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TIME-IMPLICIT SIMULATION OF PARTICLE-FLUID SYSTEMS 

J. Denavit 
Lawrence Livermore National Laboratory 
P. 0. Box 808, L-18 
Livermore, California 94550 

ABSTRACT. This paper presents one-dimensional particle-fluid hybrid 
simulations in which the strongly collisional components of the plasma 
(e.g., ions and thermal electrons with vcfAt > 1) are treated as 
fluids and the weakly collisional components (e.g., energetic 
electrons with vCpAt « 1) are treated as particles. Here v cf 
denotes the fluid ion and electron colli sion frequencies, Vgp is 
the energetic particle collision frequency and At is the time step. 
Collisions between particle and fluid components are treated by a 
Monte-Carlo method and mass transfers between the particle and fluid 
electron components are governed by collision frequency thresholds. 
The field is computed implicitly to allow time steps with u p At > 1 
(u p: plasma frequency). 

1. INTRODUCTION 

Both particle and fluid simulations have proven to be powerful 
research tools in plasma physics, but have generally been applied to 
different problems. In particle simulations, a large number of 
charged particles, representing the plasma, are followed in their self 
fields. At each time step, the charge and current densities are 
computed from the particle positions and velocities, and the electro­
magnetic fields are evaluated using Maxwell's equations. The parti­
cles are then advanced, using these fields, over a time increment, 
At, and the process is repeated. This procedure is characterized as 
time-explicit because it uses known particle positions and velocities, 
at a time t 0, to compute the fields which are then used to advance 
the particles beyond this time, to t > t 0. Parcicle simulations 
give a very detailed description of the plasma, which is particularly 
useful in the study on non-equilibrium phenomena, where the distribu­
tion function exhibits multiple streaming, supra-thermal tails, or 
other non-Maxwellian features. However, they are generally limited to 
short time scales, of the order of the plasma period, u^ 1, because 
the explicit nature of the algorithms used gives a violent numerical 
instability for time step sizes, At > u^ 1. Here u p = (Aire 2n e/m e) 1 / z 
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is the electron plasma frequency, n e is the electron density, -e is 
the electron charge, m e is the electron mass and Gaussian cgs units 
are used. 

In fluid simulations, the plasma is usually represented as a 
single fluid by HHD equations. Quasi-neutrality is assumed and the 
currents are computed from a generalization of Ohm's law. The trans­
port coefficients used in the fluid equations assume that the distri­
bution function is close to Maxwellian, and exclude such features as 
multiple streaming or supra-thermal tails, for example. Fluid simula­
tions of this type are not limited by the condition At « u~l, and 
give a description of the plasma over much longer time and space 
scales than particle simulations. They play an important role to 
model experiments, with realistic geometrical and physical parameters. 
However, they assume that collisions, or other microscopic effects, 
maintain the plasma sufficiently near local thermodynamic equilibrium 
to guarantee their validity. 

Recently, particle (and Vlasov) simulation methods, using a time-
implicit procedure, have been developed to allow particle simulations, 
including electron inertia, with large time steps At > up 1, in this 
procedure, the fields are predicted at time t^ = t 0 + At, before 
advancing the particles (or the distribution function) to this time 
level. The particles (or the distribution function) are then advanced 
from t 0 to t^, using a weighted average of the fields at tj, t 0 and 
earlier times. In the first time-implicit methods to be introduced 
[1, 2, 3], the fields are evaluated at the new time, tj_, using a 
subsidiary fluid representation of the electrons in terms of the 
continuity and momentum equations. This method, now known as the 
"moments" method, has been applied to one-dimensional electrostatic 
problems such as the two-stream instability, ion acoustic waves and 
plasma expansion into vacuum. It has also been used in two-
dimensional electromagnetic simulations [4]. In another method, which 
was introduced subsequently, the fields at t̂  are evaluated directly 
in terms of a susceptibility tensor derived from the equations used to 
advance particles 15]. This "direct" method has been applied to one-
dimensional electrostatic problems and to two-dimensional simulations 
with a static magnetic field [6]. Its application to electromagnetic 
problems has ale: ̂ een implemented [7]. 

Implicit particle simulations, using either the "moments" or the 
"direct" method allow time steps At » tip"1. They can represent 
accurately low-frequency electron inertia effects, such as trapping or 
acceleration of energetic electrons, while providing rapid damping of 
high-frequency plasma oscillations. However, these methods remain 
limited by the condition At « ( k v t n ) - 1 , which specifies that an 
electron near the thermal velocity, V(.n> must not move across a 
large fraction of a characteristic wavelength, X. = 2ir/k, during a time 
step. Taken together, the conditions upAt > 1 and kv t nAt « 1 imply 
k\p « 1, where K D = vtn/(i>n l s the Debye length. Thus, implicit 
methods yield improved efficiency only in the case of long wavelengths 
or in dense and cold plasmas. However, dense and cold plasmas also 
have large collision frequencies v c and implicit codes operating 
in this regime must therefore allow time steps with vcAt > 1. 
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These scalinp considerations lead to the concept of a hybrid 
formulation, in which the sparse and hot component, is represented as 
particles and satisfies the conditions UpAt « 1, kvtjjAt « 1 and 
v cAt « 1, while the dense and cold component is given a fluid 
representation and is characterized by oipAt > 1, k.vtjjAt « 1 and 
v cAt > 1. The fluid representation considered here does not use MHD 
equations, but is based on separate electron and ion fluids, and 
includes electron inertia. An implicit determination of the fields 
generated by fluid electrons is therefore needed to achieve u pAt > 1 
for this component. 

The computations discussed in this paper are one dimensional. The 
fluid quantities are represented on a uniform Eulerian grid, which is 
also used for the particles, and flux corrected transport (FCT) is 
used to minimize numerical diffusion. 

2. FLUID COMPONENTS 

2.1 Fluid Equations 

Since electron inertia is included, the electrons and ions are repre­
sented in terras of similar sets of fluid equations for conservation of 
mass, momentum and energy. This is a more elementary representation 
of the plasma than the MHD equations. It includes charge separation 
effects and, for example, the current density in this model is related 
to the electric field through the dynamics of the plasma components, 
rather than being computed from a generalization of Ohm's law. 

The one-dimensional equations for a non-magnetized multi-species 
fluid are 

3n , 
if + Ix" < Vs> = ° ' ( 1> 
3 p

c a l 3 p s es l — £ + f - ( u P ) = - — T - ^ + — n E + — I R , (2) 3t 3x a s m 3x m s m , ss' s s s s 

3U 3U , 3u 3q 
S. S 1_ §_ _ 1_ "*S 1_ y 

at + Us ax = " n Ps 3x n 3x + n i, Qss' 
s s s s 

Here, n s, u s, and T g denote respectively the density, the drift 
velocity and the temperature of species s, P g = n su s defines the 
momentum, E is the electric field, m s and e 3 are the mass and 
charge of the particles of species s. Honoatomic ideal gases are 
assumed with the pressure, p s = k B n s T s and specific energy U 5 

= (3/2)k BT s, where kg denotes the Boltzmann constant. 
The collisional friction force between components s and s' is 

given by 
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R , = - m t C , n n , ( u - u , ) (4) 
ss' ss' ss' s s' s s' 

where mss< = m sm si/(m s + m s O , and C s s . is a collision parameter. For 
Coulomb collisions between charged particles, a generalization of 
Briginskii's results [8] gives 

a A ,e e , 
C - ° s s s 5 (5) ss' " ,. .3/2 J ,. _ ,3/2 (2ir) c /m , (k_T ,) o ss' B ss' 

where A s st is the Coulomb logarithm, c 0 is the dielectric constant of 
free space and T s st = ir.ss. [(T s/m s) + (T si/m si)]. Note that all 
quantities entering in Eq. (4) are symmetrical with respect to s and 
s", giving R s si + Rgi s = 0. The thermal gradient force is not 
considered here. 

The heat transfer between species is due to both dissipation and 
temperature differences, 

m , 
Q , = - - ^ R ,<u - « .) ss' m ss' s s' 

s 
(6) 

m . - 3 - £ S C ,n n ,k_(T - T ,) . m +m , ss' s s' B s s* s ss' 
Finally, the heat flux is 

3T 
q = - K -r3- . (7) 
^s s 3x 

with the heat conduction reciprocal (heat resistivity) equal to the 
sum of a collisionless contribution, 1 / K S 0 , which gives the flux 
limit, and collisional contributions, 1 / K S S I , 

i - ,3- +i 3 — . (8) 
s so s' ss' 

The coll is ionless contribution is 

•- * • v«v.'*" ' 
where f 5 is the flux limiter coefficient. For Coulomb collisions 
between particles, a generalization of Braginskii's results [8] gives 



5 

, m n ,C 1 _ s s' ss' 
* . ~ i 2 ™ ss' v n k„T 's s B s 

The numerical constants o 0, Ye- a n (* fi a r e Biven in Ref. [8]. 

2.2 Transport Algorithm 

The mass and momentum conservation equations, Eqs. (1) and (2) are 
both of the form 

if + fe <»»> = S • (») 
where p is the transported density, u is the velocity, and S is a 
source term which is zero in the case jf Eq. (1). For the Eulerian 
representation on a fixed mesh, which has been chosen here, the trans­
port algorithm solving Eq. (9) must ensure numerical stability without 
introducing excessive diffusion. Flux corrected transport (FCT) 
algorithms are used for this purpose [9]. The system is divided into 
J-2 cells of length ax, with two guard cells, cells 1 and J, laying 
outside the system as shown in Fig. 1. All quantities are defined at 
the cell centers and the values at the guard cells are set equal to 
their values at the adjacent boundary cell, e.g., pj = p 2, PJ = 

pj_lt ^i = U2t uj = Uj_^. This choice allows the transport algorithm 
to be applied uniformly to all physical cells (j = 2, . . ., J - 1) 
and yields emitting or absorbing boundary conditions depending on the 
sign of u at the boundary cells. In addition, the mass, (or charge), 
momentum and energy crossing the boundaries of the system are stored 
separately to allow conservation checks and to compute the electric 
field. 

Following the FCT algorithm, provisional values, p^ D, of the 
density are first computed from the old values, pj and Uj, 

T D 1 n 2 / , I „ 2 , » pi - 2 Q
+
 (pj+l " -Y * 2 Q- {pi ~ »}-!> 

+ P 4 <Q + Q > (10) 

where 

I-, 
' * = * * <•» - •,> • 

and CJ = UJAt/Ax. The source term, S, is not included here and will 
be introduced when the momentum equations are considered. Equation 
(10) gives provisional values of the density, which are always posi­
tive for |CJ| < 1/2. However, these values include a large numerical 
diffusion and are therefore both transported and diffused (TD). The 
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diffusion is corrected by application of an antidiffusion step, which 
is limited so as not to cause new maxima or minima of the density. 
The simplest antidiffusion step, is defined by 

.TD 
3+n 

= P 
TD 
j+1 

TD (12) 

TD . ,,ID, s x = sign (A x). 
3+r J+o 

<13) 

J+; 
TD 

3. 1 
3+n 

max{ 0, min TD .TD 1 
S 1 \ 1' 8 

3+i 3-n 

.TD 
3+1 

TD .TD 
S 1 A. 3 

3+1 J+: 2. '(14) 

new TD 
p. = p. 

3 J (* 
3+1 

*. 1 > (15) 

where p ? e w is the new density. This algorithm leaves a significant 
residual diffusion, even in the stationary case, and more advanced 
algorithms are given in Ref. [9]. 

2.3 Momentum Equations 

The equation of continuity, Eq. (1), which has a right member equal to 
zero, may be solved by direct application of one of the FCT algor­
ithms. However, Eq. (2) requires the computation of a source term S. 
In the implicit time step considered here, this source term is split 
into two parts. The first part, computed from the old values of the 
variables is applied before transport, 

sj 
m 

P . + F . — - I (1 - 6)At - ^ C .(n P - n P ); sj sj 2 o, 1 n_ ss'j s* s s s' s' s (16) 

where 

F Afc- = sj 2 
Atk 
Am Ax j+1 

e At 
<nT). n ] + r 5 — (n E). j-1 s 2m s j (17) 

Here, j denotes the grid point, Ax is the mesh size, and 6^ is a 
weight factor which allows the friction force to be either time cen­
tered (Oj = 1/2) or implicit (8^ = 1). The second part of the time 
step, computed from the new values is applied after transport. Since 
the new values are unknown, this partial step requires iterations. 
Let the superscripts q and q+1 denote successive iteration levels, then 
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Pq+.1 = FCT(P ). + F q. ̂  s] s ,i sj 2 
(18) 

- I 6,At -*^-c ,.(n ,P -n P , ) q + 1 

, 1 m ss'i s' s s s* j s' s 

The friction force, which can be very large in dense fluids cannot be 
included in the iteration without causing divergence for ucfAt > 1, 
where u cf is the fluid collision frequency. Equations (18) must 
therefore be solved as a system of linear equations, 

A ,.Pqt^ = B . (19) ss'j s'j sj 

where 

A , . = - 6,At s s ' j 1 
s s ' _ C , .n m s s ' 3 s s 

for s' / s , 

A . = 1 - X 
S S 3 s*s' 

A , . . 
ss*3 

and 

B . = FCT(P ) . S3 S 3 
„q fit 

S3 2 

(20) 

(21) 

(22) 

For up At > 1, the electric field which enters in Eq. (17), must also 
be evaluated implicitly, but this question is examined separately in 
Sec. 4. 

2.4 Temperature Equations 

Equation (3) for the temperature has different transport terms than 
the continuity and momentum equations, Eqs. (1) and (2), However, it 
can be rearranged to allow the electron and ion temperatures to be 
advanced using one of the FCT algorithms already used for mass and 
momentum transport, 

1 a T « a 

where 

, 3u m , C , _ 
1 s _ t. ss' ss' . .2 ... . 

"r^v^-rv'vv1 (24a> 

s' s B is due to compression and dissipation, 
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3m , 
ro = - E m " c„„. n„ ( T= " T

e < ) <24b) s . m +m s s s s s s' s s* 
is due to temperature relaxation between components and 

3T 
d

s = i~k «s ir (2*c) 

s 
is due to heat conduction. 

The temperature is updated through a succession of partial steps: 
i) Local temperature changes due to terms w s and r s 

ii) Heat diffusion 
iii) Transport. 

3. PARTICLE COMPONENT 

The particles are generated from the corresponding fluid when the 
local collision frequency drops below a threshold vj_, and are 
re-absorbed into the fluid when their collision frequency becomes 
larger than another threshold, »?• Thus a given region of space 
may be occupied either by fluids only, by particles only, or by a mix­
ture of both components, which interact with each other by collisions 
and through the electric field. Since scattering of particles by the 
fluid components causes a rotation of their velocity, the particle 
variables for the one-dimensional, non-magnetized case, must include 
the position, x, and two velocity components, v x parallel to the 
x-axis and v^ tranverse (i.e., perpendicular) to this axis. 

Several methods have been used in particle simulations to relate 
the particles,which are located at discrete points x^, where i 
designates a given particle, to the grid quantities, which are defined 
at the grid points (or cell centers), Xj . Among these methods, 
nearest grid point (NGP) is the simplest. In NGP, the charge of a 
particle contributes only to the cell in which it is located and the 
electric force is due only to the field at this cell center. In 
another method, area sharing, particles are considered to be sheets of 
finite thickness, Ax, equal to the cell size, and only the fraction 
of the particle located in a given cell contributes to the charge in 
this cell, with the remaining fraction contributing to the adjacent 
cell. The force in this case is computed by linear interpolation of 
the field at adjacent cell centers. Both methods conserve momentum 
but area sharing, which gives smoother fields and generates less 
noise, is generally favored over NGP. However, in the hybrid simula­
tions considered here, consistency between particle and fluid compo­
nents is easier to achieve with NGP. 

The initial location of the particles must be such that the 
instantaneous electric field array is unchanged by the mass transfer 
from fluid to particles. The total electric forc< on the new parti­
cles must also be equal to the force on the fluid element they 
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replace. In the case of NGP, this can be achieved by li,eating the new 
particles anywhere within the cell, and in particular, they can be 
distributed uniformly within the cell. In the case of area sharing, 
the new particles must all be initialized at the cell centers. Any 
deviation from this location would spread their charge to the neigh­
boring cells, and cause the electric force on these particles to be 
affected by neighboring values of the electric field. It follows that 
the initial distribution of particles is more discrete when area 
sharing is used than when NGP is used. This tends to cancel the 
advantages of area sharing over NGP in achieving low noise simulations. 

Since strongly collisional particles are eliminated from the simu­
lation by absorption into the fluid electron component, the particles 
can be assumed to satisfy the conditions \>cpAt « 1. The particles can 
therefore be advanced using a split time step. Velocities and posi­
tions are advanced by a simple leap-frog scheme under the action of 
the electric field but under collisionsless conditions. This partial 
step is followed by a collisional step under field-free conditions. 
In the collisional step the particle velocity is decreased to account 
for energy loss by collisions with the fluid components and it is 
rotated to account for random scattering. 

A. ELECTRIC FIELD 
4.1 Implicit Algorithm 

"•"he electric field is evaluated froir a finite difference approxi­
mation of Poisson's equation 

G. = E. , - E. - - — [J e (n. , + n.) + p .] = 0 (25) J J+l 3 2cQ ^ s j+1 j s Hpj' 

where p is the charge density due to particles, and j = 2, ..., 
J-2. Recall that the system consists of cells 2 thru J-l, see Fig. 1, 
with cells 1 and J as guard cells, used only to satisfy boundary con­
ditions in the transport algorithm. 

The quantity Gj may be considered as a multidimensional "vector" 
function, G ( E t + a t ) of the multidimensional "vector", E t + A t , both G 
and E t + 4 t having one component for each grid point j = 2, .... J - 1 
in the system. Recall that since j = 1 and j = J correspond to guard 
cells they do not contribute independent values of Ej or n sj. 
Equation (25) is solved using the well-known Newton iteration scheme. 
The (q + l)-th approximation of the field is written as the sum, 
E 9 + 1 = E9 + 4E9 +^- of the q-th approximation and a correction 
4 E j + 1 . Taylor expansion of Eq. (25) 

3G. q 

G.(E q
 + 4 E q + 1 ) =G.(E q) + X T^- *B?t1 = 0, ., 3E., j' 

3' 3' J 
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3G. * 
Z ^ - *E^t = " 6.(E9> . (26) 
j' j' 

This set of equations, with j = 2, ..., J-l, can be solved for the 
corrections 4E9 + 1 after the matrix OGj/9Ej i)°. and the vector 
Gj(El), which depend only on earlier approximations have been 
evaluated. 

It is important note that the new electric field enters in the 
definition of Gj in Eq. (25), not only in the explicit terms 
E $ + " and EJjĴ '-, but also implicitly through the densities n|t a^ 
and p£+^t, since these quantites depend on the new electric field via 
the algorithms described in Sections 2 and 3. Recognition of this 
implicit dependence is essential to establish an iterative scheme 
which is convergent for u>p fit > 1. Here, only the dependence of GJ 
on E via the fluid densities n s is considered. The dependence of 
Gj on E via the particle charge is computed as in implicit particle 
simulations [5]. 

From the transport algorithm, Eqs. (10) and (11), applied to the 
electron continuity equation, 

and 
Q ± = 2 l l ? < E a ± i - E J ) ] ~+ci + 0 U ? ) 

t+at l . , ., l , n . = 7 (c + c.) n . + [1 - 7 (c. - c )] n . sj 4 j-l j sj-1 4 j+1 j-l sj 
(27) 

- T ( c . + e . , ) n . , , 4 j j+1 sj+1 

where j =2, ..., J-l. In Eq. (27), the nonlinear limitations to the 
antidiffusion step, given by max and min functions in Eq. (14) have 
been neglected. 

From the fluid momentum equations, EqL. (19) 

P*!1 = I (A"1) ,.B ,. 
SJ g, SS'J S'j 

* 
0 - A t 

u^t1 = 1 (A"1) ,. i ~ n .K?+1 + u". sj £, ss'j 2ms, sj j sj 

where uiljj denotes terms independent of El+1 to first order. 
Evaluating GJ from this expression and substituting into Eqs. (27) 
and (251 gives 

3G. 
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(28) 

where 

36. 
SJ2 " i i^ = " X - I e s ( n j - l + n j ) 8 %j ' 

36. 
*j3 = l i j ^ = 1 + I e s ( V l + n

j + 2 }

B

 Q s j + 1 • 
36. 

g. , = 7TT— = I e (n. , + n. . ) Q . „ , 6 j 4 3E. 9 s J + 1 3+2 s ^s;+2 ' 

e , A t 2 

Q

S J = I. 52Tm- ( A ' s s ' j • 

4.2 Electric Field Solution 

The electric field corrections, 4E9 + 1, at grid points within the 
system, j = 2 , ..., J-1, are obtained by solving Eqs. (26), The right 
members, 6j, are given by Eq. (25) and the matrix 3Gj/3Ej> is givan by 
Eqs. (28). For some problems, such as in the double layers, a fixed 
potential difference $ must be maintained across the system. In 
this case, the last of Eqs. (26), corresponding to j = J-1, must be 
disgarded and replaced by the equation 

J-1 
I 4E^ + i = 0 , (29) 
j=l J 

which follows from the requirement that both E. and E: must satisfy 
the potential condition, £ E. = - <j>/Ax. 

j-2 3 

To solve this set of equations conveniently by means of a band 
matrix solver, Eqs. (26), with j=2, .... J-2 are written in the form 

g 2 2 «E 2 + g 2 3 4E 3 + g 2 A 4E A = - G 2 . 

631 * E2 + B32 4 E 3 + B33 4 E 4 + B34 4 E 5 = ~ G 3 • 

6J-3,l S EJ-4 + 6J-3,2* EJ-3 + 6J-3,3* EJ-2 = " GJ-3 " 6J-3,4 4 EJ-1 • 

8J-2,1 4 EJ-3 + 6J_2.2 4 EJ-2 = " GJ-2 - EJ-2.3 4 EJ-1 

This system is solved twice, first wi>;h - G-, ..., - 6j_2 in the 
right members to obtain a set of partial corrections, 4Ej, then 
with 0, .... 0, - gj_3 4, - 6j_2,3 in the right members to obtain 
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a se t of coef f ic ients CJ . By saperpc-.ition, the complete 
corrections are 

4E. = 4E. + C. 4E T , (30) 
3 J J J - l 

where j=2, ,.., J-2, and 4Ej_i is unknown. To solve for 4Ej_^, the 
5EJ'S from Eq. (30) are substituted into the potential condition, Eq. 
(29), from which 

«E, + ... + 5E_ , 
« « - " ^ • • • > « " 

after which, 0E2, ... *Ej-2> are formed from Eq. (30). 

5. EXAMPLES 

The expansion of a plastic slab into vacuum is considered as an 
example. The slab is initially occupying a region of width 2L, 
located in the center of the simulation region of width 8L, where L = 
10 3 \ D o is the characteristic length, X D o = (T 0Mire 2n 0) 1 / 2, 
n 0 is the characteristic density and T 0 is the characteristic 
temperature. The slab is initially represented as fluids only, 
defined in normalized units (see Table I) by setting n e = n^ = 1, u e 

= U£ = 0, T e = 1, T^ = 1 0 - 2 . A mass ratio mj/m e = 900, and a charge 
number Zj = 1 are assumed. 

According to a similarity solution of this problem [10], whici 
assumes charge neutrality, isothermal electrons and cold ions, the 
expansion produces a rarefaction wave, which propagates into the 
plasma at the ion acoustic speed c s = ( T e / m i ) 1 / z , equal to 1/30 in 
normalized units. Behind this wave, the electron and ion densities 
vary according to n e = nj = n 0 exp [-(1 + x/c st>], where n 0 is the 
unperturbed density and x is measured from the location of the initial 
density discontinuity. The electrons and ions are accelerated outward 
according to the velocity profile u e = u^ = c s + x/t and the 
electric field is uniform with a value E = T e/(c gt), equal to 30/t 
in normalized units. 

CASE A: Collisionless, Isothermal Fluids Only 

In this case, particle generation is turned off so that the simulation 
proceeds with fluids only, and a collisionless case is considered by 
setting a 0 = 0. In addition, the electron and ion temperatures 
are maintained constant (T e = 1, Tj = 10 - 2) throughout the 
computation. The electron density profile for this case is given in 
Fig. 2 at t = 4, 10 and 30, and the corresponding electric field 
profiles are shown in Fig. 3. 

The propagation of the ion front predicted by the similarity 
solution is clearly visible on these profiles, and the fronts on each 
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side of the slab reach the center of the slab at t = 30, in agreement 
with the predicted speed, c s = 1/30. At t = 30, the electric field 
on each side of the slab is E = +1, in agreement with the expression E 
= 30/t predicted by the similarity solution. At earlier times (t = 4 
and 10) the field profiles also firms plateaus behind each rarefaction 
front, which are in approximate agreement with the expression E = 
30/t, but large peaks are also observed. These peaks are due to the 
pure electron gas ahead of the ion front [11,12] and their magnitude 
is given approximately by Ef = 0.86 (L/\DO*( nef no) 1 / 2 le> where n ef 
the electron density at the front, which also coincides with the peak 
of the field. At t = 4, n ej = 4 x 10 - 4, see Fig. 2, yields Ef = 17.2, 
which is in approximate agreement with the simulation, Ef = 19, 
observed in Fig. 3. As time progresses, these peaks decrease, move 
outward (see Fig. 2 at t = 10) and disappear into the absorbing bound­
aries of the system. 

In addition to the peaks, the field profile also exhibits oscilla­
tions which are primarily localized at the initial slab boundaries Cx 
= 3 and x = S). Since the plasma at these points move outward at the 
ion sound speed, it follows that the perturbation move relative to the 
plasma at the same speed and can therefore be interpreted as ion sound 
oscillations. Note that inward from the points x = 3 and x = 5, the 
plasma moves at a velocity which is less than c s, thus allowing the 
ion-sound oscillations to propagate upstream. 

The computations shown in Figs. 2 and 3 were done with three iter­
ations of the electric field at each time step, and ran with a time 
step At = 2 x 10~3, which corresponds to d-At = 2. 

CASE B: Collisional Simulation with Fluids Only 

The same plasma expansion problem is repeated using a full set of 
fluid equations, with a0 = 0.51, y e = 3.16, fi = 3.9 and C ei = 1.92. 
The results at t = 30, shown in Fig. 4, are qualitatively similar to 
the collisionless isothermal case. Note the scale on the electron 
temperature curve, T e, in Fig. 4, showing that the electrons remain 
almost isothermal, but their temperature drops to T e = 0.5 as the 
slab expands. The ion temperature has increased an order of magnitude 
in the center of the slab but remains small in the expansion regions. 

The energy of the electron fluid (kinetic plus thermal energies) 
is initially W e = 1.5 n eT el = 3, where n e = 1, T e = 1 and I = 2 is the 
initial slab thickness. The ion fluid energy is initially Wj = 0.03 
and the initial potential energy, W E, is initially zero, giving a 
total energy W t = 3.03. The time evolution of these quantities, 
given in Fig. 5, shows that (i) The electron energy drops steadily and 
is transferred to the ions, which eventually acquire an energy approx­
imately equal to the electron energy. This is consistent with the 
increase in both ion velocity and ion temperature, (ii) The potential 
energy remains small ~ 10~* to 10~ 6, in agreement with the quasi-
neutral evolution of the system and (iii) The total energy remains 
approximately constant out to t = 15, when a significant amount of 
electron fluid reaches the boundaries of the system. The energy loss 
through bcth boundaries is -W e = [n eu e(u| + 3 T e ) ] x m a x . for example. 
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at t = 20, the boundary values are n e = 1.5 x 1 0 - 3 , u e = 1.8, and T e 

= 0.62, from which -W e = 7.65 x 10 - 3. This value agrees roughly with 
the slope of total energy curve in Fig. 5. 

CASE C: Collisional simulation with Particles 

The plasma slab is again initialized with fluids only, with the same 
collisional parameters as in CASE B, but the particle thresholds are 
now set so that particles are generated when v e falls below v± = 0.1 
and are absorbed when \>pe is above \»2 = 0.25. In the interior of the 
plasma slab, v e = 1.9, well above the generation threshold and the 
slab remains a fluid. However, as the electric field expands, the 
electron fluid elements ahead of the ion front, where nj = 0, become 
collisionless. These fluid elements are changed into particles with a 
velocity distribution corresponding to the local values of u e and 
T e. In the present simulation, the maximum particle weight is 
wmax = 3 x 10~* and the minimum number of particles emitted is per 
cell is N m i n = 20. After generation, these particles move self-
consistently with the electron and ion fluids and form an energetic 
electron component which is trapped by the slab as shown in the phase 
plots of Fig. 6, for t = 0.4 and t = 4. The electric field profile, 
Fig. 7, is similar to the pure fluid cases, but the peaks are now 
higher, and the profile is noisier. 

As the particles transit across the plasma slab,, they lose energy 
by collisions and a fraction of them is re-absorbed into the fluid 
components as shown in the particle counts of Table II. 
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TABLE I. Units used to define normalized quantities. 

Quantity Unit 

Length 
Velocity 

Time 
Density 
Electric Potential 
Electric Field 

L (characteristic length) 
v 0 = (T0/me)l/2 
(electron thermal velocity corresponding to 
characteristic temperature T 0) 
t 0 = L/v Q 

n 0 (characteristic density) 
T 0/e 
T 0/eL = mevg/eL 

TABLE II. Particle count for plasma expansion into vacuum, Case C. 

It Emitted 1t Absorbed # Net 

2.0 

0 
2480 
5520 

11700 
21580 
35720 

0 
744 

1763 
4006 
7173 

11559 

1 
1737 
3758 
7695 
14408 
24162 

-System boundaries 

Fig. 1: Uniform Eulerian grid used to represent fluid and particle 
quantities. 



(a) t = 4 (b) t= 10 (c) t = 30 
Fig. 2: Ion density for collisionless, isothermal plasma slab 
expansion into vacuum with fluids only (CASE A ) . 

(alt = 4 (b)t=10 

Fig. 3: Electric field for CASE A. 

(c) t = 30 
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Fig. 4: Electron density, n e, electric field, E, electron temperature, 
T e and ion temperature, T^, for collisional plasma slab expansion 
into vacuum with fluids only (CASE B). 
Fig. 5: Electron kinetic energy, W e, ion kinetic energy, V%, 
potential energy, W E and total energy as a function of time for CASE B. 
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Fig. 6: Electron particle phase plct for plasma slab expansion into 
vacuum (CASE C). 
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Fig. 7: Electric field for CASE C. 
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