WIS (

UNIVERSITY OF WISCONSIN ¢ MADISON, WISCONSIN

PLASMA PHYSICS

STABILITY ANALYSIS OF CYLINDRICAL VLASOV EQUILIBRTA

R.W. Short

DoE/eT /53051~ 2

S00=EF5305T=2" February 1980




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



NOTICE

This report was prepared as an account of work
spounsored by an agency of the United States
Government. Neither the United States nor any
agency thereof, nor any of their employees, makes
any warranty, expressed or implied, or assumes
any legal liability or responsibility for any
third party's nse or the results of such use of
any information, apparatus, product or process
disclosed in this report, or represents that
its use by such third party would not infringe
privately owned rights.

Printed in the United States of America
Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS Price codes
Printed copy: AO3
Microfiche copy: A0l



(
STABILITY ANALYSIS OF CYLINDRICAL VLASOV EQUILIBRIA

R.W. Shorf

A method is presented for the fully kinetic, nonlocal stability
. analysis of cylindfically symmetric équilibria. Applications
tq the lower hybrid drift instability-aﬁd the modes associated

- with a finite-width relativistic E-layer are discussed.
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I. INTRODUCTION

| A fuily kinetic stability analysis of a Vlasov equilibrium.ﬁsuglly
-proceeds as follows: the Vlasov eqqatién is integrated over the unper;urbed
pafticle orbits to obtain thelperturﬁgd disfribufion function, which is iﬁ
turn integrated over velocity'spacé to obtain'the pgrturbe& chafge and current
densitiés. Substituting‘these densities intollineafized field equations then
yie)ds'a closed set of eqdations’for the pegturbed fields. . If we Laplace
transfdfm and set the initfal value terﬁs to zero, we get a dispersio;
relation for the complex frequencies of the nbémal modes.

Forlinhomogepeous plasmas‘in bounded configurations the most difficult
part of this calcglation is QSualiy the integrations over thé,unpérturbed
orbits and o?er velocity spage.l The purpose of this paper iévté present an
efficient méthod;of perfoiming such calculationé for syétems with cylindricel-

. _symmetry, taking advantage of fhe fact:that in such geometfies the particle
notion musé be periodic in the radial coordinaté. The method is fir§t 
described in.general, then'an application to thé'stébiliﬁy analysis of a

relativistic E-layer is presented.

II. DESCRIPTION OF METHOD

We aééumé cylindrical symmetry, wi;h éoordinate syétem as shown in fig. 1,
80 ﬁhat T is the qnly non-ignorable coordinaté, ,fhe,pérturbed potentials will
be expanded in eigenfunctions of the field operators; so that these eigen-
funcfions wiil be discrete we assume the plasha to be‘surfoundéd by a con-
~ducting cyliﬁdgr of radius R and iméose periodicity in the z—direction with
period L. Theselassumptipns are made for mathematical convenience; if they -
~are inappropriate to the prdblem at hand, tﬂey may be removed by taking

‘R ~» @; L > ®, resulting in a continuous dispérsionvmatrix.

.
e e m——im— b e = e s
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Denotlng the equilibrium scalar and vector potentlale byC9 (r) A (r)

the equlllbrlum fields have the form

E =E (r)’f,
Zo
- W
'EO = Bo{e(r)e + B (r)z.
Frg T -
"The equilibrium distribution functions Qi11 depend'on1y on the particle
constanté of motion:
whetg the index "j" denotes partlcle spec1es and the constants of the motlon"

are ‘the enetgy and the momenta conjugate to the ignorable coordlnates 0 and z:-

m,

. _ _.J‘I 2 2 2 . . . X ) . . . ) B

H= ‘Yr Vg + V) + e (x), | : (3)
Aej"o UL L . B o

Py = mjrve + E*rAe(r) | ‘ , . %)

Pz - mjvz + S Az(r). : (5)

{
A

To simplify the description of the method we consider the electrostatic

approximation. It is not difficult to extend the approach to the electro- .

1
magnetic case, and the example to be dlscuqsed later is fully electromagnetic._

The plasma is described by the Vlasov-Poisson equations: -

[ I DU 1 N N _
g+ ¥ Y+ HE +55) - av]fj(g_,x_,_r) =0 | . (6)

At



G\'.(’;\ -.{.-
| Vng(;_.t) = ‘gl‘éajjd:’\rf(f_,z,t) | - S - @

We lipearize thesé quatio§s,vwritiné
f(;?;,«t)-= £ (x,0) + f;(g,x.f).
8, t) = 4. (x) + ¢, (x,0),

where fl.and ¢1 represent a sm;ll perturbation oé the equilibriuﬁVQuancities

£, and‘¢°. _In the electrostaric approximation the magnetic. field is not

perturbed. The linearized Vlasovaoisson,equations read

4crlq* 'f’a o 51- . . fi_ A Y
. o ‘
L %’E*’ )y, (5’3-’."?5 - m, E,(x,t) * foj(i’l) = mj[wl(z.’é)]‘ —13!, ‘ (8)
) 'v2¢1(_t_,t) = _ §4ﬂejjd3vfij (_r_,!,t) | | | : - (9)

. where we have defined the equilibrium Liouvillg operator

e, :
o ‘. » _l l g -a
LO v V+mj[§o+c(x‘x§°)]b A
From (3)-(5) we.have the relations

o oP ‘- 2
3§=m\_r_, fév—=mr6, -a-‘—'—=mj£,

]

~ 'so that (8) may be written
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Cgff  We assume e time dependence for all perturbed quantities, with
o.mec‘o : :

Im(w) > 0 since we are interested in instabilities. Thds we write

e ey ~fut R

¢1(£,t) = ¢1(£_)e : » flj (.E’y.st) flj (E»X)e

_ The operator (——-+ L ) in (10) represents the total time derivative along a
particle trajectory, and so the perturbed distrlbution function is obtained

by intégrating over time along the unperturbed orbit:

of . - .
£ &9 f drle g 3H dc’ ' 3P, 36" Wf—azv”’lfl (1] an

‘Kerelz'(t')tis the trajectory of 2 particle in the equilibrium fields with

1nitial.condition
r'(t'=t) =x, y'(t'=1¢t)=y. | . (12)

Next we resolve ¢1(£) into its Fourier components in the ignorable coordinates

6 and z:

1(£e+k;z)
gerigt ’

Sm. B ¢, @ iék%’k-(r)e

where k =‘2ﬁn/Lz, n an integer. Using (11) and (13)', Poisson's equation -
becomes

i
i

R el et S LT R

(10)

(13)
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92 i(£0+kz)

9 9 1
‘r st ersert; f’g’k%k()

o aeaz tu(e-t 1y ¥4 4 fo13 L, %0i 8, .
3‘:"“ Ja? "I dt'e 5 a7t ape ae- 3, 5 (14)

. zew ‘Qz"k'(r,)e1(£'6'+k'z')
Note that although the righi side of (14) coneeiﬁs t, it ie actually indepen- »
dent of the value of t. In fect we could remove t altogether by defining a

GY ‘\'0‘* n-e:_:a:i;blec— t' - t and replacing I dt' by I dt, (and this usually done) .
Wevshall retain the formal t "dependence," however, as it will prove useful-
Jater. |

To isolate one Fourier coefficient on‘the left side of (14) we multiply

by (1/2m) exp t—i(£e+kz)] and integrate over 9 and z.. From (12), and the
fect thatvp and z are ignoraﬁle,ewe see that ‘the quantities 8' - 6 and z"—.e |

'_are independent of 0 and z, respectively, since for fixed{t"and ta change'in

0 changes 0' by the same amount, and.similérij for z. Using the identities :
k;z' -kz = k'"(z' - 2) + (k' - k)z,
£'9' - L8 = L£°(8' - 8) + (L' = £)

we obtain



190 ° 22 2
Gy T ar ~ iy 7 K00
. of of
2043, (t iw(t-t'), "oj d oj 9 oj 9
~ Lb4me fd V{wdt'e. { 35 dt’ + aPe 36" + aPz azv] . (15)

<o, (1) A1L(®-0) + k(z'-2) )
R

Next we expand the radial dependence in eigenfunctions of the field

operator -
b ) = Tag . - ae -

where ¢n(r) satisfies the eigenvalue equation

9

3 L2, ‘ 2 : : ' .
G T %) T ). I an :

-

Here we have suppressed the indices £ and k on ¢n and dn. The eigenfunctions

méy be written
¢n‘?) - AhJZ(Anr)’

th - L , . _ - . _
where J£ is the,ﬂ‘ q:der Begsel funcﬁlon, A.n A/E?[RJ£+1(AnR)] is a norgall— g
zation constant, and An is the nth rdot of the equation .Iz(lnR)= 0. The

functions ¢n(r) satisfy the‘Orthonormality relation

[Rares ()0 (r) = 6 - (18)

o

n'"

Substituting (16) iato (15), multiplying by r¢n,(r), and integrating over r
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yields a linear relation in the coefficients Qs which we may write as
2 4 12 a0 o | o
ﬁ'(l_\n + k )Dm.(m)unr o, . | o (19)

where

4re? '

' R -1 (£8+kz-wt)
Do @ = & -,?EE;%E-Iodrrfd?v¢n(r)e‘ k2

(20)

; —ipit?
o fFaere™™t

-0

Y T 2 of |
o d .p 0} 2]  1(L0"+k2")
[ JH dt' +'1£3Pe +i P ”’n'(r Je

Stability is now determined by truncating the infinite dispersion ﬁatrix
Dnn,(m) in a suitable way (which will be discussed below) and solving the

disﬁersion relation
det[D(w)] = 0 . (21)

for the complex mode frequency @w. If Im(w).> 0 the mode is unstable, and
Im(m5 is the growth rate. The eigénvector of  D(m) associated with eigenvalue
zero thén gives the éxpansion coefficignts o for the potential associated
with the mode.

o The remaining problem, then,‘is,the eQéluatiﬁn of the matrix elements
Dnn,(m). The main purpose ot this paper isvto present an efficient way of

calculating these elements.

III. ORBIT AND PHASE SPACE INTEGRALS
First the particle orbits in the unperturbed fields rust be determined.

. The Ramiltonian depends only on r, Pr’ Pe, and Pz and is a constant equal to A



the particle gnergy;
H(r,P,,Pg,P,) = E.

We'may then solve for Pr as a function of r, which giveé ; as a function of r:

s aﬂ.:o' '
T 33;- r(r,E,Pe,Pz).

If the particle motion is bounded and noﬁ-asymptotic, a particle which is at L
at some time t must return to T, at some later time t + T. When thé particle

returns to rofié must have the same radial velocity f(ro). Thus the motion
in r is periodic with period T(Pe’Pi’E)' Now 6 ='3H/3Pe and 2 = 8H/3Pz depend

on t only through r, so they too must be periédic,Aand we may write

Gr. /—m{r o(e) + 0,

eta
Gr,’ /m +E) + 2,
4\6““1 '
vhere n and O are constants, 5 and z are periodic, and 90 and z  are chosen 56
8(t = 0) = Z(t = 0) = 0.
The expansion functions for the potential may now be written
v ' ' 108 L5 Cepar
o (p)el@O'+ka'), , JAlnHo)e! o ) 108" 1K' 1(£0;+kz,)
n n : £%n _
This expression can be ﬁritten in the form of a,Fourief series:
\ - h “__"__,,..-n"}"'"""".”mm—-‘-"'%M...
Gummo ey A8z | 1 (En+ko+ED) ' (22)
. ¢n(r )eav ‘ B 4®Gm(E’P6’?z)é o ' .
GO e T

Gr.

OYncgﬂ
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e’
straightforward manner using Gfaf's addition theorem and other Bessel

(1) .

where ='2n/T(E,P Pz) and the coefficients Gm.may be calculated in a

function identities. Using (22) we may now perform the p' integration

in (20) and obtain

4me? }
or T T ® (e - P [amfeve (e HED
TS - o 4
'{[U""Lk"*“‘m aoi‘“L °i+k—i] . e

ro ei(fntko+mR)t
mm . .

) 1[£n+ko+n0~w]

Next we make use of the t dependence of the integrand in (23). If we
regard (r,8,z) as-functions of t in.the samé manner that (r',8',z') arél
functions of‘t', then increasing t simply advances each particle along its
orbit. Si;ce we start with an equilibrium oﬁr result for_thé diséersion
matrix must thus be‘independent of t. However, adv;ncing t also advances -the
integrand aiong an orbit,'énd we caﬁ use this féct to perforﬁ the'integral
over the nop—ignorable coordinaée.r. We shall see that writing the botential
exponsionbfunctiop'in the form (22) is very:hélpful in this calculation.

First we transform the variables of integration from the velocitiec to

the momenta:

3(P_.Py.,)

B e A e T — ] 3. 3=1 _
a(vr’ve’vz) mjr, 80 r@rd v EﬁdrdprdP sz

2 9
J

Next we change the integration variables r, Pr tot, H uéiﬁg drde'= dtdH.

The result is
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_;;_fffi___; -1 (n+ko+m ')t
' 3 (k“-l;)m; : :

| T, v o
D (=8 f dHdPgdP_ / odti'cm,e

1(Ln+kc+mQ) t

G e
o [(n+ko+n0) a°j +I_ Zj + k—iap L £n+kc+m$2-m

L e

L 41e?
= §

= I [andp ap T(H
‘' jl(k2+)\§)m;

P)

e ’e,

ik, of lc(np 2 )2

O
. z[w‘*k‘”‘“ﬂ) s+ et B, 'Tl] e

1

We are now ;eft with only the iﬁtégration over tﬁe congtants‘of'the
motion to perform whiéh must in general be.done numerically.

To give some idea of the simpliflcatlons afforded by the above approach
as compared to the usual method we consider the problem of a rigid rotor

distribution function, which has the form

whére Hl = %m(v; + v;) + ed and wj is a constant for each species. This

problem has beeﬁ treated by R.C. Davidson,(z) whoishows that for a uniform
cot magnetic field Eo = Boﬁ the equilibrium electric field is prdportionalhto
\ T T . : ’
I7AL o \_\~‘ PO .
_ radius, Eo <§brr, e, 8 constant. It may be shown that in a reference frame

rotating with angular velocity wj the velocity distribution'for species j is
isotropic. Thus due to the E X B drift each species rotates in the fluid

‘approximation with angular frequency w,, and if two species are present with

3
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differing mj‘s, their relative drift may give rise to instability.
If we define
w Ze € .
t ej 41 2 _ 0 - = 2 _ 2 2
mj -5 t3 /bcj mj -, V v +w,y,V v max Vl Ve + V
S,
Dnn'(w) - Gnn' + gggn'(m) .

we may write Davidson's result for the dispersion matrix elements as

4re | af .
| - R 3,1 " of
Xin-(‘”) m, (k24X2) AnAn'»f0 drrJz(}‘nr,)_Jz_o‘n ;x)[a’v v 5‘#

2. -

4me m
3 W A A I drr )3 JK(A I‘)Jp( 'r)J _i__j_A
E 'wﬁ'aﬁ

j 5

v w-Lw :
- [kGo— - 7= 5o) + —— 5ol
fevE AV, v, TV W) TV 8V o
o fadv T J%( ) ——= - (25)
L I + -
m= “’j""j 5= Lmj - (pfm) (o;j—wj)' - kv,

This may be compared with the result obtained using the method of this

paper (as discussed in detail in Ref. 1):

xgm.(w) = - ——J—m'(kZ-!-lZ) AhAn' Z, IodaIé—, c}b!mdvt
af ‘ .
'{mj5ﬁ_i[£(m —w L) - m(w -w D] + k ———JJ
,z

S -2 o Ve ( 3° 2y
| [(wj a-Hujb) + (@j amjb)mcj (a+b) +. mj (aﬂ-b). ]'

+ - S
w4+ m(w,~w,) - kv - Luw,
( J ‘J) z J
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Here a and b are the distanéé of a particle gyrocenterlfrom the
symmetry axis and the gyroradius of the particle, respective. The expréssién" i
(26) is somewhat simpler than (25) (it involves one less integration) due to
the fact that Qe were able to carry pug the integrai co;resgonding go the |
r integral in (25) analytically. Another ad&antage of the form (26) is that
the limits are chosen sé a+b<R, i.e., only those particleg whose orbits
lie entirely inside the cylinder are included in the integral. By contrast,
the expression (25) includes particles whose orbits cross the cylinder wall;
for this reason it is not strictly correct, and also for this reason it is .
not analytically identical to (2§). Finally, we note that the method used to
derive (25) works only for rigid rotor distribution functions, while the
ﬁefhod presented here may be épplied to an arbitfary equilibrium distribution.
Further discussion of these results and a numerical application to the lower -

hybrid drift instability may be found in Ref. 1.

'IV.  ELECTROMAGNETIC CASE: INTERACTION OF EXTRAORDINARY MODE WITH RELATIVISTIC
E-LAYER
The Vlasov-Maxwell equations may be treated in a similar manner to that
presepted above for the electrostatic equations, though the algebra is
lengthier. For.ease of present#tion we treat the specific problem of the
interaction of a relativistic E-layer with a warm background plasma and omit
most of the calé¢ulational details. These detaiis, along with a treatment of
the general Vlasov-Maxwell problem, may be found in Ref. i.
| ' ‘ (3)

The mode we are interested in was invoked by Striffler and Kammash

to explain radiation observed in Astron near the upper hybrid frequency. 1In
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Astron-type devices a relativistic E-layer rotates within a warm background
plasma (Fig. 2). Striffler and Kammash, using,the local approximation,
showed tﬁat the extraordinary electromagneticlmode of the backgrouna piasma
may be driven unstable by resonant interaction with the E—iayer particles;
We now present the‘resuits of a non-local calculation for these modes, which
i1lustrate some of the features of our method for the electromagnétié ca;gf

The linearized Vlasox-Maxwell equations in the Lorentz gauge are

5 - f .
(g—t"l' Lo)f.:L"] (r,v,t) = —1{V¢1(r t) - —v x [V x Al(r )] + = __Al(r )} .> a;j @7

B 4Te :
vz - 1'-z-——-z-)Al(r t) = - 2——~1fd vvf,. (z,v,t) ' (28)
i€ ] |
(v5 _1 2 =0, (x,8) = - ZAne‘fdavf (r ti‘ | (29)
. c2 otz "1 j 3 13 = : -
with gauge condition
Y |
Ve tog =0 | (30)
-iwt .y
-, with Im(w) > O.

We again assume a time dependence e
The Lorents condition (30) doos not uniqualy cpecify A/, ond by a
| (4)

further restricted gauge transformation we may require él and ¢1 to

satisfy the boundary conditions
v

y 51|r=R = 0|k - 0; | (31)

where R is again the radius of the conductiﬁg cylinder.
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Using the gauge condition (30)‘we eliminate ¢1 from the equations:

where we now drop the "1" on perturbed quantities. The mode we are interested
in has E in the x-y plane and B in the z-direction, so we take kz =‘A2 =0
and define A* ='Ak t.iAy. A suitable expansion for the vector potential in

terms of cylindrical harmonics is then found to be

AR AT L S sasm e s ey e £ Syt e =

+, . _ : “,'w.‘\ y |
A (x) = lZ [an£J£+1(An£r)! .B;EJ£+1(Xn£r)]e

,

i(£+1)8
(32)

-\ - , . v 1.1(£-1)6
A = T Ty 3 Oger) - Bpdp  (yprd]e

Here o_,, Bnﬂ are the expansion coefficients representing the two independent

. components-.of é, Anl is the '™ root of Jp(AR) = 0, and'Xéé'is the n™® root of

Jé(iR)‘=Oa It is straightforward to verify thét‘(32) satisfies the corfe&t
boundary conditicns at the conducting cylinder,

Next we integrate the Vlasov equations albng the unperfurbed trajectories
to obtain the perturbed distribution function, which on integration over
veioéity space yields the perturbed current density. Substituting this

< !

current density into the linearized field equations we then obtain the dis-

' persion relation. As in the electrostatic case a considerable simplification

1s achieved by using the fact that the particle motion is periodic in the
non-ignorable coordinate to do both the orbit integral and the fadialvpart of
the‘phase space integral analyticélly.

The result is a linear‘algebraic equation in the expansion coeffiqieﬂts
anzkand an. As in the preceding section it is useful to express the result

in terms of a dispersion matrix D(w):
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XY, Dm(m) DaB(w) a\ _
D '(w) = = 0’ .
an : .
B 4 2 Daa(w) DBB(w) B

n

where O represents the'anl.s, B the an,s, and we divide D(w) into four

corresponding submatrices, as shown. The dispersion relation is then
‘det[D(w)] = O.

For numerical evaluetioﬁ the matrix D(w) must be trunca;e&, of course, as
4 discuseed below. The expressions for the matrix elements in'the.general case
‘are very complicated (though straightforward to evaluate), so we give them here
only for the special case of the E-layer problem. |
To simplify the calculation we treat the E-layer and backgtound plasma
electrons as different species and calculate their contribution to the
dispersion matrix separately. We are interested in a high frequency mode, so
thetions may be ignoced, Since kz = 0.we ignore the z-dependence of the
distribution function and take f6 for.the background plasma to pe‘a two

dimensional Maxwellian:

g eréth"v

_———————\\
‘)\’W\Iol 0 21|'T }@/1

where i and T are the density and temperature, respectively, and
)"
1

H' = imv

It is convenient to write.the dispersion matrix elements in‘fhe form
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D™, @) = & - ar2y Ry (,\I.Q) RO INEE SRt T O

Dgg' (w) = |(w) + Y Bv(w)

Dho. ) = X2, () + YEZ, (W)

DBB (w) = (5"i )A R? (A R)G + xBB (w) + Y (w)
nn' n£ 2 £+1 nn' ' n'

where the X's represent the contribution of the background plasma and the Y's

B8 is the contri-

the contribution of the E-layer. The first term in D®* and D
bution of the field operator, which is diagonal in the expansion functionms.
Note that the matrix is diagonal in £.

The (aa) contribution of the background plasma isAthen found to be:

. . 2 2

oo () = 4me?n y W {-2¢ T .)[X;Z+A"£ I’ (XAZA;'ZT)

nn' W m Cc2 p mw -W mw 2 2 m mw 2

» e " e e c ec

2 v'. 2 2
AT ( nC n'C )] + m?( MeYe ) I (Xnﬁké'lT)}Baa exp| (A;£+X;'£)T
nC n'£'m' m Ve A;ekét m' mw 2 nn'm Y P~ 2m w? ]

. S Tec ‘ ec

where w, is the electron cyclotren frequency, Im is the mth order modified

Bessel function, and Bﬁz,m is a normalization constant:

. R [ 4 ; 1 ] '
( —ﬂ—x&_xn%[ld%ﬂ}ﬂ(l w2 Ip i (ApR) - '£J£+m()‘n£R)JI_-m+1 ' R

R R _
7

g . n ¢ ';
B (@) T n

(AR ], n'

[J£+m( nk Ry - J£+m 10‘ R)Jl’_-l—m+1
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(1)

Similar results are obtained for the elemeﬁts of the other submatrices.
. We take the'E-layer to consist of particles with gyrocenter at the origin’
and gyroradii unifofmly distributed between r and r . This gives a
' min max
uniform density E-layer of thickness t =r = r . . In actuality, of

EL max min )

course, the finite width of the E-layer is due both to the spread of énergies.
and to tﬁe distribution of E-layer gyrocenters about ;he origin. We neglect
the latter effect herg in order to coﬁe as close as possible in cylindricgl
geometry tolthe infinite homogeneous coid beam approximation used by Striffler
and Kammash and thus elucidate by comp;rison the non~local effecﬁs. Off—cenfer
'ﬁ-layer orbits could be included in the formalism with little additional
.difficulty,'bu; sincé they would not be in fesonance with fhe modes they
would not contribute significantly to iﬁstability.

| The gyrofrequency varies with radius for the relativistic E-layer
particles, so we expect the modes to be localized radially, a feature absent
from the local approximation calculation.

We calculate the contribution of particles at each radius r Sepafatelf,

b

integrating the resulting susceptibilities over r, from r. tor _to
: : b min max

obtain the total E-layer contribution. The result for an C-layer of density

~

nb is:
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where Y is the relativistic mass factor for the E-layer pafticles. Again,
similar results are obtained for the elements of the other submatrices.

For .the numerical calculations we first consider parameters appropriate
to the Astron device and the calculations of Sfriffler and Kammash.(3) Thué

b o 20 cm, R = 70 cm, and B = 380 G.  We take

min

the temperature of the background plasma to be one eV and thg relativistic

=30 cm, T ‘= 50 cm, tEL
mass factor for the E-layer particieS'to be 9.0 at r = 40 cm. A range of
plasma densities was considered, with w_ /w ranging from .1 to .9, where

.PP" CP

wPP is the plasma frequency and wc the cyclotron frequency of the background

P
plasma. Following Striffler and Kammash, we take the density of the E-layer
to be giﬁeﬁ by wCP/wCB = ,3, where wCB is the  (relativistic) cyclotron
frequency of the E-layer electrons.

The dispersion matrix was truncated for this case at n = 20; so that
the matrix was 40 x 40 (it multiplies a vector of 20 a's and 26 B's). We
'shall see that for n > 10 the ccefficients dn and Sﬁ‘become.negligible,for
most of the unstable modes, so that this is a large enocugh truncation to"
givé an accurate representation of these modes.. |

From the dispersion relation for the extraordinary eléctromagnetic mode
in a uniform plasma we expect the freﬁdencies of the unstable mode to be n;at
the upper hybfid f?equency of the plasﬁa; Wy = «’Zggizg;l The mode frequency
will therefore be above the background plasma frequency, but for the range of
T Qhefe the mode is in resonance with the E-layer particles it will be below

tbe E-layer ‘plasma frequency in a reference frame moving with that_part of

' the E-layer.  Consequently we expect a larger perturbation-in the charge
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density in that region of.thevE;layer which is in resonance with the mode 
than in the rest of the plasma.

‘Figures 3(a-e) sﬁow some of the unstable modes féund for £ = 8,
wPP/wCP = 1. In the upper graph the absolute value of the chgrge density~15.
plotted against radius, while the lower graph shows the absolute values of
the coefficients o and Bn plotted against‘n (the squéres represent an and
the circles.Bn). .We see thét the perturbed uha;ge:deyley'ls In fact
‘localized near that value of the radius where the lth harmonic of the E-layer
gyrofrequency is in resonance with the reai part of the mode freduency. Note
also that for n near_20 the coefficients o and Bn become essentially zero,
.indicating that these modes are accurately represented by the first 20 a's
and B's. Figures 4(a-d) show similar modes With'wPP/wCP incréésing from .3
to .9. Note that asAthe background plasma.density increases it contributes
more to tﬂe perturbed charge density, as expected.

The g;owtﬁ rates for these modes are approximacely'an ofder of magnitude
smallér than those bbtainéd by Striffler And Kammash using the local approxi-
mation. This is primarily due to the finite width of the E~layer and the.
fact that due to-the variation of the relativistic cyclotron'freqdency with
radius only a small part of the E-layer canm be near resonance with the mode.

"~ A preliminary calculation has also been carried out for the device
described in Reference (5), which can be regarded for our purposes as a
miniature version of Astrop, with T oin tEL =‘.5 cm,

R = 10 cm. The background plasma has a temperature of one eV, a plasma

= 2.75 cm, Toax = 3.25 cm,

frequency of 1.88 x 10! sec !, and a cyclotron frequency of 2.46 x 10%°

sac’ !. The E-layer has a density of 10%! particles/cm and a relativistic -

mass factor -of Y = 3.3. The modes of interest for this device have wavélengths

larger than tEL’ so that the local approximation is not valid.

—
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Since mH/(wC/Y) = 25.5 fof this deQice, iﬁ was decided to look for
instabilities of the £ = 26 modes. Figure 5(a-b) show two modes obtained with
the dispersion matrix truncated at n = 100. Due to thé short waveiengths
‘involved fhe modes would be more accurately represented by using én'even
larger truncation, but the general features of the modes are apparent. They
both have frequencies near the upper hybrid frequency and have perturbed
charge densities peaked in ﬁhe vicinity of the E-layer. Consequently, we
expect  that in'this device‘too ﬁhe extraordinary elecﬁromagnetic mode should
be uﬁétable, and this may give rise to the radiation observed invthis

 experiment.(5)

V. CONCLUSIONS

In this péper we have presented a general metﬁod for the fﬁlly kinetic,
nonlocal stability analysis of'Vlasov equilibria with cylindrical symmetry.
sting the fact that the particle motion must be periodic in the fadial
cqordinaté, we were able to carry out both the integrétion over unperturbed
orbits and the radial part of the phase space integral énalytically, leaving
only tﬁe-integration over the constants of the motion to bé done numerically.

The method has been successfully applied to a calculation of the lower
hybtid drift instability in the electrostatic approximaﬁion and a fully
eleétromagnetic,analysis of a relativistic,_finite width E-layer interacfing
with a warm background plasma. In the electrostatic problem the method was
'seen to yield reéults‘which are both simpler fhan the usual method of
integration éver unperturbed orbits and easier to adapt to the correct
boundary conditions for a finite plasma. ‘In the E—léyer problem we saw that
nonl9¢al effects cause a significant reduction in the growth rate compared to

a calculation»based on the local approximation.
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_FIGURE CAPTIONS

Geometry and coordinate system.
E-layer model.
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Two modes found for the device of Ref. (3).'1
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