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1. INTRODUCTION

in these lectures I shall describe 2 number of properties of chiral
anomalies from a geometric point of view. I follow mostly work done i
collaboration with Raymond Stora [1] . Some of the resilis are contained in a
recent paper written in collaboration with Wu Yong-Shi and Anthony Zee [2],
to which I refer also for an extentive list of old and new references on chiral
anomalies. It is possible that the methods and results described in these
lectures are fully known in mathematics. On the other hand, several crucial
formulas have not bcen given before (at any rate not explicitly) and their
physical relevance is emphasized here.

As an introduction to the main subject let us consider some examples of
the relevance of topology to physics:
(1} The Dirac monopole.

‘The action integral for an electron in the field of a magnetic monopole is

givenby 2
2

A dx
I=gl, d e} ACRE Jpde o (11)
1 i
The integral is over a path joining the point 1 to the point 2. Let us consider the
gecond term in the action. If we deform the path of integration keeping the end
points fixed, and then come back to the original path, the action returns to its
original value, provided the deformation was not too large. However, if we
gwing the path about the position of the monopole and come back to the original
path, we cut all flux lines of the Caulomb-like magnetic field. The action

changes by an integer of eg (g is the pole charge)
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I[: I +fwej . (1-2)

One can say that the space of paths is infinitely ted. Classically this fact

is not very important, since 1' gives the same equations of motion as [, but
quantum mechanically it gives rise to a problem. For instance, the path

integral |
Z = JQ)(;:«H.) ot (13)
s ot wll defined, unless
meg =m 21 m,n imi‘ejau, (1.4)

which is the Dirae izt dition, {If this cuantization eondition is not

satisfied, the path integral could be defined as vanishing by destructive

, when one integrates over the infinitel! d space of paths.]

Thia is a well known e of g ization of classical par; due to

topology. Other examplesare

{2). Effective or phenomenolagical Lagrangions which arise as soluticns of the
anomalous Ward identities {see Section 4), Witten [3] and Balachandran, Nair
and Trabern (4 have observed that a phenomenan similar to Lthat occurring (or
the Dirac monopole occurs here, except that the 1 dimensional path is replaced
by a 4 dimensiona) sphere.

(3). Non-linear a-model coupled to supergravity (5], One finds that Newton's

tnnt has 16 take ized values, i.e. multiplesof F =2,



(4), Three-dimensional Yang-Mills theory [6). The topelogical mass of the
vector field has a quantized value.

{5). In the Weinberg-Salam model there may exist heavy {unstabie) soliton
states 7). The Higgs seclor of the model has a global 5U(2), x SU2)x
symmetry. [t i5 2 linear o-model but for large Higgs mass it can be
approximated by a non-linear one, hence may have soliten solitions.

A common feature of all of these examples ig that they make use of
homotopy groups, 50 a list of the homatopy groups of the classical groups may
be useful as a guide for a systematic search. Without guing into the details of
the definitions let us say roughly that the q"'-humotopy group IIq of a

{topological) space X is the set of i of 59 (the q-di jonal sphere)

into the space X, where two i are i d as ivalent when one

can be continously deformed into the other. We are interested in homotopy
groups of groups i.e. the space X is a classical compact ".ie group G. Here is the

tist of homotopy groups of the classical groups[8].



y:q um) Oo(N) Sp(N)
N>gR N>q+1 N> 14(q-2)
0 0 Z, [P 0
1 z [em] Z, [spin) 0
2 0 0 0
3 ¥4 z z [Instantions]
4 0 0 Z, {¥itten]
5 2 [Chir. Lag] 0 Z,
1 0 0 0
7 z Z z
8 0 z, 0
period: 2 8 8
{Z: the integers; Z,: the group of 2 elements)
The table exhibits the Bott periudicity tt . Provided the group is
sufficiently “large” (the i lities are indi i} the h py groups follow 2

series of period 2 in the first column (U(N)) and of period 8 in the other two columns
(O(N) and Sp(M)). Observe also that the homotopy groups for O(N) and for Sp(N)
follow the same pattern, only shifted by 4 (half the period). See Milnor’s book [9] last
chapter, for a proofof the Bott periodicity theorem.

Remarks:

(1). 1T, = 0for all three classes and also for the exceptional groups (E. Cartan).

(2). I, refers to the connectedness of the group

T, (O(NY = Z, s reloted to parity



N,{O(N=3)) = Z ,is related to spin.
(3). The Dirac monople has to do with H‘(U(l)) = Z. Note that for the 't Hooft-
Polyakoy monople the relevant quantity is M(SUEYUM) = H‘(U('I])A For
homotopy groups of quotients of groups see Hilton [10] .
(4). The instanton has to do with IT, (SU(2)) = Z. Note that Sp{1) = 5U(2).
(6). Witten [11] has pointed out that an SU(2)} gauge theory with an odd number of
chiral fermion doublets is inconsistent. This is related Lol'l‘(Sp(l)) =1,
(6). Chiral Lagrangians (cf. Section 4) are related to HG(U(NZEI)) =2
(M. 17 = Z. This fact is related to chiral solitons [12),{13].



2. CRIRAL ANOMALIES AND DIFFERENTIAL FORMS
A simple way to introduce the subject of this lecture - the anomalies associatd

with chiral fermions - is to consider the Lagrangians

L=C§ pr (9 -ireAp )Y (2.1)

in 4-dimensional space-time, where the g's are Dirac spinors, A“k a set of external
vector fields and A* the generators of a representations of an internal symmetry group

(tike SU{2), SU(3)). Letus futhermore introduce an axia! current operator

IS = Vit (2.2)

which is a singlet under the internal group, and look at its classical conservation

equations
')"I,f =0 . (2.3)

It is well established [14] thet in the ane-loop approximation of per

thecry the cinssical conservation equation breaks down. If one requires vector gauge

invariance, the axial vector equation takes the form

n? ¢ )

’D"J}f:—%' IAAA S N (2.4)

Hera

k
E,y':": A;ﬁv



and F‘"“ is the usual Yang-Mills field strength associated with the fields A"“ (gg108 =
1). In terms of the latter the “singlet” or "abelian” anomaly, as we shail call the r.hs.

of (2.4), can be writien as

| o 2
Wii=-rm ST 0 (A QA 3 AvArAc) | (25)

Equally well one may consider two currents constructed analogously to the above:

fermions are split into lefUrightone’s

?L. = _’i_,li"l’ (2.[)

R

and one starts from a Lagrangian in which they are coupled to corresponding

L = i A M Hi R YA WY, (27)
MER A2 HeLE  (20)

are covariantly conserved in the classical approximation but lead, upon proper

definition |14], to anomalous equations



I HaHaH
olg ;N % wg" PER (3 (AL AL 45 AA A,))

(29)
H:L,R ’ AZL=-."IR:—1 ,

in higher order. The r.h.s. of (2.9) will be called the beli ly, Ci

the factor 1/2 in front of the trilinear A-term with the corresponding factor 2/3 in (2.5)
it is clear that the non-abelian anomaiy cannnt ba rawilten in terms of Yang-Mills
curls. Nevertheless there is an intricate relation between the two types of anomalies
which will be cleared up in the subsequent lectures. To point out that, differential
geometric mehods will be used, which are going to be introduced prosentiy.

In terms of differential forms the Yang-Mills fields A : will be represented by
. 13
Az-i A,, Ay dxt (2.12)
a matrix of one-forms (i.e. having anti connecting elements}, the field strength by

Fz=dA+A® (2.11)

a moatrix of two-fsrms (wedge symbol suppressed, matrix multiplication understood,

elements of F commuting). It is easy to check that the Bianchi-identity

DF=dF+[A,F]=0 (2.12)

holds, by making use of the fact that
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=0 (2.5)
and that d anti-commutes with the one-form A. The operation D in (2.12) is the
covariant differential. In order to translate Eqs. {2.5)(2.9) into the languege of forms
we associate with the currentsd “5 one-forms J ""' dx¥, goover to their duals

3¢ = 3l e J5*ax}dxtdx? and then observe that evaluating the divergence (resp.
tue covariant divergence) is performed with the exterior derivation d (vesp. the

covariant D);

AT5= (1) 1 pupe AT (20)

hence

AT oc T F* = d T (AdA+EA?) , (2.15)

(2*35). =-G,(A) =< d T’u\;(ﬁdﬂ-r;’_ﬁ?}, (2.1¢)

As indicated in the first lecture the fact that the anomalies are d operating on
something is crucial for their interrelation, so let us derive this fact. Consider e.g.

TeF?. Observe first

d F'= T (dFF+FdF)=2 TRdFF . (217)

Adding zero in the form 2Tr{A,FIF wa obtain

ATF*% 2R IFF =0 (2.18)



n

due to the Bienchi identify (2.12). In order to find the form of which TrF? is the
derivative we have to perform an integration and therefore look first of all at the

variation of Tr F? induced by varying A into A + 8A.

F=dA+A, SF=diA+5AA+ATA= Dl5p),(.17)

( the signs are correct, A being a one-forrm.)

ST F= 2% SFF = 2T DEAJF -
1DTMIAF = 24 R SAF . (2.20)

‘We have used the Bianchi-identity and that Tr §AF is a sealar.

Let us now inteduce the variation of A via & parameter t by

A =tA ) E=tdA+t"A= bR+ (20" (221)

The equation (2.20) may now be written

STHE =24 R sAE (222)

and with & = &t 3/t we have by integration

4 |

[t 2nE z2d [ BAR (223
o [)
hence

TF'= 204[:':& T A(EF+(t20RY)
(24

[2,2
:O‘-E(AF"'%AZ)’ K‘Z 4)



Calling the integral, which is 2 3-form, &g we write

1
wy= 2[5t R A(tdA+ER ) (208)
o
= (At A= T (AF-1A})

and have thus verified that
3
T F'= du), . (2.2¢)
Analogously one can proceed for higher powers Tr F™ since
r=l -~
AT Fon o dFF sn BOFF™2 0 . (227)

The resuitis

T F“: d o (Z.ZP)

In-]

by =T [ AE™ (22

Explicitly forn = 3

P :3'r&JsrA[+d/J A7)
- T (A (AA)+ 2 AT+ L /auﬂ) @30)
mF = d g . @.31)
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The above iderations have to be lized to the case where d(..) #0.

The appropriate too! is the so-called homotepy operatork: it has the praperties
dk + K d =1 (2' 32 )
2 1
—- =0 2.33
kK*=0 , d%=o . (2.33)

Let us suppose for the moment that k exists and check on the known case above what

kdoes. Appiy (2.32) on Tr F2:
v kY -1
(dk +rd ) RF = T F ;o (z3)
since d Tr F2 = 0 this is simply
k3
d(xRF) = RF . (2.37)
Hence, if k is known, Tr F? is readily expressed asa d(...),

The construetion of k proceeds algebraically. Build cut of F and A all those

formal polynomials that vanish at F = 0, A = 0. Define an operation d on them by

dp = F-A* , @3¢)
AF= FA-AF LZ-;7/

and the rule that it acts as anti-derivation with F, anti. with A,

and is linear on sums). Check that

d*=0 . (2.39)

Indced: d?A = d(F~A?) =FA — AF— dAA + AdA = 0. similarly

d%F = d(FA ~ AF) = 0(work out}),



Define another operation £ by

Ao (235)

¢(F = 35h @.40)

and the antiderivation rule. Then verify that

td+de =5 (2.41)

onA: fdA + dfA = UF ~A%) = 5A
onF: {dF + d{F = {(FA—AF) + d6A = §AA + ASA + &dA = &F. Here we have
assumed that §commutes with d.

These definitions of d and £ can thus be extended to all formal polynominals
(vanishing at F = 0, A = 0) and, in fact, be applied to families A,, F, depending on a
parameter t:

A
= = =3 Qe (2. &2
LAp=0 , Lf=5R = bsr 2
with Ag = 0,Fg = 0.

The anti-commutations relation (2,41) becomes

Ld+dl =7 =5t 2 (2.43)

and integrating over ¢ from 0 to 1 yields an explicit representation

i
k=4 (2-44)
)
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with

kd +odk = 1 . (z,zl.r)

Let us illustrate these abstract i it by an le. Choose as

polynomial AF. Then
d(AF) = F - AFA y (2.46)
LA (AF) = SAF +FTA +ATAA . @41)

Choosing the t-family
A— A, =tA ,
SA —> SA = St '%@Ef,, = Jth (@.4?)
F— F =tF + - ) A",
we hava

RA(AF) = L d(AF )= 5AF + E §Ap + ATAe
st (AE+EA+EA) @47)

Hence integrating over t from 0to 1



{
Kd(AF)< Jst(Aﬁ+lfA+t2A’)

(AF <FA) . (2.50)

i1
2

QOn the other hand

2(AF)=-AIA —> L (AF)=-TtL A, @51)
[a(nf)= (AF) =LA, G5y
4

AK(AF) == 2 dA* = L(FA-AF) . (2.53)

Adding (2.50; and (2.53)

(kd+dk) (AF)= AF (2.54)

as desired. The lesson we learn therefore is that one must perform first of all the £-
operation term by term and then integrate. It is to be noted also that £, depends on ¢
sinre &,F, = §A, = §t3A/ 9t is a variation along the one-parameter family at the point
t. On the contrary d is t-independent. Observe that, in the example discussed above,

one can verify by direct computation that the square of the operator k vanishes
a
K=o

Actually, it is not difficult to show that this is a general fact, when k is defined by
means of the family (2.48). We leave the proof as an exercise to the reader.
A word of coution, Equations such as (2.24) and (2.26) are really valid only

locally, in some finite neighborhood in x-space. It is however well knawn that they
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can be given a global meaning by using a connection on a principal fibre bundle,
rather than a vector potential on the base (x-space).

Observe that the forms @, are local express’ .ns, constructed with the gauge
potentizl and its derivatives up to some finite order, all calculated ut a given point
(see(2.29).

Finally we emphasize that in defining the operators d, £ and k and in studying
their properties (from formula (2.36) on) we have treated A and F as purely algebraic
objects from which one can form freely polynomials. No special relations (such as
particular commutation relations) have been used and the polynomials were not

restricted by any symmetry or invariance property.



3. TRANSFORMATION PROPERTIES OF THE ANOMALIES
The key question whose answer eventually leads to the characterization of the
anomalies is: how do they transform under a gauge transformation?

We have seen in the last Section that

T'Iz F“;: dem—lo (3")

]
° . kToF "= m-fﬂr TAE™ . (3.2)

(2}

W

2n-4

(the additional superscript ? is i duced for later ience), where k was the

homotopy op2e~*~~ Under a finite gauge tranaformation g(x) the field A transforms

AJ—;.{'A}*J—'J} y (3.3)
hence F = dA + AZinto

1
,; =9 F 7, . (3.4)
Under this transformation TrF? is clearly invariant, but how does 0, 0=
wh_lo(A.F). underateod as function of A and F, change? Certainly ""2.‘-10 may (and

will, in general) change by a term da, o being a (2n-2) - form, since thiz contribution is

ey

d by applying the d yielding TrF™. But it turns cus, that



- '
Nl'n—l"(’qﬂl r—} ) = win-/ o(ﬁJF) + J D(Zn-z +w21l‘l (q' u’/ 0// (3 r/
ie. the transformed ”2n-l° contains besides da a term which globally cannot be
written as d(...) and nevertheless is annihilated by d, the form uh.l(g"dg,ﬂ) is closed.
Let ua now de -ive this result.
Dropping for the moment the indices we write the gauge transformed

Gogp1 (A F

w[A;,F‘;)zw(g"Ay'*y_l"l;/ ?-'F?)
=w(ﬁ+\//F) s (3'5)
\/—:—'d”" , dV=v? o, G:.7)

since w is given by & *race. We want to use now the hornotopy operator k for obtainirg
information about w(A + V,F),but w(A + V,F) #» 0atA =0 F = 0, 50 we have to

b @(V,). Itis ient to subtract one more term: w(A,F). Hence consider

Nz w(A+tV,F)= wlv,0)—w(h,F) ; (3.€)

observe that.

0‘_[)-'—'0- (3?)

Indeed: deo (A+V,F)= 'F:_Fnl
-dw (V,F) =
—dw(AF) = - TF"

Recall (2.52)
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(dkvka) L =41
i.e. ot[k_/).).—_./l_ .

(3.19)

We have thus indentified the (2n-2) - form a:

¢ _ 0 I
Hypez = k( oy CA +V,F)—N,,,_, (A, F) Wy (V,O)). (3" )
This completes the proof of (3.5) it we alspuse

w((dg 5", o) = “"(3-"‘3 ,o). (3-’2)

Actually, k% = 0 and @, %AF) = KTcF" eliminate the second term in (3.11).

Also, keoy, OV, 00 == 0, 50 that

oy = k(0 (AFY, F)) . ()

Exgrcise: Caleulatea,, , for a = 2,3 (Note: in actual calculations it may be simpler
to carry along the term w,,, %A F) in 0.)

Reault:
m=2 o = - T (Vﬂ) V= "'f?d C’ ”4’)

=T (.- V[Adﬂ wdAR)- L VA’ L vava f—-V’A)
(3.15)

qu(’qj;g)= ‘\),o[ﬂ/F}J—JO(,—»Lﬂ(?"J;)’ G.16)
g
we (A‘?,};) 2 (A F)+d, + - T (57'49)° . (3.17)
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Equation (3.16) has a well knowsi aplicatior to instantons. Equation (3.17) will be
used in Seetion 4 and could in principle serve as a definition for the anomaly as well,
but a slightly more sophisticated derivation yields the anomaly in a more convenient
form, so let us proceed to thisone,

We shall distinguish the differentiation in direction of x from that in direction of

the group and denote the former by d, the latter by &

d=dxr 2, (3.18)

T dat
§ = dt* 2. (3.19)
EY
(x* are i in space-time; t* any upon which the group eloments

may depend), In gauge transformation too, we shall separate these variations:
- -1 -t
A g'hs t 7 3", (.20)

gdepends on both x and t, while A isa form in x alona. Clearly

A=d+F , A'z=0o GB.ar)

d*=5zdF+5d =0 . (3‘22)

For

=gy ey, (3.23)

v = 3-'{? y (3.24)



22

one verifies

§HA = ~dv - vk =Av = - D (3.2!")
fv = -v? . {3.26)

Now P = dA + AZ, therefore
Fodd +A =g Fg . {3.27)
Notice thatalso
F=b(Arv)+(hev) G-2r)

aseasily verified. This implies that

Ao ‘(#-rv, 7}-_-_—0[9.;“_'0[.,4, 7}, @.27)

In-}

and both sides equal
F = BF. (3.30)

Let us expand w,mo(ul+ v,&)inpoweraof v

1 du=t
e 0 .- ,
Upe* (27, F) = . (F, Flr S+ b 0 @31)
where the superscript indicates the power of v. Equation (3.29) implies a set of

relations
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(3.32)

‘We shall see later that *’1...2‘ is to be identified with the anomaly. Let us calculate it

xplicitly. Now, from (2.29), (2,21}, we seo that

(e B o [ (G0 F7), 6
]

'7: l‘?-r@l'k)[ﬂ-rv)t
’35+(t‘-t){ﬁ,v}+(c1¢/1,» (33w

It is convenient to replace the trace hy the symmetrized trace
(3.35)
?f )

St:(8,,B,,,B.) = Z (B,

‘To first order in v, (3.33) gives



4L£S't Sh(«r (-Z”‘* (ttt)ﬁ[zn;’iﬂv} . Z"-iiﬂlv_}7;+ )
=m ﬁl‘ Sk (’V Zw-f (t=t)-1) K {,4‘ v] 7'"‘)

Usis gth invariance of Str, nne can rewrite this as

fit St (v 2(e- ) [f 4 AP +ﬂv[#,’r:"’]))
=n]:tSk(v[z‘lzt—:)(»—:)(tzﬁ,ﬂm“'iﬂ[ﬁﬁi"’w/

Now observe that

dF= (R, F]

"

and
SF - ket (A, A
‘The above expression becomes ’
' l g R *-2 P )
m,fﬂ- SG (V[?k -If (-0(n-0) ((%L'E- - dlﬁ)?' -!'J?dl? )])
‘:md finally, integrating by parts with respect to t we find the result for anomaly, ‘

0.t = cn—')js'f(l—f) Sn(vd (# F }) (3.36)
(V]

Let us give the explicit expressions for

me2, iz T(vdR) , (3.37)
m=3, wtlz R (vd(RdReLA)). (330)
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Equation (3.36) is very Xt b it exhibits the in the
canonical form in which the differential operates on a function of . and &, while v is
not differentiated. Equation (3.38) agrees with (2.16).

" Equation (3.37) gives a 2-form in x space, which is the non-abelian anomaly in 2

dimensions. Similarly w,! gives the beli ly in 4 di jons and

1l 02,_11 in2n-2di i One may wunder wether the other forms,
@9, 12 = k = 2n), are also relevant to physics. If one is interested in 4

dimznsional space time, one must take

-k =4 (-;,3’}
k=l = 2n-§

For any n 2 3 thia gives a 4-form in x space, &7, 2*5, in which the infinitesimal gauge
transformation v occurs an odd number of times, 2n-5.  There is an infinite number
of such forms, as n varies. According to unpublished work by 1. Singer, these
generalized anomalies can be identified as obetructions to a definition of the Dirac

P inan

inl, globally in the apace of all potentiala.
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4. IDENTIFICATION AND USE OF THE ANOMALIES
In the Iast Section we have defined the form uh.,l to be the non-abelian snomaly.
‘We now wish to justify this definition. To this end we go back to Section 2, generalize
appropriately the Lagrangian (2.7) to arbitrary (even) space-time dimensions,

renormalize inthe on. ioop imation and ider the functi of one-particle-

irreducible Green's functions WIA] to this order. Gauge transformations are now

d by functional differantia{ op
X(x)—-o_.-., (Apx w) (4.1)
The cross-product is conlr.mcud \nt.h the of the ive simaple,
compect Lie group under ideration. One may ince oneself thet tha X/'s form
the algebra

[X:(), X (1] = £ X, %) 8(x-5) , (42)
and alwo that their action on W[A] just yielda the current (non-) conservation equation

X.x)W[A] = G [a](0 (4.3)

(G, = 0 would correspond to the conservation of the respective currents). Now the

mere existance of the functional W[A], which we supposs to ba ensured by appeopriata

ronormalization, impliss s i y condition for the possible Gy's. Acting twice on
" WIAJand using (4.2) we derive [15)

X:00C; (y)- X (3) G ()= £;°G, () Sbx-y)). (4.4)

Trivial solutions of these equations are, of couras, readily found:
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Cole) = Xitor G[AT G5

(a[A] e.g. local) is a solution. But (4.4) has not been solved in all generality. The
anomalies (2.9) arise as solutions of (4.4) which are not variations nfa local functional
in the basic fields of the theory: This feature we take as definition for the general
case: any solution of (4.4) which is not a variation of a local functional in the basic
fields (W,A") we regard as anomaly.

Befare showing that @, ,! does solve just (4.4) we have to reformulate the
problem somewhat.

Let us introduce anti-commuting scalar fields (Faddeev-Popov fields} v(x) and

the notation

X
v

Then the consistency conditions (4.4) turn into

11}

z folx W(x) X, (%)

(4s)
b [olx w(x) G, (x)

W

»X vnG - LG =0 (4.7)

Similerly the gauge transformation on A"i may be reformulated:
§AL=vX A (4.6
» B
Interpreting (4.7) as invariance manifestation of v-G suggests to transform: also v
- !
§Y = - 2 (vxv), (4:.9)

i.c.(4.7) becomes
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s5(vGl=o . (4.10)
1t should be clear that (4.8), (4.9) are nothing but the BRS-transformations and
(4.10) the Slavnov identity for the speciul case of currents. This atatement is

confirmed by showing

oo (4.11)

-
¢ )

i.e. the transformations (4.8), (4.9} are nilpotent. Exercise; check (4.11).

Let us now go over to forms

(4 n)

(413 )

N | 3
A = -t ﬂl" Al d X K
A= - ¢ 'V'.' /\ r
where v is g 0-form with values in the Lie-algebrs, and re-express (4.8), (4.9) as
SA = -dv-vhA-Av = -8v, (41)

Sv=-v" . (4.1T)

{4.100¢

Sfﬂ wC[r] =0 (4.16)

or, equivalently,
SThwGLale=dy , (417)

The
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(d: exterior x-derivative; y some quantity). Hence the & defined in (4.14), (4,15) and

the d in (4.17) fulfill the algebra (3.25) (3.26) and will be identified with those

P What ing to be shown is thy ly that (4.17) can be identified witn
i LS rJ
§ s = d(-hs) (41%)

ie. ﬂh_,‘ withv-GlA)(x) and x with‘mz,l‘f_lndeed et us lonk at the system (3.32)

'Tq_ FL du)z'_‘c-:o

SRF" - =0
SGJ ° +Jw2u-a-‘ =0

n-t

] E
Swlu-‘l. + dwb\-} =0
We see that w,, ,! is linear in v and satisfies the consistency condition. The problem

of finding the most. general solution of the consistency condition will not be discussed

herel18]. s
-
In order to derive physical from the of the lies we
use the h of ph logicsl Largrangians [15). We permit the presence of

another multiplet of fields §; (Lorents-scalars) and try to adjust its tranaformation law
under the gauge group so that the anomaly can be derived as variatin of a local
functional of the gauge fields plus the fields &.

It turns out {15] that the law of non-linear realization

/
Foflxr): e eToel Ctt)

is the correct one and that

't 8 X
wiazl=[es" " ro@ml  Ghw
bl

satifies

«.(X+Z)W[/°r,l'] = a. G[AT , (w2)



i.e. fulfills the anomalous Ward-identity. Here
N
Zz. = H'.I ﬁ (.4'22)
9% |
H.', L= gt
Vet ¢ la=o
generates the transformation of § (X is given in (4.1)). The identification

§ = 1F, m; in the local action W{A, §] + F, 22 Tr fax ket a,‘e‘ + normal solution

shows that the anomaly contributes additional pion-pion and pi tor i ti

b 1

in the o-model-type action.

les where theso ar have
been successfully applied are the processes 1% —» 2y, n— ynn ete. [15].

One can show directly (15} that (4.20) gives a solution of the anomalous Ward
identity. Here instead we first rewrite it in a more geometric form from which this

fact will Follow, The factor ¢ "X transforms A into Agyy whore abstractly speaking

3(&1 =&t (4.28)

which we may understend as a family of group elements parameterized by t. Hence

varying this parameter is a variation § in group space

;’(t») J';[k}:-}ﬂ' , (.24

v=-FSE . (4.25)
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Thus

I tvX N
WA= jdx L“ Fatds ALY O fdx gﬂ 5 Gl Al

=~ [.,(x ja’l’Ta G [Aim]Cx) : Gi.26)
t)

ging the order of int ion we can interpret the integral in group space:
for any fixed t the x-lategral is in fact one over the corresponding configuration g,(x)
in group space, t = 0 parameterizing the identity e and t = 1 the elemant g(x). We

therefore vrrite (up to a sign)

9(x3
w [A; 7[):)] = f N,,'(ﬂ/v) . (w27)

'Using the expansion

e (R+v) = e (A )+ o' (ARv)+ oo

we first note that
(4
we(A)=0 , (4,27
since w5°(,\¢) is a 5-form purely in x, but ime here is 4-di 1; next we see
that for the special parametrization (4.23)
3
1,.1 =V = - =0 p (4;2’}

since there is only one independent differential &t. So we can write
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gy -
W[A;7!x)j’= f we (A+v) . (%.30)
2
In higher dimensions we would write similarly
w
WA ] = (© e, (A+v) (e31)
L,
(2n-2 dimensional space time). Observe that
(A+7) e (Arv) =Rlf'Ry)= B F* | (4.32)

which is a 6-form purely in x and thereft ishes in 4 di i Th {4.30)

is invariant under deformations of the i ion manifold provided the limits of

integration are kept fixed (similarly for (4.31)).

We now show that W sati the lous Ward identity. This is a
consequence of the second of Egs. (3.32), alightly reinterpreted. Let us perform a

gauge transformation

A — k"ﬁk-f""'“",: AL, (4.33)
a(x) —» halx) .
Observe that
A+ = ?—'A} +;ﬂl(d+f); = Q(ﬁ;})
satisfies

QA g) =@(Abs) . (43

Therefore
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G

i3
WA, k'] = fw;( a(A,g))= f w (4. (A, 47).
© * (430)

Change the integration variahle from g’ to g”" = kg', where k = h at the upper limit

andk = e at the lower limit. Then 7
W[A,.,L‘f;] -'-fw; (a (A,l.k"y”)}, @3¢

[,,(x)=-e+v»\(x) ) (4,;7)

k=2¢4m , C[,.Sf)

where m = m(x) at the upper limnit and m = ( at the lower limit and

-1
hk'zeam(x)-m = ean (4.29)
So we must make an infinitesimal tranaformation (drop the double-primes)

5,,‘7 =ng (4.40/
S A= Q[A/?"*"i)' Q[A/‘?/
= dV - RQV-VA

(4.41)
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where

’U':g"ﬂ,} =f—lm,; - (442)

Now, in analogy with (3.32),

I 5 [CV ['4';}}: - @*Dw"léﬂ'ﬁ d/

(here §_ is an even variation), therefore

(4.43)

?
W == [(dri)e,, (444)
£

The right hand side can be evaluated by Stokes’ th . Since n vanishes at the

upper limit, whilen = m{x) at the lower limit, we firally obtain the desired squation

J;,, W= f&\)“'(fm[x)l A) . (4.45)

The expression (4.30) for the effective Lagrangian W can be simplified if one

makes use of (3.5), (3.17), which implie

-1
e (Ftv) = e (A )+ (d+5)et, + a/r[7 (dtf)s)
(4.48)
Now, the first term w4(A) in the r.h.s. vanishes because it is a §-form purely in x. The
second term can be integrated by Stokes’ theorem. Therefore (4.10), using (3.17),

gives
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a(x)
WLA, 3] = [ (v,0)+ % [ R (76 509).

(s)
Here o, and V are as given in (3.14), (3.15). The last integral is extended over a 5-
dimensional manifold in group space having the sphere g{x) as boundary (as x varies
aver 5,, g(x) describes a sphere in group space). The integral is invariant under

deformations of the 5-manifold because the integrand is a closed form {in general

@47

od v 2 (va) T"Vv™=zo0 (4.48)

for V = dgg’!, dV = V2) In (4.47) the dependence on the vector fields in explicit, since

@, is explicitly known. It is pol ical only. One could use the simplified form

{447} to show that W satisfies the anomalous Ward identity (4.45) {Excercise for the
resader).

The last term in (4.47) is an integral in group space. For a group {like SU(3)) with
a nontrivial [T, there exist 5-cycles Cg such that the integral (write simply d for
d+ 8

(R 40 6
<

does not vanish; suitably normalized (see below) it equals an integer. This means that
although the integral in (4.47) is unchanged if one performs sma?! deformations of the

5 manifold, it is ambi; for large def i This fact leads to a quantization of

47)
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the effective action, as ioned in the Introduction. The Jization to be chosen

i3 2r timeg that which gives an integer for (4,49).
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5. NORMAT IZATION OF THE ANOMALIES
The normalization of the form TrF3, which enters in the abelian anomaly (2.5),
(2.15) can be related to the formula for the index of the Dirac operator. This gives the

correctly normalized abelian (or singlet) ly in 2n di it The

between it and the non-abelain anomaly in 2n-2 dimensions permits then to find that

normalization also. So both lizations can be d ined ! from purely
geometric arguments.
First the singlet anormaly. In tifted) Euelidy pace-time, one writes
t
Qﬂfr =CCX)—Z qbq f?¢a /(S‘.I)
(e
Zeno meer

where C(x} ia the anomaly, @, are normalized zero modes of the Dirac operator witha

given external potential, and y, means the analogue of y; in any number of

di i J" m‘ is the (suitably regularized) axial vector current. The factor 2

comes from carrying out the divergence, which gives the Dirac operator once on the

" spinor on the right and once on thet on the left.

ing (5.1} over all space-time, the left hand side gives zero. Therefore

fC[x)o(x = 2fZ<;éfag.¢a =2(n-n) ,62)

where n_(n_) i3 the number of zero modes of positive (negative) chirality. Their
difference is the index. Now it is known (see eg. Ref. [17], Eq. (7.22)) that the index is

given by the integral of the Chern character

ch(V) = RCfﬁF- (&3
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More precisely, in 2n dimensions

R

C1o
ThereA(F =172 vadx"dx")

- n

2 i Hily- Han
COm 3 g REL B
C5.5)

(This is real hecause F‘“ = =i l“:,"li). This requires, of course, that one knows
somehow the correct formula for the index. A nice derivation (for physicists) based on
quantum mechanical supersymmety, has heen given recently by Alvarez-Gaumé [18]
and by Friedan and Windey [191.

In order to determine the lization of the beli ly, we shall

proceed aa follows. Since the non-abelian anomaly determines the phenomenological

Lagrangian (see Sect. 4), we shall require that it be normalized so that the

L gi isfies the ization condition. As we shall see, the normalization of
the non-abelian anomaly is then. related directly to that of the index formula, without
the extra factor 2 necessary for the singlet anomaly. Of course .xis procedure is, ina

sense, like going b

ds, end the normalization of the beli ly can be
computed directly in periurbation theory. What we are saying is that the
percurbation theory result agrees with the correet normalization for the
phenomenological Lagrangian, as required by geometric considerations.

Remember that
RF"=dew,_ (AF) (5¢)

where
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1 n-
6\}?_,"_' (AJF)='”‘(0“. EAF‘: l/ (s-'y

Ft-'zi'F+(f-’1'L’)Az- (¢)

b, (V) .-wfn BV (5.9)

The integral is easily carried out (Successive integrations by parts) with the result

n-l -1 I ml
J'zt (=) = f T @, @)
CZ n-1! ) !
Multiplying (5.10) by the factor in front of the index formula, 1/n! (i/2m)°, (without the

extra factor 2) gives

— Cm )"h m-1)/
(1 ) ) n'—l) (Z" )(C‘ln-’l)}'

(s5.1)

From the fact that the index is an integer one can then deduce that the form

(f;)“ ("“/}! " Vh-' ’ V:dj?‘,/ [;-’2/

(2, n-1) !
also integrates to a integer, the integral being performed over a (2n-1)-cycle in group

space (see [20]). Now we know that the phenomenclagical Legrangian must he
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normalized with an additicnal factor 2n. This means that the non-abelian anomaly in

2n-2dimensionsis givenby {up To a sigm )

Lot !
‘M—!'(z;)—;-" Win-2 ) (S‘,Ii)

with azn_zl given by the expansion (3.31). Forn = 3, formula (6.13) with (3.38) agrees
with (2.9).
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APPENDIY. A SIMPLE FORMULA FORa,_,

M

It is often useful to have a simple explicit formula, (A.16) below, for the

differential form a,, 5 occurring in Eqs. (3.5), (3.14) to (3.17). The formulas (3.11) or

{3.13) are sufficient, but they still rrquire some work to evaluate [P

Wedefinea ion di ding upon two Aand ;e

\741‘,‘ = AA -p v
where, as in the text,

V=dy 7-' dV= V" .

4

The corresponding field strength is
T
/JE;F = J Jf“ P -+ Jﬁ, »

and it satisfies the Bianchi identities

A Gp=- [‘#":/‘/ For ]

Differentiating (A.3) one linds

QKF alt‘r-f-fj‘gﬁ/!]

and

%%L:—DIV’{J%’FI V_; .

We consider the integral

n (B ((0A-5v) 7" )

(4.1)

(4.2)
(A.3)
#.4)
@.c)
*.¢)

(A 7)
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over a one-dimensional path, which is a clackwise triangle in the 1, p plane going from
the origin to the point (0, 1) to (1, 0) back to thr origin. On the segment from (1, 0) to
©0),p=0,4,,=1A, F, =8 + M¥A? = F, (a3 defined in 2.48), and \nerefore
{A.7) equals, by (2.29)

0 .-
w[B AR = -, (AF). @7
i

On the segment from (0, 0 to (0, 1), = 0,8 = — pV, F), = ~pdV + w2
= (u? ~ V2. Therefore (A7) equals

..n(ipz(&)/((f‘l‘f'}v!)”l == W (\/10):(A-'7/

On the segment from (0, 1) to (1,04, A + g = l"“l.u = +A -1V,

F,, =F, + (2= (V2 + {A, VD). Therefore (A.7) equals

'nfS'A n(A+v) (R +(AA) (V% {’f,V}))n-'
=, (/H—V,F) . [/.),/a/

Finally, {A.7) integrated over the clockwise triangle equals



43

(A+V,F) -ty (A,F)-0a. (V,0) , (A1)

21\‘

which is the expression we would like to equate toda, . If we consider
Te(A F, “"")nnd-Tr(V F, ‘u""l ) as the two components of a 2-vector in the plane, we
can apply Stokes’ theorem to (A.7) and transform it into an integral over the inside of

the triangle
9. \/9 -t
In (5 ) g) e
Using (A.5) and (A.6), (A.12) becomes

m(n-1) HSh ( (-AJV+ V”M) ,‘Z;r“-z CA./})

n-1 #H-3
—Afﬁ‘,‘,ﬁIV]Zm +VZ;"€\,N ’4}%‘)
Using the invariance of Str, the last two terms can be rewritten

Dt"(fﬂa,uvf'q ?M Vf"{'fﬁ}% /
=Sk (VA D«‘m» /'K,;])
=- SL(vAdE ")

where we have alsp used (A.4). Therefore {A.13) becomes

A1)
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_m(m—l) o ffo/L (\/ﬁ_ ?A;‘-z) I @'Igj
whichfinally gives the desired formula

0(2.,_2=—m(--r)”3tz (VA ’ﬁ:’) (A1)

asa two dimentional integral aver the interior of the triangle: in (A.16)

i 1=

(=[] ex (4.17)

One may have preferred a one-dimensional integral formula for @, , like that fur

@y 1+ UL (A.16) is just as easy to evaluate. In the ionof &, " one
only the integrals
Lox A
jSAJSFAH— = CA-W)
> P UA t+k+2) .,

As an exercise, the reader may check that (A.16) agrees with (3.14) (obvious) and

(3.15)and thengoontothe nextcasen = 4.
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