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EPRI PERSPECTIVE

PROJECT DESCRIPTION

For convenience, it is traditional in light water reactor safety analysis to use heat
transfer data and correlations derived from experiments using steel-clad bundles.
However, the thermal properties of steel are significantly different from Zircaloy
cladding, and this particularly manifests itself in the quenching behavior. Since
the position of the quench front is a reference point for the development of the
post-dryout and film boiling heat transfer, it is important to estimate correctly its
velocity and position., The thermal stresses on quenching are also important for
estimating fuel rod integrity (cf. Three Mile Island).

PROJECT OBJECTIVE

The primary objective of this project was to investigate the quenching and heat
transfer behavior relevant to Zircaloy-clad nuclear fuel.

PROJECT RESULTS

The experiments reported here show that Zircaloy cladding quenches faster than stain-
less steel cladding (up to twice as fast in a Zircaloy-clad bundle and 1.3 times as
fast in a mixed bundle containing both steel- and Zircaloy-clad rods). This trans-
lates as an increase of up to 20% in core reflood rate for postulated accident
conditions.

This work is coordinated with other EPRI reflooding and film boiler heat transfer
studies, including pressurized water reactor and boiling water reactor bundle
experiments (Research Project [RP] 959-1, RP1377-1), fundamental single tube work
(RP248-1), and studies of various emergency cooling systems (RP341-2). Related
analytic development has been reported in EPRI Special Report NP-1027-SR and in
Nuclear Technology, 1979, 43, 22-27.

R. B. Duffey, Project Manager
Nuclear Power Division
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ABSTRACT

Experiments are reported on the reflooding of a four-rod bundle in a new radio-
frequency heating facility. A range of flowrates and surface temperatures

have been covered.

The results show significant differences in the quenching rates of stainless-
steel and zircaloy clad, and significant interaction between them in a mixed
bundle. The results have beeen correlated utilizing conduction theory. Com-

ments are made on the nature of the transient boiling curve.
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NOMENCLATURE

Biot number, hé/k
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SUMMARY

Quenching data for zircaloy and stainless steel clad 4-rod bundles have been
obtained to supplement the data already existing in the literature. In par-
ticular, a fi]]ing'materia1 (A1203) with thermophysical properties comparable
to UO2 is used. The rods which are 1.1 mm in outside diameter, and are 1.2
meters high, are arranged in a square grid and are inductively heated. The
experiments have been performed with initial rod surface temperatures up to
1140 K and flooding velocity varying over the range 1-30 cm/s. The subcool-
ing of water at inlet has been either 75 K or 50 K.

Under identical flow conditions zircaloy is observed to quench faster than
stainless steel. The difference in quenching times is seen to depend on the
initial temperature of the rods, the flow velocity and on the liquid subcool-
ing. Precursory cooling due to entrained droplets is observed to play a very
important role in rod bundles, as the heat transfer associated with it is much
higher than with normal film boiling. The quench front velocity data obtained
on stainless steel rod bundles are compared with existing correlations by
properly defining the quench front temperature and wall temperature ahead of
the quench front. At an initial rod temperature of about 1000 K, complete
oxidation of zircaloy is observed to take place in about three successive
quenching experiments.



Section 1

INTRODUCTION

During off normal operation of a light water reactor, many situations may arise
when the time variations in the heat flux and/or temperature of the surface of
the fuel rod are very rapid. For example, during the blowdown phase of a hypo-
thetical loss of coolant accident {LOCA), the rapid changes in coolant flowrate
and thermodynamic conditions may lead to a rapid decrease in heat flux and an
increase in the temperature of the fuel rods. 1In BWR's and PWR's, the ultimate
cooling of the fuel rods following a LOCA is by quenching. Maintaining the
integrity of the fuel rods until they are quenched is a major safety constraint.
At present our knowledge of film and transition boiling heat fluxes during
quenching of a bundle of tubes is limited and a better understanding of the
transient boiling process needs to be gained, particularly for zircaloy clad
bundles. The objective of this study is to provide such data.

BACKGROUND

Most experimental studies that bear on this work have been of heat transfer
phenomena in simplified geometries. Boiling heat transfer during quenching

of spheres in saturated liquid was found by Bergles and Thompson (1) to be dif-
ferent than previously measured. Subsequently, Veres and Florschuetz (2) claimed
that the differences in heat fluxes observed by Bergles and Thompson were a
manifestation of surface effects. Tachibana and Enya (3) have studied boiling
from cylinders both in steady state as well as during quenching. Subcooled pool
and forced flow film boiling during quenching of stainless steel, copper and
silver spheres has been investigated by Dhir and Purohit (4).

Re-wetting experiments on single stainless steel and zircaloy tubes and rods
gubjected to falling water film and bottom flooding were performed by Piggott
and Duffey (5). The experiments were conducted at one atmosphere pressure with
water subcooling of 80 K. From their work, it was shown that zircaloy quenched
faster than stainless steel. This is primarily due to smaller thermal capacity
of zircaloy and axial conduction effects at the quench front. A model was
developed by Duffey and Porthouse (6) for the conduction controlled re-wetting
and improved by Sun et al. (7) to consider the heat transfer phenomena in three
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distinct regions - a sputtering region between the wet and adiabatic regions.
In a subsequent paper Sun et al. (8) further improved their model by including
the prequench cooling ahead of the quench front as it occurs in emergency core
cooling.

Film and transition boiling on hot rods subjected to cooling by a water jet
have been investigated by Piggott, White and Duffey (9). They observed that
the time needed to achieve wetting of the rods was strongly dependent on water
subcooling, jet velocity, heat generation rate in the rod, jet impact angle

and surface temperature. Surface finish and rod size were found to have little
effect.

IToeje, Plummer, Griffith and Rohsenow (10) studied film boiling and surface
re-wetting in forced flow through a vertical tube. In their experiments, water
in the quality range 30-100% and at 1000 psi was forced through an electricaily
heated 1 cm diameter inconel tube. Data for the minimum tube temperature to
accomplish re-wetting and the transient heat fluxes in film, transition and
nucleate boiling were obtained. Recently a detailed investigation of quenching
of a vertical stainless steel tube, 14.4 mm inside diameter and 3.66 m long was
carried out at UC Berkeley (11). In these experiments conducted at one atmos-
phere pressure, water was injected at the bottom and water subcoolings and in-
let velocities were varied systematically. Data for the tube wall temperature
as a function of time, the equivalent height of water in the tube and the exit-
ing fluid temperature and quality and apparent heat transfer coefficient ahead
of the quench front are reported.

Thus, except for the FLECHT experiments (12), very little quenching data on
zircaloy tube bundles cooled from outside are available. Unfortunately, the
high conductivity filler used in the heaters for the FLECHT experiments is
atypical of reactor fuel rods. Further, the gap conductance is not properly
simulated. Pearson et al. (13) have shown that filler properties can affect
the quenching behavior. Currently, reactor safety analysis is based on the
FLECHT data, and an arbitrary limit is imposed on the amount of clad oxidation
to avoid fragmentation due to embrittlement and thermal shock.

PURPOSE OF THE PRESENT WORK

One of the major tasks of this work is to study quenching of zircaloy rods dur-
ing reflooding and to compare it with stainless steel rods. The experiments
are conducted in a 4-rod bundie to obtain data for quench front velocity, with
additional information on pre-quench cooling. How the quenching rate depends
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on variables such as high surface temperature, thermal capacity and oxidation
of the surface of the rod is investigated for a prescribed 1iquid subcooling,
flow velocity and initial temperature of the rod. The filler material in the
rods is chosen such that it simulates the thermophysical properties of UO2 that
are relevant to the quenching process.

The second chapter of the report contains a description of the apparatus and
the experimental procedure. The results of quenching of a 4-rod stainless steel
bundle, of a 4-rod bundle having two stainless steel and two zircaloy rods, and
of a 4-rod zircaloy bundle are discussed in Section 3. In this chapter a brief
description of quenching behavior of a 4-rod bundle containing two zircaloy and
two rods from FLECHT experiments is also given. Tabulation of all the data and
graphical presentation of quench front locations and quench front velocity are
done in Appendices A, B, C and D. The thermophysical properties of the A1203
fillers are compared with UO2 in Appendix E.
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Section 2

EXPERIMENTAL APPARATUS AND PROCEDURE

The experimental apparatus is designed so that thermal-hydraulic phenomena
associated with quenching of rod bundles can be investigated. The rods are
arranged in a square grid and the bundle is housed in a quartz tube. Vertical
tubes (=120 cm in height and about 1.1 cm in outer diameter) made of different
materials and different wall thicknesses (0.71-0.88 mm) are used to simulate
the fuel rods. Fillers made of A1203 and having the same diameter (0.91 cm) as
that of U02 pellets are used. This leaves a gap of 0.07-0.24 mm between the
filler and the cladding. Filler material is chosen such that thermophysical
properties important in the quenching process are properly simulated. The
properties of U02, zircaloy and the filler material are compared in Appendix E.
The tubes are heated inductively to the desired temperature with power supply
from a 450 kHz, 25 kw induction heater. Apart from the induction heater, the
test equipment consists of an induction coil, a pneumatic cylinder to move the
induction coil in the vertical direction, a nitrogen or argon gas supply sys-
tem, a flow loop and the test section. A magnetic flowmeter, two Houston X-Y
recorders, and a Sanborn 8 channel recorder comprise the necessary instrumenta-
tion.

DESCRIPTION OF THE APPARATUS

Schematic diagram of the experimental apparatus used in the quenching tests is
shown in Fig. 2-1. The reservoir, which was designed as a pressure vessel, is
made of stainless steel plate and is capable of safe operation at a pressure of
790 kPa (100 psig) and a temperature of 177°C (350°F). The pressure vessel has
a volume of 49 liters (1.74 ft3) and provision is made to heat the water by
four 0.62 kw strip heaters placed on the outside of the pressure vessel. The
pressure vessel is connected through a 25 mm (1 in) nominal size schedule 80,
stainless steel pipe. About 60 cm downstream of the pressurizer, another line
is taken off the main .1ine so as to be able to charge or drain the pressure
vessel. To avoid fluctuations in the reflood velocity under gravity flow con-
ditions (=1 atmosphere pressure), a centrifugal pump is placed between solenoid
valve and the pressurizer. The flow rate through the pump is controlled by a
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metering globe valve. Flow rate in the pipeline connecting the test section is
measured with a magnetic flow sensor, type Signet MK 315. Figure 2-2 shows the
reflood velocity in the test section as a function of globe valve opening. The
flow velocity increases linearly with valve opening for openings varying from
60° to 120°. Minimum flow velocity of 6 cm/s occurs for valve opening of 60°.
Below this opening the pump starts to stall causing the flow in the test sec-
tion to oscillate. To obtain flow velocities less than 6 cm/s in the test sec-
tion, a by-pass loop is installed.

A 5.5 cm outer diameter and 0.1 cm wall thickness quartz tube serves as housing
of the rod bundle. Figure 2-3 shows the test section and details of how the
thermocouples are mounted on the stainless steel tubes. Chromel alumel, 26
gage thermocouples are spot welded 15 cm apart in the mid-portion of the tube.
The bare thermocouple wires are carried through six hole 0.79 cm diameter alu-
mina insulators (fillers). The alumina insulators are stacked one on another
in the stainless steel tubes. To measure the representative temperature of the
alumina insulators, the top thermocouple in one of the tubes (1) is fixed to
the insulator with adhesive cement.

Details of the top and bottom rod holders are shown in Figs. 2-4 and 2-5 respec-
tively. The holders are made out of 302 stainless steel stock. The outer
quartz tube sits in the steps provided in the holder. Leakage of water from the
tube is avoided by pushing the stainless steel sleeves against the top and bot-
tom 0-rings. The stainless steel tubes are held in a square grid with multi-
hole orifice plates, which also serve to provide flow of coolant through the
test section. The bottom orifice plate sits in the bottom holder, while the

top plate is free floating. The free floating orifice plate is held in posi-
tion with a light spring. Figure 2-6 shows a detailed view of the orifice plate.

To avoid bowing of the tubes due to uneven thermal expansion and contraction
during preheating and quenching periods, pieces of 1.5 mm diameter tantalum
wire were welded to the tubes as shown in Fig. 2-7. The tantalum wire did not
overheat with respect to the stainless steel or zircaloy tubes and also it did
not affect the flow area in any significant way. However, difficulty was en-
countered in spot welding the tantalum wire to the stainless steel or zircaloy
tubes. The tantalum grid spacers are placed about 22.5 cm and 38 cm from the
lower and upper ends of the tube bundle respectively.

An inert gas feed line is installed about 30 cm below the entrance to the test
section to purge the test section prior to or during induction heating of the
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tubes. A solenoid operated pneumatic cylinder is used to move the induction
coil over or away from the test section.

EXPERIMENTAL PROCEDURE

Prior to start of the experiment, various accessories and instruments are
checked for their operability. De-ionized water is added to the pressurizer
and heated to about the temperature at which a particular test run is to be
made. Meanwhile, thermocouples are checked for electrical continuity and are
hooked to various temperature recorders (2 Houston Single Channel X-Y Recorders
and 2 Sanborn 8 channel recorders). The R-F generator and the recorders are
switched on and are allowed to warm up for about 20 minutes. In the experi-
ments in which a movie is to be made, Hycam movie camera is positioned and
proper illumination of the test section is assured. Thereafter, the opening

of the metering globe valve is adjusted to have the desired flow rate in the
test section. The drain valve is opened while the valve connecting the water
feed Tine to the test section is closed. This is done to facilitate preheating
of the pipeline and this procedure is followed only in the experiments in which
water is hotter than the ambient temperature.

Now nitrogen gas is allowed to flow through the test section and induction coil
is properly located around the tube bundle. Thereafter, the work coil is ener-
gized. During the heating period, the temperature of at least three thermo-
couples located on three different rods are monitored. The water feed line is
pre-heated by allowing water from the storage tank to flow through it and on to
the drain. The radio frequency generator is switched off, when the tube tem-
perature reaches a pre-determined value. The induction coil is then moved away
from the field of view. The valve connecting the pump to the storage tank is
opened and the pump is started. The solenoid valve in the water feed line is
opened while the solenoid valve in the inert gas line is closed and the recor-
ders are started. At the same time the movie camera is activated and the
quenching phenomena on the rod bundle is captured on a TRI-X film running at
100 frames/s.

DATA REDUCTION

The main output of a quenching experiment is the temperature time traces of the
inner surface of zircaloy or stainless steel cladding. A typical temperature-
time trace corresponding to little or no precursory cooling is shown in Fig. 2-8.
Here precursory cooling implies cooling of the rod by entrained water droplets.
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The temperature at which the slope of the temperature-time trace increased
sharply was taken as the quenching temperature, To‘ As the film boiling Biot
number for the zircaloy and stainless steel cladding is very small (<0.06),
1ittle error is made in assuming To as the surface temperature.

The quenching temperature is generally highest near the rod bundle where the
water is at its coldest and decreases in the vertical direction as the liquid
enthalpy increases. The wall temperature ahead of the quench front strongly
affects the quench front velocity. This temperature varies both with time and
axial position. 1In the present work, while correlation quench front velocity
data, the temperature indicated by the thermocouple closest but ahead of the
quench front was taken as the wall temperature, Tw.

The temperature histories when precursory cooling as a result of droplets hit-
ting the rod surface ahead of the quench front occurs are shown in Figs. 2-9
and 2-10. The temperature history shown in Fig. 2-9 corresponds to the situa-
tion when droplets with short contact periods hit the cladding surface. The
oscillations in the surface temperature are caused by repeated cooling of the
surface by evaporation and subsequent insulation of it by the vapor. Figure
2-10 shows the case when the rod surface is cooled below the quenching tempera-
ture by precursory cooling alone. In this case the temperature history is in-
dicative of cooling of the rod surface because of some sort of continued con-
tact of Tiquid with the surface. No clear quenching temperature can be defined
in this case.
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Section 3

RESULTS AND DISCUSSION

A total of fifty-seven runs with all zircaloy, all stainless steel and a mixed
bundle containing two zircaloy rods and two stainless steel rods were made.

Out of these, three runs were made with all zircaloy bundles, thirteen runs

with all stainless steel bundles and ten runs were made with a mixed bundle
containing two zircaloy rods and two used rods from the FLECHT experiments.

The remaining thirty-one runs were made with a 4 rod bundle containing two
zircaloy and two stainless steel rods. In these experiments initial rod tem-
perature varied from 900 to 1100 K and flooding velocities varied from 2-30 cm/s.
For all of the runs, inlet water subcoolings were either about 75 K or about

50 K. ATl the data are tabulated and plotted in Appendices A through D.

The specific goals of these experiments were to understand the role of the
following variables on the quenching behavior of the rods:

1. rod material properties

2 liquid subcooling and flooding velocity

3 initial rod temperature

4. precursory cooling

5 oxidation, especially in the case of zircaloy rods.

QUENCHING OF A 4 ROD STAINLESS STEEL BUNDLE

The temperature histories plotted in Appendix A show that the quenching tempera-
ture increases with Tiquid subcooling, but decreases because of the increase of
enthalpy of the liquid as the liquid moves upward. In the lower region of the
rod bundle, the quenching temperature is observed to increase with flow veloc-
ity, however at high flooding velocities, precursory cooling results in early
cooling of the upper regions of the rod surface. This in turn leads to rapid
rewetting of the rod bundle.

Typical quench front locations as a function of time for flooding velocity of

3 cm/s and 30 cm/s are plotted in Figs. 3-1 and 3-2. It is noted that quench-
ing of different rods at the same vertical location may differ by a few seconds.
The difference in quenching times is observed to decrease somewhat with in-
creased flooding velocity. This observation is consistent with that reported
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in the literature by various other investigators. Increased subcooling of the
liquid is also found to have similar effect. The initial temperature of the
rods at the ends were generally less than that at the middle section because
of nonuniform heat input to the rods as well as due to conduction of heat into
the rod bundle holder. For this reason, quench front did not form in the first
15=20 cm of the rod bundle. Also, in certain instances, especially at higher
flooding velocities, the precursory cooling resulted in early quenching of the
upper end regions. This, in turn, caused a second quench front to move from
top to bottom.

The quench front velocities as deduced from quench front location data indicate
that quench front velocities generaily increase with flooding velocity and in-
let subcooling. For flooding velocities of 9 cm/s or higher, the quench front
velocities are significantly higher in the Towermost and uppermost parts of the
rod bundle. The quench front velocity is minimum in the middle portion of the
rod bundle. Figure 3-3 shows one such case. Higher quench front velocities in
the lower region of the rod bundle are due to larger subcoolings whereas in the
upper region, the rods quench faster because of precursory cooling. In the
middle portion of the rod bundle, the Tliquid is nearly saturated and inverse
annular flow conditions exist. Quench front velocity in the middle portion of
the rod bundle is plotted in Fig. 3-4 as a function of flooding velocity. The
inlet water subcooling for the data plotted in Fig. 3-4 was 75°C whereas the
initial rod temperature was 1000+ 25 K. It is noted that for a flooding rate
of 1 cm/s, the quench front velocity is about the same as the flooding velocity.
For higher flooding rates, quench front velocity increases slowly with flooding
velocity. The subcooling of liquid at inlet has 1ittle effect on the total
quenching time as long as flooding velocities are small (=2 cm/s). However, at
higher flooding velocities Tiquid subcooling tends to reduce the total quench-
ing time. This reduction in quenching time results from higher quenching velo-
cities in the lower regions of the rod bundle where liquid is still subcooled.

QUENCHING OF THE 4 ROD BUNDLE CONTAINING %NO STAINLESS STEEL AND TWO ZIRCALOY RODS

The quench front location data on stainless steel and zircaloy rods as obtained
from one of the movies are shown in Fig. 3-5. 1In this figure, the quench front
location, as interpreted from the temperature-time traces of thermocouple output
in the manner described in Section 2, is also plotted. It is noted from Fig.
3-5 and other data plotted in Appendix B that zircaloy quenches faster than
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stainless steel. The thermocouple observations are generally in agreement with
the observations from the movies during the early periods of quenching or when
the flooding velocity is small. However, at higher elevations where precursory
cooling becomes important, thermocouple observations can be misleading. This is
mostly because of difficulty in defining a quenching temperature on the tempera-
ture time trace. Many times the agitation (breakup of 1iquid droplets) created
by the faster moving quench front was observed to cause local breakup of vapor
film on the rod with a slower moving quench front. This led to a kind of step
process during which the slower moving quench front caught up with the faster
moving quench front. Such a trend can clearly be seen from the data plotted in
Fig. 3-5.

Different phases of the quenching process as observed in the movies are repro-
duced in Figs. 3-6 through 3-11. Zircaloy (right) and stainless steel rods
(left) prior to heating are shown in Fig. 3-6. Figure 3-7 shows precursory
droplet motion well ahead of the free surface of the coolant two phase mixture.
The slug flow conditions below the free surface and droplet motion above the
free surface of coolant can be seen in Fig. 3-8. Fully developed slug flow
below the free surface and well ahead of the quench front is shown in Fig. 3-9.
Figure 3-10 shows film boiling immediately ahead of the quench front. It is
interesting to note the existence of a highly ripply vapor film on the stainless
steel rod. Figure 3-11 shows the quench front locations on the stainless steel
and zircaloy rods. The quench front on the zircaloy rod is well ahead of that
on the stainless steel rod. Nucleate boiling just behind the quench front can
be clearly seen on both ends.

Typical quench front velocities as reduced from quench front location data are
plotted in Figs. 3-12 and 3-13. The data in Fig. 3-12 was reduced from thermo-
couple observations. It is noted from these figures as well as from the data
plotted in Appendix B that quench front velocity in the middle portion of the
rod bundle where coolant is saturated and inverse annular flow conditions exist
is higher on zircaloy rods as compared to stainless steel rods. Quench front
velocities on zircaloy and stainless steel rods for different flooding veloci-
ties are shown in Fig. 3-14. For the data plotted in Fig. 3-14, the initial
rod temperature was 950+ 20 K while the subcooling of water at the inlet to the
rod bundle was 782 K. It must be pointed out that the quench front velocities
plotted in Fig. 3-14 are only for the mid-plane region of the rod bundle. It
is noted from Fig. 3-14 that difference in quenching velocities for zircaloy
and stainless steel increases with flooding velocity. In the mixed bundle, “the
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Figure 3-6 Relative Locations of Stainless Steel (Left)
and Zircaloy (Right) Rods in the 4 Rod Bundle
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Figure 3-7 Precursory Droplet Motion Well Ahead of Free
Surface. Run No. D-II; Flooding Velocity
3 c¢m/s; Initial Rod Temperature 968 K



Figure 3-8 Free Surface of the Two Phase Mixture. Run No.
D-II; Flooding Velocity 3 cm/s; Initial Rod
Temperature 968 K



Figure 3-9 Churn Turbulent Flow. Run No. D-I1I; Flooding
Velocity 3 cm/s; Initial Rod Temperature 968 K



Figure 3-10 Film Boiling on Stainless Steel and Zircaloy
Rods, Run No. D-II; Flooding Velocity 3 cm/s;
Initial Rod Temperature 968 K
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quench front on zircaloy is observed to move about 33% faster than on stainless
steel when flooding velocity is 25 cm/s. Piggott and Duffey (5), in their single
rod tests noted that with filler and quenching rate of zircaloy was about 20-25%
faster than stainless steel. However, when filler was removed, zircaloy tended
to quench at about twice the velocity for stainless steel. The difference in
quench velocities has been found to decrease with increase in initial tempera-
ture of the rod. At higher temperatures the filler probably plays a more im-
portant role.

The quench front velocities near the entrance and the upper half region of the
bundle were generally significantly higher than in the middle portion because

of the liquid subcooling and precursory cooling respectively. An increase in
liquid subcooling increased the quench front velocity in the entrance region

but had Tittle effect in the upper regions of the rod bundle where the liquid
temperature had already reached saturation. Faster quenching of zircaloy caused
the stainless steel rods to quench earlier also.

QUENCHING OF ALL ZIRCALOY BUNDLE

In the all zircaloy rod bundle, determination of the effect of oxidation during
quenching was one of the major considerations. For this reason an 18 inch long
zircaloy tube cut as a half cylinder was used as a test specimen. This tube was
placed in the test section such that it preserved the square grid spacing of

the rod bundle. Also, the exposure of both the inside and outside surface of
the tube to the test section environment resulted in the same surface area as
for a rod of the same length. This test specimen was removed from the test
bundle after each run and was weighed. Starting with a fresh test sample, Table
3-1 Tists the weights of the test section before and after each run in which the
rod bundle was heated to about 1000 K and quenched at the flooding velocity of

2 cm/s. It is noted that the amount of oxide deposited on the rod decreases
after two runs. This is mainly due to uncertainty in determining the weight.

The quench front location data, a fresh rod bundle (Run G-I) and a heavily oxi-
dized bundle (Run G-III) are plotted in Figs. 3-15 and 3-16 for a flooding vel-
ocity of 2 cm/s. The oxidation seems to increase the difference in quenching
times between various rods at the same vertical locations. This is especially
true at higher vertical locations where precursory cooling becomes important.
The presence of an oxide layer would improve the wettability of the surface.

An examination of the temperature-time traces of thermocouples indicated that
the quenching temperature of the oxidized rods was about 50-100 K higher than
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Table 3-1
WEIGHT OF ZIRCALOY TEST SPECIMEN AFTER EACH RUN

Run Initial Final Weight
Weight Weight Gain
—_— _gm__ _am__ _am
G-1 29.5910 29.5933 0.0023
G-I1 29,5933 29.5941 0.0008
G-1II 29.5941 29.5940 -0.0001
G-IV 29.9940 - -

for the fresh rods. Quench front velocities in the fresh and heavily oxidized
rod bundles as obtained from the quench front location data are plotted in Figs.
3-17 and 3-18. In the lower half region, the quench front velocities in the
fresh and heavily oxidized rod bundle are about the same, however in the upper
half region, the quench front velocity on the oxidized rod bundle is much higher
than on a fresh (presumably non-oxidized) bundle. Enhancement in quenching
velocity is thought to be due to higher wettability of the oxidized surfaces
which allows for longer periods of good heat transfer during each contact of
precursory cooling droplets.

The quenching process at different axial locations on a fresh zircaloy rod
bundle as observed from the movies is shown in Figs. 3-19 through 3-22. In the
inverse annular flow conditions, the neighboring rods are clearly seen to quench
at about the same time.

QUENCHING OF THE 4 ROD BUNDLE CONTAINING TWO ZIRCALOY RODS AND TWO USED RODS

FROM FLECHT EXPERIMENTS

Ten quenching experiments at a variety of flooding conditions were made on a four
rod bundle consisting of two used rods from FLECHT program and two zircaloy rods.
The FLECHT rods which were heavily oxidized were cut into 1.2 meter long pieces.
These rods could not be instrumented from the inside because of the presence of
electrical heating elements and related insulating material. Quench front loca-
tions on the FLECHT stainless steel rods could thus only be ascertained from the

movies.

Figures 3-23 - 3-25 show the quench front Tocation on stainless steel and zircaloy
rods as obtained from the movies and also the thermocouples placed on zircaloy
clad rods. The flooding velocity for the data plotted in Figures 3-23 - 3-25

was 2, 10 and 30 cm/s while subcooling of water at the inlet was 78 K. The data
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Figure 3-19 Quench Front Location on A1l Zircaloy Bundle
Near the Entrance Region when Liquid is Still
Subcooled, Run No. G-I1; Flooding Velocity 2 cm/s;
Initial Rod Temperature 1000 K
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Figure 3-20 Quench Front in the Lower Middle Portion of All
Zircaloy Bundle when Liquid is Nearly Saturated;

Flooding Velocity 2 cm/s; Initial Rod Tempera-
ture 1000 K
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Figure 3-21 Quench Front Location on A1l Zircaloy Bundle
with Well Developed Two Phase Mixture Ahead
of the Quench Front; Run No. G-I; Flooding
Velocity 2 cm/s; Initial Rod Temperature 1000 K
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Figure 3-22 Quench Front Location on A1l Zircaloy Bundle
with Near STug Flow Ahead of Quench Front;

Run No. G-I; Flooding Velocity 2 cm/s; Initial
Rod Temperature 1000 K
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plotted in Figure 3-24 show that quenching of zircaloy rods occurred somewhat
faster than stainless steel rods from FLECHT program. This is consistent with
the conclusions drawn earlier. However, the data plotted in Figures 3-23 and
3-25 does not show as Tlarge a difference between quenching rates of zircaloy and
stainless steel rods from FLECHT experiments. This could be due to the 15-20%
higher thermal capacity of the FLECHT rods which caused these rods to be rela-
tively cooler at the start of the quenching process.

BOILING CURVES

The coiling curves as deduced from the temperature time traces for the case when
quench front was well defined on the rod surface and for the case when cooling

of the rod mainly occurred by precursory droplets are compared in Figure 3-26.

The dependence of heat flux on temperature was obtained by solving one dimensional
inverse transient conduction equation in the cladding as well as in the insulators.
The boiling curve obtained with the assumption of no filler but an insulated clad-
ding inner surface was not much different except in the lower end of the nucleate
boiling region. Slight modification in the boiling curve, however, may occur if
two-dimensional inverse transient conduction equation was solved or an approach
similar to that of reference (14) was taken-instead.

The transition boiling region in the boiling curve corresponding to a well de-
fined quench front is extremely narrow. In fact, it suggests that boiling pro-
cess directly goes from film to nucleate boiling and that in quenching models,
heat transfer just behind the quench front should be evaluated from peak heat
flux rather than from average of minimum and maximum heat fluxes. The observed
shape of the boiling curve confirms the recent conceptualization of the boiling
process by Murao (15). The transition boiling data obtained by Cheng et al. (16)
on an inconel tube embedded in a copper block and also plotted in Figure 3-26,
show a much different dependence of heat flux on wall superheat. It is possible
that in their experiments copper block acted to smooth out any large temperature
gradients and thus caused the tube wall temperature to vary slowly with time.

The heat transfer associated with precursory cooling is significantly higher than
for film-boiling region ahead of the well defined quench front. The advantage

of precursory cooling in terms of reduction in overall quenching times becomes
more clear if one integrates the heat flux over the time precursory cooling in-
stead of classical film boiling prevails on the rod surface. It is interesting
to note that maximum heat flux achieved with precursory cooling is much less than
that for well defined quenching. This is most probably due to lower rod tempera-
ture at the time of complete wetting.
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For a well defined quench front, the quenching temperatures as obtained from the
temperature time traces, and generally confirmed by visual observations, have

been found to decrease very rapidly with axial height before reaching an asump-
totic value. The decrease in quenching temperature is presumably associated with
increase in enthalpy of liquid as it moves upwards. Figure 3-27 shows the quench-
ing temperatures (as defined earlier) on a stainless steel rod bundle:as a func-
tion of axial height. The quenching temperatures in Figure 3-27 have not been
plotted as a function of local 1liquid subcooling because of insufficient water
temperature data. Also, no data are plotted for upper regions of the rod bundle
because under precursory cooling conditions, a quenching temperature could not be
defined from the temperature time traces. In this figure, the quenching tempera-
tures as would be obtained by using the correlation suggested in reference (4) for
stainless spheres as well as those suggested by Henry (17) have also been plotted.
In plotting the correlations, liquid enthalpy based on stored energy considerations
has been assumed to increase linearly, until the liquid becomes saturated. It is
noted that the quenching temperatures are represented well by the correlation of
reference (4). Henry's correlation (17) also fairs well when the liquid is
saturated but underpredicts the quenching temperatures in the subcooled region.
Interestingly, the range of quenching temperatures observed in the FLECHT (18)
experiments is about the same as in the present case.

CORRELATION OF QUENCHING DATA

Figure 3-28 shows the dimensionless inverse quench front velocities as a function
of Reynolds number based on the flooding velocity. The data plotted in Figure
3-28 is for a stainless steel rod bundle and is only for the middle portion of
the rod bundle where coolant was nearly saturated and inverse annular flow condi-
tions existed. The data are correlated within z20% as

* -
L = 11.sre™M/? (3-1)

The one-dimensional correlation of Duffey and Porthouse (6)
K‘)1/2 E_1/2

1
u* 3 '3 (3-2)

—_
o
—

is also seen to compare quite favorably with the data. Two-dimensional solution
for quench front velocity on a cylinder has been given by Blair (19) and Duffey
and Porthouse as

T*

*_r 1 -
u* 2 Bi (3-3)
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The flooding velocity dependence in Eq. 3-3 is carried through Biot number. If
it is assumed that Biot number would be a function of Reynolds number, Eqs. 3-1
and 3-3 can be equated to yield

Bi = 0.14Re!/? (3-)

This translates to heat transfer coefficients of 5.7 and 31.2 W/cm2 for flooding
velocities of 1 and 30 cm/s respectively. Corresponding values obtained by using
Yamanouchi's (20) correlation would be 44.8 and 245.4 W/cm2 K. Very high heat
transfer coefficients given by Yamanouchi's correlation are probably due to his
use of a too simplistic model for the quenching process.

For flooding rates of about 1 cm/s, the heat transfer coefficient given by Eq.

3-4 is consistent with the boiling curve if the heat transfer coefficient is evalu-
ated near the peak heat flux on the nucleate boiling side. However, for higher
flooding velocities the predicted heat transfer coefficient is significantly

higher than would be obtained from the boiling curve. It only suggests that the
thermocouples are giving a smeared output and are not reflecting the actual heat
transfer at the surface under extreme transient conditions. Further efforts are
continuing to resolve this discrepancy in observed heat transfer coefficient and
the heat transfer coefficient needed to explain the observed quenching velocities.
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SECTION 4
CONCLUSIONS

Under similar flooding conditions, zircaloy has been observed to quench
faster than stainless steel. For example, in a mixed bundle containing
both zircaloy and clad rods, the quench front moves about 33% faster on
zircaloy than on stainless steel. The difference in quenching velocities
is even higher for an all zircaloy bundle, and has been found to decrease
with increase in initial temperature of the rod. At higher temperatures,

For a given rod surface temperature and flooding velocity, liquid sub-
cooling increases quenching temperature as well as quench front tempera-

ture.

Quench front velocity under saturated inverse annular flow conditions
has been found to increase as square root of flooding velocity.

At flooding velocities of 10 cm/s or higher, precursory cooling plays
an important role in quenching the upper regions of the rod bundle.

Oxidation of zircaloy has been observed to reach an asymptotic state
after about 3 runs. During flooding, oxidized rods quench somewhat
differently than a fresh rod.

The transition boiling region of the transient boiling curve obtained
in the presence of well defined quench front is nearly nonexistent.

At Tow flooding velocities (= 2 cm/s), the quench front velocities are
consistent with the heat transfer coefficient corresponding to maximum
heat flux. However, at higher flooding velocities, the heat transfer
coefficient obtained from boiling curve is much less than needed to
explain the observed quench front velocities. This is probably due to
smeared output of the thermocouple which does not reflect the actual
heat flux at the surface.
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APPENDIX A

TABULATION AND GRAPHICAL PRESENTATION OF DATA FOR QUENCHING TEMPERATURE,
QUENCH FRONT LOCATION AND QUENCH FRONT VELOCITY FOR ALL
STAINLESS STEEL BUNDLE

A total of thirteen runs were made with initial rod temperatures varying from
650°C to 760°C and flooding velocity from 1-30 cm/s. For these runs the inlet
water subcooling was either 75°C or about 50°C. Table A-1 lists all the runs
(Series A and B) made with stainless steel rod bundles. Data from Run AII and
AIII could not be reduced because of the malfunction of the recorders during the
runs.

TEMPERATURE HISTORIES

Temperature time traces at different vertical distances from the inlet for four
of the thirteen runs are shown in Figures A-1 - A-4. It should be mentioned
that zero time in these figures corresponds to the time at which the recorder
is started and may be different by a few seconds from the time at which water
entered the test section.

QUENCH FRONT LOCATION

Figures A-5 - A-16 show the quench front location as a function of time. The
curve joining different quenching locations has been drawn by hand.

QUENCH FRONT VELOCITIES

Quench front velocities at the quenching location as obtained by noting the
slope of the quench front locations versus time plots are plotted in Figures
A-17 = A-38.
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Table A-1
TEST RUNS WITH 4 STAINLESS STEEL ROD BUNDLE

Serial Run Inlet Reflood Initial Water Movie
Number Number Water Velocity Rod Subcooling
Temp. (K) (cm/s) Temp.(K)  (K)
1 B-VIII 298 1 1033 75 No
2 B-VII 298 3 993 75 No
3 A-11 298 9 973 75% No
4 A-vV 298 14 983 75 No
5 B-1 298 20 1023 75 No
6 B-III 298 30 1023 75 No
7 B-V 323 3 1023 50 No
8 B-VI 323 30 993 50- No
9 A-1 298 9 923 75 No
10 A-111 298 9 998 75% No
11 A-TV 298 14 1013 75 No
12 B-1I 298 30 1033 75 No
13 B-1V 298 3 1008 75 No

*
Data could not be reduced because of malfunction of recorders.
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APPENDIX B

TABULATION AND GRAPHICAL PRESENTATION OF DATA FOR QUENCHING TEMPERATURE,
QUENCH FRONT LOCATION AND QUENCH FRONT VELOCITY FOR A 4 ROD BUNDLE
CONTAINING TWO STAINLESS STEEL AND TWO ZIRCALOY RODS

A total of thirty-one runs were made to compare the behavior of zircaloy cladding
with the stainless steel cladding under identical flooding conditions. In these
experiments the initial wall temperatures varied from 873-1133 K and flooding
velocities varied from 2-30 cm/s. For all of the runs, inlet water subcooling
was either about 75 K or about 50 K. Tables B-1 and B-2 1ist all the runs made
with the mixed bundle containing two zircaloy and two stainless steel rods.

QUENCH FRONT LOCATION

Quench front Tocations obtained from movies for both zircaloy and stainless steel
are shown in Figures B-1 - B-6 as a function of time. In these figures, the
quench front locations, as interpreted from the temperature time traces of thermo-
couple output by using the procedure described in Section 2, are also marked.

The figures are arranged in order of increasing flooding velocity and zero time

in these figures corresponds to the time at which Tiquid entered the test section.
Liquid subcooling at inlet for these data was about 75 K. The other quench front
location data obtained from thermocouples for the cases in which no movies were
made and subcooling of water at inlet was 75 K are plotted in Figures B-7 - B-12.
Figures B-13 and B-14 show the quench front location data as obtained from movies
whereas Figures B-15 - B-26 show the data obtained from thermocouples when sub-
cooling of water at inlet was reduced to about 50 K.

QUENCH FRONT VELOCITIES

The quench front velocities as reduced from the quench front location data ob-
tained from movies as well as thermocouples are plotted in Figures B-27 - B-52.
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Table B-1
TEST RUNS WITH TWO ZIRCALOY AND TWO STAINLESS STEEL RODS

Serial Run Reflood Inlet Initial Movie
Number Number Velocity Water Tube Data
(cm/s) Temp. (K) Temp. (K)

1 C-1 9 295 957 Yes
2 C-I1I 5 295 980 Yes
3 C-111 9 298 876 No
4 C-1v 20 298 899 No
5 c-v 30 298 973 No
6 D-1I 5 295 933 No
7 D-11 3 295 968 Yes
8 D-1I1 1 295 968 Yes
9 D-1V 15 295 968 Yes
10 D-v 7 295 973 Yes
11 D-VI 15 295 973 Yes
12 D-VII 25 295 973 Yes
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Table B-2
TEST RUNS WITH TWO ZIRCALOY AND TWO STAINLESS STEEL RODS

Serial Run Reflood Inlet Initial Movie
Number Number Velocity Water Tube Data
(cm/s) Temp. (K) Temp. (K)

13 E-T1* 9 295 - No
14 E-TI 20 323 - No
15 E-TII 9 323 980 No
16 E-TV 8 323 909 No
17 E-V 8.5 335 1040 No
18 E-VI 7 323 1040 Yes
19 E-VII 20 323 992 Yes
20 E-VIII 4 323 874 Yes
21 E-IX 9 323 1064 Yes
22 E-X 20 320 1088 Yes
23 E-XI 3 320 1113 Yes
24 E-XII 30 323 1137 No
25 E-XIII 2 321 1137 No
26 E-XIV 15 330 992 No
27 E-XV 15 316 1137 No
28 E-XVI* 30 295 1016 No
29 E-XVII* 20 295 992 No
30 E-XVIII* 9 295 968 No
31 E-XIX* 4 295 968 No

*
Data could not be reduced because of malfunction of recorders.
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APPENDIX C

TABULATION AND GRAPHICAL REPRESENTATION OF DATA FOR QUENCHING TEMPERATURE,
QUENCH FRONT LOCATION AND QUENCH FRONT VELOCITY FOR A
4 ROD ZIRCALOY BUNDLE

A total of three runs were made with all zircaloy rod bundle. In these experi-
ments initial rod wall temperature was about 1000K while the flooding velocity
was kept at 25 m/s. A1l the experiments were performed with inlet water sub-
cooling of 75 K. The amount of oxidation of zircaloy rods in these experiments
was determined by knowing the weight of the test specimen after each run.

QUENCH FRONT LOCATION

The quench front location on a fresh zircaloy rod bundle is plotted in Figure
C-1 as a function of time. Figures C-2 and C-3 show the quench front locations
on oxidized rod bundles.

QUENCH FRONT VELOCITY

The quench front velocities as reduced from quench front location data are plot-
ted in Figures C-4 - C-6.
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APPENDIX D

TABULATION AND GRAPHICAL PRESENTATION OF DATA FOR QUENCHING TEMPERATURE,
QUENCH FRONT LOCATION AND QUENCH FRONT VELOCITY FOR A 4 ROD BUNDLE
CONTAINING TWO ZIRCALOY AND TWO RODS FROM FLECHT EXPERIMENTS

A total of ten flooding experiments were performed with a 4 rod bundle containing
two zircaloy rods and two rods from FLECHT experiments. Rods from the FLECHT
program were not instrumented because the thermocouples were broken loos during
cutting of the rods to a height suited for the present test set up. In these
experiments the initial temperature of the zircaloy rods was varied from 945 to
1047 K while the flooding velocity was varied from 2 to 30 cm/s. Subcooling of
water at the inlet was generally 78 K, however in a few experiments subcooling
was decreased up to about 47 K. Test parameters are listed in Table D-1.

QUENCH FRONT LOCATION

Quench front locations obtained from movies for stainless steel (FLECHT) rods and
zircaloy rods are plotted in Figures D-1, D-2 and D-3. In these figures, the
quench front data as interpreted from output of the thermocouples are also plot-
ted. The quench front location data obtained only from thermocouples for the
cases in which no movies were made are plotted in Figures D-4 - D-10. Figures
D-4 - D-7 correspond to the case when subcooling of water at the inlet was 78 K.

QUENCH FRONT VELOCITY

Quench front velocities as reduced from quench front location data are plotted
in Figures D-11 - D-20.
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Run
Number

F-1
F-11
F-1I1
F-1V
F-V
F-VI
F-VII
F-VIII
F-IX
F-X

Table D-1

TEST RUNS WITH TWO RODS (STAINLESS STEEL) FROM FLECHT EXPERIMENTS
“AND TWO ZIRCALOY RODS

Reflood InTet Initial Movie

Velocity Water Tube Data

(cm/s) Temp. (K Temp. (K
10 295 957 Yes
10 295 957 No
30 295 957 Yes
2 295 945 No
2 295 957 Yes
2 323 957 No
10 295 957 Yes
2 295 957 Yes
10 317 1047 No
30 326 1026 No
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APPENDIX E

COMPARISON OF THE THERMOPHYSICAL PROPERTIES OF ALUMINA AND UO2

The thermophysical properties of the alumina insulators are compared below with
the thermophysical properties of U02.

Density, p Thermal Thermal ( )
Conductivity, k Capacity, ¢ kpc )UO
3 2 o ° p 2
gm/cm W/me °C Ws/m°C (kpcp ATumina
Alumina 3.2 20.9 =0.78
=0.7
UO2 =10.0 10.2 0.234

E-1
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