord define the
angle of attack a as shown in Fig. 6.3. This angle is

regarded as small, and may be related to the components Vy
. . 2

and V as follows:
. 2'2
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<

= SIv (§;-a) = Siv G; cosd - Co5 B; SIN A

(6.19)

i

<L <

Cos (g;-a) = COSO;cosd+ SIN G, s

Now solve for o after applying the small angle approxima-

tions:

Cos o = | siv e ¥ o (6.20)
Then: S | !
Y Vi |
& = V? Siv 8; - Trb Ccos 6; | (6.21)

Fig. 6.3

The angular velocity of the blade section about the X,

axis must include the component of w along the X, axis.

To second order:

a = ¢ +.0 <5;4'wrv
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Differentiating with respect to time:
(6.23)

o = ‘4;w+.flv0'.

6.3 Quasisteady Aerodymamic Loads

13 results for C(k) 1, and translated into

=

Greenberg's
the present hotation, are:
_pacc g . ' . - (6.24)
f,,c-"‘_z ",;‘{ h + Va +Va+(s-e,)& }
.. pac
20 = > {V-Q" + (2 "8,\)0(. +h} (6.25)
m c - ¢ (£
EA 3 (5 - V°4+(41 e)Va+h)+
: ac
+(—§-% % -y } P eV[Vou(ae)ouh}
(6.26)
Also: -’
: A (6.27)

o ac C 2
d=F" VU

The lift has been divided into non-circulatory and
These are distributed forces and moments

" circulatory parts.
6.4. -Note that the

" which act on the blade as shown in Fig.
circulatory lift is defihed[perpendicular to the U vector,

while the ndncircﬁlatcry 1lift is defined normal to the

chord. The drag is tangent to the U vector, and the
pitching moment acts about the X, axis.
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‘ Z, 1
L | ‘

Uyz %2 \

»

3
£ u,,

A
d /
Mea
Fig. 6.4

The components of the net distributed force in the_y2

and z, directions are found by inspection:

p. = -a{i_f_ﬁ 2, uz"" 4,. sv 6
y2 | | (6.28)

Pzz du:z +1 u‘I'Z-)-,Qc cos 6;

Also:

= My, |
qxz £4 © (6.29)

Subsfituting 2nc' lc, and d into Egs. (6.28) and substitut-

ing for o (Eq. (6.21)), then transforming into the xyz co-

ordinate system gives:




p. = 0 -8
A pac cm", e | o,
= N . IN(O+¢) - cos (8+
Py =75 Ul + U,V scera-U V, cos(er9)
+('z' GYU o¢+uzh+‘1h3m(9+¢) :
+ % V& s w(arc?) + q p K" SIN (a¢¢;
€ . V .
-4p Vl SIN (6+@) ch(a-rab) + -,;(-,; AL S:p(6+¢)}

pac : - .
- { UV s (ore) - U,:\Qz costa+y) + U, h

NSO
0

| . (6.30)
+ (%-eA)UhoZ - %’-‘ Muzzf% h cos(a+¢)

+ %Va'( cos (6+9) + _‘c_’_ p ‘_éz: SIN(8+4) COS (8+4)

X

-3 pgn cos?(a+¢)+%(T‘,_eA)§Z605(9+¢) }

similarly for Eq. (6.29):

A _ pac

g" = B {E(5-eva-§ RS fereld
- -s (-f;:' -e,) [p’ g’t SiIN(8+$) -ﬁ5¥5= ca$(9+4>)+;).}
+e4VV s:u(efrda)-eAVV COS (o+4) (6.31)
+e,(£-e,)V& +e, V'h } |
‘i: x gt v’
A

RN

w
o
.3
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Finally, éubstituting for the various velocity com-

ponents yields the distributed aerodynamic forces:

P, =0

P; = )p_zi"‘cﬂz{AIR:COSQ‘)(I‘,Bz)R,xS,Ng
~AR, e, snvE - Ca —AR X CoSé@ ¢ (6.32)
=[ AR, siv 6+ZC"’ x[v/n

~[xsive =\R, (1+cos8)] W /[0
‘(f,:"sm’a \7‘+%$:~é6&)/_{22 }

pa.c
' @, {(/ 5,);( SING +28XSING Ak,(mex)wsg

p -
-Bex + ($+5 coss- €)X ~x(Prtw)V
-8, XW'+ xX*cos8 ¢ +(3 f-quSE-CA)XW’
+(§‘+%cos'9—€4)x$/ﬂ-[X-Al?,.swe]vO/(z
+l2xsws- AR (2cos 0-1)] /02

'*'(qQSI.uecosa l’f—% cos 8 V\'/)/Q‘ }
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And the distributed aerodynamic moments:

) P@(.’ 2 a 2 ) 4
.= 5 Q[ &A-A)Ix*swe+2¢e,8,xs5me
-8, AR+ cosef'zj- € XR cos
. . '  (6.33
+(Ze,4x5m9 v —eAxw)/Q (6.33)

"‘(f'eA){EC"eA).Xé/ﬂ j

A gac .
94, = G e xisve v’

A _ pPac ,
1 == 0% eax*sive w'

The usual expansi'ons for sin(6 + ¢) and cos(8 + $) are used.
The aordering scheme has been relaxed to include some seem-

ingly small damping terms which may be important in certain

cases.?
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Chapter VII

Final Governing Differential Equations

All that remains is to place the distributéd loads and
moments into the final structural equations. However, it
is convenientvto first establish the dependence of T and
uon v, w, and ¢. To do thJ.s, one follows the procedure .
of 'Hodges and Ormiston,8 taking:

mQ’L
EA

O(e,z) | o (7.1)

This assumption is reasonable for most wind turbines: blade
-stretching due to the tension is negligible.

Placing p, (Egs. (5.6) and (6.32)) into Eq. (4.20):

T"+ mﬂzfcas‘ﬁ,x,%x +2\'//Qf - (7.2)

Integrating from x to L:

T Q{(/ A )[mxdx+e fmdx_(%- dx} (7.35

where T(L) is taken to be zero. This equation is used to

find T.when solving the equations. Now, recall Eq. (4.9):
T =€ ' J'V”z Lo g noo "
= EA 2 tZw "'fLA 54’-9,.(\rcasa+w SINE) (7.4)

Equating with Eq. (7.3), and solving for u':
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= L
/] g ? PN 1 .
w'=.[_2-. {dex 'ELV"'Z-,.W' + e (Veosd+w'sivé)
EA ],

(7.5)

All terms of.O(eg) or higher have beén discarded, since u
appears in Eg. (5.6), where terms up to 0(25) only are re-
tained. Finally, integrating from 0 to x, then differen-
tiating with respect to time yields: '

x

. |
d= - /’(V'"V"fw'-&’)dx + fe, (V'cos6 +W'sn8)ds  (7.6)
o .

o

where u(0) is taken to be zero.

7.1 Final Dimensicnal Governing Equations

Combining Eqs. (4.21) with Egs. (5.6,5.9,6.32,6.33):

\f.: {(ETz cos®@ +EJ, siva) v 1"(51-2“51,) [swa coss wY+
’—ZScha‘SB v+ (cos?a-518"8) 5bw"] -Te, (coso-¢310)
"'EB,_O'ca'S e‘qb' Z"-, {Ty’g'a- {P-?Q'e,,x"smew’ (7.7)

| +7»Q‘[e; XsiNe ¢-2e,co56 v/ ] g'- sz{v-ez SIvE b

+(-24 +2B w+2e;c088 ‘7’*‘_281 swe w') [+ (ezswefﬁ-f;)/_[f}

+ P_‘zl_Cﬂz {/\Erx cos o ¢+ [AE{s}N 6+2 C;',’_f XJ v/

+Lxsin 8-2B (1+cos a)}i«'//n r (Ssm’ov-5sme v?)/_a’}
= {,,,Q‘ [e xcos 6 + e e, Cosa]} '+ma’{ey+e,cosa§

ac
P QR cos s - A G-gIR, (5o - AR, egsme - D2 x* S
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' 54 '
{ (EI, sin6+EI cos’aYw” + (E],- ET, )[SuvaCose v’
r25w8cos 8 pw’+ (cos’e -sn0d¢v"] -Te, (beoso+siva)
n !
-€8, 8'sive 4"} - {Tw'f -
2 4
- {"VI.Q?' [CIXCas9 ¢+ 2e; SV \7'/{1]+P%C(Zeszs;N9 V'}
2 L4 ow . P .
+mQ {2/5, Vir+ (W+epcos 8 $)/00

pac

+ 7(22{;( (B +w)V+eyxw'-xcos & ¢-(5+5cose-e)xw’

-(5+ gcas 6-¢)xd/ - [2xsimwo-)R, (2cos -]V /2

+ [x-AR v 0)irfcr = (§ smbcoco ¥ £ £ cos é‘vV)/.Qz“}

’
= {mﬂ’[e,x SING +ée, Siy 9]} 'sz,Bp (x+ex)
C
+ B0t {0- g xiswa s ze, xsm o -2k, (xrey) coso

“hex + (5r§eoso-edfx ]

N {(5.75 +Tk42) P’ - EBZ o' (vicos o+ w)"s:ue)} -'-Te,(w'kase-v”swe) -
T (_.EIz -ET )[(:,as’e—s:u‘e)v"w”- s:uacése v'iw?)]

+ m.Qz {eI SINO V + (k:,,- b.:,)(cas o-si°6) ¢ |

+ Cegsive F+egcosow + (ha, +42)® )/.ng

rPEa (-2exsme Vinsexi/as (fe)(5-e)xdia]
+mQ° f-e,xs:)ue V'-I-E,Xcas‘e.w’}

! :
= {T/Z:GI,{"ﬂflz{ﬁ,ez:(wseareze*sme
+ (k:,- ;t,:,) Sy é casGZ1— P-—gﬁﬂlz’eA (1*’.'&2))(25’”9‘

+2e58, X508 — € AR xeos 0 + L ey MRy cos e; -



where, to-summarize:

GJ, = GJ+EB o
EA= “.Edndg

EIL= [{E $'dxds

ET,= ffE’z(y-e{)_d’?d;

£ 8, = [[E G870y g dd g
8, :=fe P+ 4(7-2,y dndy
er = &4 [ 9 d7ds

Ry = 23 [ € O+ 8™ d%ds

These equations may be compared*to those of Hodges and

Ormiston,8 or Friedmann.15

Note that in the former work,

® is regarded as small, whereas the present equations retain

'cos® and sins.

-

Typical boundary conditions, which apply to- the lafge

- NASA wind -turbines are:4
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V(o) = vitoy= w (o) = w/(0) =0
VL= vy wi@) = w(o) = (LY=o

Kg #©) = Qo) g[(eJE__+ T)aA’)¢'+T‘2:9” (5.8)

X=0

where KR is the root spring, or control system, stiffness.




AEROELASTIC STABILITY STUDY
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Chapter VIII

Generalized Coordinates

Part B will pursue the solution of the equations of
motion-for a specific machine: the NASA-ERDA 100 kw wind
turbine. However, the results of this chapter may, in
general, be épplied to othgr.wind turbines with cantilever
roots. The familiar Galerkin assumed mode approach is

18

used, with one mode each for u, w, and ¢. \

-

8.1 Assumed Modes

Assume that the variables v, w, and'¢ can be represent-
ed by the product of a shape function of x and a time vary-

ing amplitude:
Vo= L% 2.0
w = L X&9,®
¢ = Bp(x) g, (t)

(8.1)

The factor L is employed to make all of the q's non-
dimensional. These generalized coordinates will now des-
cfibe the deflection and behavibr of the blade. Substitut-
ing this representation inté the boundary conditions

(Egs. (7.8)) gives:
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u
Q

¥, )= ¥,"(0) = ¥, (0)= ¥, (0)

W

CLO= X = K= v = Yy =0 (50

K Yooy 2 (6T, #Tey)] ¥, (o)
. X

4

8.2 Modal Equations

Because the algebra of tﬁis process is extensive yet
straigﬁtforward, the step .by step détails are not included.
The modal equations are simply written'out, with several
notes on their formation. After substituting Egs. (8.1)
into fhe equations of motion qus. (7:7)i, each equation is
multiplied through by the“proper weighting funétion ahd
integratéd over the blade from 0 to L; the v'equation is
weighted by LYv, the w quation by Lyw, and the ¢ eqﬁaﬁion
by‘y¢. The generalized coordinates and their time deriva-
tives may be taken outside of the inteégrals; the result is -
a set of three coupled algebraic equations. | 4

At this point it is prudent to non-dimensibnalize the

equations, by dividing through by
L .
s 2 2 2 .
o QI = Q (mx dx ' (8.3)
, 0 .
The independent variables x and t are replaced by their

(Y =&

= 3x

non-dimensional counterparts:

X= X/L
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Y0t (") = 5%,'

In addition, the following nondimensional quantities are

-

defined: _
s . PxCy .
3 = I, Copy = Cx.-;f;:.
z= £ 5 - Su
C - C’A Cg" = L 1
3 - Ex 8 - Ly
T = T |
(8.5)
- e ’ — _ e
€, = -L—:‘i S .I:I
- ' = R
e., = %’ RT = _LI
— , Iy h...,,
T Rue= T

The assumed modes (Egs. (8.1)) are also substituted in-
to the expressions for T and u (Eqs. (7.3) and (7.6)), which

are non-dimensionalized:

3 = 3
T . CGegduiel o gl 2l .
Q-‘l'sh = Iy f_mx X + I, g)'nc)x-i- 1, ngchxQV_(S.G)
¥ %
% =~ r(“w)clx A 2..— L()’.,)zdi 2“»{»
o (8.7)

+ }:e., FDSBX,,.J:? I, + [ Er swe¥di g,
& cautionr: some integrals must be integrated by parts

to assure symmetry of the equations. The subsequent
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application of the boundary conditions (Egs. (8;2)) will
eliminate all of the resulting boundary terms except one:
KRyi(O). (This suggests the form of a modification to add
a root spring about the y or z axis.)

Symbolically, the resulting equations are:
1,

[M] qow + LC] : + [K] q; +{p}: {Q} (8.8)

These matrices will be defined later.

Do OO

8.3 Static Equations

The aeroelastic stability must be studied for the blade
displaced to its equilibrium position by the steady forces
on it. Each generalized coordinate is separated into a

. T
static part and a small perturbation part, respectively:
9 = 4, *
T = Qus

Ar
24 =:‘Z?s t 2y

Then, the static parts may be found by solving the static

3,
~ ' (8.9)
Z N

w

equations:

[ )

[K]‘QZ:’ +fp} = {Q} L (8410)'

%

- o
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8.4 Perturbatlon Equations

Substltntlng Egs. (8.9) into the modal equatlons
(Eqs. (8.8)), and ignoring all products of the perturbations

yields the perturbation equations:

Foe ) 3 | ,1‘:
[M?]_*wa}- +'[C]{éw +[}<+AK]< [ = {0} (8.11)
%) . | )

The aeroelastic stability of the wind turbine blade is in-
‘dicated by the complex eigenvalues of this system. Note
that the AK matrix, and the C matrix, are functions of the

static blade deflection.

8.5 Coefficient Integrals

The coefficients of the matrices of Egs. (8.10) and

Eqs. (8.11) are listed here:

1 ’ A "
Kew= ST [, (BT, 08%0 + £1, s%e)(¥,' ) d %
(i- a L; ' - _ L3 1
yOfelL X T X |
Is £mx WvdX*e,Llafm‘}’vdx o (8.12)

o

- Is L'M szai

1
Kvw = L [(EI -E1,) siNnOcos s X, )’, dx

hﬂeﬂ

f 3, s e Y. ¥ d%
o



L3[I _
T m
o

(Y
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‘cos e X Y, dx+(I- /‘)

;7;-1;7_ [EB o

K, =
s L[ Lo
+e, —I-’Lm%,wdi-fa iméliswa Yp ¥r dX
L | Fys [
+-1-.-B £meISIU6Y4,X d,z-f-% AR, [chDSBX¢X J7
K = TgL [{EZ EI,)Swecose Yo' ¥ dx
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Chapter IX

Sample Solution: The NASA-ERDA

100-kw Wind Turbine

The modal equations of Chapter 8 have been solved for
the NASA-ERDA 100 kw Wind Turbine.. The purpose of generat-
ing this solution was to verify results computed using'the
equivalent hinge model developed for the Wind Energy Conver-'
sion Project.1 ‘Numerigal comparisons are documented here,
as well as a term by term comparison of the two systems of
equations.

The equivalent hinge model represents the blade as a
rigi& rod with springs at the root about the axes. This
allows the blade three angular degrees of fréedom, corres-
ponding to the three generalized coordinates of the present
analysis (see Fig. 9.4); The rotating natural frequencies
of the spriag-rod system afe matched to those of the blade

under study (see Appendix 2B).

9.1 Mode Shapes and Natural Frequencies

The mode shapes Yy and Yu? and the frequencies W, and
5

w

were taken from Donham, Schmidt, and Linscott. The mode
shape y¢ and the frequency m¢ were calculated using a simple
iterative scheme. All numerical values are tabulated in

.Appendix 2A, for 10 spanwise stations.
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The required derivatives were calculated using three
point finite difference operators of the central difference
type. As with the equivalent hinge.model, the resulting
non-rotating, uncoupled natural frequencies must match those

of the actual blade. The derivatives Y;, Y;, and Y& were

corrected by multiplicative factors so that:

2 {er, () d=
UV' = _?_____l____—-—;—'—"
L1 f wm Yv- ‘;2
' |
. [LET, (v Vdz (9.1)
a)w = '

1 [m % dx

L
2 _ Ke 8%: + F%ALIiJe(B;>‘J*
L‘IME.‘ Yo d%

g
|

9.2 Solution Process

The integrals of Section 8.5 were calculated usihg the
trapezoidal rule for numerical integration.A It was found
that a linear solutiﬁn was adequate for the static displace-
ments, soO the P matrix was ignored in Eg. (8.10). A FORTRAN
program was written which solves the static equations, sets
up the perturpation equations using the static solution, and
extracts the eigenvalués, using the EISPAC subroutine packf‘

_age (Argonne National Laboratory).
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The prograﬁ was used to calculate the rotating modes
and ﬁfequencies with no air loads. The calculated modal
coupling and frequencies are'in excellent agreement to
those documented by Donham, Schmidt, and Linscott,5 as shown

by Table 9.1.

FLap Mope ‘ Lae Mope
“w 2 L Iy |
ﬂ v 2\0: I-’-% n 2? ;._.%'
PRESENT AVALYSIS: - 2.77 T2 3,61 , 174
ReFerexnce 5: 2.76 166 3,62 169

Table 9.1

9.3 Equivalent Hinge Comparison: Numerical

The preseht program was usgd'in éonjunction with aﬁ
existing equivalent hinge program to generate three graphic
comparisons. Figure 9.1 compares two plots of lag mode
damping versus torsion frequency ratio for Various values of
precone angle. Although the comparison forfBp = -.24 is
poor, the results are generally in good agreement qualita-

tively, including the stability boundaries. Here, the
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torsion frequency is reduced by reducing the control
system étiffness.

Figure 9.2 compares two ploﬁs of lag mode damping
versus induced inflow angle for the standard control system
and one Qalf-as stiff. Again the pehavior is very compéf-
able. Figure‘9}3 compares the two modéis in a plot of lag
mode damping wversus precone angle. In all of these plots,
the lag mode is singled out because it is the most sensitive.

Eiéure 9.2 also,illustrate; the aeroelastic stability
of the NASA-ERDA 100 kw wind turbine in its standard config-=
uration, for KR standard.6 The A variation corresponds to

a wind speed of 10 mph gusting to 60 mph.

9.4 Equivalert Hinge Comparison: Term by Term

The form of the equivalent hinge equations is:

. f@ 6: : BE ‘
[MJ e "’[CJ % *[KE] [ = {Og (9.2)
- s |

&
s é; Ch
Although the equivalent hinge coordinates represent blade

motions compafable to the generalized coordinates of this

study, they are fundamentally different. The equivalent

\—

hinge coordinates are angles measured from the root as

shown by Fig. 9.4, which compares the two systems.



CENERALIZED CooRPINATES , EQuivALENT Hinoe
CooRBINATES

—— r—

Fig. 9.4
The matrix coefficients used in the equivalent hinge
equations afe listed in Appeﬁdix III. A detailed comparison
with the coefficient integrals of Section 8.5 has been
complefed with‘sihple mode shapes and parametérs;_:There are
two major results of this térm.by term comparison: First,
 All of the important terms and effects compare extremely
well; Séédnd; Because Bf tﬁé aifferent cobrdinate systems,
‘the equivalent hinge model has some inertia coupling terﬁs
with'no:countérparts in the present model. The generalized
coordinate model has similar stiffness coupling terms'with

no counterparts.
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Chapter X

CONCLUSIONS

' The nonlinear equations of motion of a general wind
turbine blade have been derived. Understanding the source
of"theﬂﬁarious terms in these equations is a key to under-
standing the dynamic problems associated with wind turbine
design. The equations, with suitable boundary conditions,
are applicable to many horizontal axis wind turbines
presently conceived or operating, and provides a foundation
for further study of wind turbine blade dynamics.

A sample. numerical solution has been complefed to
study the aeroelastic stability of the NASA~-ERDA lOb kw wind
turbine; fhe modal equations developed are applicable to
similar wind turbines if suitable Galerkin modes are used
to calculate the coefficient integrals. This generalized

\

coordinate analysis has been compared to an equivalent hinge
model used in "Wind Energy'cbnversion".1 The twe solutions
have ﬁeen’compared for a limited variatioh‘of fhe most im-
portant pafameters, and fhe equations of motion themse;ves
have ﬁeen scrutinized.

| Thé NASA machine is a demanding test for severalA
reasons, which may not apply to other machines. Some angles

are toc large for the small angle assumption used in the

equivalent hinge model. This is demonstrated by the



8l

increasing differencelbetween the two calculations as A or
Bp increase in Figs. 9.2 -and 9.3, and the poor results for
Bé = -,24 noted earlier. |

The NASA wind turbine exhibits a remarkable distribu-
tion of flexibility in its bending mode shapes, and consi-
derable distributed torsion. Quite naturally, the equiva-
lenf hinge mode; demonstrates betfer accuracy for blades |
where most of the flexure is in the root area. Marked
improvement was noted after simply eliminating the distri-
buted torsion in favor of purely root torsion. (Excellent
results may be expected for systems with articulated or
flexible strap hubs. | .

It was also dlscovered that the eotatlng natural fre-
quenc1es shou*d be matched when spec1fy1ng frequenc1es for
the equlvalent hlnge model, rather than the nonrotatlng
frequencies.‘ Again this was because of the highly distri-
" buted bending of. the NASA machine.

If the limitations of the eguivalent hinge model are
observed, it is adequate for its intended use as a prelimin-
ary design tool. The model represents all of the important
effects well; and produces excellent qualitative results.
For some systems, the simple eqﬁivalent hinge model gives
good quantitative results as well, and may be the only aero-

elastic stability analysis needed.
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Appendix I

Caoordinate Transformations

The rotation from xyz to XYZ is Bp about y, so that:"

B3 o - 7
- Co O TSN
| I *F P i (A1)
: —_ -4 A
< I - — Po) 1 J
A ) . A
.K‘J s Bp o cos l?? k
Note that later, use is made of the approximations:
. ! 1' » ' ~ —J-. 2 . A2
SWB £ B, cosf = I-4f] a2

For now,Ath;present form of Al is most convenient.
The rotations from xyz to x,¥,2, are tan ~v' about z

and tan-;wf about y. Using the approximations:

~ 12
SIN X7 =V cos &, = I-#v
' : (A3)
. ~ S
Siv &y =W cos Xy = 1-Lw!
A ™ A 8 3,2 . ' 17 A
A 2 PR >' (A4) -
Ja = -V 1-3v o J
A 2 A
R, L -w ~v'w’ I-—éw'_[L RJ
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Finally, the rotation from X,¥525 to EnZ is approximately

0 + ¢ about x

2. 'Multiplying this rotation into Eq. (A4)
gives: '
21 T . . | [
Lg| [1-av™=dw? v w i
A , ~
Ly = |- (Vicasto+e) +w'sinors)) Cos(owpy Siven) J (AS)
Al A
LE3]  L-owlcoste+e)-v'ein(o+4)) ~SIN(Btd) COXHP) ~k-
Again, this 4for'm is. most convenient now, but later the
following expansions are used: | ‘
SIN (8+P) = SINO +Pcoso (Aé)

cos (&+a) cos & —¢ SIN O

)
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Appendix II

NASA-ERDA 100 kw Wind Turbine Data

A. Generalized Coordinate Model

B. Equivalent Hinge Model
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2A. Generalized Coordinate Model

The various non-dimensional parameters are given in

. Tables Al and A2, as distilled from 'Ref. 5.

w .

!lg

1,218
1, 0368

04394

14. 975

10.33%36

122.26

rad
sec

rad
sec

TABLE Al

L= 59.85 f
- rad
Q= 40 vpm = 419
ﬁP: -70 = =12 Ya.d
= ©&
C;,o‘:: 012
s)
’o = ,00238 F’f’.,
_ £3-1b
A = ,0825 o 39S’

yo270 sl-f+*

o
U




TABLE A2

Station x ] CA ey Eﬁ = Ei Kﬁz - K2
1l .0.0 .555 -i.386 1.824 -.0022 .00012§ ' 0.0
2 111 .401 ~-1,359 1.824 ~-,0030 .000403 .000173
3 .2222 .253 fl.152 1.824 -.0030 .000379 . «000233

4 .3333  .145  -.761 1.649 -.0023  .000298 .000209
5 ..4444 .084 -.486 1.475 . .0005 .000215 ‘ .000158
6 .5556 .037 —;351 1.301 .0003 . .000161 .000126
7 .6667 .006 -.212 1.131 .0003 .000108 .000090
8 .7778 -.010 -.153 .956 .0003 .000078 .000067
9 .8889 -.028 -.126 .782 .0002. .000074 .600065

10 1.0 -.038 -.090 .608 .0005 .000039 .000039

(rad.)

98



TABLE A2 Continuted

Station Y Y} Y Y& Y% Y¢ Y&
1 0.0 0.0 ‘2,504' 0.0 0.0 .683  ,582 ,313
2 017 .293 2,283 .005 126 1,229,615 - ,246
3 .065 .531 1,620 .028  .311 1,571  .641  ,292
4 .135° .720  1.473  .074 '.482' 1.024 .685 .383
5 .225. .945 2,209 ,135  .680  1.980 .733  .441
6 .345  1.170 1.473 .225 . .959  2.254  ,791  .566
7 485 1.328 1,105 .348 1.260  2.322 .869 €71
8 .640  1.463  1.105 .505 1.719  4.644 .952 .513
9 .810  1.620  1.473 .730 2.228  3.073 = .992 .zod»
10 1.0 1.710 0.0 1.0 2.430 0.0 1.0 0.0

L8




TABLE A2 Continued

Station EI, x 1078 EI, x 1078 GJ x 1078 EB, X 1078 EB, x 1078
1 1.19 1.19 903 4w -1.55
2 1.88 - 2.15 1.32 3.73 -1.43
3 .632 1.21 .472 3.32 -1.35
" .396 951 .250 2.16 -.986
5 .257 771 - .153 1.35 -.696
6 ©.139 .576 .083 .794 ~.472
7 .073 .403  Lo3s 443 -.306
8 - .028 © .81 .017 - .223 -.184
9 .017 .069 .014 .098 -.100

10 .024 .035 .o14 .035 ~.046

(1b-£t%) - (b-£t?) (1b-£t%) . (b-fth (1b-£t7)

88




The parameters defined in Ref; 1 were calculated and

are listed

A=

(-]
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2B.

Equivalent Hinge Model

in Table A3.

TABLE A3
.08'25 nomwm., +o ,319%
o

11,25

002

2,572
3.62

29.19

001085

B = -

o

12

o
= 00152

0}66
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Appendix III

Equivalent ﬁinge Coefficients

The equivalent hinge matrix coefficients of Ref. 1l are

. listed here for convenience:

W |

X (ﬁofﬁu)
Xy + ?L

X
~
i
pw N ™

M, = %XI <30‘5»>
;o

Mas= = (o= B

<
v
"
jw

> Xg + 4,
My = = (ﬁa'ﬁ,ﬂ ) .
M= To+ (Bom Bud + @l + 32, + 340 x;

&

o
Y
4 < g

NOTE! p 4
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+(eX+ nm.dwvnx& ..auvnn_ g+« Ix 3 +u&w am. 2 =7%)
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A +
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