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1. INTRODUCTION 

In these lectures I shall describe a number of properties of chiral 

anomalies from a geometric point of view. I follow mostly work done in 

collaboration with Raymond Stora [11. Some of the results axe contained in a 

recent paper written in collaboration with Wu Yong-Shi and Anthony Zee [21, 

to which I refer also for an extentive list of old and new references on chiral 

anomalies. It is possible that the methods and results described in these 

lectures are fully known in mathematics. On the other hand, several crucial 

formulas have not been given before (at any rate not explicitly) and their 

physical relevance is emphasized here. 

As an introduction to the main subject let us consider some examples of 

the relevance of topology to physics: 

(1) The Dirac monopole. 

The action integral for an electron in the field of a magnetic monopole is 

given by a 

I = $Lk^+*]$(*,')•%* ' c u ) 

i i-
The integral is over a path joining the point 1 to the point 2. Let as consider the 

second term in the action. If we deform the path of integration keeping the end 

points fixed, and then come back to the original path, the action returns to its 

original value, provided the deformation was not too large. However, if we 

swing the path about the position of the monopole and come back to the original 

path, we cut all flux lines of the Coulomb-like magnetic Held. The action 

changes by an integer multiple of eg (g is the monopole charge) 

JBTR1BUTIDN OF THIS KtWffl IS IMITED 
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i'* I +-u«3 . d.2) 

One can say that the space of paths is infinitely connected. Classically this fact 

is not very important, since V gives the same equations of motion as I, but 

quantum mechanically it gives rise to a problem. For instance, the path 

integral 

is not well defined, unless 

which Is the Dirae quantization condition, [If this quantization condition is not 

satisfied, the path integral could be defined as vanishing by destructive 

interference, when one integrates over the infinitely connected space of paths.! 

This is a well known example of quantization of classical parameters due to 

topology. Other examples ace 

(2). Effective or phenomenological Lagrangiona which arise as solutions of the 

anomalous Ward identities (see Section 4), Witten [3] and Balachandran, Nair 

and Trshern (4j have observed that a phenomenon similar to that occurring for 

the Dirac monopoly occurs here, except that the 1 dimensional path is replaced 

by a 4 dimensional sphere. 

(3). Non-linear o-model coupled to supergravity (51. One finds that Newton's 

constant has to take quantized values, i.e. multiples of F,," 2-



4 

(4), Three-dimensional Yan^-Milis theory [6]. The topological mass of the 

vector field has a quantized value. 

(5). In the Weinberg-Sslam model there may exist heavy (unstable) soliton 

states 1% The Higgs sector of the model has a global SU(2)L X SU(2)R 

symmetry. It is a linear o-model but for large Higgs mass it can be 

approximated by a non-linear one, hence may have soliton sdUtiem. 

A common feature of all of these examples is that they make use of 

homotopy groups, so a list of the homotopy groups of the classical groups may 

be useful as a guide for a systematic search. Without going into the details of 

th« definitions let us say roughly that the q^-homotopy group ft of a 

(topological) space X is the set of mappings of S q (the q-dimenaional sphere) 

into the space X, where two mappings are considered as equivalent when one 

can be continously deformed into the other. We are interested in homotopy 

groups of groups i.e. the space X is a classical compact <ie group G. Here is the 

list of homotopy groups of the classical groups 18). 



0 , :q U(N) O(N) Sp(N) 

N>q/2 N>q + t N>l/4(q-2) 

0 0 ^ [ P l 0 
1 Z [EM] Z 2 [spin] 0 
2 0 0 0 
3 Z Z Z [Instantions] 
4 0 0 Z 2 rVfltten] 
5 Z [Chir.Ug.] 0 *2 
6 0 0 0 
7 z z z 
8 0 3. 0 

period: 2 8 8 

(Z; the integers; Z 2 : thegroupof2eIements) 

The table exhibits the Bott periodicity theorem. Provided the group is 

sufficiently "large" (the inequalities are indicated) the homotopy groups follow a 

series of period 2 in the first column (U(N)) and of period 8 in the other two columns 

(O(N) and Sp{N)). Observe also that the homotopy groups for O(N) and for Sp(N) 

follow the same pattern, oily shifted by 4 (half the period). See Milnor's book [9] last 

chapter, for a proof of the Bott periodicity theorem. 

Remarks: 

(1). /7 2 = 0 for all three classes and also for the exceptional groups (E.Cartan). 

(2). Fl0 refers to the connectedness of the group 

fl0 (CXN)) = Z 2 is related to parity 
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n,(0(Na3)) = Z 2 l s related to spin. 

(3). The Dirac monople has to do with 17,(^(1)) = Z. Note that for the 't Hooft-

Polyakov monople the relevant quantity is H2(SU(2)/U(D) = 11,(0(1)). For 

homotopy groups of quotients of groups see Hilton [101. 

(4). Theinstantonhastodowith/73(SU(2))= Z. NotethatSpd) = SU(2). 

(B). Witten [lil has pointed out that an SU(2) gauge theory with an odd number of 

chiral fermion doublets is inconsistent. This is related to n4(Sp(l)) = Z2. 

(6). Chiral Lagrangians (of. Section 4) are related to n s(U(N23» = Z. 

(7). J73 = Z. This fact is related to chiral solitons [121,(13]. 
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2. CH1RAL ANOMALIES AND DIFFERENTIAL FORMS 

A simple way to introduce the subject of this lecture - the anomalies associatd 

with chiral fermions - is to consider the Lagrangians 

in 4-dimensional space-time, where the <p's are Dirac spinors, A k a set of external 

vector fields and Ak the generators of a representations of an internal symmetry group 

(like SU<2), SU(3)). Let us futhermore introduce an axial current operator 

V = rYrft (2.2; 
which is a singlet under the internal group, and look at its classical conservation 

equations 

VJ,! =0 . (i.i) 

It is well established [14] that in the one-loop approximation of perturbation 

theory the classical conservation equation breaks down. If one requires vector gauge 

in variance, the axial vector equation takes the form 

Here ^ 
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and F p v

k is the usual Yang-Mills field strength associated with the fields A^ ( e o m = 

1). In terms of the latter the "singlet" or "abelian" anomaly, as we shall call the r.h.s. 

of (2.4), can be written as 

Equally well one may consider two currents constructed analogously to the above: 

fermions are split into left/right one's 

and one starts from a Lagrangian in which they are coupled to corresponding 

letVright vectors fields 

Now, alt currents 

are covariantly conserved in the classical approximation but lead, upon proper 

definition 114], to anomalous equations 
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(.2.1) 

in higher order. The r.h.s. of (2.9) will be called the non-abelian anomaly, Comparing 

the factor 1/2 in front of the trilmear A-term with the corresponding factor 2/3 in (2,5) 

it is clear that the non-abelian anomaiy cannot be rewiUen in terms of Yang-Milis 

curls. Nevertheless there is an intricate relation between the two types of anomalies 

which will be cleared up in the subsequent lectures. To point out that, differential 

geometric mehods will be used, which are going to be Introduced presently. 

In terms of differential forms the Yang-Mills fields A * will be represanted by 

a matrix of one-forms (i.e. having anti connecting elements), the field strength by 

F = JLA + A1 (2,n) 

a matrix of two-forms (wedge symbol suppressed, matrix multiplication understood, 

elements of F commuting). It is easy to check that the Bianchi-identity 

holds, by making use of the fact that 
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d^O (2-lV 
and that d anti-commutes with the one-form A. The operation D in (2.12) is the 

covariant differential. In order to translate Eqs. (2.5)(2.9) into the language of forms 

we associate with the currents J 5 one-forms J 5 dx1*, go over to their duals 

V e ~ 1/3! £vXfip JS vdxAdx''dxp and then observe that evaluating the divergence (resp. 

tlie covariant divergence) is performed with the exterior derivation d (resp. the 

covariant D): 

hence 

(J)*J5J. =-Qt(A)*cd r tAjf / l^+i^. NO 

As indicated in the first lecture the fact that the anomalies are d operating on 

something is crucial for their interrelation, so let its derive this fact. Consider e.g. 

TrF 2. Observe first 

d r*F2= T*(dFF+FJLF)**2 TxAFF. (in) 

Adding zero in the form 2Tr[A,FJP m obtain 

ol % Fl= i 1* $F F = o (a, \V 
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due to the Bianchi identify (2.12). In order to find the form of which TrF 2 is the 

derivative we have to perform an integration and therefore look first of all at the 

variation of Tr F 2 induced by varying A into A -h 5A. 

(the signs are correct, A being a one-form.) 

jr,F^2£fFF-2T*JOTp 

We have used the Bianchi-identity and that Tr £AF is a scalar. 

Let us now mtoduce the variation of A via a parameter t by 

The equation (2.20) may now be written 

STzFt*iJiTks/\tFt (" lJ 

and with 6 = St Bfdt we have by integration 

nt 

j i>>>,i> u — ui i»ut n« nave u j uiicgi BLIUU 

J j t ^ l i l ; 1 =^U j i t T» Af- , (*.vj 
hence 



Calling the integral, which is a 3-form, w3 we write 

and have thus verified that 

ft F\= J^ . (l. U) 

Analogously one can proceed for higher powers Tr F" since 

A % F\^TiJlF r ' = * %$FF*-'= o . (t.11) 

The result ia 

cjln_t =<*% ( f t AFt*" , (*•*) 

Explicitly for n = 3 

%F3*J^ , (2.3/J 
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The above considerations have to be generalized to the case where d(.._) ^0. 

The appropriate tool is the so-called homotopy operator k: it has the properties 

dk + Kd = i C*.") 
k l = 0 , M^C . (2.SIJ 

Let us suppose for the moment that k exists and check on the known case above what 

kdoes. Apply(2.32)onTrF2: 

since d TrF 2 = 0 this is simply 

d(*%Fl) = TiF* . L2. irj 

Hence, if k is known,Tr F 2 is readily expressed as a d(...). 

The construction of k proceeds algebraically. Build out of F and A all those 

formal polynomials that vanish at F = 0, A = 0. Define an operation d on them by 

and the rule that it acts as anti-derivation (commutes with F, anti-commutes with A, 

and is linear on sums). Check that 

Indc-cd: dzA = d(F-A 2) = FA - AF- dAA t AdA = 0. similarly 

d 2F = d(FA - AF1 = 0 (work out!). 
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Define another operation £ by 

and the antiderivation rule. Then verify that 

*d + di = S (a-W) 

onA: MA + d*A = WF-A 2) = 8A 

on F : <dF + d*F = f(FA-AF) + dffA = 5AA + AtfA + SdA. = 6F, Here we have 

assumed that ff commutes with d. 

These definitions of d and C can thus be extended to all formal polynominals 

(vanishing at F = 0, A = 0) and, in fact, be applied to families A t, P t depending on a 

parameter t: 

4'*«« , 4Ft.r* a»°£ , fay 
withAo = 0,F 0 = 0. 

The anti-commutations relation (2,41) becomes 

and integrating over t from 0 to 1 yields an explicit representation 

(2M) 

Q2.k0 ) 
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with 

Let us illustrate these abstract considerations by an example. Choose as 

polynomial AF. Then 

Choosing the t-family 

F _ J? = tF + (t*-b)A% , 

we have 

Hence integrating over t from 0 to 1 
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Kd(AF)s \it(AFt + F.A + t*A>) 
o 

-L(AF-rFA) . C.M°) 
2 % 

On the other hand 

o 

Adding (2.50', and (2.53) 

(U+Ak)(AF) = AF , (2.nj 
as desired. The lesson we learn therefore is that one must perform first of all the t-

operation term by term and then integrate. It is to be noted also that t, depend? on t 

since ? tFL = o"At = 6tdA^t is a variation along the one-parameter family at the point 

t. On the contrary d is t-independent. Observe that, in the example discussed above, 

one can verify by direct computation that the square of the operator k vanishes 

Actually, it is not difficult to show that this is a general fact, when k is defined by 

means of the family (2.48). We leave the proof as an exercise to the reader. 

A word of caution. Equations such as (2.24) and (2.26) are really valid only 

locally, in some finite neighborhood in x-space. It is however well known that they 
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can be given a global meaning by using a connection on a principal fibre bundle, 

rathe- than a vector potential on the base (x-space). 

Observe that the forms " 2 n.i a r e ' o c a ' express' ,ns, constructed with the gauge 

potential and its derivatives up to some finite order, all calculated at a given point 

(see (2,29)). 

Finally we emphasize that in defining the operators d, I and k and in studying 

their properties (from formula (2.36) on) we have treated A and F as purely algebraic 

objects from which one can form freely polynomials. No special relations (such as 

particular commutation relations) have been used and the polynomials were not 

restricted by any symmetry or invariance property. 
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3. TRANSFORMATION PROPERTIES OF THE ANOMALIES 

The key question whose answer eventually leads to the characterization of the 

anomalies is: how do they transform under a gauge transformation? 

We have seen in the last Section that 

with 

^ ^ K r * F % ^ U f t A f f ~ ' / fat) 

0 

(the additional superscript ° ia introduced for later convenience), where k was the 

homotopy opcr~*~- Under a finite gauge transformation g(x) the Held A transforms 

into 

'W' /W'^ ' (3-3) 

hence F = dA + A 2 into 

Under this transformation TrF" is clearly invariant, but how does ̂ n - i ° = 

(y2n.1°(A,F), understood as function of A and F, change? Certainly e^n-i" m a y *""* 

will, in general) change by a term da, a being a (2n-2) - form, since thie contribution is 

annihilated by applying the d-operator yielding TrF n. But it turns cui, that 
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i.e. the transformed « 2 n . j contains besides do a term which globally cannot be 

written asd(...) and nevertheless is annihilated by d, the form o)2ri-llg']dg,0) is closed. 

Let us now dc :ive this result. 

Droppingfor the moment the indices we write the gauge transformed 

V=tyf' , JV^v* , 0.7; 
since a is given by t 'race. We want to use now the hoinotopy operator k for obtaining 

information about «(A + V, F), but <u(A + V, F) 7* 0 at A = 0 F = 0, so we have to 

substract <u( V/0). It is convenient to subtract one more term: <u(A,F), Hence consider 

observe that 

-JCJCA,F) - - r*F". 
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i.e. u(kA)sJL • 

We have thus indentilied the (2n-2) - form a: 

«i.-z="(V.'ow;-^..,* (*,&-*>**.: cv.'i). (*•») 
This completes the proofof (3.5) ii'we also use 

Actually, k 2 =: 0 and u 2 n l

0 ( A , F ) = kTrF" eliminate the second term in (3.11). 

A 1 W , 1 U V Z B . 1

0 ( V I 0 > - 0, so that 

Exercise: Calculate a 2 n _ 2 for n = 2,3 (Note; in actual calculations it may be simpler 

to carry along the term « 2 i i - i ^ A ' ^ ' n ®^ 

Result: 

= % Li v(AdA WW)- i V(?+l VAVfi i-pU) 
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Equation (3.16) has a well knowi apjJicatior to instantons. Equation (3.17) will be 

used in Section 4 and could in principle serve as a definition for the anomaly as well, 

but a slightly more sophisticated derivation yields the anomaly in a more convenient 

form, so let us proceed to this one. 

We shall distinguish the differentiation in direction of x from that in direction of 

the group and denote the former by d, the latter by 5; 

d=dxl'2~ (3. It) 

S = Ui*2- (3.19) 

(x** are coordinates in space-time; t r any parameters upon which the group elements 

may depend). In gauge transformation too, we shall separate those variations: 

A -» f'*} + ;" ' • ' ; +?*} , (3.20) 
gdepends on both x and t, while A is a form in x alone. Clearly 

A = d-t-S , A*= to 

since 

F'or 

0.2'J 
(5.WJ 

0-«) 

Ls.*V 
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one verifies 

So4- = -olv - V*4-A* = - JV (3.?r; 

Jv = - vx . 13. z«; 

Now P = dA + A 2, therefore 

Notice that also 

as easily verified. This implies that 

and both sides equal 

Let us expand w 2 n i 2°(ut*+ v,£") in powers of v 

where the superscript indicates the power of v. Equation (3.29) implies a set of 

relations 
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(3M) 

We shall see later that o^ n , 2

1 is to be identified with the anomaly. Let us calculate it 

explicitly. Now, from (2.29), (2.21), we set) that 

where 

' s 7 + (t-t) l/f, y) + (t-tJv* • ^ ' % k ) 

It is convenient to replace the trace by the symmetrized trace 

Shte^-^j-X £* f vW- ^ 
To first order in v, (3.33) gives 



li. 

'0 

Using the invariance of Str, <>ne can rewrite this as 

o ' 

Now observe that 

and 

The above expression becomes 

and finally, integrating by parts with respect to t we find the reiult for anomaly, 

0 
Let us gite the explicit expressions for 
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Equation (3.36) is very convenient because it exhibits the anomaly in the 

canonical form in which the differential operates on a function of*£ end &, while v is 

not differentiated. Equation (3.38) agrees with (2.16). 

Equation (3.37) gives a 2-form in x space, which is the non-abelian anomaly in 2 

dimensions. Similarly <u4* gives the non-abelian anomaly in 4 dimensions and 

generally t ^ . j 1 hi 2n-2 dimensions. One may winder wether the other forms, 

<u2B.k

k'1(2 £ k £ 2n), are also relevant to physics. If one is interested in 4 

dimsnsional space time, one must take 

For any n 2 3 this gives a 4-form in x space, ca 4

2 n' 6, in which the infinitesimal gauge 

transformation v occurs an odd number of times, 2n-S. There U an infinite number 

of such forms, as n varies. According to unpublished work by I. Singer, these 

a»ner*]i»d anomalies can be identified as obstructions to a definition of the Dirac 

propagator in an external potential, globally in the space of all potentials. 



26 

4. IDENTIFICATION AND USE OF THE ANOMALIES 

In the last Section we have defined the form w 2 n . 2

l to be the non-abelian anomaly. 

We now wish to justify this definition. To this end we go back to Section 2, generalize 

appropriately the Lagrangian (2.7) to arbitrary (even) space-time dimemioni, 

renormalixe in the on, loop approximation and consider the functional of one-particle-

irreducible Green's functions W[A] to this order. Gauge transformation! are now 

represented by functional differential operators 

The cross-product is constructed with the structure constants of the respective simple, 

compact Lie group under consideration. One may convince oneself that the Xj's form 

the algebra 

and alto that their action on W[A) just yields the current (non-) conservation equation 

X.-(*)WfA) - Q [ A ] ( X J (4.J) 
(Gj = 0 would correspond to the conservation of the respective currents). Now the 

mere existence of the functional W[A|, which we suppose to be ensured by appropriaU 

rcnormalization, implies a consistency condition for the possible G,'s. Acting twice on 

WTA1 and using (4.2) we derive [15J 

X C*) Cj (y) - X; (y) Ct to - {<} X W S(*-/). tt.u) 
Trivial solutions of these equations are, of course, readily found: 
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A 

(G[A] e.g. local) is a solution. But (4.4) has not been solved in all generality. The 

anomalies (2.9) arise as solutions of (4.4) which are not variations of a local functional 

in the basic fields of the theory: This feature we take as definition for the general 

case: any solution of (4.4) which is not a variation of a local functional in the basic 

fields (g>,AJ we regard as anomaly. 

Before showing that v>2a-2 t * o e s s o ' v e just (4.4) we have to reformulate the 

problem somewhat. 

Let us introduce anti-commuting scalar fields (Faddeev-Popov fields) \{(x) and 

the notation 

v. Q H ^ . [«»» TK-WQLCX) 

Then the consistency conditions (4.4) turn into 

v-X v.Q - l(y-*v)-c; = o (k.n) 

Similarly the gauge transformation on A ' may be reformulated: 

Interpreting (4.7) as invariancc manifestation of v-G suggests to transform also v.: 

i.e. (4.7) becomes 
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It should be clear that (4.S), (4.9) are nothing but the BRS-transfortnations and 

(4.10) the Slavnov identity for the special case of currents. This statement is 

confirmed by showing 

i.e. the transformations (4.8), (4.9) are nilpotent. Exercise: check (4.11), 

Let us now go over to forms 

where v is a 0-form with values in the Lie-algebra, and re-express (4.8), (4.9) as 

The consistency equation (4.10) becomes 

or.equivalently, 
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(d: exterior x-derivative; x some quantity). Hence the S defined in (4.14), (4.15) and 

the d in (4.17) fulfill the algebra (3.25) (3.26) and will be identified with those 

operators. What remains to be shown is thus only that (4.17) can be identified witti 

i.e. ©2H21 ̂ t n v'(HA](x) and x with fi>2n.2

2.Indeed let us look at the system (3.32) 

yr.F" • »« 

We see that ̂ ^-2 " l ' n e a r >n v a n t * satisfies the consistency condition. The problem 

of finding the most general solution of the consistency condition will not be discussed 

here [16]. , , 

In order to derive physical consequences from the presence of the anomalies we 

use the approach of phenomenological Largrangians [IS]. We permit the presence of 

another multiplet of fields ̂  (Lorentz-scalars} and try to adjust its transformation law 

under the gauge group so that the anomaly cai. be derived as variatin of a local 

functional of the gauge fields plus the fields {{. 

It turns out [15] that the law of non-linear realization 

i-* r'farj : -e**r = « T ' <>.ty 
is the correct one and that 

r' -tS-X 

0 
satifies 
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i.e. fulfills the anomalous Ward-identity. Here 

generates the transformation of t, (X is given in (4.1)). The identification 

$ = 1/F„ w( in the local action W[A, fl + P n

2/2 Tr /dx 3 ^ 3 ^ + normal solution 

shows that the anomaly contributes additional pion-pion and pion-vector interactions 

in the o-model-type phenomenological action. Examples where thess arguments have 

been successfully applied are the processes n° -» 2y, q -* y/nr etc. [16]. 

One can show directly [15} that (4.20) gives a solution of the anomalous Ward 

identity. Here instead we first rewrite it in a more geometric form from which this 

fact will follow. The factor e - t *' x transforms A into A^ t ) where abstractly speaking 

which we may understand as a family of group elements parameterized by t. Hence 

varying this parameter is a variation 5 in group space 
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Thus 

vfM]-1* ̂  **x * c - - w w -H w ^ > 

Interchanging the order of integration we can interpret the integral in group space: 

for any fixed t the x-«itegral is in fact one over the corresponding configuration g^x] 

in group space, t = 0 parameterizing the identity e and t = 1 the element g(x). We 

therefor* vrrite (up to a sign) 

W [A; yfrj J = J"? "OJ,1 (A, r) , (W 
Using the expansion 

,(#->*•;« cof'tfj+uSirf,*)* w. 

we first note that 

since tag (V) is a 5-form purely in x, but spacetime here is 4-dimensional; next we see 

that for the special parametrization (4.23) 

v2 = v 3 ^ --• = O / CU.Z1) 

since there is only one independent differential St. So we can write 



In highftr dimensions we would write similarly 

A-

(2n-2 dimensional space time). Observe that 

which is a 6-form purely in x and therefore vanishes in 4 dimensions. Therefore (4.30) 

is invariant under deformations of the integration manifold provided the limits of 

integration are kept fixed (similarly for (4.31)). 

We now show '.hat W satisfies the anomalous Ward identity. This is a 

consequence of the second of Gqs. (3.32), slightly reinterpreted. Let u» perform a 

gauge transformation 

Observe that 

satisfies 



ri. A > 

Change the integration variable from g' to g" = kg', where k = h at the upper limit 

andk = eat the lower limit. Then 

If h is infinitesimal 

kfrM-e+wCx) , (it.tfj 

then 

k. = « + m y faifj 
where m = m(x) at the upper limit and m = 0 at the lower limit and 

CUM) 

So we must make an infinitesimal transformation (drop the double-primes) 

and correspondingly 



34 

where 

Now, in analogy with (3.32), 

(here ffm is an even variation), therefore 

The right hand side can be evaluated by Stokes' theorem. Since n vanishes at the 

upper limit, while n = m(x) at the lower limit, we finally obtain the desired aquation 

£ V s j*>4 (<*(*), A) . (U.kO 
X 

The expression (4.30) for the effective Lagrangian W can be simplified if one 

makes use of (3.5), (3.17), which implies, 

LA. uj 
Now, the first term w5(A) in the r.h.s. vanishes because it is a 5-form purely in x. The 

second term can be integrated by Stokes' theorem. Therefore (4.10), using (3.17), 

gives 
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W[A,fto] = fafoAj + fifnCf'faVff. fry 
* (V 

Here o 4 and V arc as given in (3.14), (3.15), The last integral Is extended over a 5-

oHmensional manifold in group space having the sphere g(x) as boundary (as x varies 

over Sv g(x) describes a sphere in group apace). The integral is invariant under 

deformations of the 5-manifoid because the integrand is a closed form (in general 

U % Vln'' * (2«-,) % V^ * o (k.kfj 

for V = dgg"1, dV = V2.) In (4.47) the dependence on the vector fields in explicit, since 

a 4 is explicitly known. It is polynomical only. One could use the simplified form 

(4.47) to show that W satisfies the anomalous Ward identity (4.45) (Excercise for the 

resader). 

The last term in (4.47) is an integral in group space. For a group (like SU(3)) with 

a nontrivisl J75, there exist 5-cyctes C 5 such that the integral (write simply d for 

d + 5) 

does not vanish; suitably normalized (see below) it equals an integer. This means that 

although the integral in (4.47) is unchanged if one performs smaU deformations of the 

5 manifold, it is ambiguous for large deformations. This fact '.eads to a quantization of 
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the effective action, as mentioned in the Introduction. The normalisation to be chosen 

is 2a times that which gives an integer for (4,49). 
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5. NORMALIZATION OP THE ANOMALIES 

The normalization of the form TrFn, which enters in the abelian anomaly (2.5), 

(2.15) can be related to the formula for the index of the Dirac operator. This gives the 

correctly normalized abelian (or singlet) anomaly in 2n dimensions. The connection 

between it and the non-abelain anomaly in 2n-2 dimensions permits then to find that 

normalization also. So both normalizations can be determined completely from purely 

geometric arguments. 

First the singlet anormaly. In (compactified) Euclidean space-time, one writes 

where C(x) is the anomaly, $a are normalized zero modes of the Dirac operator with a 

given external potential, and y6 means the analogue of y s ir. any number of 

dimensions. J 6 is the (suitably regularized) axial vector current. The factor 2 

comes from carrying out the divergence, which gives the Dirac operator once on the 

spinor on the right and once on that on the left. 

Integrating (5.1) over all space-time, the left hand side gives zero. Therefore 

JCfrM* = 2 JZ £7r& = 2 fa - "-J , (f- V 
where n + (n_) is the number of zero modes of positive (negative) chirality. Their 

difference is the index. Now it is known (see eg. Ref. [17], Eq. (7.22)) that the index is 

given by the integral of the Cbern character 

cktv)*. 7 l « ^ F CW 
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More precisely, in 2n dimensions 

*• ~ J *.' v i ir / 

ThereA(F = lffiFp.dx'dxl 

(This is real because F = - i F„„!Aj)- This requires, of course, that one knows 

somehow the correct formula for the index. A nice derivation (for physicists) based on 

quantum mechanical supersymmety, has been given recently by Alvarez-Gaum* [18] 

and by Friedan and Windey [19]. 

In order to determine the normalization of the non-abelian anomaly, we shall 

proceed as follows. Since the non-abelian anomaly determines the phenomenologieal 

Lagrangian (see Sect. 4), we shall require that it be normalized so that the 

Lagrangian satisfies the quantization condition. As we shall see, the normalization of 

the non-abelian anomaly is then related directly to that of the index formuta, without 

the extra factor 2 necessary for the singlet anomaly. Of course ^us procedure is, in a 

sense, like going backwards, end the normalization of the non-abelian anomaly can be 

computed directly in perturbation theory. What we are saying is that the 

petiurbation theory result agrees with the correct normalization for the 

phenomenological Lagrangian, as required by geometric considerations. 

Remember that 

where 
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^-.CrfiFj—f*- ntt"'\ (*y 

0 

One finds 

The integral is easily carried out (successive integrations by parts) with the result 

Multiplying (5.10) by the factor in front of the index formula, 1/n! (i/2u)n, (without the 

extra factor 2) gives 

Cf.'O 
From the fact that the index is an integer one can then deduce that the form 

also integrates to a integer, the integral being performed over a (2n-l)-cycle in group 

space (see [201). Now we know that the phenomenological Lagrangian must be 
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normalized with an additional factor 2rt. This means that the non-abelian anomaly in 

2n-2 dimensions is given by (" u|> To A Sis'* J 

i 
">! (lirj ̂ , Min.t Qr.'O 

with « 2 n .2 given by the expansion (3.31). For n = 3, formula (5.13) with (3.38) agrees 

with (2.9). 
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APPENDIX- A SIMPLE FORMULA FOR a 2 n . 2 

It is often useful to have a simple explicit formula, (A.16) below, for the 

differential form a 2 n - 2 occurring in Eqs. (3.5), (3.14) to (3.17). The formulas (3.11) or 

(3.13) are sufficient, but they still require some work to evaluate a 2 f l 2 . 

We define a connection depending upon two parameters A. and p 

^ = XA-^V , (*>') 

where, as in the text, 

The con-espondiaglleld strength is 

and it satisfies the Bianchi identities 

Differentiating (A.3) one finds 

and 

IQ-.-JV-IA^Y}. (fl.'J 
We consider the integral 

\%[{**-W)%*) W) 
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over a one-dimensional path, which is a clockwise triangle in the X, y. plane going from 

the origin to the point (0,1) to (1,0) back to thr origin. On the segment from. (1,0) to 

(0, 0), p. = 0, j / A j ( as AA, &Xjl = AdA + kzA2 - Fx (as defined in 2.48), and therefore 

(A.7) equals, by (2.29) 

= il? - }i)¥2. Therefore (A.7)cqoa!s 

0 faV 
On the segment from (0,1) to(l,0),A +p = l , j£ = AA + a - 1)V, 

*5* = F l + Vf~ m * * ( A ' V"- Therefore (A.7) equals 

Finally, < A.7) integrated over the clockwise triangle equals 
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which is the expression we would like to equate to d a 2 n 2 . If we consider 

Tr(A d r

Aj l

n' l)andi-Tr(V &x

 n " 1 ) as the two components of a 2-vector in the plane, we 

can apply Stokes' theorem to (A.7) and transform it into an integral over the inside of 

the triangle 

Using (A.5] and (A.6), (A. 12) becomes 

Using the invariance of Str, the last two terms can be rewritten 

where we have also used (A,4). Therefore (A.13) becomes 
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whichfijially gives the desired formula 

as a two dimentional integral over the interior of the triangle: in (A.16) 

One may have preferred a one-dimensio.ial integral formula for a 2 n . 2 like that for 

<»2n-l» **ut ̂ •*W is just as easy to evaluate. In the expansion of ^J1'2 one encounters 

only the integrals 

As an exercise, the reader may check that (A.16) agrees with (3.14) (obvious) and 

(3.15) and then go on to the next case n = 4. 

IW 
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