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An appealing feature of the well-known PIC algorithm for plasma simulations is the intu-
itive connection of the plasma representation with real plasmas. Working directly with macro
“particles” provides intuition about plasma behavior but at greater computational expense for the
extra detail that the method provides. Further, traditional explicit fully electromagnetic PIC al-
gorithms still have stability and accuracy constraints that demand microscopic details be resolved
in time and space. Recent progress in making the PIC algorithm implicit have been successful
in allowing selective resolution in space and time of only those plasma phenomena of interest.
We present here an overview of one of these procedures known as the direct implicit method as
implemented in the LLNL code AVANTI[1].

Basic Equations of the Direct Implicit D; Scheme
The desired implicit particle advance with the direct implicit D; scheme is given by

- g Yoty Vn-y
V,,_‘.,} = Vn_§ + At{in + ;;—-—-2—C———

X B,,(x,,)] (1a)
where x,, and v, represent each particles’s position and velocity at time level n such that
t, = nAt. E and B are the electromagnetic fields. &, is given by the recurrence relation
8, = {[@8n-1 + LE.41(Xn41)]. The position advance is given by

Xn41 = Xp + At ll,,+%. (lb)

Note that the explicit scheme is recovered by taking a,, = LE,,.
Maxwell’s equations, finite differenced using the D, scheme, become

Enpi —E,=cOtV x B,y +47A88 044 (2a)

Bn.‘.} - Bn_% = —cAtV x E, (2b)

with E,, given by the recurrence E,, = 1(E,4; + E,_;). As with the particle equations, the
explicit scheme could be recovered by taking E,, = E,..

These equations provide time stability for large At. Using only the advanced quantity
instead of the time averaged recurrence, in both the particle and field time integration, pro-
vides stability but excessive damping of low frequency phenomena; including some time history
through the time recursion represents those phenomena just resolved by the time step with less
dispersion[2,3,4].

What remains is to discuss the solution technique. Obviously it is not feasible to solve
the whole system by matrix inversion—each particle quantity is an unknown making the matrix
hopelessly big in most interesting situations.



Overview of the Direct Implicit PIC Method

The particle integration scheme in this direct implicit algorithm is implemented in two
conceptual steps. First we advance the particles to the #lde level using everything excepr the
advanced E field. For each particle we use

. CAt -
vn+§ = V,,-s + '?an-l + (vn+§ + vn—}) x 6 (30)
where § = £8:8a(22) 3pg
%=X+ At Vo, (3b)

The particle time advance to the rilde level is followed by the accumulation of some particle-
derived source terms at this silde level. The tilde level source terms are constructed such that
the advanced source terms can be obtained when the new E field is known. The expressions we
use are

Pr+1(Xg) = Pns1(Xg) — V- x(xg) - Epnyi(x,) (4a)
and

x(x;)
At

where 5 and J result from summations over tilde level particle quantities and the argument Xy
indicates a mesh quantity.

The tensors x and { provide the connection between the charge and current densities ob-
tained from summations over particle tilde positions and velocities and the fully advanced quan-
tities that can be obtained only after the advanced E is calculated. Not surprisingly, these tensors
are expressed in terms of the contributions év and éx that result when the new E 4, is finally
applied to the particles. The derivation, given in [1,2,3], begins with the usual expression for
Pn+1(Xg) = 2, ¢iS(X, — Xn41) which, for each particle, is expanded about the filde position.
After some rearrangement and “simplified” differencing, we obtain

Jnsy(xg) = jn+§(‘y) + “Ena(xg) — eV x ((x) - Enya(xy) (4d)

2
X(x) = Y55 25,0, 4 Rus,) 9

m,

in which the sum of particle source terms is over particle species. | and R are identity and
rotation operators associated with the particle advance but expressed on the mesh. A similar
expression, also evaluated on the computational mesh, is obtained for {. With these expression
for the tensors x and {, eqs. (4a) and (4b) are used in Maxwell’s equations so that we may solve
for the advanced fields. The solution of these field equations becomes an independent numerical
task given these particle-derived source terms.

Assuming the advanced fields have been calculated, the particle advance can be completed.
The fina! advance is given, for each particle, by

bv = %At-’%En+1(in+1) +6vx0 (6a)

Xpg41 = iu+1 + Atév = in+] + 6x (6b)
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Vn+§ = V,,.,.% + 6v. (6(‘)

These expressions are just the pieces of egs. (1) left out of egs. (3).

The details of the procedures are important to the overall robustness of the direct implicit
algorithm. Several variants were considered during development of the algorithm; only the most
successful survived[1,2,5].

Solution of the Implicit Field Equations
a) Consistency
Substituting the expression for J,,.,.* into eqs. (2a-2d) and eliminating B, the equation
for E is
E- J,;c"’At’[V’E ~V(V-E)+4r(x - E-cAtVx(-E)=Q'

=E, - 47At] + cAtV x B,_; — 1A’V x VX E,, (7)
where the E without subscript is E,, ;. The solution of eq. (7) must satisfy

V-(I+4rx) -E=4npnq, (8)

our best statement of Gauss’ law, V - E = 47p,,,;. Taking the divergence of (6) shows that E
satisfies instead V- (1 + 47x)-E = V-Q'. In general V- Q' # 47p,4,, due both to the method
of forming J and to inconsistencies on previous time steps. Ignoring this issue permits V - E to
drift far away from p, because p appears nowhere in (6).

An adjustment for Q' analogous to that used explicit EM codes—correcting the irrotational
part of J that goes into Q'is not adequate for at least two reasons. First, in simulations with
large values of w.. At, it was found by Bamnes[1] that the resulting field E is wrong due to
spuriously large currents across B. Secondly, we found that abrupt changes in density (plasma-
vacuum interfaces) causes spuriously large fields E in the low density region. Information about
the plasma conditions corresponding to both these situations is carried by .

Motivated by these observations to include x in the correction process, we take a new
form[1,2] for the correction; we subtract (I + 4rx) - Vi from Q' to form a “corrected” Q.
Substitution into the divergence of eq. (6) yields an elliptic equation for 1,

V. -[i+4rx] -V =V.Q' - 4rp. (9)

b) Numerical Implementation of the Field Solution

Early 1-D tests[6] revealed the advantage of solving all components of E simultaneously
with a linear system solver. Since a direct solve in 2D requires too much storage, an iterative
solution based on ADI has been implemented[1]. First attempts at this solution encountered
several difficulties. In low density regions in which the collisionless skin depth is well resolved,
the coefficient of V x Vx can exceed x and dominates the equation. The convergence rate slows
down in this case because this operator does not fit symmetrically into the splitting scheme.
The solution is to split E into irrotational and solenoidal parts so that we obtain the correct
cancellation of the terms irrotational part of V x V x analyrically using an interleaved mesh[1].

3



Since E; = — V¢, where @ is the electrostatic potential, we self-consistently compute the n + 1
time level of four 2-D scalars.

The divergence of eq. (7) provides the extra equation for ¢ and, when coupled with the
vector decomposition of E, gives

E - Ve - 12APVZE + drx - (E. - V&) - AtV x (- (E, - V&)] = Q. (10a)

V.(+4rx) (E,-V3)=V-Q. (10b)

In general the strong tensorial coupling of these equations reinforces the need for simultaneous
solution; the ADI procedure works well in parameter regimes of interest. The necessary precision
(we generally require 1 part in 10° for all components) is usually obtained with only 7-12
iterations. Further details of this splitting procedure can be found in reference 1.

Examples demonstrating the capabilities of AVANTI will be shown.

This work was performed under the auspices of the U. S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
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