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Experimental Breeder Reactor I 1  (EBR-11) has operated, 
f o r  over 15 years a t  t h e  Idaho Nat iona l  Engineering 
Laboratory near Idaho F a l l s .  EBR-11. has served the  
n a t i o n  i n  p r o v i d i n g  i n fo rma t ion  on f u e l s ,  ma te r i a l s ,  
and components under cond i t i ons  approaching those 
expected f o r  commercial .power p lan ts .  .In a d d i t i o n ,  
EBR-I1 i s  a power p l a n t  generat ing e l e c t r i c i t y  w i t h  . ' 

an a v a i l a b i  1 i t y  o f  about 70%. A key component, t he  
In te rmed ia te  Heat Exchanger (IHX), o f  any L i q u i d  
Metal Fast  Breeder Reactor (LMFBR) must per form 

- w i t h  a high degree o f  r e l i a b i l i t y  f o r   successful^ 
commercia l izat ion.  The design and opera t ing  expe- 
r i ence  gained from EBR-I1 demonstrates t h a t  the  
IHX can be b u i l t  and operated w i t h  conf idence t h a t  
i t s  performance and r e l i a b i l i t y  w i l l  be s a t i s -  
f ac to ry .  
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Fig .  1 EBR-I1 PRIMARY COOLANT SYSTEM SHOWING LOCATION OF THE IHX 

This paper i s  concerned w i t h  the  design, thermal To achieve h igh  r e l i a b i l i t y ,  r e p a i r  c a p a b i l i t y ,  
performance, and opera t ing  experience o f  t he  I n t e r -  and adequate performance c h a r a c t e r i s t i c s ,  t he  IHX 
mediate Heat Exchanger (IHX), t he  component p r o v i d i n g  was designed t o  s a t i s f y  t he  f o l l o w i n g  bas ic  requ i re -  

I 
a boundary between the  pr imary and secondary sodium ments: 
systems. Inc luded i s  a d iscuss ion  o f  the o r i g i n a l  1 
design phi losophy, heat t r a n s f e r  design and perform- (1) Design, f a b r i c a t i o n ,  and t e s t i n g  were t o  be i n  
ance, d e s c r i p t i o n  o f  t he  IHX, and a summary o f  the  accordance w i t h  the  r u l e s  o f  Sect ion V I I I ,  
opera t ing  experience a f t e r  approximately 15 years of "Unf i red  Pressure Vessels ,I1 o f  t he  ASME Boi l e r  
serv ice.  L i s t e d  i n  Table 1 are  design data f o r  - and Pressure -- Vessel Code, 1959 e d i t i o n .  The 
the  EBR-I1 IHX. r u l e s  o f  t h e  Code were t o  be extended t o  p rov ide  

f u r t h e r  design c r i t e r i a  s p e c i f i c a l l y  r e l a t e d  t o  
DESIGN PHILOSOPHY sodium heat exchangers, where these were no t  

adequately addressed w i t h i n  the  e x i s t i n g  Code. 
The bas ic  phi losophy u t i l i z e d  i n  the  es tab l i sh -  

ment o f  design c r i t e r i a  f o r  t he  I H X  was based on the  (2) The heat exchanger was t o  be designed t o  f a c i l -  
b e l i e f  t h a t  e x i s t i n g  design methods, standards, and i t a t e  na tu ra l  convect ion coo l i ng  o f  t he  reac to r  
codes were adequate o r  cou ld  be extended s u f f i c i e n t l y  du r ing  low-power opera t ion  o r  a f t e r  reac to r  
t o  p rov ide  bases f o r  the  design o f  a component t h a t  shutdown. 
would r e l i a b l y  perform throughout i t s  serv ice  l i f e ,  
w i thou t  the  c a p a b i l i t y  f o r  i n s e r v i c e  i nspec t i on  o r  (3) The tube-bundle sec t i on  o f  t he  heat exchanger 
in -p lace r e p a i r .  R e l i a b i l i t y  was a prime design was requ i red  t o  be removable t o  f a c i l i t a t e  
cons idera t ion  t h a t  was no t  t o  be compromised by r e p a i r  o r  rep1 acement. 
maintenance o r  r e p a i r  requirements. 

! 



(4) Ma te r i a l s  were t o  be se lec ted  w i t h  cons idera t ion  
o f  s t ress  cor ros ion ,  carbon mass-transport 
problems, and c o m p a t i b i l i t y  w i t h  o ther  pr imary-  
system mater ia ls .  

(5) Sections o f  t he  heat  exchanger t h a t  would be 
subjected t o  temperatures o r  ra tes  o f  tempera- 
t u r e  change t h a t  cou ld  cause excessive thermal 
stresses were requ i red  t o  be p ro tec ted  by 
thermal sh ie lds .  

(6)  The heat exchanger was requ i red  t o  be designed 
f o r  a low s h e l l - s i d e  pressure drop. This  
requirement was des i rab le  t o  minimize the  
i n t e r n a l  pressure o f  the  r e a c t o r  upper plenum, 
and was a l so  necessary f o r  t he  enhancement o f  
na tu ra l  convect ion coo l ing .  

(7) Uniform f l ow  d i s t r i b u t i o n  a t  a l l  coo lan t  f low- 
ra tes ,  on bo th  t h e  pr imary and secondary s ides 
o f  t he  heat exchanger, was a requirement., This  
requirement was considered necessary t o  ensure 
adequate performance c h a r a c t e r i s t i c s  and t o  
minimize s t r u c t u r a l  design p.robl ems. 

(8) The r a d i a t i o n  s h i e l d i n g  was requ i red  t o  be 
adequate t o  reduce a l l  r a d i a t i o n  from the  
v i c i n i t y  o f  t he  heat exhanger t o  a b i o l o g i c a l l y  
t o l e r a b l e  l e v e l .  Sh ie ld ing  was a l so  t o  be 
prov ided t o  minimize neutron a c t i v a t i o n  o f  t h e  
secondary sodi um. 

(9) Tube-to-tubesheet attachments were t o  be de- 
signed w i t h  the  need f o r  weld re inforcement  
taken i n t o  cons idera t ion .  Both the  advantages 
and disadvantages o f  tube r o l l i n g  were t o  be 
considered. 

(10) The heat exchanger was t o  be designed as a 
s t ra igh t - tube  u n i t  having f i x e d  tubesheets. 
Considerat ion was t o  be g iven t o  the  e f f e c t s  o f  
d i f f e r e n t i a l  expansion between tubes and tube- 
sheet support s t ruc tu res .  

(11) A l l  pressure boundaries were requ i red  t o  be 
l eak  f ree ,  as determined by hel ium mass spec- 
t romet ry  t e s t ,  i n  a d d i t i o n  t o  the  pressure 
t e s t s  requ i red  by t h e  ASME Code. 

A d e t a i l e d  conceptual design was developed' by 
Argonne Nat ional  Laboratory t o  achieve these objec- 
t i v e s . .  Add i t iona l  d e t a i l e d  design was. performed by 
the  f a b r i c a t o r .  Stress analyses were done b y .  
an independent 1 aboratory. 

MECHANICAL DESIGN 

The IHX (See Fig.  2) cons i s t s  o f  th ree  bas ic  
s t ruc tures .  

(1) Well cas ing 
(2) Tube bundle 
(3) Sh ie ld  p l u g  

The w e l l  cas ing i s  a ' c y l i n d r i c a l  Type 304 
s t a i n l e s s  s tee l  s t ruc tu re ,  approximately '  18: 5 f t  
(5.64 m) long and 6 f t  (1.83 m) i n  diameter. This  
s t r u c t u r e  i s  an extension o f  t he  heat-exchanger 
nozzle o f  t he  pr imary- tank cover. It provides the  
support s t r u c t u r e  f o r  the  p r i m a r y - f l  ow i n l e t  d i f f u s e r  
and neutron s h i e l d i n g  t h a t  surround the  heat- 
exchanger tube bundle. The tube bundle and s h i e l d  

p l u g  form an i n t e g r a l  un i - t  t h a t  s l i d e s  i n t o  the  w e l l  
cas ing from the  top  o f  t he  pr imary tank. 

To achieve s u i t a b l e  thermal convect ion charac- 
t e r i s t i c s ,  t he  heat exchanger i s  arranged so t h a t  
the  pr imary i n l e t  i s  approximately 12 f t  (3.66 m) 
above the  reac to r  o u t l e t  plenum. Because o f  t h i s  
requirement,  t he  o v e r a l l  l eng th  o f  the  heat exchanger 
and the  tube l eng th  are  l i m i t e d ,  and the  r e s u l t i n g  
heat exchanger i s  a sho r t ,  large-diameter u n i t  w i t h  
a length- to-d iameter  r a t i o  o f  approximately 2.3. 

I f  heat-exchanger maintenance i s  ever necessary, 
t he  tube bundle and s h i e l d  p l u g  can be removed from 
the  w e l l  cas'ing. Removal i s  accomplished by d r a i n i n g  
the  secondary sodium, c u t t i n g  the  secondary i n l e t  
and o u t l e t  p i  p ing,  breaking the  upper mounting 
f lange,  and '1 i f t i m g  t h e .  tube bundle and s h i e l d  p l u g  
ou t  o f  t he  w e l l  casing. Since an iner t -gas  b lanket  
must be maintained a t  a l l  t imes, a caisson o r  s i m i l a r  
mechanism must be used du r ing  t h e  removal procedure. 
A f t e r  removal, t he  tank  nozzle must be c losed w i t h  a 
temporary p l  ug . 

The ma te r ia l  se lec ted  f o r  a l l  pressure bound- 
a r i e s  o r  sodium-wetted surfaces was Type 304 s ta in -  
l ess  s t e e l .  Possib le problems w i t h  s t ress  cor ros ion  
o r  carbon mass t r a n s p o r t  were considered t o  be 
n e g l i b i b l e  i n  cons idera t ion  o f  t he  r e l a t i v e l y  benigh 
chemical e f f e c t s  o f  sodium on the  s t a i n l e s s  s t e e l  
surfaces a t  the  opera t iona l  temperatures o f  883OF 
(472.8OC) f o r  the  pr imary  coo lan t  and 87Z°F (466.7OC) 
f o r  t he  secondary coolant .  Por t ions  o f  t he  secondary 
coo lan t  c i r c u i t  con ta in  f e r r i t i c  2.25 C r - 1  Mo mater i -  
a l s ;  however, l o s s  o f  carbon from these ma te r ia l s  t o  
the  s t a i n l e s s  s tee l  i n  t he  heat exchanger was no t  
considered t o  be a problem. 

P ro tec t i on  against. ' .high temperatures and thermal 
t r a n s i e n t  e f f e c t s  i s  prov ided by thermal b a r r i e r s  a t  
t he  pr imary-coolant  surfaces o f  the .  upper and iower 
tubesheets. The secondary-coolant s ide  o f  the  upper 
head i s  t he rma l l y  p ro tec ted  by a t h i n  l i n e r  spaced 
away from the  head surface. 

The heat exchanger was designed w i t h  a low 
length- to-d iameter  r a t i o ,  which i s  compatible w i t h  
the.  p h i  1,osophy o f  a low-pressure-drop heat exchanger. 
The pressure drop was f u r t h e r  reduced by maip ta in ing  
a x i a l  f l o w  t o  the  maximum p r a c t i c a l  ex ten t .  No 
p rov i s ions  were made f o r  cross f low,  and the  support- 
b a f f l e  f l o w  areas were maximized by the  use o f  
convoluted-r jbbon-type supports, r a t h e r  than the  
more convent ional d r i  11 ed-pl  ate-type support.  A 
maximum-pressure-drop c r i t e r i o n  o f  5 p s i  (34.4 kPa) 
f o r  bo th  pr imary and secondary coo lan t  was e a s i l y  
achieved. Va lues 'a t  f u l l  power opera t ion  are approx- 
imate ly  2 . 1  p s i  (14.5 kPa) and 3.5 p s i  (24.1 kPa) 
respec t i ve l y .  

Because o f  an unusual ly  low length- to-d iameter  
r a t i o  f o r  the heat exchanger, a s i t u a t i o n  was created 
i n  which the  pr imary f l o w  cou ld  r e a d i l y  become 
imbalanced. With imbal anced f 1 ow, much o f  . the  
pr imary sodium would n o t  penet ra te  .the tube bundle 
and would the re fo re  bypass the  center  tubes. Th is  
s i t u a t i o n  cou ld  cause a l oss  o? o v e r a l l  e f f i c i e n c y  
and produce excessive thermal s t resses i n  t h e  tubes 
and tube-to-tubesheet welds. To achieve balanced 
pr imary f low,  t he  heat exchanger was designed t o  
p rov ide  an equal s t a t i c  pressure drop, w i t h  proper  
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Fig. 2 EBR-I1 In te rmed ia te  Heat Exchanger Assembly 

f l ow  f o r  every poss ib le  f l o w  path. Since good 
thermal-convect ion c h a r a c t e r i s t i c s  were a  requirement, 
cross- f low b a f f l e s  were considered t o  be unacceptable 
f o r  use i n  the  heat exchanger. As an a l t e r n a t i v e  t o  
b a f f l e s ,  the  b e l t  d i f f u s e r  and two o r i f i c e  p l a t e s  
were used t o  achieve equal pressure drops f o r  a l l  
poss ib le  f l o w  paths. 

I 
prov ide  f l ow  paths o f  equal pressure drop f o r  a l l  
p o i n t s  where the  pr imary coo lan t  enters the  tube I 

I bundle. j 
i 

The o r i f i c e ,  p l a t e s  used i n  the  heat exchanger I I 
I 

a re loca ted a t  two po in ts :  one p l a t e  i s '  pos i t i oned  I 
.immediately below t h e  pr imary-coolant  i n l e t ,  and the  ! 

o ther  p l a t e  i s  l oca ted  immediately above the  coo lan t  ! 
o u t l e t .  A l l  o f  t he  heat-exchanger tubes pass through 
holes d r i l l e d  i n  the  o r i f i c e  p la tes .  To achieve the  
de.sired coo lan t  f l o w  balance, t he  hole s izes  were 
var ied:  the  smal ler-diameter ho1.e~ toward the  

! I  The b e l t  d i f f u s e r  i s  pos i t i oned  e c c e n t r i c a l l y  

I 

I 

around the  pr imary-coolant  i n l e t .  This  s t r u c t u r e  
serves as a  coo lan t  i n l e t  plenum and i s  designed t o  



per iphery  o f  t he  p l a t e  and t h e  l a r g e r  holes toward the  
center .  Hole s izes  ,were c a l c u l a t e d  t o  counterac t  
t h e  gradua l ly  'I 'ncreasing pressure drop .as the  sodium 
coo lan t  f lows toward o r  away from the  center  o f  t he  
tube bundle. 

The secondary s ide  o f  t he  heat exchanger was 
a l so  requ i red  t o  have balanced f l ow  and good thermal- 
convect ion c h a r a c t e r i s t i c s .  The phys ica l  arrangement 
o f  t he  secondary s ide  was a l so  designed t o  promote 
na tu ra l  convect ion f low.  The secondary sodium 
e11tc.r~ the  heat exchanger through an i n s u l a t e d  p ipe  
and f lows down t o  t h e  lower e l l i p s o i d a l  head. 
W i th in  the  head, t he  f l o w  must make a  180-degree 
t u r n  be fore  f l o w i n g  up through the  tubes. A semi- 
torus-shaped d i f f u s e r  i s  enclosed w i t h i n  the  lower 
head t o  t u r n  the  f l o w  the  requ i red  180 degrees; t he  
d i f f u s e r  a l so  d i s t r i b u t e s  the  coo lan t  t o  p rov ide  a  
balanced secondary f 1  ow. 

Rad ia t ion  s h i e l d i n g  i s  prov ided by s h i e l d  
~ n a t e r i a l s  w i t h i n  t h e  s h i e l d i n g  p l u g  and by an o f f s e t  
i n  the  secondary i n l e t  and o u t l e t  p ip ing .  The 
o f f s e t  i n  t he  p i p i n g  i s  s u f f i c i e n t  t o  e l i m i n a t e  
d i r e c t - l i n e  streaming o f  r a d i a t i o n  through the  
secondary coolant .  A1 1  r a d i a t i o n  s h i e l d i n g  ma te r ia l  
i s  i n s t a l l e d  i n  t he  s h i e l d  p lug,  except f o r  neutron 
sh ie ld ing .  The neutron sh ie lds  cons i s t s  o f  a  1- 
i n . - t h i c k  (25.4-mm) l a y e r  o f  1.5 w t  % boron s t a i n -  
l ess  s t e e l  t h a t  covers the  lower 48 i n .  (1.22 m) of 
the  w e l l  casing, and a  l a y e r  o f  0 .25 - in . - t h i ck  (6.4- 
mm) Bora l  conta ined between the  lower heads. 

Various methods o f  attachment o f  tubes t o  
tubesheet were considered. The se lec ted  design 
r e l i e s  on a  welded c losure  f o r  bo th  sea l i ng  and 
mechanical s t rength.  R o l l i n g  o f  tubes i n t o  tube- 
sheets was considered b u t  e l im ina ted  because o f  
concern t h a t  c o l d  work in t roduced i n  the  tube du r ing  
an expansion process would have a  bad e f f e c t  on the  
behavior o f  t he  tubes i n  serv ice .  

STRESS CONSIDERATIONS 

The r u l e s  o f  Sect ion V I I I ,  "Unf i  r ed  Pressure 
Vessels," o f  t he  . - ASME B o i l e r  - and Pressure Vessel 
Code. 1959 e d i t i o n .  were used i n  the  design o f  t he  
heat exchanger.   he Code r u l e s  were extended t o  
cover the  e f f e c t s  o f  thermal s t resses t h a t  were n o t  
a  requirement o f  t he  Code. The e f f e c t s  o f  thermal 
f a t i g u e  were considered, b u t  n o t  speci f i c a l  l y  eval u- 
ated s ince data d i d  no t  e x i s t  t o  p rov ide  a  bas i s  f o r  
determinat ion. Complete i n t e r a c t i o n  o f  a1 1  bodies 
was considered, us ing  convent ional so lu t i ons  f o r  
i n d i v i d u a l  bodies where such so lu t i ons  were avai  1  able. 
So lu t ions  were developed where convent ional so lu t i ons  
were no t  ava i l ab le .  Both tubesheets were considered 
as one body formed by two p l a t e s  connected by an 
e l a s t i c  foundation. Ana1.yses were performed us ing  a  
s t a t i c a l l y  redundant system, which cons is ted  o f  52 
reac t i ons  between var ious bodies. Stresses were 
ca l cu la ted  f o r  t he  f o l l o w i n g  f o u r  d i f f e r e n t  loadings:  

(1) Steady s t a t e  pressure and dead weight loadings 
- w i t h  a  secondary-sodium pressure o f  150 p s i  
(1.03 MPa) and a  r e a c t i o n  f o r c e  o f  1271 I b .  
(5654 N) on t h e  14-in. -diameter.  (375-mm outs ide  
diameter) center  s h e l l  around the  secondary- 
sodium i n l e t  'pipe. 

(2) Steady-state thermal l oad ing  w i t h  the  mean 
temperature o f  t he  center  s h e l l  20. g0F (11.6OC) 
h igher  than t h a t  o f  t h e  tubes. 

(3) Trans ien t  thermal l oad ing  f o r  a  reac to r  scram 
t h a t  causes the  mean temperature o f  t h e  center  
she1 1  t o  be 60°F (33.3OC) h igher  than t h a t  o f  
t he  tubes. 

(4) Trans ien t  thermal load ing  f o r  a  f a i l u r e  o f  t he  
secondary-sodium pump t h a t  causes the  mean 
temperature o f  t he  center  s h e l l  t o  be 60°F 
(33.3OC) 1  ower than' t h a t  o f  t h e  tubes, accom- 
panied by a  200°F (111. l ° C )  r i s e  i n  temperature 
a t  t he  ou te r  edge o f  t he  lower tubesheet. 

A l l  f o u r  o f  t he  above loadings were considered 
separa te ly  and st resses computed separate ly ,  s ince 
the  c r i t e r i a  f o r  s t r u c t u r a l  adequacy were d i f f e r e n t  
f o r  each loading,  i n v o l v i n g  the  type o f  load ing  and 
the  expected number o f  cyc les.  Resul ts  f o r  t he  f o u r  
1  oadi ngs were ca lcu la ted ,  w i t h  the  f o l  1  owi ng concl u- 
sions: 

(1) Because o f  t he  steady s t a t e  pressure and dead 
weight  loading,  t t ie re  was o n l y  one p o i n t ,  where 
the  i nne r  w a l l  o f  t he  bottom head j o i n s  the  
r i n g  body o f  t he  lower tubesheet, a t  which 
p l a s t i c  s t r a i n  would occur. It was expected 
the  f i r s t  p l a s t i c  ' cyc le  du r ing  h y d r o s t a t i c  
t e s t i n g  would produce s u f f i c i e n t  p l a s t i c  y i e l d i n g  
so t h a t  subsequent opera t ion 'wou ld  be i n  t he  
e l a s t i c  range. 

(2) Thermal s t resses r e s u l  ti ng du r ing  steady s t a t e  
and reactor-scram opera t ion  were w i t h i n  accept- 
ab le  l e v e l s .  

(3) Thermal s t resses r e s u l t i n g  from secondary pump 
f a i l u r e  were w i t h i n  acceptable l i m i t s .  Fat igue 
damage'as a  ' r e s u l t  o f  a  1000-cycle l i m i t  was 
judged t o  be acceptable. 

HEAT-TRANSFER DESIGN AND ANALYSIS 

The EBR-I1 IHX i s  a  single-pass counter-current  
exchanger w i t h  pr imary sodium on t h e  s h e l l  s i de  and 
secondary sodium on the  tube s ide.  The design 
phi losophy was t o  use a  l a r g e  hea t - t rans fe r  area so 
t h a t  t he  approach temperature between the  pr imary  
and secondary sodium would be small a t  t he  h o t  end 
o f  t he  exchanger. A conservat ive design was a l so  
used t o  compensate f o r  t he  l a r g e  poss ib le  unce r ta in t y  
i n  p r e d i c t i n g  the  Nussel t  number on the  unba f f l ed  
s h e l l  s i de  o f  t he  exchanger. The low approach 
temperature a t  t he  h o t  end was des i red  t o  maximize 
the  thermal e f f i c i e n c y  o f  t h e  r e a c t o r  system. 

Tube-side Heat- t ransfer  C o e f f i c i e n t .  The 
p r e d i c t i o n  o f  t he  hea t - t rans fe r  c o e f f i c i e n t  o f  t h e  
secondary sodium on the  tube s ide  i s  e a s i l y  obta ined 
f o r  the  we l l -de f i ned  geometry. For the  design of 
a l l  EBR-I1 hea t - t rans fe r  components, the  Lubarsky- 
Kaufman (1) - .  c o r r e l a t i o n  was used. 

Using a  c a l c u l a t e d  Pec le t  number o f  170 f o r  62.5-MW 
f l o w  and temperature cond i t ions ,  a  Nussel t  number o f  



was assumed t h a t  t he  d i f f e rences  would be the  same 
a t  power cond i t ions .  Based on r e a c t o r  opera t ion  
cond i t i ons  a t  t h i s  t ime (1968), an o v e r a l l  heat- 
t r a n s f e r  c o e f f i c i e n t  o f  1280 B tu /h r *h r2  *OF (7.27 
kW/m2-K) was measured, as compared t o  the  c a l c u l a t e d  
value o f  1350 B tu /h r - f t 2o0F  (7.67 kW/m2*K) f o r  the  
50-MWT power operat ion.  Th is  measured c o e f f i c i e n t  
was on l y  5% less  than . the design c o r r e l a t i o n ;  The 
unce r ta in t y  was high, s ince  a 1°F (0.56OC) e r r o r  a t  
t he  h o t  end o f  t h e  exchanger would r e s u l t  i n  a 7% 
change i n  the  o v e r a l l  hea t - t rans fe r  c o e f f i c i e n t .  
For i n i t i a l  opera t ion  a t  62.5 MW, i t  was found t h a t  
t he  measured performance was 1230 Btu /hr *  f t 2 * O F  
(6.98 kw/m2*K), 89% o f  t he  design value o f  1380 
B tu /h r * f t 2 *OF (7.84 kW/m2-K). The d i f f e r e n c e  i s  
probably due t o  thermocouple record ing  d r i f t  between 
the  t ime o f  isothermal  thermocouple c a l i b r a t i o n  and 
the  i n i t i a l  power opera t ion  a t  62.5 MW (September 
1969). As mentioned above, a 1°F (0.56OC) e r r o r  i n  
the  d i f f e r e n t i a l  temperature a t  t h e  h o t  end o f  t he  
exchanger would account f o r  t he  observed d i f f e rence .  

TABLE 2 

HEAT-TRANSFER CORRELATIONS, 

UNBAFFLED SHELL SIDE OF EBR-I1 IHX 

C o r r e l a t i o n  NUSSELT NUMBER 
TUBE* EOUIVALENT* 

*Diameter used i n  Pec le t  Number 

Summary o f . H e a t - t r a n s f e r  Performance. The 
o v e r a l l  hea t - t rans fe r  performance o f  t he  EBR-I1 IHX 
has been i n  agreement w i t h  t h e  design c o r r e l a t i o n .  
Considering the  unknown channel ing o f  ho t  sodium on 
the  i n s i d e  and outs ide  o f  t he  u n i t ,  which would 
lower the  o v e r a l l  performance, t he  system c o n d i t i o n  
was adequately described by the  design c o r r e l a t i o n s '  
i n i t i a l l y  used. 

DESCRIPTION OF THE SHIELD PLUG,AND TUBE BUNDLE 

The removable p o r t i o n  o f  t he  EBR-I1 IHX cons i s t s  
o f  t he  sh ie ld -p lug  and tube-bundle assembly. The 
reader i s  r e f e r r e d  t o  F ig.  2 as each o f  the  compo- 
nents are described. 

Secondary-sodium P i p i n g  Connections. The 
secondary-sodium p i p i n g  connections are .prov ided 
above the  s h i e l d  p lug,  which i s  l e v e l  w i t h  the  
pr imary- tank sh ie lded cover. The i n l e t  and o u t l e t  
elbows are  12- inch Schedule 20 p i p i n g  (324-mm 
outs ide  diameter, 6.35 mm w a l l  thickness).  These 
elbows are  anchored t o  t h e  cover t o  p revent  t h e  
t ransmiss ion o f  a x i a l  and r o t a t i o n a l  displacements 
from the  connect ing p ip ing . .  The connect ing secondary- 
sodium p i p i n g  must be butt-welded t o  these elbows 
a f t e r  i n s t a l  l a t i o n .  

p r e d i c t i n g  s h e l l  s i de  c o e f f i c i e n t s  f o r  t h e  designer.  
Because t h e  EBR-I1 design equat ion g ives a l a r g e r  
c o e f f i c i e n t  than t h e  o the r  c o r r e l a t i o n s ,  the  measured 
performance cou ld  be s i g n i f i c a n t l y  lower than pred ic -  
t e d  i f  t h e  o the r  c o r r e l a t i o n s  descr ibe the  E B R - I 1  
IHX? I f  t h e  s h e l l - s i d e  Nussel t  numbers were g iven 
by the  lower fac to rs ,  the  s h e l l - s i d e  c o e f f i c i e n t  
would be c o n t r o l l i n g  i n  t h e  performance o f  t he  
exchanger. 

P r e d i c t i o n  o f  System Temperature Condit ions. 
The primary-sodium temperatures are  determined by 
the  system cond i t i ons  o f  700°F (371°C) tank  ( o r  
heat-exchanger o u t l e t )  temperature, a primary-sodium 
f l o w  r a t e  o f  9000 gpm (0.568 m3/s), and a r e a c t o r  
power l e v e l  of 62.5, MW. This wi  11 r e s u l t  i n  a 
reac to r  o u t l e t  and (assumed) exchanger i n l e t  temper- 
a t u r e  o f  883OF (473OC). For t he  secondary sodium, 
the  exchanger i n l e t  temperature i s  maintained near 
580°F (304OC), about t he  s a t u r a t i o n  temperature o f  
t he  steam. The design o u t l e t  temperature o f ' t h e  
secondary sodium f o r  the  in te rmed ia te  heat exchanger 
may be obtai'ned from the  f o l l o w i n g  exchanger r a t e  
equat ion: 

Combining a l l  o f  t h e  i n d i v i d u a l  hea t - t rans fe r  c o e f f i -  
c i e n t s  g iven above and neg lec t i ng  any f o u l i n g ,  an 
o v e r a l l  hea t - t rans fe r  c o e f f i c i e n t  o f  1380 B t u / h r - f t 2 *  
OF (7.84 kw/m2*K) was obtained. Using the  t o t a l  
hea t - t rans fe r  area o f  3950 ft2 (367 m2) and t h i s  
equat ion, a secondary-sodium o u t l e t  temperature o f  
876OF (497OC) was obtained; i . e . ,  an approach o f  
on l y  7OF (3.g°C) was r e a l i z e d  a t  t h e  h o t  end o f  t he  
exchanger. On t h e  o the r  hand, i f  the  Nussel t  number 
was 1.0 as i n d i c a t e d  by the  o ther  c o r r e l a t i o n s  i n  
Table 2, t he  o v e r a l l  hea t - t rans fe r  c o e f f i c i e n t  
would have been 690 B tu /h r - f t 2 *OF (3.92 kW/m2*~) 
and the.secondary . o u t l e t  temperature would have been 
805OF (42g°C) f o r  a 78OF (43OC) approach. 

Measurement o f  Performance. The system tempera- 
t u r e  sensors i n d i c a t e d  t h a t  t h e . o v e r a l 1  heat t r a n s f e r  
c o r r e l a t i o n  was p r e d i c t e d . b y  the  Lubarsky-Kaufman (1) 

. c o r r e l a t i o n  r a t h e r  than t h e  o ther  c o r r e l a t i o n s  g i ven  
i n  Table 2: Consequently, t he  accuracy of the  
temperature sensors a t  t h e  h o t  end o f  t h e  exchanger 
i s  very important  i n  determin ing the  measured heat- 
t r a n s f e r  c o e f f i c i e n t .  The temperature sensors i n  
t he  secondary sodium system are res i s tance  thermom- 
e te rs ,  and they were removed f o r  c a l i b r a t i o n  f o r  
t h i s  study. The res is tance thermometers i n  the  
pr imary system had f a i l e d  be fore  the  exchanger 
performance study. Therefore, i n-pl  ace thermo- 
couples were used. The accuracy o f  I S A  thermo- 
couples i s  + 0.75% i n  t h i s  temperature range, which 
represents e r r o r s  o f  up t o  i 6OF (3.3OC). These 
u n c e r t a i n t i e s  are  unacceptable f o r  t he  low approach 
temperatures possib le.  I n  o rder  t o  c a l i b r a t e  the  
nonrernovable primary-system thermocouples, an 
" isothermal  t e s t "  was conducted on the  pr imary  and 
secondary sodium systems. Dur ing t h i s  t e s t ,  pr imary 
and secondary sodium was c i r c u l a t e d  a t  580°F (304OC) 
and the  ou tput  o f  se lec ted  thermocouples and r e s i s -  
tance thermometers obtained. Co'rrect ions were made 
f o r  measured and c a l c u l a t e d  heat add i t i ons  o r  
losses, and a comparison was obtained between the  
pr imary and secondary IHX temperature sensors. It 



4.8 was obtained, which corresponds t o  a  f i l m  c o e f f i -  
c i e n t  o f  4720 B t u / h r - f t 2 - O F  (26.8 kW/m2*K) f o r  t he  
i n s i d e  hea t - t rans fe r  area o f  t he  tubes. A recent  
rev iew (2) o f  hea t - t rans fe r  c o r r e l a t i o n s  recommends 
the  more-conventional ,Subbotin c o r r e l a t i o n  ' f o r  the  
tube-s ide heat t r a n s f e r .  

Using t h i s  c o r r e l a t i o n ,  a  f i l m  c o e f f i c i e n t  o f  6340 
B t \  / h r * f t 2 * O F  (36.0 kW/m2*K) was obtained. I f  t h i s  
c o r r e l a t i o n  was used, t he  o v e r a l l  design c o e f f i c i e n t  
would be increased by .8%. 

Wall Heat - t rans fer  C o e f f i c i e n t .  The Type 304 
s t a i n l e s s  s tee l  0.625-in. (15.9-mm) outs ide  diameter 
tube w i t h  a  0.052-in. (1.32-mm) w a l l  th ickness 
represents the  lowest  c o e f f i c i e n t ,  and the  c o n t r o l l -  
i n g  res is tance,  i n  t he  hea t - t rans fe r  process. The 
equ iva len t  f i l m  c o e f f i c i e n t ,  based on the  i n s i d e  
hea t - t rans fe r  area o f  t he  tube, would be 2,960 Btu /hr -  
f t2e0F (16.8 kW/m2.K): 

She l l - s i de  Heat - t rans fer  Coe f f i c i en t .  The 
h e a t - t r a n s f e r  c o e f f i c i e n t  o f  t he  ~ r i m a r v  sodium on 
the  she1 1  s ide  has a  l a r g e  unce r te in t y  because o f  
the  l a c k  o f  adequate hea t - t rans fe r  c o r r e l a t i o n s  f o r  
sodium-heated unba f f l ed  s h e l l s .  For t he  s h e l l ,  f l o w  
d i s t r i b u t i o n  i s  accomplished by the  o r i f i c e  p l a t e s  
near t he  top  and bottom o f  t he  exchanger. Tube 
support i s  accomplished by s i x  s l a t  supports spaced 
between the  o r i f i c e  p la tes .  Since the re  i s  no 
fo rced cross f l o w  i n  the  exchanger, heat i s  t rans-  
f e r r e d  by the  pr imary sodium f l o w i n g  p a r a l l e l  t o  
t he  tubes con ta in ing  the  secondary sodium. As 
discussed l a t e r  under OPERATING EXPERIENCE, p a r t  o f  
t he  ,primary s o d i  um i s  known t o  s h o r t - c i r c u i t  t he  
tubes by f l ow ing  near t he  i n s i d e  annulus o r  t he  
ou ts ide  s h e l l  o f  t he  exchanger. This  sodium i s  n o t  
fo rced t o  mix w i t h  the  cooler 'sodium adjacent  t o  t he  
tubes u n t i l  the  f l o w  reaches the  lower o r i f i c e  
p l a t e .  This  s t ream-o f  uncooled pr imary sodium would 
lower the  performance p red i c ted  by the  design cor re-  
l a t i o n .  For the  upper and lower p a r t  o f  t he  ex- 
changer, t he  f l o w  is . .across r a t h e r  than p a r a l l e l  t o  
t he  tubes. This  sec t i on  o f  t he  exchanger would 
have a  d i f f e r e n t  hea t - t rans fe r  c o e f f i c i e n t .  For 
t h i s  ana lys is  howeve'r, i t  w i l l  be assumed t h a t  t he  
c o r r e l a t i o n  app l i cab le  t o  the  p a r a l l e l - f l o w  c o n d i t i o n  
i s  a l so  app l i cab le  t o  the  c ross- f low p o r t i o n ,  which 
represents a  much smal le r  hea t - t rans fe r  area o f . t h e  
exchanger. 

The Lubarsky-Kaufman (1) design c o r r e l a t i o n  
was used t o  p r e d i c t  t he  s h e i l - s i d e  c o e f f i c i e n t .  
There i s  some quest ion as t o  whether the  ou ts ide  
tube diameter o r  equ iva len t  diameter should be used 
i n  the  c o r r e l a t i o n .  For t h e  EBR-I1 exchanger, t he  
e f f e c t  i s  no t  s i g n i f i c a n t ,  s ince the  diameters on l y  
d i f f e r  by 15%. Since the  f i l m  c o e f f i c i e n t  i s  a  
f u n c t i o n  o f  the  diameter t o  t he  -0.6 power, t h i s  
reduces ' t he  d i f f e r e n c e  i n  t he  c o e f f i c i e n t  t o  9%. 
The Nussel t  number i s  g iven i n  Table 2  f o r  bo th  
cond i t ions .  Using t h e  equ iva len t  diameter, the  
Nussel t  number corresponds t o  a  heat t r a n s f e r  
c o e f f i c i e n t  o f  5720 B t u / h r * f t 2  .OF (32.5 kW/m2 O K ) ,  
based on i n s i d e  tube area. Also shown i n  the  t a b l e  
are o ther  Nussel t  numbers obta ined from o ther  corre-  
l a t i o n s  f o r  unbaf f led  she l l s .  The l a r g e  v a r i a t i o n  
i n  Nussel t  numbers i l l u s t r a t e s  the  unce r ta in t y  i n  

I n l e t  and O u t l e t  Pipes. The i n l e t  and o u t l e t  
p ipes pass through the  s h i e l d  p lug,  each w i t h  a  15- 
i n c h  (0.381 m) o f f s e t  t o  p revent  a  pa th  f o r  r a d i a t i o n  
t o  stream through t h e  s h i e l d  p lug.  The i n l e t  p ipe  
passes through the  center  o f  t he  tube bundle t o  the  
lower tubesheet, where i t  i s  welded. An outer  p ipe,  
sometimes c a l l e d  a  strongback, surrounds the  i n l e t  
p ipe  and i s  welded t o  bo th  the  upper and lower 
tubesheets. This  double-wal l  cons t ruc t i on  i s  c a r r i e d  
through the  upper head above where the  enclosed 
space i s  sealed w i t h  a  bel lows. The space between 
the  two p ipes was sealed a f t e r  being b a c k f i l l e d  w i t h  
argon gas. This  gas space, 0.6875 i n .  (17.5-mm), I 

between these p ipes e f f e c t i v e l y  i nsu la tes  the  i n l e t  
p ipe  and sodium from the  h o t  pr imary sodium i n  the  
s h e l l .  Double-wall cons t ruc t i on  i s  a l so  c a r r i e d  
through the  sh ie lded p l u g  f o r  bo th  the  i n l e t  and 
o u t l e t  pipes. However, i n  t h i s  case, t he  gas annulus 
i s  n o t  sealed b u t  open t o  the  atmosphere. 

Sh ie ld  Plug. The s h i e l d  p l u g  i s  a  stepped 
c y l  i n d r i c a l  s t r u c t u r e  '1 ocated above the  tube bundle. 
TWO bas ic  f unc t i ons  are  served by t h i s  s t ruc tu re :  

(a) To prov ide  the  on ly  support f o r  t he  tube bundle. 

(b) To main ta in  the  i n t e g r i t y  o f  t he  pr imary- tank 
b i o l o g i c a l  sh ie ld .  

The s h i e l d i n g  ma te r ia l  cons i s t s  o f  t he  f o l l o w i n g  
( f rom bottom t o  top):  

(1) 11 i n .  (0.28 m) o f  carbon s t e e l  

(2) 10 i n .  (0.25 m) o f  g raph i te  

(3) 1.5 i n .  (38.1 mm) o f  boron (1.5%) s t e e l  

(4) , about 20 i n .  (0.51 m) o f  0.375-in. (9.5-mm) 
carbon s t e e l  b a l l s .  

Three i n .  (76.2 mm) of foam-glass thermal 
i n s u l a t i o n  i s  l oca ted  between t h e  boron s tee l  and 
the  s t e e l  b a l l  s. 

A s e t  o f  l i f t i n g  lugs  i s  p rov ided on the  top  
cover o f  t he  s h i e l d  plug; 

Tube Bundle. The heat-exchanger tube bundle 
comprises the  f o l l o w i n g  pa r t s :  

(1) Heads and lower head d i f f u s e r  

(2) She l l  

(3) Upper and lower tube sheets, thermal b a r r i e r s ,  
and shock p l a t e s  

(4) Centra l  i n l e t  p ipe  

(5) Tubes 

(6) O r i f i c e  p l a t e s  

( 7 ) '  S l a t  support p l a t e s  

(8) Diaphragm seals. 



The upper head i s  t he  secondary o u t l e t  plenum 
and covers the  t o p  o f  t he  tube bundle. This  s t ruc -  
t u r e  i s  an e l l i p s o i d a l  head spun from 0.875-in. (22.2- 
mm) Type 304 s t a i n l e s s  s t e e l .  The secondary-coolant 
o u t l e t  i s  a f l u e d  opening, formed as a p a r t  o f  t he  
head. This  opening tapers,  and i s  welded t o  the  12- 
i n .  Schedule 20 o u t l e t  p ipe  (324 mm ou ts ide  diameter, 
6.35 mm wa l l  th ickness?.  A 0.25-in. - t h i c k  (6.35-mm) 
thermal shock p l a t e  c l o s e l y  conforms t o  the  contour  
o f  the  upper head; t he re  i s  a 0.25-in. (6.35-mm) 
sF.re between the  two s t ruc tu res .  

;he lower head cons i s t s  o f  two concent r ic  
e l l i p s o i d a l  heads separated by a 0.438-in. (11 .1 -mm)  
g a s - f i  1 l e d  space. A 0.25-in. - t h i c k  (6.35-mm) Boral  
p l a t e  i s  formed t o  f i t '  i n  the  g a s - f i l l e d  annular 
space, c l o s e l y  f o l l o w i n g j t h e  i nne r  contour o f  t he  
ou ter  head. This  Boral  p l a t e  serves as 'neutron 
s h i e l d i n g  f o r  the  secondary sodium.. Before sea l ing ,  
the  gas space was purged and f i l l e d  w i t h  a r g o n ' t o  a 
pressure o f  15 p s i g  (103.42 kPa). 

A semi-torus-shaped f l o w  d i f f u s e r  i s  conta ined 
w i t h i n  the  lower head assembly. The f l o w  d i f f u s e r  
conta ins f i v e  d i f f u s e r  troughs, assembled t o  form a 
s i n g l e  u n i t .  Each t rough i s  spun from 0.062-in. 
(1.6-mm) Type 304 s t a i n l e s s  s t e e l .  A l l  edges o f  .the 
d i f f u s e r  are rounded and a l l  support vanes are  

' stream1 ined. 

A s e t  o f  guides i s  welded t o  t h e  ou ts ide  o f  t he  
lower e l l i p s o i d a l  head. These guides serve t o  a l i g n  
the  heat exchanger f o r  i n s e r t j o n  i n t o  the  heat- 
exchanger nozzle o f  t he  pr imary tank. 

The upper and lower tube sheets are  3 i n .  t h i c k  
(76.2-mm) and a re  forged s t a i n l e s s  s t e e l .  Each tube 
sheet conta ins i n t e g r a l  l i p s  f o r  attachment welds. 
Both tube sheets were u l t r a s o n i c a l l y  t e s t e d  before  
i n s t a l l a t i o n  i n  t he  heat  exchanger. The lower tube 
sheet i s  a c i r c u l a r  s t r u c t u r e ,  w i t h  a ho le  through 
the  center  f o r  t he  secondary i n l e t  sodium. A 2.25- 
i n . - t h i c k  (57.2-mm) thermal b a r r i e r  i s  mounted on 
the  top  o f  t he  tubesheet. Both the  tubesheet and 
the  thermal b a r r i e r  a re  d r i l l e d  t o  accept t he  tubes. 
Tube clearance i s  i d e n t i c a l  f o r  bo th  u n i t s .  The 
thermal b a r r i e r  a l s o  extends upward and surrounds 
the  lower p o r t i o n  o f  the  ou ter  secondary i n l e t  p ipe.  
A shock p l a t e  i s  a l so  l oca ted  immediately below the  
upper tubesheet. This  s t r u c t u r e  i s  formed o f  0.75- 
i n .  - t h i c k  (19.1-mm) p l a t e .  An extension o f  t he  
shock p l a t e  i s  formed around the  ou ter  p ipe  o f  t he  
secondary sodium i n l e t  and extends downward f o r  
about 6 i n .  (152-mm). 

The tube bundle comprises 3026, Type 304 s t a i n -  
less  s t e e l  tubes. Each tube has an outs ide  diameter 
o f  0.625 i n .  (15.9-mm) and a minimum w a l l  th ickness 
o f  0.052 i n .  (1.3-mm). Each tube was u l t r a s o n i c a l l y  
t es ted  t o  ensure t h a t  no Slaws ex is ted .  Tubes are  
arranged on a 0.8125-in. (20.6-mm) t r i a n g u l a r  p i t c h ,  
and t h e  tube bundle i s  packed t o  t h e  maximum t o  
minimize a l l  bypass areas. The tubes pass through 
the  two o r i f i c e  p l a t e s  t h a t  f i t  between the  heat- 
exchanger s h e l l  and secondary i n l e t  p ipe.  These 
p l a t e s  are designed t o  p rov ide  equal f l o w  d i s t r i b u -  
t i o n  t o  the  s h e l l  s i d e - o f  t he  heat exchanger.. The, 
heat-exchanger tubes are supported a t  s i x  e leva t i ons  
by support s l a t s .  The tube ends were welded t o  the  
tubesheets manually by the  tungsten- iner t -gas process 
w i thou t  the  a d d i t i o n  o f  f i l l e r  metal .  

The heat-exchanger s h e l l  i s  a double-wal l  
s t r u c t u r e ,  which encloses the  tube bundle and pro-  
v ides support f o r  t h e  lower o r i f i c e  p l a t e  and the  
s i x  groups o f  support s l a t s .  The i nne r  and outer  
w a l l s  a re  each 0.500 i n .  (12.7-mm) t h i c k  and enclose 
a 1.500-in. (38.1-mm) sodium-f i  1 l e d  annul us, which 
i s  vented both  top  and bottom f o r  f i l l i n g  and dra in -  
ing .  

Inst rumentat ion.  T h i r t y - f o u r  thermocouples 
were i n s t a l l e d  t o  p rov ide  temperature data a t  var ious 
l oca t i ons  on the  primary-sodium. s ide  (she1 1 s ide)  o f  
t he  heat  exchanger. E i g h t  o f  these thermocouples 
were i n s t a l l e d  a t  var ious  l oca t i ons  j u s t  below the  
top  o r i f i c e  p l a t e .  Eighteen were a t  var ious  loca-  
t i o n s  below the  bottom o r i f i c e  p l a t e .  Four each 
were pos i t i oned  t o  moni tor  the '  primary-sodium i n l e t  
and o u t l e t  temperatures. 

These thermocouples prov ided l i t t l e  use fu l1  
i n fo rma t ion  because most o f  them had f a i l e d  e a r l y  i n  
1 i f e  ( p r i o r  t o  r a i s i n g  power above 45 MW). Data 
apparent ly  were n o t  systemat ica l  l y  recorded and/or 
repor ted  e a r l y  i n  l i f e  f rom' these thermocouples, so 
no performance data are  ava i l ab le .  

No ins t rumenta t ion  was prov ided t o  measure 
secondary-sodium temperatures.or  any pressures o r  
pressure drops w i t h i w t h e  assembly. 

The IHX was i n s t a l  l e d  i n  the'  EBR-I1 pr imary 
tank  i n  November 1962, be fore  the  system was f i l l e d  
w i t h  sodium. The pr imary  system was f i l l e d  w i t h  
sodium i n  February 1963 and the  secondary s ide  o f  
the  IHX was f i l l e d  i n  A p r i l  1964. Except f o r  a 2.5- 
month p e r i o d  i n  1970-1971 when the  secondary s ide  
was dra ined f o r  removal ' o f  the  evacuat ion tube, the  
assembly has been f looded w i t h  sodium cont inuous ly  
s ince i n i t i a l  f i l l .  Hence, t he  u n i t  has been i n  
e s s e n t i a l l y  continuous serv ice  f o r  16 years. Table 
3 presents a summary o f  opera t ing  h i s t o r y .  

TABLE 3 

E B R - I 1  INTERMEDIATE HEAT EXCHANGER 

OPERATING HISTORY 

Operat ing Per iod 
February 1963 - December 1978 

Years o f  se rv i ce  15 years 

Time dra ined o f  sodi um 
pr imary s ide  0 
,secondary s ide  3 months 

Hours a t  power 45 MW -10,000 hours 
50 MW -10,000 hours 

62.5 MW 43,000 hours ' 
Energy t r a n s f e r r e d  3.6 x 106 MW- h r  

Transients experienced 

Star tups approximately 528 

Upset shutdowns 
Normal reac to r  scram 335 
Loss o f  secondary f l o w  2 7 
Loss o f  pr imary f l o w  2 5 
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Except f o r  a minor problem i n  November 1970, 
when i t  was necessary t o  remove the  permanently 
i n s t a l l e d  evacuat ion tube, service, has been t roub le -  
f ree .  The i n v e s t i g a t i o n  o f  t he  no ise  caused by the  
evacuat ion tube and the  a c t i v i t i e s  i nvo l ved  i n  t he  
r e p a i r  a re  repor ted  i n  d e t a i l  i n  Reference ( 6 ) .  The 
a b s t r a c t  from t h i s  reference adequately describes, 
f o r  t h e  purpose o f  t h i s  p resenta t ion ,  t he  problem 
and subsequent r e p a i r .  

"On the  n i g h t  o f  November 14, 1970, 
a loud banging noise was heard i n  
the v i c i n i t y  o f  t he  EBR-I1 I n t e r -  
mediate Heat Exchanger (IHX). I n d i -  
ca t i ons  were t h a t  t h e  noise source 
was w i t h i n  t h e  IHX i n l e t  pipe. A 
p o r t  f o r  access t o  the  IHX i n t e r n a l s  
was i n s t a l l e d  on the  i n l e t - p i p e  elbow. 
Visual  examinations us ing  bo th  a p e r i -  
scope and a remote TV system revealed 
t h a t  o f  t he  two supports c l i p s  ho ld ing  
a 1-i n. (25.4-mm) diameter evacuat ion 
tube i n  place, t he  top  c l i p  was loose 
and the  bottom c l i p  was missing. 'This 
c o n d i t i o n  a l lowed the  evacuat ion tube 
t o  move because o f  the  secondary 
sodium f l o w  stream and v i b r a t e  
aga ins t  t h e  w a l l  o f  t he  12- in.  
(3.24-mm O.D.)  diameter i n l e t  p ipe.  
Evidence o f  wear on bo th  the  12- inch 
(324-mm O.D.) p i pe  and the  1 - i n .  
(25.4-mm) tube was found. 

The upper c l i p  was removed; t he  
evacuat ion tube was c u t  a t  t h e  
t o p  and bottom and removed. The 
lower c l i p  was n o t  found. 

, The sec t i on  c u t  ou t  o f  the  i n l e t  
elbow was rewelded i n  p lace  and 
the  secondary system was res to red  
t o  opera t iona l  s ta tus .  Q u i e t  
opera t ion  o f  t h e  IHX v e r i f i e d  
t h a t  the  r e p a i r  was successfu l . "  

Temrlerature measurements from the  i n s t a l l e d -  
i nstrur;.c.ntati on i ndi  cated t h a t  some o f  t he  pr imary  
sodium i s  s h o r t - c i r c u i t i n g  t h e  tube bundle and 
t r a v e r s i n g  t h e  u n i t  e s s e n t i a l l y  uncooled. This  
occurs i n  t h e  open areas i n  t h e  tube bundle nex t  
t o  t he  center  p ipe  and. a t  t he  ou te r  per iphery  nex t  
t o  t he  s h e l l .  This  uncooled sodium i s  n o t  fo rced t o  
mix w i t h  the  coo le r  sodium u n t i l  t he  f l o w  streams 
reach the  lower o r i f i c e  p l a t e .  Temperatures have 
been measured near the  i nne r  and ou te r  pe r iphe r ies  
o f  t he  tube bundle below t h e  lower o r i f i c e  p l a t e ,  
a f t e r  some mix ing  has occurred; these temperatures 
are  o f  t he  order  o f  820°F (438OC). This  compares 
w i t h  an average o u t l e t  temperature o f  700°F (371°C). 
This  measurement was made a t  f u l l  power when the  h o t  
pr imary i n l  e t  temperature was 883OF (473OC). Thi  s 
bypass f l o w  lowers the  performance o f  t he  exchanger 
and would e x p l a i n  why. the measured performance i s  
1 ess than design, as p.revi ous ly  d i  scussed. 

pr imary sodium t o  r i s e  i n  t h e  annulus between the  I 

s h i e l d  p l u g  and nozzle casing. Wi th a pressure drop 
o f  2 . 1  p s i  (14.48 kPa), t h e  sodium r i s e s  as much as 
5 f e e t  (1.52 m) up the  annulus. Wi th f l ow  changes, 

:I 
t h i s  causes a washing a c t i o n  i n  t h i s  annulus as the  
l e v e l  moves up and down. As a r e s u l t ,  h igher  than i 
normal temperature and r a d i a t i o n  l e v e l s  have been 
observed i n  and above t h e  pr imary- tank cover i n  t h e  
v i c i n i t y  o f  t he  IHX. Another concern i s  t he  thermal 
s t ress  c y c l i n g  t h a t  occurs as a r e s u l t  of t h i s  
washing a c t i o n  a t  t h e  weld j o i n i n g  the  1 - i n . - t h i c k  I 
(25.4-mm) w e l l  cas ing  t o  the  2 - i n . - t h i c k  (50.8-mm) I 

bottom p l a t e  o f  t he  reac tor - tank  cover. 

CONCLUSIONS 

Except f o r  a minor problem i n  November 1970, 
when the  permanently i n s t a l l e d  evacuat ion tube came 
loose and was removed, se rv i ce  has been t roub le -  
f ree .  I n  cons idera t ion  o f  t he  successful  opera t ing  
h i s t o r y ,  i t  would appear t h a t  t he  bas ic  design and 
opera t ing  requirements have been adequate. 

Great progress has been made i n  the  development 
o f  design methods s ince t h e  EBR-I1 IHX was designed. 
The present  phi losophy o f  the  ASME B o i l e r  Code f o r  
nuclear  vessels i s  t o  make b e t t e r  use o f  modern 
methods o f  s t ress  ana lys is .  A d e t a i l e d  eva lua t i on  
o f  ac tua l  s t resses permi ts  s u b s t i t u t i n g  knowledge o f  
l o c a l i z e d  st resses,  and an assignment o f  more r a t i o n a l  
margins, i n  p lace  o f  a l a r g e  sa fe ty  f a c t o r  which 
r e f  1 ected 1 ack, o f  know1 edge. 

This  technique "design by ana lys is "  does no t  
necessar i l y  p rov ide  a more conservat ive design, b u t  
i t  does p rov ide  conf idence t h a t  t h e  degree o f  conser- 
vat ism i s  known and a much more r a t i o n a l  assessment 
may be made o f  t h e  expected performance o f  a 
component. 

The measured thermal performance i s  s l i g h t l y  
l ess  than design, b u t  because the  u n i t  was designed 
w i t h  a l a r g e  hea t - t rans fe r  area, min imiz ing  t h e  
approach temperature a t  t he  h o t  end o f  t he  heat 
exchanger, t h i s  has an i n s i g n i f i c a n t  e f f e c t  on the  
o v e r a l l  performance. 

The heat-exchanger tube bundle has never been 
removed, hence any abnormal i t ies  t h a t  cou ld  have 
occurred w i t h o u t  a f f e c t i n g  performance have n o t  been 
observed, even i f  they e x i s t .  A l i m i t e d  v i s u a l  
examination o f  t h e  secondary sodium s ide  was poss ib le  
i n  1970, when the  evacuat ion tube was removed. No 
abnormal i t ies  were observed a t  t h a t  t ime. 

One o ther  observat ion,  which has caused some 
minor opera t iona l  concern b u t  has no t  r e s u l t e d  i n  
any r e a l  problem, i s  worth mentioning. When pr imary 
f l o w  i s  es tab l ished through t h e  tube bundle, t he  
pressure i n  t h e  b e l t  d i f f u s e r  i s  equal t o  t he  pres- 
sure drop through the  s h e l l  s ide. This  causes 






