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STABILITY ANALYSIS OF CYLINDRICAL VLASOV . EQUILIBRIA 

R.W. Short . . 

. '  A method is presented for  the  f u l l y  k i n e t i c ,  nonlocal  s t a b i l i t y  

a n a l y s i s  o f  c y l i n d r i c a l l y  symmetric e q u i l i b r i a .  Applicst ions 

to the lower hybrid d r i f t  i n s t a b i l i t y  i d  the  modes associated 

with a f inite-width r e l a t i v i s t i c  E-layer are  discussed.  
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I. ZNTRODUCTI OX 
I 

A f u l l y  k i n e t i c  s t a b i l i t y  a n a l y s i s  of a Vlasov equi l ibr ium u s u a l l y  i 
proceeds  a s  fol lows:  t h e  Vlasov equat ion  is in tegra ted  over t h e  unperturbed 

) 
p a r t i c l e  o r b i t s  t o  ob ta in  t h e  per turbed d i s t r i b u t i o n  func t ion ,  which i s  in 

1 
t u r n  i n t e g r a t e d  over v e l o c i t y  space t o  o b t a i n  t h e  perturbed charge  and c u r r e n t  

i 
d e n s i t i e s .  S u b s t i t u t i n g  t h e s e  d e n s i t i e s  i n t o  l i n e a r i z e d  f i e l d  equa t ions  then i 

y i e l d s  a c l o s e d  set of equations '  f o r  the perturbed f i e l d s  .' . I f  w e  Laplace 

t ransform and set t h e  initfal  value terms t o  zero ,  w e  g e t  a d i s p e r s i o n  

r e l a t i o n  f o r  t h e  complex f requenc ies  of  t h e  normal modes'. . . 
/ a 

For inhomogeneous plasmas i n  bounded conf igura t ions  t h e  most d i f f i c u l t  

p a r t  of t h i s  c a l c u l a t i o n  is u s u a l l y  t h e  i n t e g r a t i o n s  over t h e  unperturbed 

o r b i t s  and over veloc5ty space. ' The .purpose of t h i s  paper i s  t o  p resen t  an  

e f f i c i e n t  method of perfo'rrning such c a l c u l a t i o n s  f o r  systems wi th  c y l i n d r i c i l -  

s p m e t r y ,  t a k i n g  advantage of t h e  f a c t .  t h a t  i n  such geometries t h e  p a r t i c l e  

n o t i o n  must be pe r iod ic  i n  t h e  r a d i a l  coordinate .  The method is  f i r s t  

descr ibed in genera l ,  then an a p p l i c a t  ion t o  t h e  ' s t a b i l i t y  a n a l y s i s  of a  

r e l a t i v i s t i c  E-layer i s  presented .  

11. DESCRIPTION OF FSTHOD 

W e  assume c y l i n d r i c a l  symmetry, wi th  coordinate  system a s  shown in Fig .  1, 

R O  t h a t  r is  the only non-ignorab1,e coord ina te  .The. ~ e r t u r b e d  p o t e n t i a l s  w i l l  

be expanded i n  e igenfunct ions  of  rhe f i e l d  opeuators; s3 that these cfgcn- 

f u n c t i o n s  w i l l  be d i s c r e t e  we assume t h e  plasma t o  be surrounded by a con- 

duc t ing  c y l i n d e r  of r a d i u s  I? and iinpose p e r i o d i c i t y  i n ' t h e  z -d i rec t ion  wi th  

p e r  iog 1.. These assumptions a r e  made f o r  rnatl.ieniat i c a l  convenience; i f  they  

a r c  i n a p p r o p r i a t e  t o  t h e  a t  hand, they may be removed by t ak ing  

K -' c o .  . .. 9 L -+ *, r e s u l t i n g  in a  continuous d i spe r s ion  matrix.  
. . 

. . 

. . 



(? f. 1; :.. 
. . ,.-. . 1.  ' , .  ' ,  

Denoting t h e  equi l ibr ium s c a l a r  and v e c t o r  p o t e n t i a l s  by $.(r], A '(r) , 
b o .  - 

t h e  equ i l ib r ium f i e l d s  have t h e  form 

. . 

The equ i l ib r ium d i s t r i b u t i o n  f u n c t i o n s  w i l l  depend o n l y  on t h e  p a r t i c l e  

c o n s t a n t s  of motion: 
. . .  . . ,< . 

. '  . . . . 

where t h e  index "j" denotes p & r t i c l e  s p e c i e s  and t h e  cons tan t s  o f '  t h e  motion ' . 
- .  . . .  . .. . . 

a r e  t h e  energy and t h e  momenta conjugate  t o  t h e  ignorzble coord ina tes  8 and z :  

e' ..O P = m rv + - -&A~ ( r )  
8 j 8  c 

. . :.. 1 
To s impl i fy  t h e  d e s c r i p t i o n  of the.method we consider  t h e  e l e c t r o s t a t i c  ! 

approximat ion  .. It is not  d i f f i c u l t  t o  extend t h e  approach t o  t h e  e l e c t r o -  ..: 

1 
magnetic c a s e ,  and t h e  example t o  be d iscussed l a t e r  i s  f u l l y  e l ec t roaagne t i c .  

' The plasma is  described by t h e  ~ ~ a s o v - ~ o l s s o n  equations:  
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Gr W e  assume e- time dependence f o r  a l l  perturbed quant it ies, with 
'omec,o 

h ( o )  > 0 since w e  a r e  in te res ted  ih i n s t a b i l i t i e s .  Thus w e  write 

a 
. . The operator  (- a t  + Lo) i n  (10) represents  t he  t o t a l  time der iva t ive  along a . 

. . 
p a r t i c l e  t r a j ec to ry ,  and so the  perturbed d i s t r h t  ion function is obtained 

by in tegra t ing  over time along the  unperturbed o r b i t :  

! Here - r ' ( t q ) .  is t h e  t r a j ec to ry  of b p a r t i c l e  in the  equilibrium f i e l d s .  with 

initial 'condition 

Next we reso lve  in to  i ts  Fourier components i n  t h e  ignorable coordinates 

8 and z :  

where k =, 2 h / L z ,  n an .  integer.  Using (11) and (13); Poisson's equation 

becomes 



Note t h a t  although che r i g h t  s ide  uf (14) contains t ,  it i s  ac tua l ly  indepen- 

dent  of t h e  value of t. I n  f a c t ,  we could remove t a l toge ther  by def k i n g  a . 
./---.- -,- ..-.-, 

t 0 GY. SOU new variable-&. = t ' - t. and replacing 1 d t  ' by 1 d r  , (and t h i s  usua l ly  done) . 
'a a 

W e  s h a l l  r e t a i n  t h e  formal t "dependence," hdwever, a s  it w i l l  prove ,useful.  

To i s o l a t e  one Fourier coe f f i c i en t  on the  l e f t  s i de  of (14) we multiply 

by (1/2n) exp [-i(&+kz)] and in t eg ra t e  over 8 and z. From (12), and the  

f a c t  t h a t  and z are ignorable,  w e  see  t h a t  the  quan t i t i e s  0'  - 0 and z' - z 
are independent of 0 and z , respect ively,  s ince f o r  f ixed t ' and t a change i n  

e changes 0'  by the  same mount ,  and s imi la r ly  f o r  z .  Using the  i d e n t i t i e s  

- = k1(z'.- z )  + (k' - k ) ~ ,  



Next w e  expand t h e  r a d i a l  dependence i n  e igenfunct ions  of t h e  f i e l d  

opera tor  

(r). = Ca 0 . ( r  ) , 1 , k  . , n n .  . 

where @ (r) s a t i s f i e s  t h e '  eigenvalue equation 
. n . . 

l a  a 1 2 '  ..2 
r -  'FZ a r  ) r - -;'A . n .Q n (r) . ' 

Here w e  have suppressed t h e  i n d i c e s  & a n d ' k  on $ and a . The eigenfunctions 
n . n 

. . 

where J is t h e  .sth order  BPssel funct ion,  A = a/ [ R J ~ + ~ ( x ~ R )  1 i s  a norraali- L n 

z a t i o n  constant ,  and An i s  t h e  nth root  of t h e  e i u a t i o n  JL(AnR)= 0 .  The 

£unctions $ (r) s a t i s f y  t h e  orthonormality r e l a t i o n  n 

~'drr.$ (r)$ (r) = 6 
n '  n nn ' '. (18) 

Sul)stitl~t:in:: (16) i n t o  (15), m u l t l . p l y i n g  by r$ (r), and i .ntesrat ing over r 
n '  

. . 

. . 

. . 



y i e l d s  a l i n e a r  r e l a t i o n  i n  t h e  c o e f f i c i e n t s  a which w e  may w r i t e  a s  
n' . 

, . 

where 

S t a b i l i t y  i s  now determined by t runca t ing  . t h e  i n f i n i t e  d i spe rs ion  matrix 
* ', 1 

Dnnt(o) i n  a s u i t a b l e  way (which w i l l  be  discussed below) and solving t h e  

d i s p e r s i o n  r e l a t i o n  
C 

d e t  [D(o)] = 0 (21) 

f o r , t h e  complex ahode frequency o. I f  Im(w) > 0 t h e  mode is  uns tab le ,  and 

Im(o)  i s  t h e  growth r a t e .  The eigenvector of D(o) assoc ia ted  wi th  eigenvalue 

z e r o  then g i v e s  t h e  expansion c o e f f i c i e n t s  a f o r  t h e  p o t e n t i a l  associa ted  
n 

w i t h  t h e  mode. 

The remaining problem, then,  issthe evaluat inn af the matrix elements 

(u). The main purpose o i  t h i s  paper is t o  present  an e f f i c i e n t  way of 

c a l c u l a t i n g  t h e s e  elements. 

111. ORBIT AND PHASE SPACE INTEGRALS 

F i r s t  t h e  p a r t i c l e  o r b i t s  i n  t h e  unperturbed f i e l d s  ~ u s t  be determined. 

The Hamiltonian depends only  on r, Pr, Pe, and P and is a constant  equal  t o  z 



t h e  p a r t i c l e  energy: 

~ e ' m a y  then solve f o r  P a s  a funct ion of r, which gives ; a s  a funct ion of r: 
r 

If t h e  p a r t i c l e  motion is bounded and non-asymptotic, a p a r t i c l e  which is a t  r 
0 

at some time t must re turn  t o  r a t  some l a t e r  time t + T. When t h e  p a r t i c l e  . . 0 

. . 
r e tu rns  t o  r .it must have the same radial"ve1oci ty  i ( r  1. n u s  the  motion 

0 0 

in r i s  per iodic  with period T(Pe ,P. ,E) . N ~ W  6 = aH/aP and i = aH/apz depend 
8 .  

on t only through r, so they t o o . k s t  be peribditi, ' and we may write 

.*I 

where TI and a a r e  constants,  8 and 2 are periodic,  and 8 and z a r e  chosen so 
0 0 

The expansion functions f o r  t h e  po ten t i a l  may now be wr i t ten  

This expression can be wri t ten i n  t h e  form of a Fourier s e r i e s :  



where 62 = '2rl/T(E,P ,P ) and t h e  c o e f f i c i e n t s  G may be c a l c u l a t e d  i n  a 
8 z  m 

s t r a i g h t f o r w a r d  manner u s i n g  Graf ' s  add i t ion  theorem and o t h e r  Bessel 

f u n c t i o n  i d e n t i t i e s .  Using (22) w e  nay now perform t h e  t' i n t e g r a t i o n  

i n  (20)'  and o b t a i n  

. . 
t . 

Next w e  make u s e  of t h e  t dependence of t h e  i n t e g r a i d  i n  '(23). I f  w e  
' ' 

r e g a r d  (r, 'e,z) a s  f u n c t i o n s  of t i n  t h e  same manner t h a t  ( t l  , 0 ' , z  ') are 

f u n c t i o n s  of t ' ,  then inc reas ing  t simply advances each p a r t i c l e  along i ts  . 

o r b i t .  S ince  we start ' w i t h  an  equil ibrium our r e s u l t  f o r  t h e  d i spers ion  

ktrix must t h u s  be  independent of t. However, advancing t a l s o  advances t h e  

in tegrand  along an o r b i t , ' a n d  w e  can use  t h i s  f a c t  t o  perform t h e  i n t e g r a l  
,. . I! 

over  t h e  non-ignorable coordinate,  r .  W e  s h a l l  see t h a t  w r i t i n g  t h e  p o t e n t i a l  

exponsion func t ion '  in t h e  form (22) i s  very  h e l p f u l  i n  t h i s  c a l c u l a t i o n .  
I 

F i r s t  we t r ans fo rm t h e  v a r i a b l e s  of i n t e g r a t i o n  from tho veloeit iec t o  

the momenta: 

. . 
Next we change t h e  i n t e g r a t i o n  v a r i a b l e s  r ,  P t o  t ,  H us ing  drdP = dtdH. r r 

The r e s u l t  i s  



4ne2 
-i (&+IuY+ 'n) t , .. J ~ H ~ P ~ ~ P ~ I ~ ~ I ~ z  C* ,e 

nn ' .  'nn , - f (1c2d~)mi  m' 

. . I 

We are now l e f t  wi th  only t h e  i n t e g r a t i o n  over t h e  c o n s t a n t s  of ' t h e  

motion t o  perform, which must i n  genera l  be done numerically..  

. To g i v e  some idea  of t h e  s i m p l i f i c a t i o n s  af forded by t h e  above approach 

as compared t o  t h e  u s u a l  method, we  consider t h e  problem of a r i g i d  r o t o r  

d i s t r i b u t i o n  func t ion ,  which has t h e  form 

1 
where A = -m(v2 + v2)  + e$ and o. is a constant  f o r  each species .  This  

1 2 x  y 3 

problem has been t r e a t e d  by R.C. p avid son,'^) who shows t h a t  f o r  a uniform 

C49. magnetic f i e l d  = ~~2 t h e  equil ibrium e l e c t r i c  f i e l d  is propor t ional  t o  

5~"p r a d i u s ,  E E a constant .  It may be shown t h a t  in a re fe rence  frame 
E 0 

r o t a t i n g  wi th  angular  v e l o c i t y  o t h e  v e l o c i t y  d i s t r i b u t i o n  f o r  spec ies  j is 
3 .  

i s o t r o p i c .  Thus due t o  t h e  E x B d r i f t  each spec ies  r o t a t e s  i n  t h e  f l u i d  - - 
approximation wi th  angular  frequency o and i f  two spec ies  a r e  present  with 

j ' 



d i f f e r i n g  w 's ,  t h e i r  r e l a t i v e  d r i f t  may g i v e  r i s e  t o  i n s t a b i l i t y .  
3 

I f  we def ine  . . . . 

we may write Davidson's r e s u l t  f o r  the dispersion ma'trix elements a s  
. . 

This may be compared x i t h  the r e s u l t  obtained using the method of t h i s  

paper ( a s  discussed i n  d e t a i l  in Ref. I) : 
. . 



H e r e  a and b a r e  t h e  d i s t a n c e  of a  p a r t i c l e  gyrocenter  from t h e  

symmetry a x i s  and t h e  gyroradius  of t h e  p a r t i c l e ,  r e spec t ive .  The expression 
. . 

(26) i s  somewhat simpler than (25) ('it involves one l e s s  i n t e g r a t i o n )  due t o  
. . . . . . .  . . 

t h e  f a c t  t h a t  w e  were a b l e  t o  c a r r y  out  t h e  in tegra ' l  corresponding t o  t h e  

r i n t e g r a l  in (25) a n a l y t i c a l l y .  Another advantage of t h e  form (26) is t h a t  
L 

t h e  l i m i t s  a r e  chosen s o  a + b < R, i.e., only those  p a r t i c l e s  whose o r b i t s  

l i e  e n t i r e l y  i n s i d e  t h e  c y l i n d e r  are included in t h e  i n t e g r a l .  By c o n t r a s t ,  

t h e  express ion (25) inc ludes  p a r t i c l e s  whose o r b i t s  c r o s s  t h e ' c y l i n d e r  vall; 

f o r  t h i s  reason it is not  s t r i c t l y  c o r r e c t ,  and a l s o  f o r  t h i s  reason it is. 

n o t  a n a l y t i c a l l y  i d e n t i c a l  t o  (26). F i n a l l y ,  we n o t e  t h a t  t h e  method used t o  

. d e r i v e  (25) 'works only f o r  r i g i d  r o t o r  d i s t r i b u t i o n  func t ions ,  while ,the 

method presented here  may be appl ied  t o  an a rb5 t ra ry  equilibrFum d i s t r i b u t i o n .  

F u r t h e r  d i scuss ion  of these  r e s u l t s  and a numerical a p p l i c a t i o n  t o  t h e  lower . . 

hybr id  d r i f t  i n s t a b i l i t y  may be found in Ref. 1. 

I V  . ELECTROIIAGNETIC CASE : INTERACTION OF EXTRAORDINARY MODE WITH RELATIVISTIC 

E-LAYER . 

The Vlasov-Maxwell equat ions  may be t r e a t e d  in a s i m i l a r  manner t o  t h a t  

presented above f o r  t h e  e l e c t r o s t a t i c  equations,  though t h e  a lgebra  is 

l e n g t h i e r .  For ease  o.f p resen ta t ion  we t r e a t  t h e  s p e c i f i c  problem of t h e  

i n t e r a c t i o n  of a  r e l a t i v i s t i c  E-1aye.r wi th  a warm background plasma and omit 

most of t h e  c a l c u l a t i o n a l  d e t a i l s .  These d e t a i l s ,  along wi th  a treatment of 

t h e  genera l  Vlasov-Maxwell problem, may be found i n  Ref. 1. 

The mode w e  a r e  i n t e r e s t e d  i n  was invoked by S t r i f f l e r  and Kammash (3) 

t o  exp la in  r a d i a t i o n  observed in Astron near  t h e  upper hybrid frequency. I n  



Astron-type dev ices  a r e l a t i v i s t i c  E-layer r o t a t e s  wi th in  a warm background 

plasma .(Fig. 2)  . S t r i f  f ler and Kammash, us ing , t h e  l o c a l  approximation, 
. . 

showed t h a t  t h e  e x t r a o r d i n a r y  electromagnetic mode of t h e  background plasma 

may b e  d r i v e n  u n s t a b l e  by resonant  i n t e r a c t i o n  wi th  t h e  E-layer p a r t i c l e s .  

We now p r e s e n t  t h e  r e s u l t s  of a non-local c a l c u l a t i o n  f o r  t h e s e  modes; which 

w 

i l l u s t r a t e  some of t h e  fea tu res  of our method f o r  t h e  electromagnetic case.  

The l i n e a r i z e d  Vlasox-Maxwell equat ions  in t h e  Lorenez gaug'e are 

w i t h  gauge cond i t ion  - .  

- i w t  
W e  aga in  assume a time dependence e , with"~m(w) > 0. 

Thc Lorcntn eondigion C30) doaa not uniquely cpcc i fy  A , and by a 
-1 

f u r t h e r  r e s t r i c t e d  &uge transformation(4' w e  may r e q u i r e  & and t o  

s a t i s f y  t h e  boundary cond i t ions  

where R i s  again  t h e  r a d i u s  of the  conducting c y l i n d e r .  



Using t h e  gauge condi t ion  (30) w e  e l imina te  @ from' t h e  equations:  1 

. . 

where w e  now drop t h e  "1" on perturbed q u a n t i t i e s .  The mode w e  are i n t e r e s t e d  

in- h a s  - E in t h e  x-y p lane  and - B i n  t h e ,  z -d i rec t ion ,  so  w e  t a k e  ki = YLi = 0 

and d e f i n e  A? = A + .iA . A s u i t a b l e  expansion f o r  t h e  v e c t o r  p o t e n t i a l  in 
X Y 

terms of c y l i n d r i c a l  harmonics i s  then found t o  be 

Here a n4' 
Brit a r e  t h e  expansion c o e f f i c i e n t s  represent ing t h e  two independent 

components..o,f A, is t h e  nth rodt  of Je(AR) = 0 ,  and Ail'is t h e  nth root  of 

Ji(XR) =O. It is st ra ight forward t o  v e r i f y  t h a t  ( 3 2 )  s a t i s f i e s  t h e  c o r r e c t  

boundary cond i t  iriri.s a t  t h e  conducting c y l i n d e r i  

Next we i n t e g r a t e  t h e  Vlasov equat ions  along t h e  unperturbed t r a j e c t o r i e s  

t o  o b t a i n  t h e  perturbed d i s t r i b u t i o n  funct ion,  which on i n t e g r a t i o n  over  

v e l o c i t y  space y i e l d s  t h e  perturbed c u r r e n t  dens i ty .  S u b s t i t u t i n g  t h i s  
4 , 

c u r r e n t  d e n s i t y  i n t o  t h e  l i n e a r i z e d  f i e l d  equations we then ob ta in  t h e  d i s -  

pe r s ion  r e l a t i o n .  As i n  t h e  e l e c t r o s t a t i c  case  a considerable  s i m p l i f i c a t i o n  

is achieved by us ing t h e  f a c t  t h a t  t h e  p a r t i c l e  motion i s  p e r i o d i c  in t h e  

non-ignorable coordinate  t o  do both t h e  o r b i t  i n t e g r a l  and t h e  r a d i a l  p a r t  of 

t h e  phase space i n t e g r a l  a n a l y t i c a l l y .  

 he r e s u l t  i s  a l i n e a r  a l g e b r a i c  equation i n  t h e  expansion c o e f f i c i e * t s  

a and Brie. A s  in t h e  preceding s e c t i o n  it  i s  use fu l  t o  express  t h e  r e s u l t  
n l  

in terpls of a d i spers ion  matrix D(w) : 



where or represen ts  t h e  'a ,trs. 0 t h e  6&,s, and we div ide  D(u) i n t o  four  

corresponding submatrices, a s  shown. The dispersion r e l a t i o n  is the* 

For numerical evaluat ion t h e  matrix D(u) must be truncated,  of course,, as 

1 

i discussed below. The expressions f o r  t he  matrix elements i n  t h e  general  case  

. .are very complicated (though straightforward t o  evaluate) ,  so  we give.them here 

only f o r  t h e  spec ia l  case  of t h e  E-layer problem. 

To s impli fy  t h e  ca l cu l a t i on  we t r e a t  t he  .&layer and background plasma 

e l e c t r o n s  as d i f f e r e n t ' s p e c i e s  and ca l cu l a t e  t h e i r  contr ibut ion t o  t h e  
I 

dispers ion  matrix separate ly .  We a r e  in te res ted  i n  a high frequency mode, so 
. . 

the i ons  may be ignored,. ~ & c e  k = 0 we ignore t he  =-dependence of t he  
2 

d i s t r i b u t i o n  function and take  f ' f o r  t h e  background plasma to' be a two 
0 .  . . 

. .  . 
dimensional Elaxwellian: 

where fi and T a r e  t he  dens i ty  and temperature, respect ively ,  and 

It is  convenient t o  write t h e  d i spers ion  matrix elements i n  t h e  form 



where the X's represent the contribution of the background plasma and the Y's 

the contribution of the E-layer. The first term in Dm and DBB is the contri- 

bution of the field. operator, which is diagonal in the expansion functions. 

Note that the matrix is diagonal in 1. 

The (our) contribution of the background plasma is then found to be: 

where w is the electren cyclotrcn frequency, I is the mth order modified 
C m 

is a normalization constant: Bessel function, and Bnntm 

R 1 .  

[ AI$Jl,,(X ',R) Jh(AbR) - A 'n ,lJL+,(XkR) JLtmC1 (A l'R) 1,  
n 

aa' n # n', 
R ( A '  RII, n. = n*. . 

J;+~ 'A~R' - J ~ ~ - ~  JIMl ne 
. . 



s i m i l a r  r e s u l t s  a r e  obtained f o r  the  elements of t he  other  submatrices. (1) 
. . 

. W e  t ake  t he  ' ~ - 1 a ~ e r  t o  cons i s t  of p a r t i c l e s  wi th  gyrocenter a t  t he  o r i g i n  ' 

and gy ro rad i i  uniformly d i s t r i bu t ed  between r and r . This gives a  
min max 

. . uniform dens i t y  E-layer of thickness t EL = r max .- r . In  ac tua l i t y ,  of min . 

course,  t h e  f i n i t e  width of. t h e  E-layer i s  due both t o  t he  spread of energies  

and t o  t h e  d i s t r i b u t i o n  of E-layer gyrocenters about the  or ig in .  We neglect  

t h e  l a t t e r  e f f e c t  here  i n  order t o  come a s  c lo se  as possfble i n  cy l ind r i ca l  

geometry t o  t h e  i n f i n i t e  homogeneous cold heam approximation used by S t r i f f l e r  

and Kammash and thus  e luc ida te  by comparison the  nor,-local e f f e c t s .  Off-center 

E-layer o r b i t s  could be included i n  the  formalism with l i t t l e  add i t iona l  

d i f f i c u l t y ,  but s i nce  they would not be i n  resonance with t h e  modes they 

would not  con t r ibu te  s ign i f i can t ly  t o  i n s t a b i l i t y .  

The gyrofrequency va r i e s  with radius  f o r  the  r e l a t i v i s t i c  E-layer 

p a r t i c l e s ,  s o  we expect t he  modes t o  be local ized r ad i a l l y ,  a  f ea tu re  absent 

from the  l o c a l  approximation calculat ion.  

W e  c a l c u l a t e  the contr ibut ion of p a r t i c l e s  a t  each rad ius  r separate ly ,  
b 

i n t eg ra t i ng  t he  r e s u l t i n g  , su scep t ib i l i t i e s  over r from r t o  r 
b t o  

min max 

ob ta in  t h e  t o t a l  E-layer contr ibut ion.  The r e s u l t  f o r  an Z-lsyer of densi ty  

is: 

4se2i$, r 
!rmax W ~ ~ ' ( 0 1  =.-v c' - w - 

llli A a [r J 1 ( l '  r ) J ' Q 1  r ) ]  
min d r  b e  n l b  L n l L b  G r. . .- e x +  w b 

q o h w a  Y 



(.A' r )J' (A' r ) (A' r )J '0' r Ji+l t+l rite I ) ,  ucri XkAA'e I Jl-i b t-1 nvt b -- - 
Y 2 wc W 

(L-lIt + W (t+l)f + w 

where y is the relativistic mass factor for the E-layer particles. Again, 

similar results are obtained for the elements of the other submatrices. 

For the numerfcal calculations .we first consider appropriate 

to the Astron device and the calculations of Striffler and Kammash. '3' T~US 

5 

=min = 30 cm, r- = 50 cm, tEL = 20 cm, R = 70 cm, and B = 380 G .  We take 

the temperature of the background plasma to'be one eVand the relativistic 

mass factor for the E-layer particles to be 9.0 at r = 40 cm. A range of 

plasma densities was considered, with w /w ranging from -1 to .9, where PP CP 

%p is the plasma frequency and 6.1 the cyclotron frequency of the background 
eP 

plasma. Following Striffler and Kammash, we take the density of the E-layer 

to be given by w ~ ~ / w ~ ~  = .3, where w is the (relativistic) cyclotron CB 

frequency 'of the E-layer electrons. 

The dispersion matrix was truncated for this case at n = 20, so that 

the matrix was 40 x 40'(itmultiplies a vector of 20 a's and 20 B's). We 

shall see that -for n > IC ' t h o  ccef ficients 'a 2nd 3 .  . Secome. negligible ,for n n 
most of the unstable modes, so that this is a large enough truncation to'. 

give an accurate representztion of these modes. 

From the dispersion relation for the extraordinary electromagnetic mode 

in a uniform plasma we expect the frequencies of the unstable mode to be near 

the, upper hybrid frequency of the plasma: w = J ft$ +wZ . The mode frequency H P CP 

will therefore be above the background plasma frequency, but for the range of 

r where the mode is in resonance with the E-layer particles it will be below 

the E-layer'plasma frequency in a reference frame moving with that part of 

the E-layer. Consequently we expect a larger perturbation in the charge 



d e n s i t y  i n  t h a t  r eg ion  of . the E-layer which 1s i n  rcsonnnce with t h e  mode. 

than  i n  t h e  rest of t h e  plasma. 

F igures  3(a-e) show some of t h e  uns table  modes found f o r  1 = 8, 

w / = 1 I n  t h e  upper graph the  abso lu te  value  of t h e  charge d e n s i t y  i s .  
FP CP 

p l o t t e d . a g a i n s t  r a d i u s ,  whi le  the . lower  graph shows t h e  , abso lu te .va lues  of 

t h e  c o e f f i c i e n t s  a and B p l o t t e d  a g a i n s t  n ( the  squares  represen t  a and n n n 

t h e  c l r c l c s .  en). W e  see t h a t  the perturbed r l w ~ g r  drr~sLLy8 1s La facr 

l o c a l i z e d  near  t h a t  va lue  of t h e  rad ius  where t h e  xth harmonic of t h e  E-layer 

gyrofrequency is i n  resonance with t h e  real p a r t  of t h e  mode frequency. Xote 

a l s o  t h a t  f o r  n nea r  20 t h e  c o e f f i c i e n t s  a and B become e s s e n t i a l l y  zero, n n 

, . i n d i c a t i n g  t h a t  t h e s e  modes are accura te ly  represented by t h e  f i r s t  20 a's . , 

and B's. Figures  4(a-d) show s i m i l a r  modes wi th  w /w inc reas ing  from .3 
. P? CP 

t o  .9. Note t h a t  a s  t h e  background plasma dens i ty  i n c r e a s e s  i t  cont- r ibutes  

n o r e  t o  t h e  perturbed charge dens i ty ,  as expected. 

, The growth r a t e s  f o r  these  modes a r e  approximately an o rder  of magnitude 

smaller than those  obta ined by S t r i f f l e r  and Kammash us ing t h e  l o c a l  approxi- 

mi t ion.  This  is p r imar i ly  due t o  t h e  f i n i t e  width of t h e  E-layer and t h e  

f a c t . t h a t  due t o  t h e  v a r i a t i o n  of t h e  r e l a t i v i s t i c  cyc lo t ron  frequency with 

r a d i u s  only  a s m a l l  p a r t  of t h e  E-layer can be nea r  resonance with t h e  mode. 

' A prel iminary  c a l c u l a t i o n  has a l s o  been c a r r i e d  out  f o r  t h e  device 

descr ibed i n  Reference ( 5 ) ,  which can b e  regarded f o r  our  purposes as a 

miniatu;e v e r s i o n  of Astron, wi th  r ; 2.75 cm, r = 3.25 cm, t = ' .5 c m ,  min m a x  EL 

R = 10 cm.  The background plasma has  a temperature o,£ one eV,  a plasma 

frequency of 1.88 x 10" sec-', and a cyclot ron f requency  of 2.46 x 10" 

s+c-'. The E-layer h a s  a dens i ty  of 10" par t ic les /cm and a r e l a t i v i s t i c  

.mass f a c t o r  .of y = 3.3. The' modes of i n t e r e s t  f o r  t h i s  device  have wavelengths 

l a r g e r '  than tEL, s o  t h a t  t h e  l o c a l  approximation is  not  v a l i d .  



Since %/(wc/y) = 25.5 for this device, it was decided to look for 

instabilities of the'l = 26 modes. Figure 5(a-b) show two modes obtained with 

the dispersion matrix truncated at n = 100. Due to the short wavelengths 

involved the modes would be more accurately represented by using an even 

larger truncation, but the general features of the modes are apparent. They 

both have frequencies near the upper hybrid frequency and have perturbed 

charge densities peaked in the vicinity'of the E-layer. Consequently, we 

expect. that in this device too the extraordinary electromagnetic mode should 

be unstable, and this may give rise to the radiation observed in this 

experiment. ( 5 )  

In this paper we have presented a general method for the fully kinetic, 

' nonlocal stability analysis of Vlasov equilibria with. cylindrical symmetry. 

Using the fact that the particle motion must be periodic in the radial 

coordinate, we were able to carry out both the integration over unperturbed 

orbits.and the radial part of the phase space integral analytically, aeaving 

only the integration over the constants of the motion to be done numerically. 

The method has been successfully applied to a calculation of the lower 

hybrid drift instability in the electrostatic approximation and a fully 

electromagnetic analysis of a relativistic,.finite width E-layer interacting 

with a warm background plasma. In the electrostatic problem the method was 

seen to yield results which are both simpler than the usual method.of 

integration over unperturbed orbits and easier to adapt to the correct 

boundary conditions for a 'finite plasma. In the E-layer problem we .saw that 

nonloca1 effects cause a significant r ~ d u c t i o n  in the growth rate compared to 

a calculation based on the local approximation. 
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FIGURE CAPTIONS I . . .  

1. Geometry and coordinate system. . 

2 .  E-layer model. , 

3. Modes for = 8,  w /w = .l. 
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