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ABSTRACT

Calculation of the electronic and structural properties of
solids using a variational quantum Monte Carlo nonlocal pseudo-
potential approach is described. Ionization potentials and
electron affinities for atoms, and binding energies and struc-
tural properties for crystals are found to be in very good
agreement with experiment. The approach employs a correlated
many-electron wavefunction of the Jastrow-Slater form and the
exact Coulomb interaction between valence electrons. One- and
two-body terms in the Jastrow factor are used and found neces-
sary for an accurate description of the electron-electron
energy for the systems considered. The method has further been
applied to compute various single-particle properties for
solids including the single-particle orbital occupancy, elec-

tron pair correlation functions, and quasiparticle excitation
energies.

1. Introduction

In calculation of materials properties, as in the case of atoms and
molecules, accurate treatment of electron correlations is essential.
With the exception of several recent wovks,1 -3 present-day ab initio
methods for solid-state systems treat many-electron effects by employ-
ing basically either 1) the local density functional (LDA) formalism or
2; some type of Hartree-Fock (H-F) plus correlation corrections ap-
proach with the corrections usually determined by perturbation theory.
The LDA is by far the more popular approach whereas H-F plus correc-
tions calculations have been mostly restricted to the binding energy of
insulating crystals composed of the lighter elements. The local den-
sity functional approach4 has been applied to a wide range of materials
with much success on various ground-state properties that are obtain-
able from relative changes in total energies. The LDA, however, has
problems in giving accurate absolute cohesive energ1es properties of
systems with highly correlated electrons (such as the d and f electron
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systems), and electron excitation energies.5

In this paper, we discuss a recently developed variational quantum
Monte Carlo (QMC) pseudopotential approach3 to the problem of electron
correlations in solids. A trial wavefunction of the Jastrow-Slater
form with one- and two-body correlation terms is employed. The total
energy of the system is evaluated using the Metropolis sampling
techniques6 and the exact electron-electron interaction, thus allowing
the treatment of valence electron correlations going beyond standard
self-consistent field methods. A pseudopotential scheme which incor-
porates the effects of the core electrons in the ionic potential is
also emploved. The use of pseudopotentials for the electron-ion inter-
action removes from the problem the large fluctuations of electron
energies in the core region and makes practical the present approach
for systems with heavier elements.

We have applied the method to calculate the cohesive and structural
properties of diamond, graphite, and Si and the ionization energy and
electron affinity of the atoms. The results are shown to be in excel-
lent agreement with experiment. In particular the cohesive energy is a
significant improvement over those obtained from the standard local
density functional calculations. Further, the calculations have
provided results on quantities such as the single-particle orbital
occupancy and electron pair correlation functions for real crystals.

2. Theoretical Method

2.1. Pseudopotential and Variational Quantum Monte Carlo Approach

The basic idea here is to obtain the ground-state wavefunction
using the variational principle and from it the other properties of the
crystal. The total energy of the system is evaluated using the exact
Hamiltonian with a trial many-electron wavefunction. If the trial
wavefunction is chosen with sufficient insight, we obtain not only an
upper bound for the energy, but an accurate estimate of its value and
the wavefunction itself. From the total energy as a function of the
atomic coordinates, one obtains as usual the binding energy and the
static structural properties of the solid. From the optimal wavefunc-
tion, a host of other quantities may also be calculated which include
the charge density, the single-particle density matrix, the pair corre-
lation function, and the quasiparticle excitation energies.

The variational quantum Monte Carlo approach was pioneered by
McMillan to study liquid He? in 19657 and later extended to Fermion
1iquid systems by Ceperley, Chester and Kalos in the 1970's.8
Recently, the Green's function quantum Monte Carlo approach has been
applied successfully to the electron gas? and to light molecules.l0
However, the application of these methods to real crystals had not been
realizable until very recent]y.11 A number of conceptual and technical
problems have to be overcome. These include the proper treatment of



the single-particle orbitals in the presence of electron correlations
and the problem of the very rapid growth in the required computatiaon
time with increasing atomic number Z. This growth which scales at
least as Z° is caused primarily b{ the fluctuations in the electron
energy in the atomic core region.l2

To avoid the core fluctuations problem, we adopt a pseudopotential
scheme which replaces the effects of the core electrons by_an ionic
potential. The pseudopotential has proven very successfulld in
treating many solid-state systems within local density functional
theory. The ionic pseudopotentials used here are the norm-conserving
pseudopotentials generated for LDA calculations.l? These ionic
potentials in general are nonlocal of the form

Toc = ® i
Vpseudo = Vion(ry) +2!:f° ar V!.(r)Pl,r (1)
acting ,on an electron with coordinates Fi from the ion core. Here
V]OC(F) is the local part of the pseudopotential and P! is the

ion i,r
angular momentum & projection operator.

The integral operator which arises in the nonlocal pseudopotential
makes the present problem different from previously considered QMC
problems. However, as discussed later, this operator can be evaluated
statistically within the variational QMC method using a special point
scheme with a computational effort comparable to that for the kinetic
energy.

2.2. The Many-Electron Wavefunction

For the trial many-electron wavefunction, we use the Jastrow-Slater
form8:
+> -+ N -+ -+ -+ 2
Figeeayly) = €X r.) - . A 5
VEpeenfy) = ey 3 X)) igj u(ri;) (00 sennfy) (2)
where D is a Slater determinant of single-particle orbitals. In the
present calculations, the LDA Kohn~-Sham single-particle orbitals are
used. The exponential correlation (Jastrow) factor contains both a
one-body and a two-body term. The two-body term u(rij), lowers the
energy by reducing the probabiiity of two electrons coming close toge-
ther. The one-body term X(r;) could be formally incorporated into the
Slater determinant. However, it is convenient in the calculation to

keep X in the Jastrow factor using it to vary the electron density to
minimize the energy.

The two-body function Uérij) in the Jastrow factor is chosen for
the solid to be of the farml

u(r) = A(1 - TPy ' (3)



where A and F are spin-dependent variational parameters. The variation-
al QMC approach has heen successfully applied to the uniform electron
gasld using Eq. (2) for ¥ with X = 0 and a two-body term u of the above
form. The obtained results are shown to be highly accurate as compared
to those of the more exact Green's function QMC calculationsd. The
form of u in Eq. (3) has the expected behavior: u is large and posi-
tive for r = 0 and decreases with increasing r. The general asymptotic
form of u is, in fact, constrained by physical considerations of the
Coulomb interaction. As discussed in previous work on the uniform
electron gas, at large r, u is dominated by the zero-point motions of
the plasmons leading to a 1/r dependence with coefficient given by
e/fwy. There is also a "cusp" condition on u(r), owing to the singu-
larity of the Coulomb interaction as r + 0. These two conditions give
some guidance in the search for the values of A and F. In the calcula-
tions, we find that the optimal vaiues of A and F are, indeed, very
closed to the values given by the physical considerations for the
crystals examined. For atoms, in addition to the form of u(r) for the
solid [Eq. (3)], we also have used a form of

ar
T+ 0r) (4)

and obtained identical energies within statistical noises.

u(r) = -

The one-particle term X(*) in the Jastrow factor serves to allow a
variational relaxation of the electron density in the presence of the
two-body u(rji) term which tends to make the electron density overly
diffuse. We Yind that, although the one-body term is irrelevant in
homogeneous systems such as liquids or the uniform electron gas, it is
quite important for_atoms and solids. There are several possible im-

plementations of X 16, For simplicity of calculation, we have either
set :

. Py yaor)
X(F) = 2 1n .JL:L%. (5)
Pxapfr)
where p(F) is the electron density and a is a variational parameter, or
in the case where the LDA electron dengity might be significantly

different from the X=0 GMC density, X(r) is iteratively obtained by
setting

X(F) = % xi(?) (6)
i=l

where X, is given by Eq. (5) and X.,, (F) = a/2 1n[px,u_0(?)/pxi(?)].

For the systems considered, we find that the optimal value for a is
very close to 1. This is not unexpected since the LDA charge density
is generally in excellent agreement with experimentl3,

2.3. The Hamiltonian and Total Energy

For a given many-electron wavefunction ¢(R), we obtain the expec-



tation value of an operator F by evaluating the multi-dimensional
integral:

<GIF|p = [FR)[B(R)| o (7)

where R = {Fl,Fz,...FN} is a point in configuration space specified by
the coordinates of all the electrons. For the total energy, the func-
tion F(R) is then taken to be [HYJ(R)/y(R) where H is the Hamiltonian
operator. Since typically several hundred electrons in a box (corre-
sponding to tens of atoms) with periodic boundary conditions are re-
quired to simulate accurately the properties of solids, the only prac-
tical way of evaluating many-body integrals of the faorm in Eq. (7) is
by the Metropolis Monte Carlo algor1thm5 for importance sampling with
the importance function given by IW(R)I

The many-electron Hamiltonian for the crystal

- N 2 2
i 2 + 1 e
- Z {Zﬁ Vi Vet (Fy) + 3 gy ‘rTJ} : (8)
is consisted of the usual threa terms: the kinetic energy of the va-
lence electrons, the external potential due to the ion cores, and the
Coulomb repulsion betwzen the valence electrons. In the Metropolis
scheme, E(R) = [H¢J(R)/¢¥(R) is evaluated along a random walk in config-
urat1on space so as to visit points R with probab111ty density equal to

|w(R)| The average of E(R) over this walk is then an unbiased esti-
mator of the total energy:
E = <ylH|p> = Z E(Rj) . (9)

“As in the electron gas case, the eva1uat1on of the electron-electron
energy at each step of the wa]k may be carried out straightforwardly
using Ewald summation techniques provided some care is given to the
periodic boundary conditions imposed on the finite simulation region.
Similarly, although the single-particle orbitais in the Slater deter-
minant are no longer plane waves, the form of y in Eq. (2) allows the
kinetic ener?g to be calculated using techniques developed for the
electron gas

The evaluation of the external potential energy is more involved
because of the nonlocality of the pseudopotential. The local part is
straightforward since it is diagonal in the coordinate representation
of the electrons given by

1oc:_
v1oc Ez v1on "4 ﬁion) (10)

1on

where ﬁ n are the positions of the ions in the crystal. The value of
the 1oca? potential at each configuration on the random walk is also
evaluated using Ewald summation techniques. The nonlocal part (second
term in Eq. (1)) is a more complicated form, and the evaluation of the



nonlocal energy involves the many-electron wavefunction on a sphere
about each atom. For an ion core at the origin, the contribution from
the angular momentum potential Vg (™) to the energy of the ith electron
for a given configuration R = {Fl,?z, N} is

1 - -+ -+ <
El(rl,...,ri = r,...,rN) -

Wm0 [ v @)

+ » » +*
riar r w(rl,...,ri - r,...,rN)

¢(r1, s; - r.’--°:F

da,,  (11)
r

where @, 1is the angular coordinate of Fowith r pointed along the
r

polar axis. In principle, the expression for the nonlocal energy due
to one atom in Eq. (11) should be summed over all the atoms in the
crystal to give the total nonlocal energy for the ith electron. In
practice, one needs only to sum the potentia]s of at most two neigh-
boring atoms because the Vy(r)'s are, in general, very short range (= 2
a.u.). However, even. w1th this simplification, it is impractical to
evaluate the nonlocal terms using standard fixed-grrid methods. We find
that the integral in Eq. (11) can be evaluated accurately in a statisti-
cal fashion using a special point scheme for @, . The scheme involves

r
choosing a set of values for R, at random but at fixed relative posi-

tions and uses the summation oCer the values of P(R) at these special
points (with appropriate weighting factors) to obtain an unbiased esti-
mator of the integral. The procedure for generating special points for
different angular momenta is straightforward and is discussed in Ref.
16. With this scheme, the computational effort involved in the nonlo-
cal energy calculation is quite manageable and is comparable to that
for the kinetic energy.

3. Application to Solids and Atoms

We present in this section several applications of the present
approach to atoms and solids. Results on binding energies and struc-

tural properties as well as those on the single-particle properties are
discussed.

3.1. Binding Energies and Structural Properties

Atoms. The total energy, ionization potential, and electron
aff1n1ty of atoms have been determined. These results were obtained by
carrying out calculations for the ground-state energy of the neutral,
positively, and negatively charged atoms. In each case, we used the
cups condition to fix the parameter a in the expression (Eq. (4)) for
the two-body term u(rj;) in the Jastrow factor and searched the b, a
parameter space to deteérmine the optimal u and X functions to minimize
the total energy. Note that since the atoms are spin-polarized (ne-
glecting spin-orbit interactions), Eq. (5) gives a different X function



TABLE I. Ionizational energy and electron affinity of atomic carbon
and silicon (in eV). The expected statistical error in the
Tast digits is in parentheses.

Variational Experimentalla]

QqMe
Carbon
Ionization Energy 11.43(5) 11.26
Electron Affinity 1.05(10) 1.27
Silicon
Ionization Energy 8.20(5) 8.15
Electron Affinity 1.20(10) 1.39
La] Ref. 19.
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Fig. 1. Calculated valence electron charge density of carbon atom.
The solid line is the LDA calculated result; the jagged curve
is the QMC result with the two-body term u(rj;) only in the
Jastrow factor; the crosses are QMC results calculated with
both the one- and two-body terms [x(r;) and u(rij)] included
in the Jastrow factor (see text).



for different spin components.

The computed values for the ionization energy and electron affin-
ity of atomic carbon and silicon are presented in Table I together with
the experimental values. The agreement between theory and experiment
is guite gvod {bcth € and Si~ are unbounded in the LDA). We find that
both the one-body and two-body terms in the Jastrow factor are import-
ant to obtain quantitative results in the present approach. Without
inclusion of the one-body term X, the presence of a nonzero u(ryj)
significantly alters the charge density from that of the Slater Aeter—
minant alone. (See Fig. 1.) Because u(rj;j) is a two-body correlation
term, it has the effect. of reducing the electron density in the high-
density regions and increasing it in the low-density regions. The
resulting electron density is, in fact, too diffuse as compared to
experiment. The inclusion of ¢ X term as given in Eqs. (5) and (6)
relaxes the electron distribution to one very similar to that of the
LDA and lowers the total energy. For neutral carbon, the one-body term
further lowered the total energy by 1.8 eV.

We note that the form of the wavefunction in Eq. (2) neglects
three-body and higher order terms in the Jastrow factor. Since the
number ~f three-body interactions is very different for C and Si in the
three different charge states, the results in Table I suggest that
three-body terms in the Jastrow factor appear to be not very '
significant in this case. Furthermore, the variational QMC results not
only gives the relative energies for the various ionization states
correctly. It also gives the absolute energies quite accurately at
least for the case of the Si atom where our results may be compared to
a recent Green's function QMC calculation using a pseudo-Hamiltonian
formalism.l7 The Green's function QMC result for the total valence
electron energy is -103.57(3) eV, which is only - 0.1 eV lower than our
result of -103.42(5) eV for the neutral Si atom.

Solids. The approach has been applied to study carbon- and
silicon-based crystals. Simulation cells with periodic boundary condi-
tion containing up to N = 216 electrons (or 54 atoms) were used. We
find that, with this size simulation cell, the many-electron part of
the energy is well converged. Finite size scaling to the final N + =
Timit is primarily dominated by the one-electron terms which are de-
pendent on the k-point sampling in the Brillouin zone. (A fine grid in
k-space is equivalent to a large simulation cell in real space.)

The result for diamond is summarized in Fig. 2. The total energy
per carbon atom in the diamond crystal structure is calculated as a
function of the lattice constant and fitted with a Murnaghan equation
of state. We obtained a calculated equilibrium lattice constant of
3.54 + 0.03 A and a bulk modulus of 420 + 50 GPa in good_ agreement with
experimental values of 3.567 A and 443 GPa, respective]yla. Similarly
accurate results for these structural parameters have been obtained for
the case of silicon.



Fig. 2.

_‘155.0 T — Y

’E'\ -155.2 | -
o)

-+

©

~. -—155.4 | -
> .

)

S

> —166.6 i
ag

i

=

= -—155.8 | -

~156.0 : ‘ ‘
0.92 0.96 1.00 1.04 1.08

a/ao

Calculated to*al energy of diamond as a function of the ratio
of the lattice constant a tc the measured lattice constant
3g. The curve is a fit of the Murnaghan equation of state to
the calculated points, The error bars indicate the standard
deviation of the mean in each Monte Carlo calculation.

TABLE II. Calculated cohesive energies (in eV).

Theory Experimenta

Diamond 7.45(7)  1.37
Graphite 7.42(7) 7.39
Silicon 5.13(7)  4.62-4.970
a) Ref. 19

b) Ref. 20



The calculated cohesive energies for the crystals diamond, graph-
ite and Si are presented in Table II. In obtaining theoretical values,
we have included the zero-point energy of the phonons in the energy of
the solid. As can be seen from the Table, the present results are in
excellent agreement with experimentlg’zo. In general, Hartree-Fock
calculations significantly underestimate the cohesive energy whereas
the LDA calculations tend to overestimate the cohesive energy of crys-
tals, typically by 15-20%. This is illustrated in Table III for the
case of diawond. Also from Table III, we see that when the one- and
two-body terms are included in the Jastrow factor, the correlation
energies for the valence electrons in the atom and the diamond crystal
are 2.4 + 0.1 eV and 4.1 + 0.2 eV, respectively. Thus electron corre-
latio:: effects play a very important role in determining the crystal-
line cohesive energy. The present values of the correlation energies
for the carbon valence electrons are in agreement with results from a
recent calculation using a similar Ansatz for the many-electron wave-
function, but evaluating the energy by diagrammatic techniquesl.

3.2. Single-Particle Properties

Information on some of the single-particle properties of the
ground-state system may be abtained from the simulation. The simplest
of these to evaluate is the sing]e—partic]e orbitsl occupation number

ny= <w|C$C¢|w> (12)

where ¢(*) corresponds to some single-particle wavefunction. 1In the
first quantized form,

[CevI(F2, F3ueeny TN) 'j¢*(F1)W(F1- F2see., TNJOFL (13)

and thus n may be easiiy evaluated in the Monte Carlo walk. Similarly
the momentum distribution nI is the occupation number for the planewave
orbitals.

Figure 3 shows the calculated ny for the variogus LDA single-
particle band (or Kohn-Sham) orbitals that go into our Slater determin-
ant for the case of diamond. Owing to electron correlations, ng is
reduced, as expected, from the independent particle value of ngy = 2 for
states below the valence band maximum (vbm). This deviation is on the
order of a few percent.

From the ground-state wavefunction, it is also rather straightfor-
ward to obtain the pair correlation function gaB(?l,?z) through the
usval relation

g(x1,x2)n(xy)n(x2) = N(N - 1) j [Y(ry = X1, r2 = X2,..., r‘N)lz dr3y...dry

(14)
where n is the electron number density and spin indices are suppres-
sed. Qur results for ggg(";,*2) of diamond and silicon showed that,
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TABLE IIl. Total energies (in eV/atom) of the carbon atom and of dia-
mond (with finite-size correction) for (a) LDA calculation,
and for Monte Carlo calculations with (b) single Slater
determinant of LDA wavefunctions and (c) Jastrow-Slater
function with one- and two-body terms in the Jastrow
factor. The expected statistical error in the last digits
is in parentheses.

Carbon Atom Diamond Cohesive Energy
Etot Etot
(a) LDA -146.79 -155.42 8.63
(b) Slater Det. -145,55(7) -151.3(2) 5.85(25)
(c) Jastrow-Slater -147.93(3) -155.38(6) 7.45(7)
(d) Experimentd — -—- 7.37
a) Ref. 19.
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Fig. 3. Calculated single-particle orbital occupancy as a function of
the energy of the various LDA Kohn-Sham orbitals.
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unlike the uniform electron gas case, g is indeed highly anisotropic
and is a sensitive funciton of both #; and *» separately. In particu-
lar we find that g4, is very rich in structure. For example, the
correlation hole, hQ, (*) = g4, (*1,*) - 1/2, for ¥ located at the bond
center has a dens1ty distribution which is distinctly related to the
structure and covalent character of these materials. +(F) is nega-
tive near ®; the bond center as expected but hE+(?) is po>1t1ve only in
the nearby low density antibonding/interstitial regions and not in the
neighboring bond centers.

Finally we have carried out calculations to estimate the quasipar-
ticle excitation energy of a system by considering the difference in
energy between a system in the ground state with that of a system with
an added hole. By assuming that our variational wavefunction is a suf-
ficiently accurate approximation for the true gound-state wavefunction,
the quasihole enerqy may be expressed as

<p|CIHC, [V
- — % % 7
€p = Ey_; - Ef = <P|H |y
Wb|CiC W
<y|CI[H,C >
RN
<$|CiCylw

where ¢ corresponds to a quasihole wavefunction. In our calculation
for diamond, we used the LDA wavefunction for ¢ . QOur preliminary
results show quite good agreement with exper1ment (e.g. a bandwidth of
24.9 £ 1 eV for diamond as compared_to the experimental value of 21-24
eV) and with other calculations22,23, However, the present scheme can
only be considered as a way r® obtaining an upperbound for the excita-
tion energy since Eq. (15) in fact rigorously gives the first moment of
the spectral function Ag(w) of the state C¢iw> and not the peak posi-
tion in Aplw). For the case that a single quasiparticle peak is well-
defined and dominant, Eq. (15) would give a good approximation for the
quasiparticle energy as defined as the position of a well-defined peak
in A¢(m).

(15)

4. Summary

We have presented a new method of calculating the total energy
and related properties of crystals using nonlocal pseudopotentials in
conjunction with variational quantum Monte Carlo techniques. The
approach employs a many-electron wavefunction of the Jastrow-Slater
form. Calculations have been carried out successfully for the cohesive
energy and structural properties of carbon- and silicon-based solids.
With both a one-body and a two-body term in the Jastrow factor, it is
found that the approach can yield up to 95% of the electron correlation
energy in the systems studied. Calculations have also been carried out
to compute the single-particle orbital occupancy, electron pair-corre-
lation functions, and quasiparticle excitation energies. These quanti-
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ties are not accessible in standard self-consistent field approaches
such as the density function formalism,
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