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ABSTRACT 

Calculation of the e lect ronic and s t ruc tura l properties of 
solids using a var iat ional quantum Monte Carlo nonlocal pseudo-
potential approach is described. Ionizat ion potent ials and 
electron a f f i n i t i e s for atoms, and binding energies and s t ruc­
tura l properties for crysta ls are found to be in very good 
agreement wi th experiment. The approach employs a correlated 
many-electron wavefunction of the Jastrow-Slater form and the 
exact Coulomb interact ion between valence electrons. One- and 
two-body terms in the Jastrow factor are used and found neces­
sary for an accurate descr ipt ion of the electron-electron 
energy for the systems considered. The method has further been 
applied to compute various s ing le -par t i c le properties for 
solids including the s ing le -par t i c le o rb i ta l occupancy, elec­
tron pair corre lat ion funct ions, and quasi pa r t i c l e exci tat ion 
energies. 

1. Introduction 

In calculat ion of materials propert ies, as in the case of atoms and 
molecules, accurate treatment of electron correlat ions is essent ia l . 
With the exception of several recent works,^"^ present-day ab i n i t i o 
methods for so l id -s ta te systems t reat many-electron e f f ec t s - ! ^ employ-
ing basical ly e i ther 1) the local density funct ional (LDA) formalism or 
2} some type of Hartree-Fock (H-F) plus corre la t ion corrections ap­
proach with the corrections usually determined by perturbation theory. 
The LDA is by fa r the more popular approach whereas H-F plus correc­
t ions calculations have been mostly res t r ic ted to the binding energy of 
insulat ing crysta ls composed of the l igh ter elements. The local den­
s i t y functional approach^ has been applied to a wide range of materials 
with much success on various ground-state properties that are obta in­
able from re la t i ve changes in t o ta l energies. The LDA, however, has 
problems in giv ing accurate absolute cohesive energies, properties of 
systems with highly correlated electrons (such as the d and f electron 
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systems), and electron exci tat ion energies. 

In th is paper, we discuss a recent ly developed var iat ional quantum 
Monte Carlo (QMC) pseudopotential approach^ to the problem of electron 
correlat ions in so l i ds . A t r i a l wavefunction of the Jastrow-Slater 
form with one- and two-body cor re la t ion terms is employed. The t o ta l 
energy of the system is evaluated using the Metropolis sampling 
techniques^ and the exact electron-electron i n te rac t i on , thus al lowing 
the treatment of valence electron correlat ions going beyond standard 
sel f -consistent f i e l d methods. A pseudopotential scheme which incor­
porates the ef fects of the core electrons in the ion ic potential is 
also employed. The use of pseudopotentials for the electron-ion i n t e r ­
action removes from the problem the large f luctuat ions of electron 
energies in the core region and makes pract ical the present approach 
for systems with heavier elements. 

We have applied the method to calculate the cohesive and s t ructura l 
properties of diamond, graphi te, and Si and the ion izat ion energy and 
electron a f f i n i t y of the atoms. The results are shown to be in excel­
lent agreement with experiment. In par t icu lar the cohesive energy is a 
s ign i f i can t improvement over those obtained from the standard local 
density functional calculat ions. Further, the calculat ions have 
provided results on quanti t ies such as the s ing le -par t i c le o rb i ta l 
occupancy and electron pair cor re la t ion functions for real c rys ta ls . 

2. Theoretical Method 

2 . 1 . Pseudopotential and Var iat ional Quantum Monte Carlo Approach 

The basic idea here is to obtain the ground-state wavefunction 
using the var iat ional pr inc ip le and from i t the other properties of the 
c r y s t a l . The to ta l energy of the system is evaluated using the exact 
Hamiltonian with a t r i a l many-electron wavefunction. I f the t r i a l 
wavefunction is chosen with su f f i c i en t ins igh t , we obtain not only an 
upper bound for the energy, but an accurate estimate of i t s value and 
the wavefunction i t s e l f . From the t o t a l energy as a function of the 
atomic coordinates, one obtains as usual the binding energy and the 
s t a t i c structural properties of the s o l i d . From the optimal wavefunc­
t i o n , a host of other quantit ies may also be calculated which include 
the charge densi ty , the s ing le -par t i c le density mat r i x , the pair corre­
la t i on funct ion, and the quasipart ic le exci tat ion energies. 

The var iat ional quantum Monte Carlo approach was pioneered by 
McMillan to study l i q u i d He4 in 1965? and later extended to Fermion 
l i q u i d systems by Ceperley, Chester and Kalos in the 1970's.8 
Recently, the Green's function quantum Monte Carlo approach has been 
applied successfully to the electron gas^ and to l i g h t molecules.^ 
However, the appl icat ion of these methods to real crysta ls had not been 
rea l izab le un t i l very r e c e n t l y . ^ A number of conceptual and technical 
problems have to be overcome. These include the proper treatment of 
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the s ing le -par t i c le orb i ta ls in the presence of electron correlat ions 
and the problem of the very rapid growth in the required computation 
time with increasing atomic number Z. This growth which scales at 
least as Z^ is caused primari ly by the f luctuat ions in the electron 
energy in the atomic core region.12 

To avoid the core f luctuat ions problem, we adopt a pseudopotential 
scheme which replaces the effects of the core electrons by an ionic 
po ten t i a l . The pseudopotential has proven >/ery success fu l^ - j n 

t rea t ing many so l id -s ta te systems w i th in local density functional 
theory. The ionic pseudopotentials used here are the norm-conserving 
pseudopotentials generated for LDA calculat ions. ! ' * These ionic 
potent ia ls in general are nonlocal of the form 

act ing .on an electron with coordinates r j from the ion core. Here 
v ! ° ! ! ( r ) is the local part of the pseudopotential and p] „ is the i on v ' r x , r 
angular momentum I project ion operator. 

The integral operator which arises in the nonlocal pseudopotential 
makes the present problem d i f fe rent from previously considered QMC 
problems. However, as discussed l a t e r , th is operator can be evaluated 
s t a t i s t i c a l l y w i th in the var iat ional QMC method using a special point 
scheme with a computational e f fo r t comparable to that for the k ine t ic 
energy. 

2.2. The Many-Electron Wavefunction 

For the t r i a l many-electron wavefunction, we use the Jastrow-Slater 
form**: 

* ( ? , ? J - e x p | j X ( ? J " X " ( r . j j D t r , r\.) (2) ?i> " £ »(',!»} 1 N ( l - l 7 i<j J J 
where D is a Slater determinant of s ing le -par t i c le o r b i t a l s . In the 
present ca lcu lat ions, the LDA Kohn-Sham s ing le -par t i c le orb i ta ls are 
used. The exponential correlat ion (Jastrow) factor contains both a 
one-body and a two-body term. The two-body term u ( r - j j ) , lowers the 
energy by reducing the probabi l i ty of two electrons coming close toge­
ther . The one-body term X(r-j) could be formally incorporated into the 
Slater determinant. However, i t is convenient in the calculat ion to 
keep X in the Jastrow factor using i t to vary the electron density to 
minimize the energy. 

The two-body funct ion ufr- j j ) in the Jastrow factor is chosen for 
the so l id to be of the form** 

u( r ) - A( l - e ( " r / F ) ) / r (3) 
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where A and F are spin-dependent var ia t ional parameters. The var ia t ion­
al QMC approach has been successfully applied to the uniform electron 
gaslS using Eq. (2) for ¥ with X - 0 and a two-body term u of the above 
form. The obtained results are shown to be highly accurate as compared 
to those of the more exact Green's funct ion QMC ca lcu la t ions 9 . The 
form of u in Eq. (3) has the expected behavior: u is large and pos i ­
t i ve for r - 0 and decreases with increasing r. The general asymptotic 
form of u i s , in f a c t , constrained by physical considerations of the 
Coulomb in te rac t ion . As discussed in previous work on the uniform 
electron gas, at large r, u is dominated by the zero-point motions of 
the plasmons leading to a 1/r dependence with coef f i c ien t given by 
e2/Ku>n. There is also a "cusp" condit ion on u ( r ) , owing to the singu­
l a r i t y of the Coulomb interact ion as r • 0. These two conditions give 
some guidance in the search for the values of A and F. In the calcula­
t i o n s , we f ind that the optimal values of A and F a re , indeed, very 
closed to the values given by the physical considerations for the 
crysta ls examined. For atoms, in addit ion to the form of u(r) for the 
so l i d [Eq. ( 3 ) ] , we also have used a form of 

• " " - - T T F B T T ( 4 ) 

and obtained ident ica l energies w i th in s t a t i s t i c a l noises. 

The one-part ic le term X(f*) in the Jastrow factor serves to allow a 
var ia t ional relaxat ion of the electron density in the presence of the 
two-body u ( r i j ) term which tends to make the electron density overly 
d i f f use . We r ind t h a t , although the one-body term is i r re levant in 
homogeneous systems such as l iqu ids or the uniform electron gas, i t is 
qui te important for atoms and so l ids . There are several possible im­
plementations of X 16. For s imp l i c i t y of ca lcu la t ion , we have ei ther 
set 

X(?J - § in it!!=2£2 (5) 
Px-o(r> 

where p( r ) is the electron density and o is a var ia t ional parameter, or 
i n the case where the LDA electron density might be s ign i f i can t l y 
d i f f e ren t from the X-0 QMC density, X(r) is i t e r a t i v e l y obtained by 
set t ing 

X ( r ) - S X (?) (6) 
1-1 

where Xj is given by Eq. (5) and * i + 1 ( r ) - a/2 l n [ P x > u . o ( ' t ) / p X i ( ? ) ] ' 
For the systems considered, we f ind that the optimal value for a is 
very close to 1. This is not unexpected since the LDA charge density 
is generally in excellent agreement with exper iment^. 

2.3. The Hamiltonian and Total Energy 

For a given many-electron wavefunction IJJ(R), we obtain the expec-
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t a t i on value of an operator F by evaluating the multi-dimensional 
i n teg ra l : 

<*|F|¥> - / F ( R ) | 4 » ( R ) | 2 dR (7) 

where R - { r i , r 2 , . . . r ^ } is a point in configuration space specif ied by 
the coordinates of a l l the e lectrons. For the t o t a l energy, the func­
t i on F(R) is then taken to be [HiJj](R)/ifi(R) where H is the Hamiltonian 
operator. Since t yp i ca l l y several hundred electrons in a box (corre­
sponding to tens of atoms) with periodic boundary conditions are r e ­
quired to simulate accurately the properties of so l i ds , the only prac­
t i c a l way of evaluating many-body integrals of the form in Eq. (7) is 
by the Metropolis Monte Carlo algorithm^ for importance sampling wi th 
the importance funct ion given by |i|>(R)| 2. 

The many-electron Hamiltonian for the crystal 

i s consisted of the usual three terms: the k ine t ic energy of the va­
lence electrons, the external potent ia l due to the ion cores, and the 
Coulomb repulsion between the valence electrons. In the Metropolis 
scheme, E(R) • [Hij/](R)/i|j(R) is evaluated along a random walk in conf ig­
urat ion space so as to v i s i t points R with p robab i l i t y density equal to 
|i|»(R)| 2. The average of E(R) over t h i s walk is then an unbiased e s t i ­
mator of the t o ta l energy: 

l M 

E - <*|H|*> - i X E(Ri) . (9) 
M i -1 

'As in the electron gas case, the evaluation of the electron-electron 
energy at each step of the walk may be carried out stra ight forwardly 
using Ewald summation techniques provided some care is given to the 
periodic boundary conditions imposed on the f i n i t e simulation region. 
S im i la r l y , although the s ing le -par t i c le o rb i ta ls in the Slater deter­
minant are no longer plane waves, the form of ^ in £<!• (2) allows the 
k ine t i c energy to be calculated using techniques developed for the 
electron gas*°. 

The evaluation of the external potent ial energy is more involved 
because of the nonlocal i ty of the pseudopotential. The local part is 
straightforward since i t is diagonal in the coordinate representation 
of the electrons given by 

Vn (r- ) - Y V^ o c ( r . - ft. ) (10) 
l oc v l ' Z^ ion v i i on ; v ' 

^ion 
where R-jgn are the positions of the ions in the c r y s t a l . The value of 
the local potent ial at each configurat ion on the random walk is also 
evaluated using Ewald summation techniques. The nonlocal part (second 
term in Eq. (1)) is a more complicated form, and the evaluation of the 
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nonlocal energy involves the many-electron wavefunction on a sphere 
about each atom. For an ion core at the o r i g i n , the contr ibut ion from 
the angular momentum potential V j ( f ) to the energy of the i t h electron 
for a given conf igurat ion R - { r \ , * * - , . . . , f* N } is 

E 1 ( r 1 , . . . , r i - r , . . . , r N ) -
r * * ( ? , r. - r' r N ) 

V^rJY (0,0) J Y l Q (0 ) — i J , " dfi. (11) 
r / . r r' * ( r 1 r i - r r N ) r 

where $U is the angular coordinate of r* with r pointed along the 
r' 

polar axis. In p r i nc i p l e , the expression for the nonlocal energy due 
t o one atom in Eq. (11) should be summed over a l l the atoms in the 
crysta l to give the to ta l nonlocal energy for the i t h e lect ron. In 
prac t ice , one needs only to sum the potent ials of at most two neigh­
boring atoms because the V j ( r ) ' s a re , i n general, very short range (- 2 
a . u . ) . However, even with th is s i m p l i f i c a t i o n , i t i s impractical to 
evaluate the nonlocal terms using standard f i xed-g r id methods. We f ind 
that the integral in Eq. (11) can be evaluated accurately in a s t a t i s t i ­
cal fashion using a special point scheme for fl+ . The scheme involves 

r' 
choosing a set of values for $U at random but at f i xed re la t i ve pos i -

r" 
t ions and uses the summation over the values of i|»(R) at these special 
points (with appropriate weighting factors) to obtain an unbiased e s t i ­
mator of the i n t e g r a l . The procedure for generating special points for 
d i f f e ren t angular momenta is straightforward and i s discussed in Ref. 
16. With th is scheme, the computational e f fo r t involved in the nonlo­
cal energy ca lcu lat ion is quite manageable and is comparable to that 
for the k inet ic energy. 

3. Application to Solids and Atoms 

We present in t h i s section several applications of the present 
approach to atoms and so l ids . Results on binding energies and s t ruc­
tu ra l properties as well as those on the s ing le -par t i c le properties are 
discussed. 

3 . 1 . Binding Energies and Structural Properties 

Atoms. The t o ta l energy, ion izat ion po ten t i a l , and electron 
a f f i n i t y of atoms have been determined. These resul ts were obtained by 
carry ing out calculat ions for the ground-state energy of the neu t ra l , 
p o s i t i v e l y , and negatively charged atoms. In each case, we used the 
cups condition to f i x the parameter a in the expression (Eq. (4)) for 
the two-body term u ( r i j ) in the Jastrow factor and searched the b, a 
parameter space to determine the optimal u and X functions to minimize 
the to ta l energy. Note that since the atoms are spin-polarized (ne­
g lect ing sp in-orb i t in te rac t ions) , Eq. (5) gives a d i f fe rent X funct ion 
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TABLE I . Ionizat ional energy and electron a f f i n i t y of atomic carbon 
and s i l i con ( in eV). The expected s t a t i s t i c a l error in the 
last d i g i t s is in parentheses. 

Variat ional Experimental [a] 
QMC 

Carbon 
Ionizat ion Energy 
Electron A f f i n i t y 

11.43(5) 
1.05(10) 

11.26 
1.27 

Si l icon 
Ionizat ion Energy 
Electron A f f i n i t y 

8.20(5) 
1.20(10) 

8.15 
1.39 

[a ] Ref. 19. 

o 

10.0 

Fig. 1. Calculated valence electron charge density of carbon atom. 
The so l id l i n e is the LDA calculated r e s u l t ; the jagged curve 
is the QMC resu l t with the two-body term u(r - j j ) only in the 
Jastrow fac to r ; the crosses are QMC results calculated with 
both the one- and two-body terms [ x ( H ) a n d u ( r i j ) ] included 
in the Jastrow factor (see t e x t ) . 
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for d i f ferent spin components. 

The computed values for the ion izat ion energy and electron a f f i n ­
i t y of atomic carbon and s i l i con are presented in Table I together wi th 
the experimental values. The agreement between theory and experiment 
is qui te good (both C~ and S i " are unbounded in the LDA). We f ind that 
both the one-body and two-body terms in the Jastrow factor are import­
ant to obtain quant i ta t ive results in the present approach. Without 
inclusion of the one-body term X, the presence of a nonzero u(r- j j ) 
s i gn i f i can t l y a l te rs the charge density from that of the S l a t e deter­
minant alone. (See F ig . 1.) Because u ( r i j ) is a two-body corre lat ion 
term, i t has the e f fec t of reducing the electron density in the high-
density regions and increasing i t in the low-density regions. The 
resu l t i ng electron density i s , in f a c t , too di f fuse as compared to 
experiment. The inclusion of a X term as given in Eqs. (5) and (6) 
relaxes the electron d i s t r i bu t ion to one very s imi lar to that of the 
LDA and lowers the t o t a l energy. For neutral carbon, the one-body term 
fur ther lowered the t o t a l energy by 1.8 eV. 

We note that the form of the wavefunction in Eq. (2) neglects 
three-body and higher order terms in the Jastrow fac to r . Since the 
number cf three-body interact ions is very d i f fe rent fo r C and Si in the 
three d i f ferent charge states, the resul ts in Table I suggest that 
three-body terms in the Jastrow factor appear to be not very 
s ign i f i can t in th is case. Furthermore, the var ia t ional QMC results not 
only gives the re l a t i ve energies for the various ion izat ion states 
co r rec t l y . I t also gives the absolute energies quite accurately at 
least for the c?se of the Si atom where our results may be compared to 
a recent Green's funct ion QMC calcu lat ion using a pseudo-Hamiltonian 
formal ism.I? The Green's function QMC resul t for the t o ta l valence 
electron energy is -103.57(3) eV, which is only - 0.1 eV lower than our 
resu l t of -103.42(5) eV for the neutral Si atom. 

Sol ids. The approach has been applied to study carbon- and 
si l icon-based c rys ta l s . Simulation ce l l s with periodic boundary condi­
t i on containing up to N - 216 electrons (or 54 atoms) were used. We 
f i nd t h a t , with th i s size simulation c e l l , the many-electron part of 
the energy is well converged. F in i te size scaling to the f i na l N + » 
l i m i t is pr imari ly dominated by the one-electron terms which are de­
pendent on the k-point sampling in the Br i l l ou in zone. (A f ine gr id in 
k-space is equivalent to a large simulation cel l in real space.) 

The resul t for diamond is summarized in F ig . 2. The to ta l energy 
per carbon atom in the diamond crystal structure is calculated as a 
funct ion of the l a t t i c e constant and f i t t e d with a Murnaghan equation 
of s ta te . We obtained a calculated equi l ibr ium l a t t i c e constant of 
3.54 ± 0.03 A and a bulk modulus of 420 ± 50 GPa in good agreement wi th 
experimental values of 3.567 A and 443 GPa, respec t i ve ly * 8 . Simi lar ly 
accurate results for these structural parameters have been obtained for 
the case of s i l i c o n . 

8 



B 
O 

cti 

> 
CD 

0) 

-155.0 

-155.2 -

-155.4 

-155.6 -

-155 .8 

-156.0 

- N* if 

1 

0.92 0.96 1.00 

a / a 0 

1.04 1.08 

Fig. 2. Calculated to^al energy of diamond as a funct ion of the r a t i o 
of the l a t t i c e constant a to the measured l a t t i c e constant 
a 0 . The curve is a f i t of the Murnaghan equation of state to 
the calculated points. The error bars indicate the standard 
deviation of the mean in each Monte Carlo ca lcu la t ion . 

TABLE I I . Calculated cohesive energies ( in eV). 

Theory Experiment 3 

Diamond 
Graphite 
Si l icon 

7.45(7) 
7.42(7) 
5.13(7) 

a) Ref. 19 
b) Ref. 20 

7.37 
7.39 
4.62-4.97° 
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The calculated cohesive energies for the crystals diamond, graph­
i t e and Si are presented in Table I I . In obtaining theoret ical values, 
we have included the zero-point energy of the phonons in the energy of 
the s o l i d . As can be seen from the Table, the present results are in 
excel lent agreement wi th experiment^,20\ i n general, Hartree-Fock 
calculat ions s i gn i f i can t l y underestimate the cohesive energy whereas 
the LDA calculations tend to overestimate the cohesive energy of crys­
t a l s , t yp i ca l l y by 15-20%. This is i l l u s t r a t e d in Table I I I for the 
case of diamond. Also from Table I I I , we see that when the one- and 
two-body terms are included in the Jastrow fac to r , the correlat ion 
energies for the valence electrons in the atom and the diamond crystal 
are 2.4 ± 0.1 eV and 4.1 ± 0.2 eV, respect ive ly . Thus electron corre­
la t i on effects play a very important ro le in determining the c rys ta l ­
l i ne cohesive energy. The present values of the corre la t ion energies 
for the carbon valence electrons are in agreement with results from a 
recent calculat ion using a similar Ansatz for the many-electron wave-
func t i on , but evaluating the energy by diagrammatic techniques*. 

3.2. Single-Part ic le Properties 

Information on some of the s ing le -par t i c le properties of the 
ground-state system may be obtained from the s imulat ion. The simplest 
of these to evaluate is the s ing le -par t i c le o rb i to l occupation number 

v < * , c i c * | * > ( 1 2 ) 

where <f»(r") corresponds to some s ing le -par t i c le wavefunction. In the 
f i r s t quantized form, 

[ ty |>] ( r2 , ^ 3 , . . . , r N ) - J <j)*(r i) i |)(r i , r 2 , . . . , r N ) d r ! (13) 

and thus n* may be easily evaluated in the Monte Carlo walk. Similarly the m o m e n t " - -•-=-*---•'- *̂ -- - -•- *•<-- --•— —•-— *— *-•-- -•• 
orbitals. 
the momentum d i s t r i bu t i on ru is the occupation number fo r the planewave 

Figure 3 shows the calculated n* for the various LDA single-
p a r t i c l e band (or Kohn-Sham) o rb i ta l s that go in to our Slater determin­
ant for the case of diamond. Owing to electron cor re la t ions , n* is 
reduced, as expected, from the independent par t i c le value of n^ • 2 for 
states below the valence band maximum (vbm). This deviat ion is on the 
order of a few percent. 

From the ground-state wavefunction, i t is also rather s t ra igh t fo r ­
ward to obtain the pair correlat ion funct ion ga(J^l»^2) through the 
usual re la t ion 

g ( x 1 , x 2 ) n ( x 1 ) n ( x 2 ) - N(N - 1) I \ty[ri - x l t r 2 - x 2 r N ) | 2 d r 3 . . . d r N 

(14) 
where n is the electron number density and spin indices are suppres­
sed. Our results for g a g C l / z ) ° f diamond and s i l i con showed tha t , 
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TABLE I I I . Total energies (in eV/atom) of the carbon atom and of d ia­
mond (with f i n i t e - s i z e correct ion) for (a) LDA ca lcu la t ion , 
and for Monte Carlo calculat ions with (b) single Slater 
determinant of LDA wavefunctions and (c) Jastrow-Slater 
funct ion with one- and two-body terms in the Jastrow 
fac to r . The expected s t a t i s t i c a l error in the last d i g i t s 
is in parentheses. 

Carbon Atom 
E t o t 

Diamond 
Etot 

Cohesive Energy 

(a) LDA 
(b) Slater Det. 
(c) Jastrow-Slater 
(d) Experiment3 

-146.79 
-145.55(7) 
-147.93(3} 

-155.42 
-151.3(2) 
-155.38(6) 

8.63 
5.85(25) 
7.45(7) 
7.37 

a) Ref. 19. 

2.00 

1 I i I 

2.00 

r, 
1.98 -

< > 
< > 

< > < > 1 

1.96 X l x < > -

I* L 1 
r s !5" 

1.94 
" Diamond 

' > 

i I 1 1 
L3-

i 

- 2 5 - 2 0 - 1 5 - 1 0 - 5 
e,(eV) 

0 

Fig. 3. Calculated s ing le -par t i c le o rb i t a l occupancy as a function of 
the energy of the various LDA Kohn-Sham o r b i t a l s . 
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unlike the uniform electron gas case, g is indeed highly anisotropic 
and is a sensit ive funciton of both T\ and ?2 separately. In par t icu­
lar we f i nd that g t i is very r ich in s t ruc tu re . For example, the 
corre lat ion hole, h^(»*) - g + + ( ^ i / ) - 1/2, for r^ located at the bond 
center has a density d i s t r i b u t i o n which is d i s t i n c t l y re lated to the 
structure and covalent character of these mater ia ls , ^ ( r * ) is nega­
t ive near ?i the bond center as expected but h^+(r") is pos i t ive only in 
the nearby low density an t i bond ing / i n te rs t i t i a l regions and not in the 
neighboring bond centers. 

F ina l ly we have carr ied out calculat ions to estimate the quasipar-
t i c l e exc i ta t ion energy of a system by- considering the di f ference in 
energy between a system in the ground state with that of a system with 
an added hole. By assuming that our var ia t iona l wavefunction is a suf­
f i c i e n t l y accurate approximation for the t rue gound-state wavefunction, 
the quasi hole energy may be expressed as 

<*|CtHC. |ip> 
E * - E N - 1 - E ° N - , V - < m ^ 

<*|CJ[H,CJ]HI> 

< * | c i c * l * > 
(15) 

where <j> corresponds to a quasihole wavefunction. In our calculat ion 
for diamond, we used the LDA wavefunction for $ 21 # Our preliminary 
results show quite good agreement with experiment (e .g . a bandwidth of 
24.9 ± 1 eV for diamond as compared to the experimental value of 21-24 
eV) and wi th other calculat ions22i23 a However, the present scheme can 
only be considered as a way r* obtaining an upperbound for the exci ta­
t ion energy since Eq. (15) in fact r igorously gives the f i r s t moment of 
the spectral function AA(UI) of the state Crf,jy> and not the peak posi­
t ion in AA(U»). For the case that a s ingle quasipart ic le peak is we l l -
defined and dominant, Eq. (15) would give a good approximation for the 
quasipart ic le energy as defined as the posi t ion of a wel l -def ined peak 
in AA(UI). 

4. Summary 

We have presented a new method of ca lculat ing the t o ta l energy 
and related properties of crystals using nonlocal pseudopotentials in 
conjunction wi th var ia t ional quantum Monte Carlo techniques. The 
approach employs a many-electron wavefunction of the Jastrow-Slater 
form. Calculations have been carried out successfully for the cohesive 
energy and structural properties of carbon- and sil icon-based sol ids. 
With both a one-body and a two-body term in the Jastrow fac to r , i t is 
found that the approach can y ie ld up to 95% of the electron correlat ion 
energy in the systems studied. Calculations have also been carried out 
to compute the s ing le -par t i c le orb i ta l occupancy, electron pai r -corre­
la t ion funct ions, and quasipart ic le exc i ta t ion energies. These quanti-
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t ies are not accessible in standard sel f -consistent f i e l d approaches 
such as the density function formalism. 
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