[V E——

4

43

nessived by OSTI ConF-§0264..-

0CT 3 0 1989 DETECTION OF A CHIRPING ELECTROMAGNETIC SIGNAL

Samuel D. Stearns SAND--89-2525C

DES0 002105
Sandia National Laboratories - Div. 7111

Albuquerque, NM 87185

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



ABSTRACT

A matched chirp transform (MCT) method
for detecting a dispersive electromagnetic
pulse is described. The unique feature of
this transform is that it gives a
distribution of signal amplitude over time
rather than frequency, and thereby simplifies
signal detection and identification in the
case described here.

In the MCT method, the incoming signal
is matched to a set of signal segments that
chirp in accordance with an expected model of
the dispersive medium. The performance of
the MCT method is compared with that of a
standard periodogram method of frequency
measurement.

1. Introduction

In this paper we consider the problem of
detecting an electromagnetic pulse that has
traveled through a dispersive medium and arrived
at a receiver. For our purposes the medium is
assumed to be characterized by a previously-
described model [1] in which the transfer function
through the medium is defined to have unit gain
and nonlinear delay. The general model of the
delay of the dispersive medium used here is

i @

time delay (samples)
constant; (>0
frequency (Hz-s)
constant; 0<a<l
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Since a is a positive constant, the received
signal chirps from high to low frequencies. From
Eq. 1, the chirp rate (derivative of f with
respect to d) is

£ = -ac2q~(1+2) Hz-s/sample (2)

The result of passing an impulse through a
medium described by Egs. 1 and 2 is shown in Fig.
1. For this figure the time step (T) between
samples and the other parameters in Eq. 1 are

T=25ns, C=4.E4T, a = 0.5



The amplitude spectrum and group delay of the
signal in Fig. 1 are shown in Fig. 2. (The group
delay is found by differentiating the phase
spectrum.) These verify the unit gain of the
medium and the delay given in Eq. 1. The problem
considered here is the detection of a noisy
version of this type of signal, and we will use
Fig. 1 with noise as an example.

2. Detection Methods

The detection process must ultimately work in
real time, and must work at a high data rate such
as in the example above. Therefore, the detection
method must be reasonably simple and not involve
extensive computation. Several such detection
methods were considered.

The classical approach to real-time frequency
measurement involves using the fast Fourier
transform (FFT). The incoming waveform is
partitioned into overlapping N-sample segments.
Figure 3 illustrates such a partitioning of a
portion of the waveform in Fig. 1, with segments
overlapping 75%. As each segment arrives, the FFT
is computed using a window sequence [w,] as
follows:

X, = ig;wkxkéj2'mk/N; 0<m<M (3)

The FFT is treated as if the segment were
monochromatic, and the segment frequency is taken
to be the frequency of the largest squared FFT
magnitude (periodogram) component.

Suppose the signal, x,, comprising a data
segment is a sinusoidal signal given by

X = ejsz(f°+kf/2)’ 0<k<N (4)

That is, the sequence [x,] begins at frequency f,
and chirps at a constant rate. Then it is not

difficult to show that [X,], the FFT of [x,], is
given by

(X.] = FPFT[e3™%E), e (@-m) (5)

where m, is the index of frequency f5. Thus,
unless the derivative of f (f dot) is gero, [X_]
is smeared around the base frequency, f,, in
proportion to f dot. This smearing causes an
uncertainty in the location of the peak
periodogram component, which in turn results in



degraded performance of the FFT frequency detector
in the presence of noise.

Another detection method that works with
chirping signals is the "dechirping" method
described by Li [2], which in turn results in a
fast chirp transform (FCT). The FCT is derived as
follows. We view an FFT component, X_, as the
correlation of the N-sample sequence [x,] with a
complex sinusoidal sequence with constant
frequency, f_, and linear phase, 6, given by

f = N Hz-s
il ®)

6,(k) = 27/f dk = 2rka/N  rad

Similarly, an FCT component is the correlation of
[x),] with a complex sinusoid having a frequency
chirping around f; in Eq. 6 at a constant rate,
that is, with frequency and phase given by

£ (k) = o/N + (k-N/2)f  Hz-s

6 (k) = 2r[umk/N + (k?-Nk)f/2]  rad

In other words, the FCT of a sequence [x,] with N
samples is the FFT of a dechirped sequence and is
given by

)

FCT[x,] = FFT[xke‘J"'(kz“Nk)f ] (8)

The FCT is really a two-dimensional transform
over a set of values of the chirp rate, f dot, as
well as the frequency index, m, and the resulting
large amount of computation is a disadvantage.
Also, in the present situation, we are detecting
signals with nonlinear chirp rates as in Eq. 2,
which the FCT does not match precisely. The FCT
and FFT methods are examined further in a Sandia
Labs report [3], which amounts to this paper plus
more details. We show that the two methods
perform similarly with noisy versions of Fig. 1,
but not as well as the method described in the
next section.

A third method applicable to the detection
and tracking of a chirping signal uses the
adaptive predictor or line enhancer to track a
narrowband signal in noise. Different versions of
the adaptive line enhancer have been described by
Griffiths [4] and Hush [6], and have been analyzed
by Morgan [6] and others. We have not yet tried
this approach, which could produce useful results,
in the present study.



A fourth method, which we wish to apply in
the present case, uses a matched chirp transform
(MCT). Since we have a model of the time delay,
that is, we know that we are searching for a
signal similar to Fig. 1 in noise, we do not need
all of the degrees of freedom in the FCT.

Instead, we can search only for waveform
components that are chirping in the time-dependent
manner given by Eq. 2. To perform such a search,
we can correlate each segment [x,] with sinusoidal
components, just as described above, but now
chirping in accordance with Eq. 2. This approach
is described in the next section.

3. A Matched Chirp Transform

We now develop a matched chirp transforn
(MCT) in which components chirping in accordance
with Eq. 2 are correlated with each waveform
segment (x,; OSk<N]. As in the FFT and FCT
methods described above, the MCT component with
maximum squared magnitude is taken to designate
the most-likely frequency and chirp rate of the
segment. Since Eq. 2 is obtained by
differentiating Eq. 1, an MCT component also
designates a specific time delay, that is, a
specific time interval following the arrival of a
signal through the dispersive medium. In effect,
the frequency and time domains are made dependent
by Eq. 1. The dependence is nonlinear and
therefore evenly spaced points in one domain do
not map into evenly spaced points in the other
domain. We will derive MCT components that are
spaced evenly in the time domain rather than in
the frequency domain. The even time domain
spacing produces the preferable detection
procedure described below.

To specify the time domain spacing, we define
do as the minimum delay corresponding with the
highest detectable frequency, 0.5 Hz-s, and we
define d, as the maximum delay corresponding with
the lowest frequency of interest, f,;,, with
fpi,>0. From Eq. 1, we have

)-l/a

d =(0.5)"1/%; a,=c(t samples (9)

min

The "time domain" for the MCT is now defined to be
the domain from dy to d; samples, and we divide
this domain into M equal intervals specified by

dln = d° + n(dl—do)/l samples; O<SmSM (10)



(We assume that (d;-dp) is a multiple of M here.)
The frequency of a signal initially at the
frequency corresponding with d; amd chirping in
accordance with Eq. 1 is

f (k) = ['(n:;,)-d?‘mm;]a Hz-s; (11)

0<msM
0<k

We define the mth MCT component to be the
correlation of the N-sample sequence [x,] defined
above with a complex sinusoid chirping in
accordance with Eq. 11. The phase of the complex
sinusoid is given by

6_(k) = 2rff_(k)dk
a
= 25{%!%7[(u-m)do+ nd;+ Mk]172 (12)
0<msM
0Sk<N

The MCT of [x,] bas the form of the other
transforms above, that is,

MCT[x,] = :i;xke-jom(k); 0<msM (13)

Unlike the FCT in Eq. 8, the MCT cannot be written
as the FFT of a dechirped sequence, because of the
form of 6_,(k) in Eq. 12. However, if all N(M-1)
values of exp[-0,(k)] in Eq. 13 are tabulated, the
MCT does not require the excessive computing of
the FCT, and its computation in real time is
feasible in our applications.

4. Application of the MCT

An example of the MCT of a single segment is
shown along with the corresponding FFT in Fig. 4.
The segment has length N=256 samples and is taken
from the waveform in Fig. 1 beginning at 1000
samples or 2.5 us, where the signal frequency is,
in accordance with Eq. 1, 0.3162 Hz-s or 126.5
MHz. Like the FFT, the MCT is computed over M=128
delay intervals so that it has the number of
degrees of freedom of the waveform segment. As
expected, the MCT amplitude is concentrated into a
band that is narrow compared with the FFT band.

We apply the MCT in essentially the manner
described at the beginning of section 2 above.



The incoming waveform, containing a signal similar
to Fig. 1 in noise, is partitioned into segments.
The segments may be overlapping. (Currently we
are using an overlap of 75%, as illustrated in
Fig. 3.) The MCT of each segment is taken without
windowing as the segment arrives, and the delay
(d) value of the segment is taken to be the delay
corresponding with the largest MCT magnitude.

An example comparing the MCT and FFT is shown
in Fig. 5. Both transforms were applied to the
detection of the waveform of Fig. 1 added to a
large amount of broadband (20-180 MHz) Gaussian
noise. The signal begins at 15.0 pys. The MCT
parameters were the same as in Fig. 4. Segment
overlap was 75% for both transforms. The FFT of
course gives the frequency of each segment, while
the MCT gives the delay. The MCT produces a
clearer detection of the signal in this example,
as it does generally.

The linearity of the MCT delay plot in Fig. 5
is an advantage in detection for several reasons.
First, a simple detection criterion can be
established by fitting a least-squares line to the
delay plot and placing a threshold on the squared
error. Also, by extrapolating the lime back to
its intercept with the time axis, one can
extablish an accurate estimate of the signal
arrival (15.0 ps in Fig. 5).

Furthermore, suppose that the comstant C_used
in the MCT is not chosen correctly, and that C is
used instead. In Eq. 1 we see that this produces
a scaling of the delay (d) by the factor C/C,
which is indicated by the slope of the delay-vs-
time line. Thus we can establish C from

-~

C

~ slope of delay-vs-time line

(14)

The other chirp parameter, a, affects the
linearity of the delay-vs-time plot, and must be
known accurately for the MCT method to work.

In conclusion, the MCT appears to be a tool
that is useful in the detection of a chirping
electromagnetic signal.
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Fig. 1. Impulse response of dispersive medium
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of the impulse response in Fig. 1.
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Fig. 3. Time-domain segments overlapping 75%.
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Comparison of FFT and MCT amplitudes of a
segment beginning at 2.5 microseconds in
in Fig. 1. N=256, M=128, 400<d<10000.
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