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ABSTRACT

A matched chirp transform (MCT) method 
for detecting a dispersive electromagnetic 
pulse is described. The unique feature of 
this transform is that it gives a 
distribution of signal amplitude over time 
rather than frequency, and thereby simplifies 
signal detection and identification in the 
case described here.

In the MCT method, the incoming signal 
is matched to a set of signal segments that 
chirp in accordance with an expected model of 
the dispersive medium. The performance of 
the MCT method is compared with that of a 
standard periodogram method of frequency 
measurement.

1. Introduction

In this paper we consider the problem of 
detecting an electromagnetic pulse that has 
traveled through a dispersive medium and arrived 
at a receiver. For our purposes the medium is 
assumed to be characterized by a previously- 
described model [1] in which the transfer function 
through the medium is defined to have unit gain 
and nonlinear delay. The general model of the 
delay of the dispersive medium used here is

<* - -for d)

d = time delay (samples)
C = constant; C>0 
f = frequency (Hz-s) 
a = constant; 0<a<l

Since a is a positive constant, the received 
signal chirps from high to low frequencies. From 
Eq. 1, the chirp rate (derivative of f with 
respect to d) is

f = -aCad-^+a) Hz-s/sample (2)
The result of passing an impulse through a 

medium described by Eqs. 1 and 2 is shown in Fig. 
1. For this figure the time step (T) between 
samples and the other parameters in Eq. 1 are

T = 2.5 ns, C = 4.E4T, a = 0.5



The amplitude spectrum and group delay of the 
signal in Fig. 1 are shown in Fig. 2. (The group 
delay is found by differentiating the phase 
spectrum.) These verify the unit gain of the 
medium and the delay given in Eq. 1. The problem 
considered here is the detection of a noisy 
version of this type of signal, and we will use 
Fig. 1 with noise as an example.

2. Detection Methods

The detection process must ultimately work in 
real time, and must work at a high data rate such 
as in the example above. Therefore, the detection 
method must be reasonably simple and not involve 
extensive computation. Several such detection 
methods were considered.

The classical approach to real-time frequency 
measurement involves using the fast Fourier 
transform (FFT). The incoming waveform is 
partitioned into overlapping N-sample segments. 
Figure 3 illustrates such a partitioning of a 
portion of the waveform in Fig. 1, with segments 
overlapping 75%. As each segment arrives, the FFT 
is computed using a window sequence [wk] as 
follows:

Xm = |£1w32’rmk/N; (3>

The FFT is treated as if the segment were 
monochromatic, and the segment frequency is taken 
to be the frequency of the largest squared FFT 
magnitude (periodogram) component.

Suppose the signal, xk, comprising a data 
segment is a sinusoidal signal given by

Xt = ej2rt(f0+kf/2), 0Sk<N (4)

That is, the sequence [xk] begins at frequency fQ 
and chirps at a constant rate. Then it is not 
difficult to show that [X^], the FFT of [xk], is 
given by

[XJ = FFTIei1*2*]; »*(.-»„) (5)

where mo is the index of frequency fQ. Thus, 
unless the derivative of f (f dot) is zero, py 
is smeared around the base frequency, f0, in 
proportion to f dot. This smearing causes an 
uncertainty in the location of the peak 
periodogram component, which in turn results in



degraded performance of the FFT frequency detector 
in the presence of noise.

Another detection method that works with 
chirping signals is the "dechirping* method 
described by Li [2], which in turn results in a 
fast chirp transform (FCT). The FCT is derived as 
follows. We view an FFT component, X_, as the 
correlation of the N-sample sequence [xjJ with a 
complex sinusoidal sequence with constant 
frequency, fm, and linear phase, 6m, given by

f = m/N Hz-sO /e\(6)
0m(k) = 2*7findk = 2irkm/N rad

Similarly, an FCT component is the correlation of 
[xk] with a complex sinusoid having a frequency 
chirping around f^ in Eq. 6 at a constant rate, 
that is, with frequency and phase given by

fm(k) = m/N + (k-N/2)f Hz-s 

^(k) = 2ir[mk/N + (k2-Nk)f/2] rad
(7)

In other words, the FCT of a sequence [xk] with N 
samples is the FFT of a dechirped sequence and is 
given by

(8)

The FCT is really a two-dimensional transform 
over a set of values of the chirp rate, f dot, as 
well as the frequency index, m, and the resulting 
large amount of computation is a disadvantage. 
Also, in the present situation, we are detecting 
signals with nonlinear chirp rates as in Eq. 2, 
which the FCT does not match precisely. The FCT 
and FFT methods are examined further in a Sandia 
Labs report [3], which amounts to this paper plus 
more details. We show that the two methods 
perform similarly with noisy versions of Fig. 1, 
but not as well as the method described in the 
next section.

A third method applicable to the detection 
and tracking of a chirping signal uses the 
adaptive predictor or line enhancer to track a 
narrowband signal in noise. Different versions of 
the adaptive line enhancer have been described by 
Griffiths [4] and Hush [5], and have been analyzed 
by Morgan [6] and others. We have not yet tried 
this approach, which could produce useful results, 
in the present study.



A fourth method, which we wish to apply in 
the present case, uses a matched chirp transform 
(MCI). Since we have a model of the time delay, 
that is, we know that we are searching for a 
signal similar to Fig. 1 in noise, we do not need 
all of the degrees of freedom in the FCT.
Instead, we can search only for waveform 
components that are chirping in the time-dependent 
manner given by £q. 2. To perform such a search, 
we can correlate each segment [x^] with sinusoidal 
components, just as described above, but now 
chirping in accordance with Eq. 2. This approach 
is described in the next section.

3. A Matched Chirp Transform

We now develop a matched chirp transforn 
(MCT) in which components chirping in accordance 
with Eq. 2 are correlated with each waveform 
segment [xk; 0<k<N]. As in the FFT and FCT 
methods described above, the MCT component with 
maximum squared magnitude is taken to designate 
the most-likely frequency and chirp rate of the 
segment. Since Eq. 2 is obtained by 
differentiating Eq. 1, an MCT component also 
designates a specific time delay, that is, a 
specific time interval following the arrival of a 
signal through the dispersive medium. In effect, 
the frequency Bind time domains are made dependent 
by Eq. 1. The dependence is nonlinear and 
therefore evenly spaced points in one domain do 
not map into evenly spaced points in the other 
domain. We will derive MCT components that are 
spaced evenly in the time domain rather than in 
the frequency domain. The even time domain 
spacing produces the preferable detection 
procedure described below.

To specify the time domain spacing, we define 
as the minimum delay corresponding with the 

highest detectable frequency, 0.5 Hz-s, and we 
define dx as the maximum delay corresponding with 
the lowest frequency of interest, fBin, with 
fmin>0• From Eq. 1, we have

do=C(0.5)_1/a; ^ samples (9)

The 'time domain* for the MCT is now defined to be 
the domain from dg to dx samples, and we divide 
this domain into M equal intervals specified by

d = d + m(d1-d )/M samples; 0£m£M (10)mo x o



(We assume that (c^-cIq) is a multiple of M here.) 
The frequency of a signal initially at the 
frequency corresponding with dm amd chirping in 
accordance with Eq. 1 is

fmW = t(M-m)d^+ mdT + Mk^ Hz-4 Si
^ ° 1 O^m^M

0<k

We define the mth MCT component to be the 
correlation of the N-sample sequence [x^] defined 
above with a complex sinusoid chirping in 
accordance with Eq. 11. The phase of the complex 
sinusoid is given by

*m(k) = 2w/fin(k)dk

0<m<M
0^k<N

The MCT of [xk] has the form of the other 
transforms above, that is,

MCTtx,,] = Vxire"^®^. O^m^M (13)
k=0

Unlike the FCT in Eq. 8, the MCT cannot be written 
as the FFT of a dechirped sequence, because of the 
form of 0m(k) in Eq. 12. However, if all N(M-l) 
values of exp[-0m(k)] in Eq. 13 are tabulated, the 
MCT does not require the excessive computing of 
the FCT, and its computation in real time is 
feasible in our applications.

4. Application of the MCT

An example of the MCT of a single segment is 
shown along with the corresponding FFT in Fig. 4. 
The segment has length N=256 samples and is taken 
from the waveform in Fig. 1 beginning at 1000 
samples or 2.5 fis, where the signal frequency is, 
in accordance with Eq. 1, 0.3162 Hz-s or 126.5 
MHz. Like the FFT, the MCT is computed over M=128 
delay intervals so that it has the number of 
degrees of freedom of the waveform segment. As 
expected, the MCT amplitude is concentrated into a 
band that is narrow compared with the FFT band.

We apply the MCT in essentially the manner 
described at the beginning of section 2 above.



The incoming waveform, containing a signal similar 
to Fig. 1 in noise, is petitioned into segments. 
The segments may be overlapping. (Currently we 
are using an overlap of 75%, as illustrated in 
Fig. 3.) The MCT of each segment is taken without 
windowing as the segment arrives, and the delay 
(d) value of the segment is taken to be the delay 
corresponding with the largest MCT magnitude.

An example comparing the MCT and FFT is shown 
in Fig. 5. Both transforms were applied to the 
detection of the waveform of Fig. 1 added to a 
large amount of broadband (20-180 MHz) Gaussian 
noise. The signal begins at 15.0 ps. The MCT 
parameters were the same as in Fig. 4. Segment 
overlap was 7555 for both transforms. The FFT of 
course gives the frequency of each segment, while 
the MCT gives the delay. The MCT produces a 
clearer detection of the signal in this example, 
as it does generally.

The linearity of the MCT delay plot in Fig. 5 
is an advantage in detection for several reasons. 
First, a simple detection criterion can be 
established by fitting a least-squares line to the 
delay plot and placing a threshold on the squared 
error. Also, by extrapolating the line back to 
its intercept with the time axis, one can 
extablish an accurate estimate of the signal 
arrival (15.0 ps in Fig. 5).

Furthermore, suppose that the constant Caused 
in the MCT is not chosen correctly, and that C is 
used instead. In Eq. 1 we see that this produces 
a scaling of the delay (d) by the factor C/C, 
which is indicated by the slope of the delay-vs- 
time line. Thus we can establish C from

slope of delay-vs-time line ^
The other chirp parameter, a, affects the 
linearity of the delay-vs-time plot, and must be 
known accurately for the MCT method to work.

In conclusion, the MCT appears to be a tool 
that is useful in the detection of a chirping 
electromagnetic signal.
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Fig. 1. Impulse response of dispersive medium
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Fig. 2. Amplifude and group delay spectra 
of the impulse response in Fig. 1.
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Fig. 3. Time-domain segments overlapping 75%.
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. 4. Comparison of FFT and MCT amplitudes of a 
segment beginning at 2.5 microseconds in 
in Fig. 1. N = 256, M= 1 28, 400<d< 10000.
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Fig. 5. Detection using the FFT and MCT methods on the 
signal in Fig. 1 plus noise.


