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ALGEBRAIC DESCRIPTION OF INTRINSIC MODES IN NUCLEI

Amiram Leviatan

Theoretical Division, Los Alamos National Laboratory
Los Alamos. New Mexico 87549

ABSTRACT

\We present a procedure for extracting normal modes in algebraic number-conserving systems of inter-
acting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic
(bandhead related) and coilective (in-band related) parts. Shape parameters are introduced through
non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the
intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed
and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one
tyvpe of boson as well as with proton-neutron bosons.
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INTRODUCTION

The interacting boson model (IBM) (Iachello et al.,, 1987n) has been empirically successful in deseribing
a wide range of data on low lying collective states in even-even nuclei (Casten et al., 1988). The building
blocks of the model are a monopole boson st (J = 0%) and a quadrupole boson d", (J = 2% projection
quantum number u). The bosons are regarded as images of correlated monopole and quadrapole pairs
of identienl valence nucleons (lachello et al., 1987h). Axs such the total number of bosons N s conserved
aned i1s taken as the sum of valence neutron and proton particle or hole pairs counted from the nearest
closed shell, The Hamiltonian consists of rotational invariant, hermitinn, number conserving one  and
two- hody internctions mnong the bhosons, The presence of six building blocks and a conserved toral
boson number confers on the model a group structre of U(6). The group structure provides hoth
anndytic solutions (for specific choice of interactions) nnd bases for dingonalization of the Hamltonian
in the general (and more renlistic) case. Flectromagnetie statie and dynunie moments are calenlnted
with number conserving transition operntors of agproprinte ranks.

Vvpienal speetra cbhtained in the IBM is shown in Fig. 1. In Fig. (1n) the speetrmm of Y28 displays the
fnmiliar sequence of levels 048,24 (04 24 4 ) of aspheriead mielens exeited by gquidrupole exeititions.
In Fig. (1e) the IBM spectrum of "*Er displays a characteristic pattern of an axially deformed nuelens
with well developed rotational bands, The clearly visible gronnd, .4 and higher Laads hiave a typieal
rotor J(.J 4 1) splitting.
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Fig. 1. Spectra of (a) H;ga (18 Sm), below 3 MeV; (b) H,ne( '8 5m), below
1.7 MeV; (¢) Higum('®Er), below 3 MeV; (d) Hin '°®Er), below
2.2 MeV. Taken from (Kirson et al., 1985).

The IBM Hamiltonian that give rise to such diverse spectra is

H =es's + eydt-d + uo(.s')z.s2 + uzstd - ds + vg [(3')2J-J+ dt . dts?

+ 1 .s'd'-((id)“’+(d'd')(”-¢is] + Y en(dldh)® . (dd) (1)
=024
Here d, = (=)"d_,, the dot implies scalar product and standard notation of angular momentum

coupling is used. The coefficients in front of the interaction terms are determined from fits to the
experimental data. The algebraic second-quantized form of the Hamiltonian (1) is rather abstract. It
does not reven] how ¢ given interaction affects the spectrum nor what are the model’s excitation modes.
[o address such issues one needs a geometrical realization for the abstract algebraic model. This can

he acheived through a concept of an intrinsic state which is a condensate of N bosons (Ginocchio et al.,
19%0; Dieperink et al., 1980)

Nty >

(N h N s ()

. 1
b= L+ %)V Jeosy o d) + Isiny - —=(d) + db,) + 9] (2h)

V2
Each condensate boson is a mixture of 3- and d bosons and depends on both quadrupole deformation
parameters J 2 0 and 0 <7y 2 bxo the expectation value of the Hamiltonian in the state (2) detines
an energy surface

Evid. vy = .V:.f.‘ylh'i.v;,”, oo -4

which depends on .V, 4, v and on parameters of the Huniltonian. Minimizing the rnergy surface with
respect to . and v one finds all the local minima of which the ¢lobal one we denote by (4, 0 For the
IBM Hamilttian of eq. (1) the energy surface takes the form

ENCAy) = Neg $ NV - Diug + NV - 1000 #4073 [a - bdcosdy e d?) b



The 3-y shape of the energy surface is dictated by three combinations of parameters of the Hamiltonian:
a=uy+200~2ug+(€4—¢€,)/(N=1),b=2/2/Tva. c = co/S+2c2/T+18¢4/35— uy+ (€4 —¢€,)/(.N~1).
For 3y = 0 (Jp > 0) the state (2) describes a spherical (deformed) shape. At a deformed minimum
vo = 0 (or 7/3) corresponding to a prolate (oblate) shape with the = (y) axis as the symmetry axis. If
the coefficient b=0, the energy surface becomes independent of 5.

INTRINSIC -COLLECTIVE RESOLUTION OF THE HAMILTONIAN

Given an IBM Hamiltonian, one calculates an energy surface through eqs. (3)-(4), finds the global
minimum (Jp. Yg ). substitutes these equilibrium deformations into the state (2) and obtains the ground-
state intrinsic wavefunction |.V: g, 9 >. Since the equilbrium condensate |V 3y, 79 > is just a solution
of a Hartree-Bose variational calculation, it is in general. not an eigenstate of the Hamiltonian H.
However, for any given H we can construct another Hamiltonian for which which |.V; 45,90 > is an
exact zero-energy eigenstate and whose energy surface is equal to that of the original Huniltonan H up
to a constant independent of 3 and y. These twe requirements define the new Hamiltonian in essentially
a unique way and. for reasons to be explained below, we refer to it as the intrinsic part (H,,) of the
full Hamiltonian H. Once H,,¢ is known, we define the collective part of the Hamiltonian (H,) as the
difference between H and H,,,¢. In this way one obtains without any expansion or truncation procedure
an exact resolution of the Hamiltonian into intrinsic and collective parts ( Kirson et al., 1985; Leviatan,

1987)

H - Hmf+H.- . (5)
The intrinsic part of the Hamiltonian takes the form
Hynil 30 = 0) =o' - d(d" - d - 1) + l/u)['zs*d' + nz(d'd')‘”] ' [h.(--] (Ga)
e =c-b/da =y p=a (6h)
Hind o > 0) = wo [dt-d? = 32| [he] 4w doatd! & \/z(d'd')"”] ne] (6.")
g = (Ibl;f() — 2(1)/4.13(1 + ,f,lf), wy = ihl/'z,f" (6l

n (6c) the upper (lower) sign is taken for vy = 0 (= n/3). By construction H,,¢ has the sane shape
br the energy surface as that of the full H. H,,¢ becomes positive definite if and only if the coefficients
u front of its interaction terms are non-negative, This occurs when the corresponding (4. y9) are at a
lobal minimum of the energy surface. As a zero energy ecigenstate of a positive definite Hamiltonian,
N:dy. v > 18 anexact ground state of Hyne. For i3y = 0 the state | V: 4y, 70 > is deformed and contains
rveral components of different angular momentum.  Since H,,¢ is rotational invariant all states of
ood angular momentum projected from | V: .95, 79 > form an exactly degenerate ground state hand,
rom numerical studies it is found that also excited states of H,,, tend to eluster into bands from
snsiderations of both energy and E2 transitions (Leviatan, 1985; Kirson et al., 1985). This is seen in
igures (1b) and (1d} for '**Sm and """ Er. In the spherieal ense of #ig. (1b) the spectram of H,y is
it of nnear harmonic quadrple oscillator. In the deformed case of Fig. (1d) the spectrum of H,,, is
it of nvibrating rotor with tae J(J ¢ 1) rotational energy removed. The Intter splitting comes from
10 collective part of the Hamiltonian (H,). By construction H,. hes o tlat energy surface and apart
ot .V dependent terms of no significanee to exeitation energy, it can be transeribed in terms of the
ver hody parts of the Casitnir operators of the orthogonal groups in the chan

((6) » D) » () (0

ere ((6) 18 n particular (O(6) group genernted by (VDU L 103 aud o(dts SNy The L1
operators are the generators of an O(0) group while (203) s the nngalar momentum wronp cwithy



generators J) = /10(d'd)'") ). The classical limit of H. contains only momenta vanishing in the
static limit and so it may be interpreted as the kinetic energy of collective rotatinn of the static intrinsic
structure determined by H,,,. The collective motion is related to the usual (J(3) rotations and also to
more generalized O(5) and (J(6) rotations associated with the v and ;3 degrees of freedom respectively.
In general H. and H,,, do not commute so that H, can mix as well as shift and split the bands generated

by Hae.

EXCITATION MODES

In going from a spherical to a deformed ground-state shape the st boson was replaced by the condendsate
boson bl(3.4) (2b). Similarly, we may expect the (l:‘ bosons which represent excitations of the spherical
shape to be replaced by other combinations of bosons which are more suitable for describing excitations
of a deformed shape. This motivates the introduction of tne following non-spherical bosons (Bohr et
al.. 1982; Leviatan 1985, 1987)

. . 1
bt = (14 35)7V4 Jcosy - d) + Ising - -ﬁ(d; + ..’f_.z) + st (8a)
1
b, = (1+.i")"/"'[ms7-al,',+.~:in-y-ﬁ(d;+d'_2)—.i.s-'] (8b)
1

bl = cosy- —((l.t. +dt ) —siny - d! (&¢)

b \/.E 2 -2 0
1

bt o= —\/—3(41 +d' ) (8d)
1

o= %((1{ —d' ) (Se)
1 .

’)! = -—((1-3 1["_...) (Sf)

For uny choice of .3, 7 the six bosous in (8) form an orthogonal and eomplete basis which contains the
nsual » o basis as a special ease, Any operator written in terims of s-d hosons ean be rewritten in terms
of the above deformed basis. In partienlar the total boson number operator is dingonal i1z the above

Hisls
Nos e Y dhd, = ) bl k() (9)
" !

The “appropriate” basis for a given Hamiltonian is obtained from dynumie considerations by seleting in
(5 the equilibrinn deformation paraneters (3,, 19 ) of H. Each member of the basis acquires a physical
interpretation through its connection with a particular degree of freedom. ‘The condensate boson (8a)
deteripines the exact gronnd state |V dy,y0 - (2) of H,e. Other members of the basis represent
sxeitations of the condensate whica mvolve 4 5 vibrations and r. y, 2 rotations. For large boson
number these exeitntions are obtained by replacing n condensate hoson in the equlibrivm condensate
oy orthogonnd members of the “appropriante” basis: b:h, Vi, 30 ». 1 £ ¢, Some eare is required in the
leformed ease Consider the generator of rotation abont the r-axis J, (obtained in the usual way from
he spherieal form of the angular moimentam operator .I,(,”). Sinee H,, and J, commute, it follows
Lt J,1N 4y - produces astate different but degenerate with the exact grmnd state [(Vidy50 - of
Wone. Bt TN Syoy0 o~ dysintyg 20/3)0 00 [N Ay vy - and thus for Jy - 0 the teplacement of a
ondensate boson i [V Ay v - by an e boson resultsin o spurious rather than an intrinsie exeitation.
Fhis as asignaturs of o spontaneonsly broken symimetry which ocenrs when the groand state has a lower
ymmetry than the Hamlbtoninn, Here H, 8 rotational ivarinnt, vet when g - 0 its exaet gronnd
tate (V090 ¢ s deformed and does not have a well defined angnlar momentam.  Assocrated with



a spontaneously broken symmet-y is the appearance of Goldstone bosons. In the above example the
Goidstone boson is the r— boson (8d) which is associated with the broken symmetry of rotations about
the r- axis. We thus see that in some circumstances governed by symmetnes of the Hamiltonian and by
the location of its global minimum in the energy surface. some members of the geneal basis (8) represent
physical genuine modes while other represent spurious Goldstone modes. The distinetion between these
two types of modes is most clearly seen in the normal-mode analysis (Leviatan, 1987) to be discussed
helow,

Normal modes of the boson system are extracted. for large N. from H,,¢ by applying to it the Bogoliubov
treatment (applicable here due to the dingonality (9) of the number operator in the general basis). To
wading order in N this amounts to rewritting H,,, in terms of the “appropriate” basis b:(.i(,.m,) and
approximating the b! and b, operators by the c-number V'N. The resulting Bogoliubov image of H,p,

(denoted HY ) is
HB (30 =0) =€) _dld, (10a)
u
HB (35> 0070 =0) = e3bhbg + e5(b b, + bh,) (10b)
1
HB (3> 0.9 = 37) = esbhby + e (b1hy +blby) (10¢)

In each case b: = bf(Jo. 70). The normal-mode frequencies are given in terms of the parameters of the
full IBM Hamiltonian and are positive for (.. v9) at a local minimum

e=Na, ey = NIE(dwy + wy), €, = ONw,33(1 + ,ig')—' (10d)

The Bogoliubov image of H,,, dispiays harmonic oscillators only in those members of the “appropriate”
basis which represent physical intrinsie excitations. The spurious modes are absent and iherefore
decoupled from the intrinsic ones. For 3y = 0 no symmetry is broken in the spherical condensate
and therfore all components of the quadrupole boson appear as intrinsic modes in the form of a five
dimensional harmontie oseillator (10a). In the deformed case the intrinsic modes are 3 and 5 vibrations,
The spurious modes (r. y for vy = 0 and r. z for yg = 7/3) connected with rotations about directions
perpendienlar to the symmetry axis are absent from H2 (39 > 0). The boson linked with the rotation
about the svimmetry axis (= for 3y = 0 and y for y9 = 7/3) about which the rotation-symmetry is not
broken. joins the 3 boson to form a two-dimensional oscillator. The latter can be rewritten in terms
of modes with projection X' = +£2 along the symmetry axis. This is just a manifestation of the axial
symunetry for prolate or oblate shapes. In case of a v independent energy surface (b = 0 in (4)), €,
(10d) vianishes and all r, y. 2 and ¥ bosons are nussing from H,’,’.,(,do > 1)). They are Goldstone modes
associnted with a spontancous broken O(5) symmetry iu the condensate. Ouly the 3- mode survives in
this case as anintrinsie mode,

I'le contiibutions of terms in the colleetive part of the Humiltoninn to shifts in the normal-mode
frequencies (10d) are given i eq. (5.31) of (Leviaton, 1987). Together with expressions (10d) they
provide a large N estimate for the position of the bands. Their explicit dependence on parameters of
the Hamuiltonian alluminates the physieal content of otherwise abstract terms and provides o enterion
for seleeting suitable algebraie internctions based on their speetral sigmficance.

Ouece the intrinsie modes have heen identitied one construets intrinsie states representing the various
Lands (Bohe et al.. 1982). For a prolate deformed shape the intrinsie states for the gronnd state (g). 4
and = bands take the following form for large V

g0 - (N RN Y0 . (11a)
IR Y LY R PR N I (11h)
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In (11) b: = b:(Jo.ﬂ,o = 0). These intnnsic states have been used (Bijker et al.. 1982; Wamer et al.,
1982) for calculating intrinsic transition matrix elements and have revealed the origin of characteristic
IBM predictions for electromagnetic transitions in deformed nuclei (e.g. the dominance of 4 — + and
y — g over J — ¢ for E2 transitions).

PROTON NEUTRON BOSON SYSTEMS

Attempts to give the boson model a microscopic iterpretation has lead to the introduction of proton
(7) and neutron (14) degrees of freedom into the model (Arima et al., 1977: Otsuka et al., 1978). This
extended version of the interacting boson model (IBM-2) involves two commuting sets of bosons ”L- dt
and s!.d!. The Hamiltonian takes the form H = Hp + H, + V', where H, (p = 7, 1) is given as in eq.
(1) and V5, is a proton-neutron boson interaction.

To discuss the IBM-2 in geometric terms. one introduces two sets of non-spherical bosons (Leviatan
et al., 1989). The proton basis is obtained from egs. (8) by inserting .J,, 7, and using proton hoson
operators. Similarly, the neutron basis is obtained by using neutron deformations .3,, 5, and neutron
operators. The neutron basis is also rotated with respect to the proton basis by three Euler angles
N =(0.6.0)

bl (3.7, 0) = ROOB (4. 7R i=cdiyry.: (12)

Here R() denotes an O(3) rotation. The condensate wave function is now a product of a proton
condensate and a rotated neutron condensate

Ve drerm Voeduyo > = (NI V2 (6 (0L )] ™ [8Y (D)) 7 10 > (13)

with [’y = (J,.7,) p = 7. . The expectation value of the Hamiltonian in the state (13) produces
an energy surface which depends on the n-v deformations as well as on the relative orientation §2

hetween the two quadripole shapes. The global minimum of the energy surface denoted by I“i,“) =

) ) ' . . . . ’
(44 ).7:,(”\ and Q%) determines the form of the intrinsic wave function for the ground state band

LV p. . AT I QO s Ay before, the resolution (5) of the Hamiltonian into intrinsic and collective
parts exists, The Bogoilubov image of the intrinsic part of the Hamiltonian (HP
rewritting A, in terms of the - bases with the equilbrium deformations and approximating the =
and v condensate- boson operators by ¥V, and VN, respectively. A subsequent dingonalization of
HP, produces the normal modes of the combined 7-v system. The normal modes are in general a
mixture of particular members (other than condensate) of the separate 7 12 bases,

¢) 15 obtained by

For two spherical shapes (4, = 4, = 0) the normal modes take the form

I’.’:‘(J' = "v B ()) 2 \. Z*‘:-I‘w""‘ t- .\,. Z:u-','._“w‘,.." { :-Iu)
n m
N A e R T MR AT ..u,'. = (1 + 9% l/",(ll: nedt): (11h)

The normal modes involve involve two (five dimensional) quadrmpole harmonie oscillators, one sy
metrie (s) the other antisymmetrie (a) between 7 ¢ hosons ( Hamilton et al., 1984). Sinee no symmetry
is broken i the spherical condensate, all ten components of the two quadrupoles appear as intrinsie
modes and there are no Goldstone modes.

For two aligned prolete shupes at equilibriam (~, 0 5, 00.Q 0) the normal modes take the form

LI TR T R | R Yy A TP VA AN PR B VL AR PRI AR

nt a
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o= (1 + 1/.‘:)"”"[61”-# r,,ht |

1.9 v
= 3. y.r.4.2 {15h)
bra = (L4 0i) V20, ~ ], |

with ny = 5. and 5, = n,. Here the normal modes consist of one-dimensional symmetric-.9 {3, 5) and
antisymetric-.3 (.3, ¢) modes, two dimensional symmetric-y (9.5) and antisymmetric -y (9.a) modes
and a two dimensional scissors (s¢) mode (Bohle ¢t al.. 1984) com:posed of antisymmetric combinations
of r and of y bosons. The 1% bandhead member of the scissors band has been recently observed in a
wide range of nuclei by (e.+¢') (Richter. 1989) and (+.7") (Kneissl. 1989) reactions. The twe Goldstone
modes which are missing from (13) are the two symn.etric combinations of r and of y bosons associated
with rotations about directions perpendicular to the common symmetry z- axis. Explicit expressions for
the mixing parameters and normal- mode frequencies in (14)-(15) in terms of equilbrium deformations,
boson-numbers and parameters of the [BM-2 Hamiltonian can be found in (Leviatan et al., 1989). The
mixing parameter for the scissors mode n,. (=19, =y, in (13b)) has the following simple form

Nee = 3/ N1+ 32V 3u /N o(1 + 32) (15¢)

Having identified the intrinsic modes they new serve to construct intrinsic states representing the various
bands. For the aligned prolate shapes cosidered in (13) the intrinsic states for the ground (g) and excited

bands take the formn

g)oin =0 > =V Nt )Y Nee N, > ( 16a)
(A K =0~ = (1 43172 [hf,‘"|.\’, LN, > bl Ve N, 1 >] (1Gh)
(A al K =05 = (1 +93) 1/ I[b_',u NNy = 1> —ngbl I Ne - LV, >] (16r)
- ' LN, > A d Ve Ny, - 1 ] (16d)

~scal, o= £2 (IFI/.,

fi

(ool Ko 22 5 = (1 +,,ﬁ)"/~ [
(

T A S B R L d:.*zIN, -1..N, .‘»] (16e )

(RYANY (WIS USRS R AL «IL_H Ve ¥y =1 > = e d:.tll.\’, - 1LV, ‘::l (16f)

sing expressions ( 16) one can evaluate intrinsic matrix elements of transition operators. As an example
1 X o : : () (1 (1)

cansider the ML operator TOM1) = \/3/47lye s "t g,y 7| where J,77 are the 7 and v oangular

momentum operators, For large Vg and .V, one obtains the following estimate for the reduced transition

probabality of M1 transitions from the J 0, state in the gronnd state hand to the J 1} srate in

the setssors handd

3 6N N80y gt
IZ70AY 4 COY A Y B B —. LA, A L AL 1 Ta)
‘ o ar NTIR A E N, AT ) L
For equal proton neviron deformations 4, 4. S eqo (17Ta) simplifies to
3 , Ny, .
LZ{ANY 2 EY A VR B A o NPT LT BRE LS '.\," . \— CLih)

ts seen that the masnitude of the above BoNT) s governed by three factors: the o deformations,
he boson ¢ factors and the nmnber of hosons N
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SELECTED APPLICATION

It is instructive to illustrate the formalism presented so far on a specific IBM-2 Hamiltonian which has
often been used in IBM-2 calculations

H = Z €pig, +8Qu- Q. + Z ar(did)' P - (dyde)' + ay[shdl ~dls!] - [h.e]

p=mn.y .=1.3

+ &' gD (18a)
Q, = d:,sp + sf,(ip + \,,(d:d,)m. Nd,, = d; . J,,. (p=m.v) (18h)

Vv . shall focus the discussion to the case of two aligned prolate shapes (J, > 0. 3, > 0, v, = v, =
1 = 0). The Hamiltonian H' (18) can be resolved into intrinsic and collective parts according to (3).
The intrinsic Hamiltonian takes the form

Hine =& [d.d,s'.s: -d;-d:] [h.c.] + Y cudld)D - (dyde)tt) +£g[ﬂ,s,',d1— u,s;d:,] : [h.c.]

=13

+ & [Bustdl +1/3 sttty ®] - [he) + & [austat + \/—(d*d')"’] [hc] (19)

The coefficients of the various terms in (19) are given by &, = [-2a2+(az =2 )(32+32)/Ind, + KV, —
KT.(I ~ 32)/3, — &A1 = 32)/Iu]/(1 + J2)1 + 33), &1 = 260 + KX, + 56(Vp/do + X, /32)/2 +
= _60 + (02 - OK)/d J El = "\ /Jﬂ' sz = "'Yr/-av- L3 = ED - 4~T7Tv + axz where —\—p = 2/7\0'

The deformation parameters J,. J, are solutions of the follwing two extremum equations
E,J'(l + .iﬁ)/.‘V,, + Ol'z( Jn- - Jv)(l + Jwi’u) + Kﬁv(l - -Y_'Hw - '33-)(2 - Tpdv) = 0 (20)

The second equation for J,, J, is obtained from eq. (20) by interchanging 7-v labels. For the aligned
prolate shapes considered here, the Majorana parameters a, and a; as well as 5’ do not appear in the
extremum equations.

The normal modes and intrinsic states have the form given in eqs. (15) and (16) respecmely The
.7 modes and frequencies are found by diagonalizing the following 2 x 2 matrix in the basis b o and
by Miw = (&0 + & + EDNLI + 3/ + 32), MY) = (€0 — £2)Be3 VN NY, MU = (G0 + 64 +
VN 331 + 32)/(1 + 3%). The y modes and frequencies are obtained by diagonalizing the following
2 x 2 matrix given in the basis d' +2 and d, +2- M) = (&2 + &) + 4EY + E3/2)N, 32 /(1 + 42, M) =

(=& +26) + 28 —&3/2)3wd, \/N.N S+ E)1 4 32), MY = (E2+ 465 + €] + E/2)Nn I3/ 1 + 42).
The scissors modes were already given in ¢q. (15). Their frequercy is given by

1 l
'\“r) [lofll + -n'l e ""\lr\u + l"l -2 + K(‘ "" + \'“d )l/"d

Ned2(1 4337 + N1+ 087 (21)

The Majorana parameter o, affects only the frequency of the scissors mode, ay affects the scissors
ind the v frequencies while a; affects the frequencies of all normal modes, The &' interaction does
10t influence the normal modes and as will be shown below, it belongs to the collective part of the
Hamiltonian.



The collective part of the hamiltonian H' (18) has the form

H. = (1 - \v/ u)"-l rt+ f‘ (1 - -'.‘-fr/-\.'r)’-'.l.v + llu-\.—rr-\‘-v
St O Y C )+t Com - Y Can +ta[Com = 3 €| (29)
p=T.v p=T.v p=mr.rv
where ag = —£,9232, t5 = =[x + £, 95 d)/2. ts = [N + §(1 + Jed) = KL/ +X J32) = =V )72

ta = (K p/ 30 + \,,/ Ie)i2 + KU\, /4 + #']/2. Apart from N, - dependent terms of no significance to
excitation energies, H,. is composed of the w-v part of the C'asimir operators of the diagonal O(6). O(5)
and O(3) groups (i.c. the groups generated by a direct sum of the generators of the separate 7 and v
groups discussed in (7))

To leading order in .V, the Bogoliubov image of H, contribiutes te ihe frequencies of the physical modes

in HB, (15). For H. of eq. (22) the resulting shifts of frequencies (denoted by 80) are

A = /N N a1+ 5! (23a)
oG = — ey (23b)
MALY =3/ NN L+ TN+ 32V + 33T 2 (13, + a1 + 3.30)] (23¢)
ANGY = — Al (23d)
AA = 4NN, [N 31 L 32 4 N2+ )] T x

!(3?_1 + )3ty + el + 383, ‘,] (23¢)

The expressions for the normal mode frequencies together with the shifts (23) due to H... can be used
to obtain estimates for large boson numbers to the position of the bauds.

SUMMARY

We have presented a procedure for identifying the normal modes in number- conserving nlgebaric
hosonie systems relevant for collective states in nuclei. The procedure is part of a framework aimed
at revealing the underlying intrinsic and collective structure in such systems. The main ingredients of
the framework are 1a) An exact resolution of the Hamlitonain into intninsic (bandhead related) and
collective (in-band related) parts (b) Introduction of shape parameters through non-spherical bases
(e Extraction of normal modes by applying the Bogoliubov treatment for large boson- nnmber to the
intrinsie part of the Humiltonian () Construction of intrinsie states and evaluation of transition matrix
clements,

[here have been previous attempts for a geometrie interpretaiion of the interacting boson medel. The
apprach of (Hateh et al.. 1982) is based on a classical Limit for the boson Hainiltonian, Several works
have nsed this appronch to determine the frequencies of preselected exeitation modes ¢ Balantekin e
al.. 1933, 1985, 1987, 1988 Bijker. 1985 Walet et al . '985). The approach of (Dukelsky ef al.. 1984
Pittel et al.. 1983) is based on a Hartree Dose procecure together with Tamm Dancotf ©TDA) and
tRPA) treatments. The approach of «Van Fiamond et al., 19855 combines aomean field approximation
with a generator coordinate method.  The fermalisi presented in this work i< fully quantal and ean
accomodate arbitrnry 7 1 shapes. All normal wodes ave derived sinaltaneously ansd with equal e,



The normal modes are extracicd from the intrinsic part of the Hamiltonian rather than from the full
Hamiltonian. This has the following virtues (1) The spurious modes are decoupled from the intrinsie
ones ( there is no need for an RPA treatment to restore the broken sy mmetries at the expense of a more
complicated form for the wave functions). (ii) The derived normal modes are determined from dynamic
considerations and are composed of creation operators only (not a mixture of creation and destruetion
operators). As a consequence an inherent feature of the IBM-2  conservation of boson number. is
preserved in the srmierure of intrinsic states.

The formalism presented in this work illuminates the spectral significance of arbitrary algebraic interac-
tions and identifies the intrinsic and collective modes associated with any 7-1# shapes described within
the IBM-2. By relating parameters of the model to observables such as bandhead energies and moments
of inertia. the method provides a criterion for selecting sustable algebrai~ Hamiltonains. For practical
applications, the explicit expressions for the approximate po. ition of the bandhead energies may he used
to provide a physical insight and guidance in munerical caleulations and least square fitting procedmes
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